Subversion Repositories Kolibri OS

Rev

Rev 1896 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1896 serge 1
/* crc32.c -- compute the CRC-32 of a data stream
3926 Serge 2
 * Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
1896 serge 3
 * For conditions of distribution and use, see copyright notice in zlib.h
4
 *
5
 * Thanks to Rodney Brown  for his contribution of faster
6
 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
7
 * tables for updating the shift register in one step with three exclusive-ors
8
 * instead of four steps with four exclusive-ors.  This results in about a
9
 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
10
 */
11
 
12
/* @(#) $Id$ */
13
 
14
/*
15
  Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
16
  protection on the static variables used to control the first-use generation
17
  of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
18
  first call get_crc_table() to initialize the tables before allowing more than
19
  one thread to use crc32().
3926 Serge 20
 
21
  DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
1896 serge 22
 */
23
 
24
#ifdef MAKECRCH
25
#  include 
26
#  ifndef DYNAMIC_CRC_TABLE
27
#    define DYNAMIC_CRC_TABLE
28
#  endif /* !DYNAMIC_CRC_TABLE */
29
#endif /* MAKECRCH */
30
 
31
#include "zutil.h"      /* for STDC and FAR definitions */
32
 
33
#define local static
34
 
35
/* Definitions for doing the crc four data bytes at a time. */
3926 Serge 36
#if !defined(NOBYFOUR) && defined(Z_U4)
37
#  define BYFOUR
38
#endif
1896 serge 39
#ifdef BYFOUR
40
   local unsigned long crc32_little OF((unsigned long,
41
                        const unsigned char FAR *, unsigned));
42
   local unsigned long crc32_big OF((unsigned long,
43
                        const unsigned char FAR *, unsigned));
44
#  define TBLS 8
45
#else
46
#  define TBLS 1
47
#endif /* BYFOUR */
48
 
49
/* Local functions for crc concatenation */
50
local unsigned long gf2_matrix_times OF((unsigned long *mat,
51
                                         unsigned long vec));
52
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
3926 Serge 53
local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
1896 serge 54
 
55
 
56
#ifdef DYNAMIC_CRC_TABLE
57
 
58
local volatile int crc_table_empty = 1;
3926 Serge 59
local z_crc_t FAR crc_table[TBLS][256];
1896 serge 60
local void make_crc_table OF((void));
61
#ifdef MAKECRCH
3926 Serge 62
   local void write_table OF((FILE *, const z_crc_t FAR *));
1896 serge 63
#endif /* MAKECRCH */
64
/*
65
  Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
66
  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
67
 
68
  Polynomials over GF(2) are represented in binary, one bit per coefficient,
69
  with the lowest powers in the most significant bit.  Then adding polynomials
70
  is just exclusive-or, and multiplying a polynomial by x is a right shift by
71
  one.  If we call the above polynomial p, and represent a byte as the
72
  polynomial q, also with the lowest power in the most significant bit (so the
73
  byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
74
  where a mod b means the remainder after dividing a by b.
75
 
76
  This calculation is done using the shift-register method of multiplying and
77
  taking the remainder.  The register is initialized to zero, and for each
78
  incoming bit, x^32 is added mod p to the register if the bit is a one (where
79
  x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
80
  x (which is shifting right by one and adding x^32 mod p if the bit shifted
81
  out is a one).  We start with the highest power (least significant bit) of
82
  q and repeat for all eight bits of q.
83
 
84
  The first table is simply the CRC of all possible eight bit values.  This is
85
  all the information needed to generate CRCs on data a byte at a time for all
86
  combinations of CRC register values and incoming bytes.  The remaining tables
87
  allow for word-at-a-time CRC calculation for both big-endian and little-
88
  endian machines, where a word is four bytes.
89
*/
90
local void make_crc_table()
91
{
3926 Serge 92
    z_crc_t c;
1896 serge 93
    int n, k;
3926 Serge 94
    z_crc_t poly;                       /* polynomial exclusive-or pattern */
1896 serge 95
    /* terms of polynomial defining this crc (except x^32): */
96
    static volatile int first = 1;      /* flag to limit concurrent making */
97
    static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
98
 
99
    /* See if another task is already doing this (not thread-safe, but better
100
       than nothing -- significantly reduces duration of vulnerability in
101
       case the advice about DYNAMIC_CRC_TABLE is ignored) */
102
    if (first) {
103
        first = 0;
104
 
105
        /* make exclusive-or pattern from polynomial (0xedb88320UL) */
3926 Serge 106
        poly = 0;
107
        for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
108
            poly |= (z_crc_t)1 << (31 - p[n]);
1896 serge 109
 
110
        /* generate a crc for every 8-bit value */
111
        for (n = 0; n < 256; n++) {
3926 Serge 112
            c = (z_crc_t)n;
1896 serge 113
            for (k = 0; k < 8; k++)
114
                c = c & 1 ? poly ^ (c >> 1) : c >> 1;
115
            crc_table[0][n] = c;
116
        }
117
 
