Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1896 serge 1
/* trees.c -- output deflated data using Huffman coding
2
 * Copyright (C) 1995-2010 Jean-loup Gailly
3
 * detect_data_type() function provided freely by Cosmin Truta, 2006
4
 * For conditions of distribution and use, see copyright notice in zlib.h
5
 */
6
 
7
/*
8
 *  ALGORITHM
9
 *
10
 *      The "deflation" process uses several Huffman trees. The more
11
 *      common source values are represented by shorter bit sequences.
12
 *
13
 *      Each code tree is stored in a compressed form which is itself
14
 * a Huffman encoding of the lengths of all the code strings (in
15
 * ascending order by source values).  The actual code strings are
16
 * reconstructed from the lengths in the inflate process, as described
17
 * in the deflate specification.
18
 *
19
 *  REFERENCES
20
 *
21
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23
 *
24
 *      Storer, James A.
25
 *          Data Compression:  Methods and Theory, pp. 49-50.
26
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27
 *
28
 *      Sedgewick, R.
29
 *          Algorithms, p290.
30
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31
 */
32
 
33
/* @(#) $Id$ */
34
 
35
/* #define GEN_TREES_H */
36
 
37
#include "deflate.h"
38
 
39
#ifdef DEBUG
40
#  include 
41
#endif
42
 
43
/* ===========================================================================
44
 * Constants
45
 */
46
 
47
#define MAX_BL_BITS 7
48
/* Bit length codes must not exceed MAX_BL_BITS bits */
49
 
50
#define END_BLOCK 256
51
/* end of block literal code */
52
 
53
#define REP_3_6      16
54
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
55
 
56
#define REPZ_3_10    17
57
/* repeat a zero length 3-10 times  (3 bits of repeat count) */
58
 
59
#define REPZ_11_138  18
60
/* repeat a zero length 11-138 times  (7 bits of repeat count) */
61
 
62
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64
 
65
local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67
 
68
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70
 
71
local const uch bl_order[BL_CODES]
72
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73
/* The lengths of the bit length codes are sent in order of decreasing
74
 * probability, to avoid transmitting the lengths for unused bit length codes.
75
 */
76
 
77
#define Buf_size (8 * 2*sizeof(char))
78
/* Number of bits used within bi_buf. (bi_buf might be implemented on
79
 * more than 16 bits on some systems.)
80
 */
81
 
82
/* ===========================================================================
83
 * Local data. These are initialized only once.
84
 */
85
 
86
#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
87
 
88
#if defined(GEN_TREES_H) || !defined(STDC)
89
/* non ANSI compilers may not accept trees.h */
90
 
91
local ct_data static_ltree[L_CODES+2];
92
/* The static literal tree. Since the bit lengths are imposed, there is no
93
 * need for the L_CODES extra codes used during heap construction. However
94
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
95
 * below).
96
 */
97
 
98
local ct_data static_dtree[D_CODES];
99
/* The static distance tree. (Actually a trivial tree since all codes use
100
 * 5 bits.)
101
 */
102
 
103
uch _dist_code[DIST_CODE_LEN];
104
/* Distance codes. The first 256 values correspond to the distances
105
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
106
 * the 15 bit distances.
107
 */
108
 
109
uch _length_code[MAX_MATCH-MIN_MATCH+1];
110
/* length code for each normalized match length (0 == MIN_MATCH) */
111
 
112
local int base_length[LENGTH_CODES];
113
/* First normalized length for each code (0 = MIN_MATCH) */
114
 
115
local int base_dist[D_CODES];
116
/* First normalized distance for each code (0 = distance of 1) */
117
 
118
#else
119
#  include "trees.h"
120
#endif /* GEN_TREES_H */
121
 
122
struct static_tree_desc_s {
123
    const ct_data *static_tree;  /* static tree or NULL */
124
    const intf *extra_bits;      /* extra bits for each code or NULL */
125
    int     extra_base;          /* base index for extra_bits */
126
    int     elems;               /* max number of elements in the tree */
127
    int     max_length;          /* max bit length for the codes */
128
};
129
 
130
local static_tree_desc  static_l_desc =
131
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
132
 
133
local static_tree_desc  static_d_desc =
134
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
135
 
136
local static_tree_desc  static_bl_desc =
137
{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
138
 
139
/* ===========================================================================
140
 * Local (static) routines in this file.
141
 */
142
 
143
local void tr_static_init OF((void));
144
local void init_block     OF((deflate_state *s));
145
local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
146
local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
147
local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
148
local void build_tree     OF((deflate_state *s, tree_desc *desc));
149
local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
150
local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
151
local int  build_bl_tree  OF((deflate_state *s));
152
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
153
                              int blcodes));
154
local void compress_block OF((deflate_state *s, ct_data *ltree,
155
                              ct_data *dtree));
156
local int  detect_data_type OF((deflate_state *s));
157
local unsigned bi_reverse OF((unsigned value, int length));
158
local void bi_windup      OF((deflate_state *s));
159
local void bi_flush       OF((deflate_state *s));
160
local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
161
                              int header));
162
 
163
#ifdef GEN_TREES_H
164
local void gen_trees_header OF((void));
165
#endif
166
 
167
#ifndef DEBUG
168
#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
169
   /* Send a code of the given tree. c and tree must not have side effects */
170
 
171
#else /* DEBUG */
172
#  define send_code(s, c, tree) \
173
     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
174
       send_bits(s, tree[c].Code, tree[c].Len); }
175
#endif
176
 
