Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 5563 → Rev 5564

/contrib/sdk/sources/Mesa/mesa-10.6.0/src/mesa/drivers/dri/i965/brw_vec4_copy_propagation.cpp
0,0 → 1,489
/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
 
/**
* @file brw_vec4_copy_propagation.cpp
*
* Implements tracking of values copied between registers, and
* optimizations based on that: copy propagation and constant
* propagation.
*/
 
#include "brw_vec4.h"
#include "brw_cfg.h"
extern "C" {
#include "main/macros.h"
}
 
namespace brw {
 
struct copy_entry {
src_reg *value[4];
int saturatemask;
};
 
static bool
is_direct_copy(vec4_instruction *inst)
{
return (inst->opcode == BRW_OPCODE_MOV &&
!inst->predicate &&
inst->dst.file == GRF &&
!inst->dst.reladdr &&
!inst->src[0].reladdr &&
(inst->dst.type == inst->src[0].type ||
(inst->dst.type == BRW_REGISTER_TYPE_F &&
inst->src[0].type == BRW_REGISTER_TYPE_VF)));
}
 
static bool
is_dominated_by_previous_instruction(vec4_instruction *inst)
{
return (inst->opcode != BRW_OPCODE_DO &&
inst->opcode != BRW_OPCODE_WHILE &&
inst->opcode != BRW_OPCODE_ELSE &&
inst->opcode != BRW_OPCODE_ENDIF);
}
 
static bool
is_channel_updated(vec4_instruction *inst, src_reg *values[4], int ch)
{
const src_reg *src = values[ch];
 
/* consider GRF only */
assert(inst->dst.file == GRF);
if (!src || src->file != GRF)
return false;
 
return (src->in_range(inst->dst, inst->regs_written) &&
inst->dst.writemask & (1 << BRW_GET_SWZ(src->swizzle, ch)));
}
 
static unsigned
swizzle_vf_imm(unsigned vf4, unsigned swizzle)
{
union {
unsigned vf4;
uint8_t vf[4];
} v = { vf4 }, ret;
 
ret.vf[0] = v.vf[BRW_GET_SWZ(swizzle, 0)];
ret.vf[1] = v.vf[BRW_GET_SWZ(swizzle, 1)];
ret.vf[2] = v.vf[BRW_GET_SWZ(swizzle, 2)];
ret.vf[3] = v.vf[BRW_GET_SWZ(swizzle, 3)];
 
return ret.vf4;
}
 
static bool
is_logic_op(enum opcode opcode)
{
return (opcode == BRW_OPCODE_AND ||
opcode == BRW_OPCODE_OR ||
opcode == BRW_OPCODE_XOR ||
opcode == BRW_OPCODE_NOT);
}
 
static bool
try_constant_propagate(const struct brw_device_info *devinfo,
vec4_instruction *inst,
int arg, struct copy_entry *entry)
{
/* For constant propagation, we only handle the same constant
* across all 4 channels. Some day, we should handle the 8-bit
* float vector format, which would let us constant propagate
* vectors better.
*/
src_reg value = *entry->value[0];
for (int i = 1; i < 4; i++) {
if (!value.equals(*entry->value[i]))
return false;
}
 
if (value.file != IMM)
return false;
 
if (value.type == BRW_REGISTER_TYPE_VF) {
/* The result of bit-casting the component values of a vector float
* cannot in general be represented as an immediate.
*/
if (inst->src[arg].type != BRW_REGISTER_TYPE_F)
return false;
} else {
value.type = inst->src[arg].type;
}
 
if (inst->src[arg].abs) {
if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
!brw_abs_immediate(value.type, &value.fixed_hw_reg)) {
return false;
}
}
 
if (inst->src[arg].negate) {
if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
!brw_negate_immediate(value.type, &value.fixed_hw_reg)) {
return false;
}
}
 
if (value.type == BRW_REGISTER_TYPE_VF)
value.fixed_hw_reg.dw1.ud = swizzle_vf_imm(value.fixed_hw_reg.dw1.ud,
inst->src[arg].swizzle);
 
switch (inst->opcode) {
case BRW_OPCODE_MOV:
case SHADER_OPCODE_BROADCAST:
inst->src[arg] = value;
return true;
 
case SHADER_OPCODE_POW:
case SHADER_OPCODE_INT_QUOTIENT:
case SHADER_OPCODE_INT_REMAINDER:
if (devinfo->gen < 8)
break;
/* fallthrough */
case BRW_OPCODE_DP2:
case BRW_OPCODE_DP3:
case BRW_OPCODE_DP4:
case BRW_OPCODE_DPH:
case BRW_OPCODE_BFI1:
case BRW_OPCODE_ASR:
case BRW_OPCODE_SHL:
case BRW_OPCODE_SHR:
case BRW_OPCODE_SUBB:
if (arg == 1) {
inst->src[arg] = value;
return true;
}
break;
 
