Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5517 hidnplayr 1
#define NULL 0
2
typedef unsigned int size_t;
3
 
4
 
5
// sort
6
#define		THRESH		4		/* threshold for insertion */
7
#define		MTHRESH		6		/* threshold for median */
8
 
9
static  int		(*qcmp)(const void *, const void *);		/* the comparison routine */
10
static  int		qsz;			/* size of each record */
11
static  int		thresh;			/* THRESHold in chars */
12
static  int		mthresh;		/* MTHRESHold in chars */
13
 
14
/*
15
* qst:
16
* Do a quicksort
17
* First, find the median element, and put that one in the first place as the
18
* discriminator.  (This "median" is just the median of the first, last and
19
* middle elements).  (Using this median instead of the first element is a big
20
* win).  Then, the usual partitioning/swapping, followed by moving the
21
* discriminator into the right place.  Then, figure out the sizes of the two
22
* partions, do the smaller one recursively and the larger one via a repeat of
23
* this code.  Stopping when there are less than THRESH elements in a partition
24
* and cleaning up with an insertion sort (in our caller) is a huge win.
25
* All data swaps are done in-line, which is space-losing but time-saving.
26
* (And there are only three places where this is done).
27
*/
28
 
29
static void qst(char *base, char *max)
30
{
31
	char c, *i, *j, *jj;
32
	int ii;
33
	char *mid, *tmp;
34
	int lo, hi;
35
 
36
/*
37
* At the top here, lo is the number of characters of elements in the
38
* current partition.  (Which should be max - base).
39
* Find the median of the first, last, and middle element and make
40
* that the middle element.  Set j to largest of first and middle.
41
* If max is larger than that guy, then it's that guy, else compare
42
* max with loser of first and take larger.  Things are set up to
43
* prefer the middle, then the first in case of ties.
44
*/
45
	lo = max - base;		/* number of elements as chars */
46
	do	{
47
		mid = i = base + qsz * ((lo / qsz) >> 1);
48
		if (lo >= mthresh)
49
		{
50
			j = (qcmp((jj = base), i) > 0 ? jj : i);
51
			if (qcmp(j, (tmp = max - qsz)) > 0)
52
			{
53
/* switch to first loser */
54
				j = (j == jj ? i : jj);
55
				if (qcmp(j, tmp) < 0)
56
					j = tmp;
57
			}
58
			if (j != i)
59
			{
60
				ii = qsz;
61
				do	{
62
					c = *i;
63
					*i++ = *j;
64
					*j++ = c;
65
				} while (--ii);
66
			}
67
		}
68
/*
69
* Semi-standard quicksort partitioning/swapping
70
*/
71
		for (i = base, j = max - qsz; ; )
72
		{
73
			while (i < mid && qcmp(i, mid) <= 0)
74
				i += qsz;
75
			while (j > mid)
76
			{
77
				if (qcmp(mid, j) <= 0)
78
				{
79
					j -= qsz;
80
					continue;
81
				}
82
				tmp = i + qsz;		/* value of i after swap */
83
				if (i == mid)
84
				{
85
/* j <-> mid, new mid is j */
86
					mid = jj = j;
87
				}
88
				else
89
				{
90
/* i <-> j */
91
					jj = j;
92
					j -= qsz;
93
				}
94
				goto swap;
95
			}
96
			if (i == mid)
97
			{
98
				break;
99
			}
100
			else
101
			{
102
/* i <-> mid, new mid is i */
103
				jj = mid;
104
				tmp = mid = i;		/* value of i after swap */
105
				j -= qsz;
106
			}
107
			swap:
108
			ii = qsz;
109
			do	{
110
				c = *i;
111
				*i++ = *jj;
112
				*jj++ = c;
113
			} while (--ii);
114
			i = tmp;
115
		}
116
/*
117
* Look at sizes of the two partitions, do the smaller
118
* one first by recursion, then do the larger one by
119
* making sure lo is its size, base and max are update
120
* correctly, and branching back.  But only repeat
121
* (recursively or by branching) if the partition is
122
* of at least size THRESH.
123
*/
124
		i = (j = mid) + qsz;
125
		if ((lo = j - base) <= (hi = max - i))
126
		{
127
			if (lo >= thresh)
128
				qst(base, j);
129
			base = i;
130
			lo = hi;
131
		}
132
		else
133
		{
134
			if (hi >= thresh)
135
				qst(i, max);
136
			max = j;
137
		}
138
	} while (lo >= thresh);
139
}
140
 
141
/*
142
* qsort:
143
* First, set up some global parameters for qst to share.  Then, quicksort
144
* with qst(), and then a cleanup insertion sort ourselves.  Sound simple?
145
* It's not...
146
*/
147
 
148
void qsort_g(void *base0, size_t n, size_t size, int (*compar)(const void *, const void *))
149
{
150
	char *base = (char *)base0;
151
	char c, *i, *j, *lo, *hi;
152
	char *min, *max;
153
 