177
/* ===========================================================================
178
 * Output a short LSB first on the stream.
179
 * IN assertion: there is enough room in pendingBuf.
180
 */
181
#define put_short(s, w) { \
182
    put_byte(s, (uch)((w) & 0xff)); \
183
    put_byte(s, (uch)((ush)(w) >> 8)); \
184
}
185
 
186
/* ===========================================================================
187
 * Send a value on a given number of bits.
188
 * IN assertion: length <= 16 and value fits in length bits.
189
 */
190
#ifdef DEBUG
191
local void send_bits      OF((deflate_state *s, int value, int length));
192
 
193
local void send_bits(s, value, length)
194
    deflate_state *s;
195
    int value;  /* value to send */
196
    int length; /* number of bits */
197
{
198
    Tracevv((stderr," l %2d v %4x ", length, value));
199
    Assert(length > 0 && length <= 15, "invalid length");
200
    s->bits_sent += (ulg)length;
201
 
202
    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
203
     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
204
     * unused bits in value.
205
     */
206
    if (s->bi_valid > (int)Buf_size - length) {
207
        s->bi_buf |= (ush)value << s->bi_valid;
208
        put_short(s, s->bi_buf);
209
        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
210
        s->bi_valid += length - Buf_size;
211
    } else {
212
        s->bi_buf |= (ush)value << s->bi_valid;
213
        s->bi_valid += length;
214
    }
215
}
216
#else /* !DEBUG */
217
 
218
#define send_bits(s, value, length) \
219
{ int len = length;\
220
  if (s->bi_valid > (int)Buf_size - len) {\
221
    int val = value;\
222
    s->bi_buf |= (ush)val << s->bi_valid;\
223
    put_short(s, s->bi_buf);\
224
    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
225
    s->bi_valid += len - Buf_size;\
226
  } else {\
227
    s->bi_buf |= (ush)(value) << s->bi_valid;\
228
    s->bi_valid += len;\
229
  }\
230
}
231
#endif /* DEBUG */
232
 
233
 
234
/* the arguments must not have side effects */
235
 
236
/* ===========================================================================
237
 * Initialize the various 'constant' tables.
238
 */
239
local void tr_static_init()
240
{
241
#if defined(GEN_TREES_H) || !defined(STDC)
242
    static int static_init_done = 0;
243
    int n;        /* iterates over tree elements */
244
    int bits;     /* bit counter */
245
    int length;   /* length value */
246
    int code;     /* code value */
247
    int dist;     /* distance index */
248
    ush bl_count[MAX_BITS+1];
249
    /* number of codes at each bit length for an optimal tree */
250
 
251
    if (static_init_done) return;
252
 
253
    /* For some embedded targets, global variables are not initialized: */
254
#ifdef NO_INIT_GLOBAL_POINTERS
255
    static_l_desc.static_tree = static_ltree;
256
    static_l_desc.extra_bits = extra_lbits;
257
    static_d_desc.static_tree = static_dtree;
258
    static_d_desc.extra_bits = extra_dbits;
259
    static_bl_desc.extra_bits = extra_blbits;
260
#endif
261
 
262
    /* Initialize the mapping length (0..255) -> length code (0..28) */
263
    length = 0;
264
    for (code = 0; code < LENGTH_CODES-1; code++) {
265
        base_length[code] = length;
266
        for (n = 0; n < (1<
267
            _length_code[length++] = (uch)code;
268
        }
269
    }
270
    Assert (length == 256, "tr_static_init: length != 256");
271
    /* Note that the length 255 (match length 258) can be represented
272
     * in two different ways: code 284 + 5 bits or code 285, so we
273
     * overwrite length_code[255] to use the best encoding:
274
     */
275
    _length_code[length-1] = (uch)code;
276
 
277
    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
278
    dist = 0;
279
    for (code = 0 ; code < 16; code++) {
280
        base_dist[code] = dist;
281
        for (n = 0; n < (1<
282
            _dist_code[dist++] = (uch)code;
283
        }
284
    }
285
    Assert (dist == 256, "tr_static_init: dist != 256");
286
    dist >>= 7; /* from now on, all distances are divided by 128 */
287
    for ( ; code < D_CODES; code++) {
288
        base_dist[code] = dist << 7;
289
        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
290
            _dist_code[256 + dist++] = (uch)code;
291
        }
292
    }
293
    Assert (dist == 256, "tr_static_init: 256+dist != 512");
294
 
295
    /* Construct the codes of the static literal tree */
296
    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
297
    n = 0;
298
    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
299
    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
300
    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
301
    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
302
    /* Codes 286 and 287 do not exist, but we must include them in the
303
     * tree construction to get a canonical Huffman tree (longest code
304
     * all ones)
305
     */
306
    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
307
 
308
    /* The static distance tree is trivial: */
309
    for (n = 0; n < D_CODES; n++) {
310
        static_dtree[n].Len = 5;
311
        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
312
    }
313
    static_init_done = 1;
314
 
315
#  ifdef GEN_TREES_H
316
    gen_trees_header();
317
#  endif
318
#endif /* defined(GEN_TREES_H) || !defined(STDC) */
319
}
320
 
321
/* ===========================================================================
322
 * Genererate the file trees.h describing the static trees.
323
 */
324
#ifdef GEN_TREES_H
325
#  ifndef DEBUG
326
#    include 
327
#  endif
328
 
329
#  define SEPARATOR(i, last, width) \
330
      ((i) == (last)? "\n};\n\n" :    \
331
       ((i) % (width) == (width)-1 ? ",\n" : ", "))
332
 