case BRW_OPCODE_MACH:
case BRW_OPCODE_MUL:
case BRW_OPCODE_ADD:
case BRW_OPCODE_OR:
case BRW_OPCODE_AND:
case BRW_OPCODE_XOR:
case BRW_OPCODE_ADDC:
if (arg == 1) {
inst->src[arg] = value;
return true;
} else if (arg == 0 && inst->src[1].file != IMM) {
/* Fit this constant in by commuting the operands. Exception: we
* can't do this for 32-bit integer MUL/MACH because it's asymmetric.
*/
if ((inst->opcode == BRW_OPCODE_MUL ||
inst->opcode == BRW_OPCODE_MACH) &&
(inst->src[1].type == BRW_REGISTER_TYPE_D ||
inst->src[1].type == BRW_REGISTER_TYPE_UD))
break;
inst->src[0] = inst->src[1];
inst->src[1] = value;
return true;
}
break;
 
case BRW_OPCODE_CMP:
if (arg == 1) {
inst->src[arg] = value;
return true;
} else if (arg == 0 && inst->src[1].file != IMM) {
enum brw_conditional_mod new_cmod;
 
new_cmod = brw_swap_cmod(inst->conditional_mod);
if (new_cmod != BRW_CONDITIONAL_NONE) {
/* Fit this constant in by swapping the operands and
* flipping the test.
*/
inst->src[0] = inst->src[1];
inst->src[1] = value;
inst->conditional_mod = new_cmod;
return true;
}
}
break;
 
case BRW_OPCODE_SEL:
if (arg == 1) {
inst->src[arg] = value;
return true;
} else if (arg == 0 && inst->src[1].file != IMM) {
inst->src[0] = inst->src[1];
inst->src[1] = value;
 
/* If this was predicated, flipping operands means
* we also need to flip the predicate.
*/
if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
inst->predicate_inverse = !inst->predicate_inverse;
}
return true;
}
break;
 
default:
break;
}
 
return false;
}
 
static bool
try_copy_propagate(const struct brw_device_info *devinfo,
vec4_instruction *inst,
int arg, struct copy_entry *entry)
{
/* For constant propagation, we only handle the same constant
* across all 4 channels. Some day, we should handle the 8-bit
* float vector format, which would let us constant propagate
* vectors better.
*/
src_reg value = *entry->value[0];
for (int i = 1; i < 4; i++) {
/* This is equals() except we don't care about the swizzle. */
if (value.file != entry->value[i]->file ||
value.reg != entry->value[i]->reg ||
value.reg_offset != entry->value[i]->reg_offset ||
value.type != entry->value[i]->type ||
value.negate != entry->value[i]->negate ||
value.abs != entry->value[i]->abs) {
return false;
}
}
 
/* Compute the swizzle of the original register by swizzling the
* component loaded from each value according to the swizzle of
* operand we're going to change.
*/
int s[4];
for (int i = 0; i < 4; i++) {
s[i] = BRW_GET_SWZ(entry->value[i]->swizzle, i);
}
value.swizzle = brw_compose_swizzle(inst->src[arg].swizzle,
BRW_SWIZZLE4(s[0], s[1], s[2], s[3]));
 
if (value.file != UNIFORM &&
value.file != GRF &&
value.file != ATTR)
return false;
 
if (devinfo->gen >= 8 && (value.negate || value.abs) &&
is_logic_op(inst->opcode)) {
return false;
}
 
if (inst->src[arg].abs) {
value.negate = false;
value.abs = true;
}
if (inst->src[arg].negate)
value.negate = !value.negate;
 
bool has_source_modifiers = value.negate || value.abs;
 
/* gen6 math and gen7+ SENDs from GRFs ignore source modifiers on
* instructions.
*/
if ((has_source_modifiers || value.file == UNIFORM ||
value.swizzle != BRW_SWIZZLE_XYZW) && !inst->can_do_source_mods(devinfo))
return false;
 
if (has_source_modifiers && value.type != inst->src[arg].type)
return false;
 
if (has_source_modifiers &&
inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE)
return false;
 
if (inst->is_3src() && value.file == UNIFORM)
return false;
 
if (inst->is_send_from_grf())
return false;
 
/* we can't generally copy-propagate UD negations becuse we
* end up accessing the resulting values as signed integers
* instead. See also resolve_ud_negate().
*/
if (value.negate &&
value.type == BRW_REGISTER_TYPE_UD)
return false;
 