118
#ifdef BYFOUR
119
        /* generate crc for each value followed by one, two, and three zeros,
120
           and then the byte reversal of those as well as the first table */
121
        for (n = 0; n < 256; n++) {
122
            c = crc_table[0][n];
3926 Serge 123
            crc_table[4][n] = ZSWAP32(c);
1896 serge 124
            for (k = 1; k < 4; k++) {
125
                c = crc_table[0][c & 0xff] ^ (c >> 8);
126
                crc_table[k][n] = c;
3926 Serge 127
                crc_table[k + 4][n] = ZSWAP32(c);
1896 serge 128
            }
129
        }
130
#endif /* BYFOUR */
131
 
132
        crc_table_empty = 0;
133
    }
134
    else {      /* not first */
135
        /* wait for the other guy to finish (not efficient, but rare) */
136
        while (crc_table_empty)
137
            ;
138
    }
139
 
140
#ifdef MAKECRCH
141
    /* write out CRC tables to crc32.h */
142
    {
143
        FILE *out;
144
 
145
        out = fopen("crc32.h", "w");
146
        if (out == NULL) return;
147
        fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
148
        fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
3926 Serge 149
        fprintf(out, "local const z_crc_t FAR ");
1896 serge 150
        fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
151
        write_table(out, crc_table[0]);
152
#  ifdef BYFOUR
153
        fprintf(out, "#ifdef BYFOUR\n");
154
        for (k = 1; k < 8; k++) {
155
            fprintf(out, "  },\n  {\n");
156
            write_table(out, crc_table[k]);
157
        }
158
        fprintf(out, "#endif\n");
159
#  endif /* BYFOUR */
160
        fprintf(out, "  }\n};\n");
161
        fclose(out);
162
    }
163
#endif /* MAKECRCH */
164
}
165
 
166
#ifdef MAKECRCH
167
local void write_table(out, table)
168
    FILE *out;
3926 Serge 169
    const z_crc_t FAR *table;
1896 serge 170
{
171
    int n;
172
 
173
    for (n = 0; n < 256; n++)
3926 Serge 174
        fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ",
175
                (unsigned long)(table[n]),
1896 serge 176
                n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
177
}
178
#endif /* MAKECRCH */
179
 
180
#else /* !DYNAMIC_CRC_TABLE */
181
/* ========================================================================
182
 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
183
 */
184
#include "crc32.h"
185
#endif /* DYNAMIC_CRC_TABLE */
186
 
187
/* =========================================================================
188
 * This function can be used by asm versions of crc32()
189
 */
3926 Serge 190
const z_crc_t FAR * ZEXPORT get_crc_table()
1896 serge 191
{
192
#ifdef DYNAMIC_CRC_TABLE
193
    if (crc_table_empty)
194
        make_crc_table();
195
#endif /* DYNAMIC_CRC_TABLE */
3926 Serge 196
    return (const z_crc_t FAR *)crc_table;
1896 serge 197
}
198
 
199
/* ========================================================================= */
200
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
201
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
202
 
203
/* ========================================================================= */
204
unsigned long ZEXPORT crc32(crc, buf, len)
205
    unsigned long crc;
206
    const unsigned char FAR *buf;
207
    uInt len;
208
{
209
    if (buf == Z_NULL) return 0UL;
210
 
211
#ifdef DYNAMIC_CRC_TABLE
212
    if (crc_table_empty)
213
        make_crc_table();
214
#endif /* DYNAMIC_CRC_TABLE */
215
 
216
#ifdef BYFOUR
217
    if (sizeof(void *) == sizeof(ptrdiff_t)) {
3926 Serge 218
        z_crc_t endian;
1896 serge 219
 
220
        endian = 1;
221
        if (*((unsigned char *)(&endian)))
222
            return crc32_little(crc, buf, len);
223
        else
224
            return crc32_big(crc, buf, len);
225
    }
226
#endif /* BYFOUR */
227
    crc = crc ^ 0xffffffffUL;
228
    while (len >= 8) {
229
        DO8;
230
        len -= 8;
231
    }
232
    if (len) do {
233
        DO1;
234
    } while (--len);
235
    return crc ^ 0xffffffffUL;
236
}
237
 
238
#ifdef BYFOUR
239
 
240
/* ========================================================================= */
241
#define DOLIT4 c ^= *buf4++; \
242
        c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
243
            crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
244
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
245
 
246
/* ========================================================================= */
247
local unsigned long crc32_little(crc, buf, len)
248
    unsigned long crc;
249
    const unsigned char FAR *buf;
250
    unsigned len;
251
{
3926 Serge 252
    register z_crc_t c;
253
    register const z_crc_t FAR *buf4;
1896 serge 254
 