333
void gen_trees_header()
334
{
335
    FILE *header = fopen("trees.h", "w");
336
    int i;
337
 
338
    Assert (header != NULL, "Can't open trees.h");
339
    fprintf(header,
340
            "/* header created automatically with -DGEN_TREES_H */\n\n");
341
 
342
    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
343
    for (i = 0; i < L_CODES+2; i++) {
344
        fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
345
                static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
346
    }
347
 
348
    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
349
    for (i = 0; i < D_CODES; i++) {
350
        fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
351
                static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
352
    }
353
 
354
    fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
355
    for (i = 0; i < DIST_CODE_LEN; i++) {
356
        fprintf(header, "%2u%s", _dist_code[i],
357
                SEPARATOR(i, DIST_CODE_LEN-1, 20));
358
    }
359
 
360
    fprintf(header,
361
        "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
362
    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
363
        fprintf(header, "%2u%s", _length_code[i],
364
                SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
365
    }
366
 
367
    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
368
    for (i = 0; i < LENGTH_CODES; i++) {
369
        fprintf(header, "%1u%s", base_length[i],
370
                SEPARATOR(i, LENGTH_CODES-1, 20));
371
    }
372
 
373
    fprintf(header, "local const int base_dist[D_CODES] = {\n");
374
    for (i = 0; i < D_CODES; i++) {
375
        fprintf(header, "%5u%s", base_dist[i],
376
                SEPARATOR(i, D_CODES-1, 10));
377
    }
378
 
379
    fclose(header);
380
}
381
#endif /* GEN_TREES_H */
382
 
383
/* ===========================================================================
384
 * Initialize the tree data structures for a new zlib stream.
385
 */
386
void ZLIB_INTERNAL _tr_init(s)
387
    deflate_state *s;
388
{
389
    tr_static_init();
390
 
391
    s->l_desc.dyn_tree = s->dyn_ltree;
392
    s->l_desc.stat_desc = &static_l_desc;
393
 
394
    s->d_desc.dyn_tree = s->dyn_dtree;
395
    s->d_desc.stat_desc = &static_d_desc;
396
 
397
    s->bl_desc.dyn_tree = s->bl_tree;
398
    s->bl_desc.stat_desc = &static_bl_desc;
399
 
400
    s->bi_buf = 0;
401
    s->bi_valid = 0;
402
    s->last_eob_len = 8; /* enough lookahead for inflate */
403
#ifdef DEBUG
404
    s->compressed_len = 0L;
405
    s->bits_sent = 0L;
406
#endif
407
 
408
    /* Initialize the first block of the first file: */
409
    init_block(s);
410
}
411
 
412
/* ===========================================================================
413
 * Initialize a new block.
414
 */
415
local void init_block(s)
416
    deflate_state *s;
417
{
418
    int n; /* iterates over tree elements */
419
 
420
    /* Initialize the trees. */
421
    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
422
    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
423
    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
424
 
425
    s->dyn_ltree[END_BLOCK].Freq = 1;
426
    s->opt_len = s->static_len = 0L;
427
    s->last_lit = s->matches = 0;
428
}
429
 
430
#define SMALLEST 1
431
/* Index within the heap array of least frequent node in the Huffman tree */
432
 
433
 
434
/* ===========================================================================
435
 * Remove the smallest element from the heap and recreate the heap with
436
 * one less element. Updates heap and heap_len.
437
 */
438
#define pqremove(s, tree, top) \
439
{\
440
    top = s->heap[SMALLEST]; \
441
    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
442
    pqdownheap(s, tree, SMALLEST); \
443
}
444
 
445
/* ===========================================================================
446
 * Compares to subtrees, using the tree depth as tie breaker when
447
 * the subtrees have equal frequency. This minimizes the worst case length.
448
 */
449
#define smaller(tree, n, m, depth) \
450
   (tree[n].Freq < tree[m].Freq || \
451
   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
452
 
453
/* ===========================================================================
454
 * Restore the heap property by moving down the tree starting at node k,
455
 * exchanging a node with the smallest of its two sons if necessary, stopping
456
 * when the heap property is re-established (each father smaller than its
457
 * two sons).
458
 */
459
local void pqdownheap(s, tree, k)
460
    deflate_state *s;
461
    ct_data *tree;  /* the tree to restore */
462
    int k;               /* node to move down */
463
{
464
    int v = s->heap[k];
465
    int j = k << 1;  /* left son of k */
466
    while (j <= s->heap_len) {
467
        /* Set j to the smallest of the two sons: */
468
        if (j < s->heap_len &&
469
            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
470
            j++;
471
        }
472
        /* Exit if v is smaller than both sons */
473
        if (smaller(tree, v, s->heap[j], s->depth)) break;
474
 
475
        /* Exchange v with the smallest son */
476
        s->heap[k] = s->heap[j];  k = j;
477
 
478
        /* And continue down the tree, setting j to the left son of k */
479
        j <<= 1;
480
    }
481
    s->heap[k] = v;
482
}
483
 