/* Don't report progress if this is a noop. */
if (value.equals(inst->src[arg]))
return false;
 
const unsigned dst_saturate_mask = inst->dst.writemask &
brw_apply_swizzle_to_mask(inst->src[arg].swizzle, entry->saturatemask);
 
if (dst_saturate_mask) {
/* We either saturate all or nothing. */
if (dst_saturate_mask != inst->dst.writemask)
return false;
 
/* Limit saturate propagation only to SEL with src1 bounded within 0.0
* and 1.0, otherwise skip copy propagate altogether.
*/
switch(inst->opcode) {
case BRW_OPCODE_SEL:
if (arg != 0 ||
inst->src[0].type != BRW_REGISTER_TYPE_F ||
inst->src[1].file != IMM ||
inst->src[1].type != BRW_REGISTER_TYPE_F ||
inst->src[1].fixed_hw_reg.dw1.f < 0.0 ||
inst->src[1].fixed_hw_reg.dw1.f > 1.0) {
return false;
}
if (!inst->saturate)
inst->saturate = true;
break;
default:
return false;
}
}
 
value.type = inst->src[arg].type;
inst->src[arg] = value;
return true;
}
 
bool
vec4_visitor::opt_copy_propagation(bool do_constant_prop)
{
bool progress = false;
struct copy_entry entries[alloc.total_size];
 
memset(&entries, 0, sizeof(entries));
 
foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
/* This pass only works on basic blocks. If there's flow
* control, throw out all our information and start from
* scratch.
*
* This should really be fixed by using a structure like in
* src/glsl/opt_copy_propagation.cpp to track available copies.
*/
if (!is_dominated_by_previous_instruction(inst)) {
memset(&entries, 0, sizeof(entries));
continue;
}
 
/* For each source arg, see if each component comes from a copy
* from the same type file (IMM, GRF, UNIFORM), and try
* optimizing out access to the copy result
*/
for (int i = 2; i >= 0; i--) {
/* Copied values end up in GRFs, and we don't track reladdr
* accesses.
*/
if (inst->src[i].file != GRF ||
inst->src[i].reladdr)
continue;
 
/* We only handle single-register copies. */
if (inst->regs_read(i) != 1)
continue;
 
int reg = (alloc.offsets[inst->src[i].reg] +
inst->src[i].reg_offset);
 
/* Find the regs that each swizzle component came from.
*/
struct copy_entry entry;
memset(&entry, 0, sizeof(copy_entry));
int c;
for (c = 0; c < 4; c++) {
int channel = BRW_GET_SWZ(inst->src[i].swizzle, c);
entry.value[c] = entries[reg].value[channel];
 
/* If there's no available copy for this channel, bail.
* We could be more aggressive here -- some channels might
* not get used based on the destination writemask.
*/
if (!entry.value[c])
break;
 
entry.saturatemask |=
(entries[reg].saturatemask & (1 << channel) ? 1 : 0) << c;
 
/* We'll only be able to copy propagate if the sources are
* all from the same file -- there's no ability to swizzle
* 0 or 1 constants in with source registers like in i915.
*/
if (c > 0 && entry.value[c - 1]->file != entry.value[c]->file)
break;
}
 
if (c != 4)
continue;
 
if (do_constant_prop && try_constant_propagate(devinfo, inst, i, &entry))
progress = true;
 
if (try_copy_propagate(devinfo, inst, i, &entry))
progress = true;
}
 
/* Track available source registers. */
if (inst->dst.file == GRF) {
const int reg =
alloc.offsets[inst->dst.reg] + inst->dst.reg_offset;
 
/* Update our destination's current channel values. For a direct copy,
* the value is the newly propagated source. Otherwise, we don't know
* the new value, so clear it.
*/
bool direct_copy = is_direct_copy(inst);
entries[reg].saturatemask &= ~inst->dst.writemask;
for (int i = 0; i < 4; i++) {
if (inst->dst.writemask & (1 << i)) {
entries[reg].value[i] = direct_copy ? &inst->src[0] : NULL;
entries[reg].saturatemask |=
inst->saturate && direct_copy ? 1 << i : 0;
}
}
 
/* Clear the records for any registers whose current value came from
* our destination's updated channels, as the two are no longer equal.
*/
if (inst->dst.reladdr)
memset(&entries, 0, sizeof(entries));
else {
for (unsigned i = 0; i < alloc.total_size; i++) {
for (int j = 0; j < 4; j++) {
if (is_channel_updated(inst, entries[i].value, j)) {
entries[i].value[j] = NULL;
entries[i].saturatemask &= ~(1 << j);
}
}
}
}
}
}
 
if (progress)
invalidate_live_intervals();
 
return progress;
}
 
} /* namespace brw */