3926 Serge 255
    c = (z_crc_t)crc;
1896 serge 256
    c = ~c;
257
    while (len && ((ptrdiff_t)buf & 3)) {
258
        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
259
        len--;
260
    }
261
 
3926 Serge 262
    buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
1896 serge 263
    while (len >= 32) {
264
        DOLIT32;
265
        len -= 32;
266
    }
267
    while (len >= 4) {
268
        DOLIT4;
269
        len -= 4;
270
    }
271
    buf = (const unsigned char FAR *)buf4;
272
 
273
    if (len) do {
274
        c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
275
    } while (--len);
276
    c = ~c;
277
    return (unsigned long)c;
278
}
279
 
280
/* ========================================================================= */
281
#define DOBIG4 c ^= *++buf4; \
282
        c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
283
            crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
284
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
285
 
286
/* ========================================================================= */
287
local unsigned long crc32_big(crc, buf, len)
288
    unsigned long crc;
289
    const unsigned char FAR *buf;
290
    unsigned len;
291
{
3926 Serge 292
    register z_crc_t c;
293
    register const z_crc_t FAR *buf4;
1896 serge 294
 
3926 Serge 295
    c = ZSWAP32((z_crc_t)crc);
1896 serge 296
    c = ~c;
297
    while (len && ((ptrdiff_t)buf & 3)) {
298
        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
299
        len--;
300
    }
301
 
3926 Serge 302
    buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
1896 serge 303
    buf4--;
304
    while (len >= 32) {
305
        DOBIG32;
306
        len -= 32;
307
    }
308
    while (len >= 4) {
309
        DOBIG4;
310
        len -= 4;
311
    }
312
    buf4++;
313
    buf = (const unsigned char FAR *)buf4;
314
 
315
    if (len) do {
316
        c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
317
    } while (--len);
318
    c = ~c;
3926 Serge 319
    return (unsigned long)(ZSWAP32(c));
1896 serge 320
}
321
 
322
#endif /* BYFOUR */
323
 
324
#define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
325
 
326
/* ========================================================================= */
327
local unsigned long gf2_matrix_times(mat, vec)
328
    unsigned long *mat;
329
    unsigned long vec;
330
{
331
    unsigned long sum;
332
 
333
    sum = 0;
334
    while (vec) {
335
        if (vec & 1)
336
            sum ^= *mat;
337
        vec >>= 1;
338
        mat++;
339
    }
340
    return sum;
341
}
342
 
343
/* ========================================================================= */
344
local void gf2_matrix_square(square, mat)
345
    unsigned long *square;
346
    unsigned long *mat;
347
{
348
    int n;
349
 
350
    for (n = 0; n < GF2_DIM; n++)
351
        square[n] = gf2_matrix_times(mat, mat[n]);
352
}
353
 
354
/* ========================================================================= */
355
local uLong crc32_combine_(crc1, crc2, len2)
356
    uLong crc1;
357
    uLong crc2;
358
    z_off64_t len2;
359
{
360
    int n;
361
    unsigned long row;
362
    unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
363
    unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
364
 
365
    /* degenerate case (also disallow negative lengths) */
366
    if (len2 <= 0)
367
        return crc1;
368
 
369
    /* put operator for one zero bit in odd */
370
    odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
371
    row = 1;
372
    for (n = 1; n < GF2_DIM; n++) {
373
        odd[n] = row;
374
        row <<= 1;
375
    }
376
 
377
    /* put operator for two zero bits in even */
378
    gf2_matrix_square(even, odd);
379
 
380
    /* put operator for four zero bits in odd */
381
    gf2_matrix_square(odd, even);
382
 
383
    /* apply len2 zeros to crc1 (first square will put the operator for one
384
       zero byte, eight zero bits, in even) */
385
    do {
386
        /* apply zeros operator for this bit of len2 */
387
        gf2_matrix_square(even, odd);
388
        if (len2 & 1)
389
            crc1 = gf2_matrix_times(even, crc1);
390
        len2 >>= 1;
391
 
392
        /* if no more bits set, then done */
393
        if (len2 == 0)
394
            break;
395
 
396
        /* another iteration of the loop with odd and even swapped */
397
        gf2_matrix_square(odd, even);
398
        if (len2 & 1)
399
            crc1 = gf2_matrix_times(odd, crc1);
400
        len2 >>= 1;
401
 
402
        /* if no more bits set, then done */
403
    } while (len2 != 0);
404
 
405
    /* return combined crc */
406
    crc1 ^= crc2;
407
    return crc1;
408
}
409
 
410
/* ========================================================================= */
411
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
412
    uLong crc1;
413
    uLong crc2;
414
    z_off_t len2;
415
{
416
    return crc32_combine_(crc1, crc2, len2);
417
}
418
 
419
uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
420
    uLong crc1;
421
    uLong crc2;
422
    z_off64_t len2;
423
{
424
    return crc32_combine_(crc1, crc2, len2);
425
}