484
/* ===========================================================================
485
 * Compute the optimal bit lengths for a tree and update the total bit length
486
 * for the current block.
487
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
488
 *    above are the tree nodes sorted by increasing frequency.
489
 * OUT assertions: the field len is set to the optimal bit length, the
490
 *     array bl_count contains the frequencies for each bit length.
491
 *     The length opt_len is updated; static_len is also updated if stree is
492
 *     not null.
493
 */
494
local void gen_bitlen(s, desc)
495
    deflate_state *s;
496
    tree_desc *desc;    /* the tree descriptor */
497
{
498
    ct_data *tree        = desc->dyn_tree;
499
    int max_code         = desc->max_code;
500
    const ct_data *stree = desc->stat_desc->static_tree;
501
    const intf *extra    = desc->stat_desc->extra_bits;
502
    int base             = desc->stat_desc->extra_base;
503
    int max_length       = desc->stat_desc->max_length;
504
    int h;              /* heap index */
505
    int n, m;           /* iterate over the tree elements */
506
    int bits;           /* bit length */
507
    int xbits;          /* extra bits */
508
    ush f;              /* frequency */
509
    int overflow = 0;   /* number of elements with bit length too large */
510
 
511
    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
512
 
513
    /* In a first pass, compute the optimal bit lengths (which may
514
     * overflow in the case of the bit length tree).
515
     */
516
    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
517
 
518
    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
519
        n = s->heap[h];
520
        bits = tree[tree[n].Dad].Len + 1;
521
        if (bits > max_length) bits = max_length, overflow++;
522
        tree[n].Len = (ush)bits;
523
        /* We overwrite tree[n].Dad which is no longer needed */
524
 
525
        if (n > max_code) continue; /* not a leaf node */
526
 
527
        s->bl_count[bits]++;
528
        xbits = 0;
529
        if (n >= base) xbits = extra[n-base];
530
        f = tree[n].Freq;
531
        s->opt_len += (ulg)f * (bits + xbits);
532
        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
533
    }
534
    if (overflow == 0) return;
535
 
536
    Trace((stderr,"\nbit length overflow\n"));
537
    /* This happens for example on obj2 and pic of the Calgary corpus */
538
 
539
    /* Find the first bit length which could increase: */
540
    do {
541
        bits = max_length-1;
542
        while (s->bl_count[bits] == 0) bits--;
543
        s->bl_count[bits]--;      /* move one leaf down the tree */
544
        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
545
        s->bl_count[max_length]--;
546
        /* The brother of the overflow item also moves one step up,
547
         * but this does not affect bl_count[max_length]
548
         */
549
        overflow -= 2;
550
    } while (overflow > 0);
551
 
552
    /* Now recompute all bit lengths, scanning in increasing frequency.
553
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
554
     * lengths instead of fixing only the wrong ones. This idea is taken
555
     * from 'ar' written by Haruhiko Okumura.)
556
     */
557
    for (bits = max_length; bits != 0; bits--) {
558
        n = s->bl_count[bits];
559
        while (n != 0) {
560
            m = s->heap[--h];
561
            if (m > max_code) continue;
562
            if ((unsigned) tree[m].Len != (unsigned) bits) {
563
                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
564
                s->opt_len += ((long)bits - (long)tree[m].Len)
565
                              *(long)tree[m].Freq;
566
                tree[m].Len = (ush)bits;
567
            }
568
            n--;
569
        }
570
    }
571
}
572
 
573
/* ===========================================================================
574
 * Generate the codes for a given tree and bit counts (which need not be
575
 * optimal).
576
 * IN assertion: the array bl_count contains the bit length statistics for
577
 * the given tree and the field len is set for all tree elements.
578
 * OUT assertion: the field code is set for all tree elements of non
579
 *     zero code length.
580
 */
581
local void gen_codes (tree, max_code, bl_count)
582
    ct_data *tree;             /* the tree to decorate */
583
    int max_code;              /* largest code with non zero frequency */
584
    ushf *bl_count;            /* number of codes at each bit length */
585
{
586
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
587
    ush code = 0;              /* running code value */
588
    int bits;                  /* bit index */
589
    int n;                     /* code index */
590
 
591
    /* The distribution counts are first used to generate the code values
592
     * without bit reversal.
593
     */
594
    for (bits = 1; bits <= MAX_BITS; bits++) {
595
        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
596
    }
597
    /* Check that the bit counts in bl_count are consistent. The last code
598
     * must be all ones.
599
     */
600
    Assert (code + bl_count[MAX_BITS]-1 == (1<
601
            "inconsistent bit counts");
602
    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
603
 
604
    for (n = 0;  n <= max_code; n++) {
605
        int len = tree[n].Len;
606
        if (len == 0) continue;
607
        /* Now reverse the bits */
608
        tree[n].Code = bi_reverse(next_code[len]++, len);
609
 
610
        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
611
             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
612
    }
613
}
614
 
615
/* ===========================================================================
616
 * Construct one Huffman tree and assigns the code bit strings and lengths.
617
 * Update the total bit length for the current block.
618
 * IN assertion: the field freq is set for all tree elements.
619
 * OUT assertions: the fields len and code are set to the optimal bit length
620
 *     and corresponding code. The length opt_len is updated; static_len is
621
 *     also updated if stree is not null. The field max_code is set.
622
 */
623
local void build_tree(s, desc)
624
    deflate_state *s;
625
    tree_desc *desc; /* the tree descriptor */
626
{
627
    ct_data *tree         = desc->dyn_tree;
628
    const ct_data *stree  = desc->stat_desc->static_tree;
629
    int elems             = desc->stat_desc->elems;
630
    int n, m;          /* iterate over heap elements */
631
    int max_code = -1; /* largest code with non zero frequency */
632
    int node;          /* new node being created */
633
 