154
	if (n <= 1)
155
		return;
156
	qsz = size;
157
	qcmp = compar;
158
	thresh = qsz * THRESH;
159
	mthresh = qsz * MTHRESH;
160
	max = base + n * qsz;
161
	if (n >= THRESH)
162
	{
163
		qst(base, max);
164
		hi = base + thresh;
165
	}
166
	else
167
	{
168
		hi = max;
169
	}
170
/*
171
* First put smallest element, which must be in the first THRESH, in
172
* the first position as a sentinel.  This is done just by searching
173
* the first THRESH elements (or the first n if n < THRESH), finding
174
* the min, and swapping it into the first position.
175
*/
176
	for (j = lo = base; (lo += qsz) < hi; )
177
		if (qcmp(j, lo) > 0)
178
			j = lo;
179
	if (j != base)
180
	{
181
/* swap j into place */
182
		for (i = base, hi = base + qsz; i < hi; )
183
		{
184
			c = *j;
185
			*j++ = *i;
186
			*i++ = c;
187
		}
188
	}
189
/*
190
* With our sentinel in place, we now run the following hyper-fast
191
* insertion sort.  For each remaining element, min, from [1] to [n-1],
192
* set hi to the index of the element AFTER which this one goes.
193
* Then, do the standard insertion sort shift on a character at a time
194
* basis for each element in the frob.
195
*/
196
	for (min = base; (hi = min += qsz) < max; )
197
	{
198
		while (qcmp(hi -= qsz, min) > 0)
199
/* void */;
200
			if ((hi += qsz) != min) {
201
				for (lo = min + qsz; --lo >= min; )
202
			{
203
				c = *lo;
204
				for (i = j = lo; (j -= qsz) >= hi; i = j)
205
					*i = *j;
206
				*i = c;
207
			}
208
		}
209
	}
210
}
211
 
212
#define STBTT_sort(data,num_items,item_size,compare_func)   qsort_g(data,num_items,item_size,compare_func)
213
 
214
asm ("_floor: \n\t"
215
"pushl	%ebp\n\t"
216
"movl	%esp,%ebp\n\t"
217
"subl	$8,%esp\n\t"
218
"fstcw	-4(%ebp)\n\t"
219
"fwait\n\t"
220
"movw	-4(%ebp),%ax\n\t"
221
"andw	$0xf3ff,%ax\n\t"
222
"orw	$0x0400,%ax\n\t"
223
"movw	%ax,-2(%ebp)\n\t"
224
"fldcw	-2(%ebp)\n\t"
225
"fldl	8(%ebp)\n\t"
226
"frndint\n\t"
227
"fldcw	-4(%ebp)\n\t"
228
"movl	%ebp,%esp\n\t"
229
"popl	%ebp\n\t"
230
"ret");
231
 
232
 
233
int i_floor (float x) {
234
	int z;
235
	z=x;
236
	if (z+1>x) {return z;} else {return (z+1);}
237
}
238
 
239
int i_ceil (float x) {
240
	int z;
241
	z=x;
242
	if (z>x) {return z;} else {return (z+1);}
243
}
244
 
245
 
246
double sqrt (double x)
247
{
248
	if (x < 0.0F )
249
	{
250
		return -1;
251
	}
252
	else
253
	{
254
		double res;
255
		asm ("fsqrt" : "=t" (res) : "0" (x));
256
		return res;
257
	}
258
}
259
 
260
#define STBTT_ifloor(x)   ((int) i_floor(x))
261
#define STBTT_iceil(x)    ((int) i_ceil(x))
262
 
263
static inline void *zmalloc(size_t size) {
264
	void *val;
265
	__asm__ __volatile__( "int $0x40":"=a"(val):"a"(68),"b"(12),"c"(size));
266
	return val;
267
}
268
 
269
static inline void zfree(void *p)
270
{
271
	size_t foo;
272
	asm volatile ("int $0x40":"=a"(foo):"a"(68), "b"(13), "c"(p));
273
	return;
274
}
275
 
276
#define STBTT_malloc(x,u)  zmalloc(x)
277
#define STBTT_free(x,u)    zfree(x)
278
 
279
#define assert_g(ignore)((void) 0)
280
 
281
#define STBTT_assert(x)    assert_g(x)
282
 
283
int strlen_g(const char* string)
284
{
285
	int i;
286
	i=0;
287
	while (*string++) i++;
288
	return i;
289
}
290
 
291
#define STBTT_strlen(x)    strlen_g(x)
292
 
293
void*  zmemset(void *mem, int c, unsigned size)
294
{
295
	unsigned i;
296
 
297
	for ( i = 0; i < size; i++ )
298
		*((char *)mem+i) = (char) c;
299
 
300
	return 0;
301
}
302
 
303
void* zmemcpy(void *dst, const void *src, unsigned size)
304
{
305
 
306
	unsigned i;
307
 
308
	for ( i = 0; i < size; i++)
309
		*(char *)(dst+i) = *(char *)(src+i);
310
 
311
	return 0;
312
}
313
 
314
#define STBTT_memcpy       zmemcpy
315
#define STBTT_memset       zmemset