634
    /* Construct the initial heap, with least frequent element in
635
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
636
     * heap[0] is not used.
637
     */
638
    s->heap_len = 0, s->heap_max = HEAP_SIZE;
639
 
640
    for (n = 0; n < elems; n++) {
641
        if (tree[n].Freq != 0) {
642
            s->heap[++(s->heap_len)] = max_code = n;
643
            s->depth[n] = 0;
644
        } else {
645
            tree[n].Len = 0;
646
        }
647
    }
648
 
649
    /* The pkzip format requires that at least one distance code exists,
650
     * and that at least one bit should be sent even if there is only one
651
     * possible code. So to avoid special checks later on we force at least
652
     * two codes of non zero frequency.
653
     */
654
    while (s->heap_len < 2) {
655
        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
656
        tree[node].Freq = 1;
657
        s->depth[node] = 0;
658
        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
659
        /* node is 0 or 1 so it does not have extra bits */
660
    }
661
    desc->max_code = max_code;
662
 
663
    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
664
     * establish sub-heaps of increasing lengths:
665
     */
666
    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
667
 
668
    /* Construct the Huffman tree by repeatedly combining the least two
669
     * frequent nodes.
670
     */
671
    node = elems;              /* next internal node of the tree */
672
    do {
673
        pqremove(s, tree, n);  /* n = node of least frequency */
674
        m = s->heap[SMALLEST]; /* m = node of next least frequency */
675
 
676
        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
677
        s->heap[--(s->heap_max)] = m;
678
 
679
        /* Create a new node father of n and m */
680
        tree[node].Freq = tree[n].Freq + tree[m].Freq;
681
        s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
682
                                s->depth[n] : s->depth[m]) + 1);
683
        tree[n].Dad = tree[m].Dad = (ush)node;
684
#ifdef DUMP_BL_TREE
685
        if (tree == s->bl_tree) {
686
            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
687
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
688
        }
689
#endif
690
        /* and insert the new node in the heap */
691
        s->heap[SMALLEST] = node++;
692
        pqdownheap(s, tree, SMALLEST);
693
 
694
    } while (s->heap_len >= 2);
695
 
696
    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
697
 
698
    /* At this point, the fields freq and dad are set. We can now
699
     * generate the bit lengths.
700
     */
701
    gen_bitlen(s, (tree_desc *)desc);
702
 
703
    /* The field len is now set, we can generate the bit codes */
704
    gen_codes ((ct_data *)tree, max_code, s->bl_count);
705
}
706
 
707
/* ===========================================================================
708
 * Scan a literal or distance tree to determine the frequencies of the codes
709
 * in the bit length tree.
710
 */
711
local void scan_tree (s, tree, max_code)
712
    deflate_state *s;
713
    ct_data *tree;   /* the tree to be scanned */
714
    int max_code;    /* and its largest code of non zero frequency */
715
{
716
    int n;                     /* iterates over all tree elements */
717
    int prevlen = -1;          /* last emitted length */
718
    int curlen;                /* length of current code */
719
    int nextlen = tree[0].Len; /* length of next code */
720
    int count = 0;             /* repeat count of the current code */
721
    int max_count = 7;         /* max repeat count */
722
    int min_count = 4;         /* min repeat count */
723
 
724
    if (nextlen == 0) max_count = 138, min_count = 3;
725
    tree[max_code+1].Len = (ush)0xffff; /* guard */
726
 
727
    for (n = 0; n <= max_code; n++) {
728
        curlen = nextlen; nextlen = tree[n+1].Len;
729
        if (++count < max_count && curlen == nextlen) {
730
            continue;
731
        } else if (count < min_count) {
732
            s->bl_tree[curlen].Freq += count;
733
        } else if (curlen != 0) {
734
            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
735
            s->bl_tree[REP_3_6].Freq++;
736
        } else if (count <= 10) {
737
            s->bl_tree[REPZ_3_10].Freq++;
738
        } else {
739
            s->bl_tree[REPZ_11_138].Freq++;
740
        }
741
        count = 0; prevlen = curlen;
742
        if (nextlen == 0) {
743
            max_count = 138, min_count = 3;
744
        } else if (curlen == nextlen) {
745
            max_count = 6, min_count = 3;
746
        } else {
747
            max_count = 7, min_count = 4;
748
        }
749
    }
750
}
751
 
752
/* ===========================================================================
753
 * Send a literal or distance tree in compressed form, using the codes in
754
 * bl_tree.
755
 */
756
local void send_tree (s, tree, max_code)
757
    deflate_state *s;
758
    ct_data *tree; /* the tree to be scanned */
759
    int max_code;       /* and its largest code of non zero frequency */
760
{
761
    int n;                     /* iterates over all tree elements */
762
    int prevlen = -1;          /* last emitted length */
763
    int curlen;                /* length of current code */
764
    int nextlen = tree[0].Len; /* length of next code */
765
    int count = 0;             /* repeat count of the current code */
766
    int max_count = 7;         /* max repeat count */
767
    int min_count = 4;         /* min repeat count */
768
 
769
    /* tree[max_code+1].Len = -1; */  /* guard already set */
770
    if (nextlen == 0) max_count = 138, min_count = 3;
771
 
772
    for (n = 0; n <= max_code; n++) {
773
        curlen = nextlen; nextlen = tree[n+1].Len;
774
        if (++count < max_count && curlen == nextlen) {
775
            continue;
776
        } else if (count < min_count) {
777
            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
778
 
779
        } else if (curlen != 0) {
780
            if (curlen != prevlen) {
781
                send_code(s, curlen, s->bl_tree); count--;
782
            }
783
            Assert(count >= 3 && count <= 6, " 3_6?");
784
            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
785
 
786
        } else if (count <= 10) {
787
            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
788
 
789
        } else {
790
            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
791
        }
792
        count = 0; prevlen = curlen;
793
        if (nextlen == 0) {
794
            max_count = 138, min_count = 3;
795
        } else if (curlen == nextlen) {
796
            max_count = 6, min_count = 3;
797
        } else {
798
            max_count = 7, min_count = 4;
799
        }
800
    }
801
}
802
 
803
/* ===========================================================================
804
 * Construct the Huffman tree for the bit lengths and return the index in
805
 * bl_order of the last bit length code to send.
806
 */
807
local int build_bl_tree(s)
808
    deflate_state *s;
809
{
810
    int max_blindex;  /* index of last bit length code of non zero freq */
811
 
812
    /* Determine the bit length frequencies for literal and distance trees */
813
    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
814
    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
815
 
816
    /* Build the bit length tree: */
817
    build_tree(s, (tree_desc *)(&(s->bl_desc)));
818
    /* opt_len now includes the length of the tree representations, except
819
     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
820
     */
821
 
822
    /* Determine the number of bit length codes to send. The pkzip format
823
     * requires that at least 4 bit length codes be sent. (appnote.txt says
824
     * 3 but the actual value used is 4.)
825
     */
826
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
827
        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
828
    }
829
    /* Update opt_len to include the bit length tree and counts */
830
    s->opt_len += 3*(max_blindex+1) + 5+5+4;
831
    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
832
            s->opt_len, s->static_len));
833
 
834
    return max_blindex;
835
}
836
 
837
/* ===========================================================================
838
 * Send the header for a block using dynamic Huffman trees: the counts, the
839
 * lengths of the bit length codes, the literal tree and the distance tree.
840
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
841
 */
842
local void send_all_trees(s, lcodes, dcodes, blcodes)
843
    deflate_state *s;
844
    int lcodes, dcodes, blcodes; /* number of codes for each tree */
845
{
846
    int rank;                    /* index in bl_order */
847
 
848
    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
849
    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
850
            "too many codes");
851
    Tracev((stderr, "\nbl counts: "));
852
    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
853
    send_bits(s, dcodes-1,   5);
854
    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
855
    for (rank = 0; rank < blcodes; rank++) {
856
        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
857
        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
858
    }
859
    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
860
 
861
    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
862
    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
863
 
864
    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
865
    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
866
}
867
 
868
/* ===========================================================================
869
 * Send a stored block
870
 */
871
void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
872
    deflate_state *s;
873
    charf *buf;       /* input block */
874
    ulg stored_len;   /* length of input block */
875
    int last;         /* one if this is the last block for a file */
876
{
877
    send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
878
#ifdef DEBUG
879
    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
880
    s->compressed_len += (stored_len + 4) << 3;
881
#endif
882
    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
883
}
884
 
885
/* ===========================================================================
886
 * Send one empty static block to give enough lookahead for inflate.
887
 * This takes 10 bits, of which 7 may remain in the bit buffer.
888
 * The current inflate code requires 9 bits of lookahead. If the
889
 * last two codes for the previous block (real code plus EOB) were coded
890
 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
891
 * the last real code. In this case we send two empty static blocks instead
892
 * of one. (There are no problems if the previous block is stored or fixed.)
893
 * To simplify the code, we assume the worst case of last real code encoded
894
 * on one bit only.
895
 */
896
void ZLIB_INTERNAL _tr_align(s)
897
    deflate_state *s;
898
{
899
    send_bits(s, STATIC_TREES<<1, 3);
900
    send_code(s, END_BLOCK, static_ltree);
901
#ifdef DEBUG
902
    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
903
#endif
904
    bi_flush(s);
905
    /* Of the 10 bits for the empty block, we have already sent
906
     * (10 - bi_valid) bits. The lookahead for the last real code (before
907
     * the EOB of the previous block) was thus at least one plus the length
908
     * of the EOB plus what we have just sent of the empty static block.
909
     */
910
    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
911
        send_bits(s, STATIC_TREES<<1, 3);
912
        send_code(s, END_BLOCK, static_ltree);
913
#ifdef DEBUG
914
        s->compressed_len += 10L;
915
#endif
916
        bi_flush(s);
917
    }
918
    s->last_eob_len = 7;
919
}
920
 
921
/* ===========================================================================
922
 * Determine the best encoding for the current block: dynamic trees, static
923
 * trees or store, and output the encoded block to the zip file.
924
 */
925
void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
926
    deflate_state *s;
927
    charf *buf;       /* input block, or NULL if too old */
928
    ulg stored_len;   /* length of input block */
929
    int last;         /* one if this is the last block for a file */
930
{
931
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
932
    int max_blindex = 0;  /* index of last bit length code of non zero freq */
933
 
934
    /* Build the Huffman trees unless a stored block is forced */
935
    if (s->level > 0) {
936
 
937
        /* Check if the file is binary or text */
938
        if (s->strm->data_type == Z_UNKNOWN)
939
            s->strm->data_type = detect_data_type(s);
940
 
941
        /* Construct the literal and distance trees */
942
        build_tree(s, (tree_desc *)(&(s->l_desc)));
943
        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
944
                s->static_len));
945
 
946
        build_tree(s, (tree_desc *)(&(s->d_desc)));
947
        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
948
                s->static_len));
949
        /* At this point, opt_len and static_len are the total bit lengths of
950
         * the compressed block data, excluding the tree representations.
951
         */
952
 
953
        /* Build the bit length tree for the above two trees, and get the index
954
         * in bl_order of the last bit length code to send.
955
         */
956
        max_blindex = build_bl_tree(s);
957
 
958
        /* Determine the best encoding. Compute the block lengths in bytes. */
959
        opt_lenb = (s->opt_len+3+7)>>3;
960
        static_lenb = (s->static_len+3+7)>>3;
961
 
962
        Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
963
                opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
964
                s->last_lit));
965
 
966
        if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
967
 
968
    } else {
969
        Assert(buf != (char*)0, "lost buf");
970
        opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
971
    }
972
 
973
#ifdef FORCE_STORED
974
    if (buf != (char*)0) { /* force stored block */
975
#else
976
    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
977
                       /* 4: two words for the lengths */
978
#endif
979
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
980
         * Otherwise we can't have processed more than WSIZE input bytes since
981
         * the last block flush, because compression would have been
982
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
983
         * transform a block into a stored block.
984
         */
985
        _tr_stored_block(s, buf, stored_len, last);
986
 
987
#ifdef FORCE_STATIC
988
    } else if (static_lenb >= 0) { /* force static trees */
989
#else
990
    } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
991
#endif
992
        send_bits(s, (STATIC_TREES<<1)+last, 3);
993
        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
994
#ifdef DEBUG
995
        s->compressed_len += 3 + s->static_len;
996
#endif
997
    } else {
998
        send_bits(s, (DYN_TREES<<1)+last, 3);
999
        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1000
                       max_blindex+1);
1001
        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1002
#ifdef DEBUG
1003
        s->compressed_len += 3 + s->opt_len;
1004
#endif
1005
    }
1006
    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1007
    /* The above check is made mod 2^32, for files larger than 512 MB
1008
     * and uLong implemented on 32 bits.
1009
     */
1010
    init_block(s);
1011
 
1012
    if (last) {
1013
        bi_windup(s);
1014
#ifdef DEBUG
1015
        s->compressed_len += 7;  /* align on byte boundary */
1016
#endif
1017
    }
1018
    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1019
           s->compressed_len-7*last));
1020
}
1021
 
1022
/* ===========================================================================
1023
 * Save the match info and tally the frequency counts. Return true if
1024
 * the current block must be flushed.
1025
 */
1026
int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1027
    deflate_state *s;
1028
    unsigned dist;  /* distance of matched string */
1029
    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1030
{
1031
    s->d_buf[s->last_lit] = (ush)dist;
1032
    s->l_buf[s->last_lit++] = (uch)lc;
1033
    if (dist == 0) {
1034
        /* lc is the unmatched char */
1035
        s->dyn_ltree[lc].Freq++;
1036
    } else {
1037
        s->matches++;
1038
        /* Here, lc is the match length - MIN_MATCH */
1039
        dist--;             /* dist = match distance - 1 */
1040
        Assert((ush)dist < (ush)MAX_DIST(s) &&
1041
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1042
               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1043
 
1044
        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1045
        s->dyn_dtree[d_code(dist)].Freq++;
1046
    }
1047
 
1048
#ifdef TRUNCATE_BLOCK
1049
    /* Try to guess if it is profitable to stop the current block here */
1050
    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1051
        /* Compute an upper bound for the compressed length */
1052
        ulg out_length = (ulg)s->last_lit*8L;
1053
        ulg in_length = (ulg)((long)s->strstart - s->block_start);
1054
        int dcode;
1055
        for (dcode = 0; dcode < D_CODES; dcode++) {
1056
            out_length += (ulg)s->dyn_dtree[dcode].Freq *
1057
                (5L+extra_dbits[dcode]);
1058
        }
1059
        out_length >>= 3;
1060
        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1061
               s->last_lit, in_length, out_length,
1062
               100L - out_length*100L/in_length));
1063
        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1064
    }
1065
#endif
1066
    return (s->last_lit == s->lit_bufsize-1);
1067
    /* We avoid equality with lit_bufsize because of wraparound at 64K
1068
     * on 16 bit machines and because stored blocks are restricted to
1069
     * 64K-1 bytes.
1070
     */
1071
}
1072
 
1073
/* ===========================================================================
1074
 * Send the block data compressed using the given Huffman trees
1075
 */
1076
local void compress_block(s, ltree, dtree)
1077
    deflate_state *s;
1078
    ct_data *ltree; /* literal tree */
1079
    ct_data *dtree; /* distance tree */
1080
{
1081
    unsigned dist;      /* distance of matched string */
1082
    int lc;             /* match length or unmatched char (if dist == 0) */
1083
    unsigned lx = 0;    /* running index in l_buf */
1084
    unsigned code;      /* the code to send */
1085
    int extra;          /* number of extra bits to send */
1086
 
1087
    if (s->last_lit != 0) do {
1088
        dist = s->d_buf[lx];
1089
        lc = s->l_buf[lx++];
1090
        if (dist == 0) {
1091
            send_code(s, lc, ltree); /* send a literal byte */
1092
            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1093
        } else {
1094
            /* Here, lc is the match length - MIN_MATCH */
1095
            code = _length_code[lc];
1096
            send_code(s, code+LITERALS+1, ltree); /* send the length code */
1097
            extra = extra_lbits[code];
1098
            if (extra != 0) {
1099
                lc -= base_length[code];
1100
                send_bits(s, lc, extra);       /* send the extra length bits */
1101
            }
1102
            dist--; /* dist is now the match distance - 1 */
1103
            code = d_code(dist);
1104
            Assert (code < D_CODES, "bad d_code");
1105
 
1106
            send_code(s, code, dtree);       /* send the distance code */
1107
            extra = extra_dbits[code];
1108
            if (extra != 0) {
1109
                dist -= base_dist[code];
1110
                send_bits(s, dist, extra);   /* send the extra distance bits */
1111
            }
1112
        } /* literal or match pair ? */
1113
 
1114
        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1115
        Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1116
               "pendingBuf overflow");
1117
 
1118
    } while (lx < s->last_lit);
1119
 
1120
    send_code(s, END_BLOCK, ltree);
1121
    s->last_eob_len = ltree[END_BLOCK].Len;
1122
}
1123
 
1124
/* ===========================================================================
1125
 * Check if the data type is TEXT or BINARY, using the following algorithm:
1126
 * - TEXT if the two conditions below are satisfied:
1127
 *    a) There are no non-portable control characters belonging to the
1128
 *       "black list" (0..6, 14..25, 28..31).
1129
 *    b) There is at least one printable character belonging to the
1130
 *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1131
 * - BINARY otherwise.
1132
 * - The following partially-portable control characters form a
1133
 *   "gray list" that is ignored in this detection algorithm:
1134
 *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1135
 * IN assertion: the fields Freq of dyn_ltree are set.
1136
 */
1137
local int detect_data_type(s)
1138
    deflate_state *s;
1139
{
1140
    /* black_mask is the bit mask of black-listed bytes
1141
     * set bits 0..6, 14..25, and 28..31
1142
     * 0xf3ffc07f = binary 11110011111111111100000001111111
1143
     */
1144
    unsigned long black_mask = 0xf3ffc07fUL;
1145
    int n;
1146
 
1147
    /* Check for non-textual ("black-listed") bytes. */
1148
    for (n = 0; n <= 31; n++, black_mask >>= 1)
1149
        if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1150
            return Z_BINARY;
1151
 
1152
    /* Check for textual ("white-listed") bytes. */
1153
    if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1154
            || s->dyn_ltree[13].Freq != 0)
1155
        return Z_TEXT;
1156
    for (n = 32; n < LITERALS; n++)
1157
        if (s->dyn_ltree[n].Freq != 0)
1158
            return Z_TEXT;
1159
 
1160
    /* There are no "black-listed" or "white-listed" bytes:
1161
     * this stream either is empty or has tolerated ("gray-listed") bytes only.
1162
     */
1163
    return Z_BINARY;
1164
}
1165
 
1166
/* ===========================================================================
1167
 * Reverse the first len bits of a code, using straightforward code (a faster
1168
 * method would use a table)
1169
 * IN assertion: 1 <= len <= 15
1170
 */
1171
local unsigned bi_reverse(code, len)
1172
    unsigned code; /* the value to invert */
1173
    int len;       /* its bit length */
1174
{
1175
    register unsigned res = 0;
1176
    do {
1177
        res |= code & 1;
1178
        code >>= 1, res <<= 1;
1179
    } while (--len > 0);
1180
    return res >> 1;
1181
}
1182
 
1183
/* ===========================================================================
1184
 * Flush the bit buffer, keeping at most 7 bits in it.
1185
 */
1186
local void bi_flush(s)
1187
    deflate_state *s;
1188
{
1189
    if (s->bi_valid == 16) {
1190
        put_short(s, s->bi_buf);
1191
        s->bi_buf = 0;
1192
        s->bi_valid = 0;
1193
    } else if (s->bi_valid >= 8) {
1194
        put_byte(s, (Byte)s->bi_buf);
1195
        s->bi_buf >>= 8;
1196
        s->bi_valid -= 8;
1197
    }
1198
}
1199
 
1200
/* ===========================================================================
1201
 * Flush the bit buffer and align the output on a byte boundary
1202
 */
1203
local void bi_windup(s)
1204
    deflate_state *s;
1205
{
1206
    if (s->bi_valid > 8) {
1207
        put_short(s, s->bi_buf);
1208
    } else if (s->bi_valid > 0) {
1209
        put_byte(s, (Byte)s->bi_buf);
1210
    }
1211
    s->bi_buf = 0;
1212
    s->bi_valid = 0;
1213
#ifdef DEBUG
1214
    s->bits_sent = (s->bits_sent+7) & ~7;
1215
#endif
1216
}
1217
 
1218
/* ===========================================================================
1219
 * Copy a stored block, storing first the length and its
1220
 * one's complement if requested.
1221
 */
1222
local void copy_block(s, buf, len, header)
1223
    deflate_state *s;
1224
    charf    *buf;    /* the input data */
1225
    unsigned len;     /* its length */
1226
    int      header;  /* true if block header must be written */
1227
{
1228
    bi_windup(s);        /* align on byte boundary */
1229
    s->last_eob_len = 8; /* enough lookahead for inflate */
1230
 
1231
    if (header) {
1232
        put_short(s, (ush)len);
1233
        put_short(s, (ush)~len);
1234
#ifdef DEBUG
1235
        s->bits_sent += 2*16;
1236
#endif
1237
    }
1238
#ifdef DEBUG
1239
    s->bits_sent += (ulg)len<<3;
1240
#endif
1241
    while (len--) {
1242
        put_byte(s, *buf++);
1243
    }
1244
}