Subversion Repositories Kolibri OS

Rev

Rev 1906 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3362 Serge 1
 
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
13
 
14
FUNCTION
15
        <>, <>, <>, <>---error function
16
INDEX
17
	erf
18
INDEX
19
	erff
20
INDEX
21
	erfc
22
INDEX
23
	erfcf
24
25
 
26
	#include 
27
	double erf(double <[x]>);
28
	float erff(float <[x]>);
29
	double erfc(double <[x]>);
30
	float erfcf(float <[x]>);
31
TRAD_SYNOPSIS
32
	#include 
33
34
 
35
	double <[x]>;
36
37
 
38
	float <[x]>;
39
40
 
41
	double <[x]>;
42
43
 
44
	float <[x]>;
45
46
 
47
	<> calculates an approximation to the ``error function'',
48
	which estimates the probability that an observation will fall within
49
	<[x]> standard deviations of the mean (assuming a normal
50
	distribution).
51
	@tex
52
	The error function is defined as
53
	$${2\over\sqrt\pi}\times\int_0^x e^{-t^2}dt$$
54
	 @end tex
55
56
 
57
	<)>> is <<1 - erf(<[x]>)>>.  <> is computed directly,
58
	so that you can use it to avoid the loss of precision that would
59
	result from subtracting large probabilities (on large <[x]>) from 1.
60
61
 
62
	argument and result types.
63
64
 
65
	For positive arguments, <> and all its variants return a
66
	probability---a number between 0 and 1.
67
68
 
69
	None of the variants of <> are ANSI C.
70
*/
71
72
 
73
 * double erfc(double x)
74
 *			     x
75
 *		      2      |\
76
 *     erf(x)  =  ---------  | exp(-t*t)dt
77
 *	 	   sqrt(pi) \|
78
 *			     0
79
 *
80
 *     erfc(x) =  1-erf(x)
81
 *  Note that
82
 *		erf(-x) = -erf(x)
83
 *		erfc(-x) = 2 - erfc(x)
84
 *
85
 * Method:
86
 *	1. For |x| in [0, 0.84375]
87
 *	    erf(x)  = x + x*R(x^2)
88
 *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
89
 *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
90
 *	   where R = P/Q where P is an odd poly of degree 8 and
91
 *	   Q is an odd poly of degree 10.
92
 *						 -57.90
93
 *			| R - (erf(x)-x)/x | <= 2
94
 *
95
 *
96
 *	   Remark. The formula is derived by noting
97
 *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
98
 *	   and that
99
 *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
100
 *	   is close to one. The interval is chosen because the fix
101
 *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
102
 *	   near 0.6174), and by some experiment, 0.84375 is chosen to
103
 * 	   guarantee the error is less than one ulp for erf.
104
 *
105
 *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
106
 *         c = 0.84506291151 rounded to single (24 bits)
107
 *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
108
 *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
109
 *			  1+(c+P1(s)/Q1(s))    if x < 0
110
 *         	|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
111
 *	   Remark: here we use the taylor series expansion at x=1.
112
 *		erf(1+s) = erf(1) + s*Poly(s)
113
 *			 = 0.845.. + P1(s)/Q1(s)
114
 *	   That is, we use rational approximation to approximate
115
 *			erf(1+s) - (c = (single)0.84506291151)
116
 *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
117
 *	   where
118
 *		P1(s) = degree 6 poly in s
119
 *		Q1(s) = degree 6 poly in s
120
 *
121
 *      3. For x in [1.25,1/0.35(~2.857143)],
122
 *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
123
 *         	erf(x)  = 1 - erfc(x)
124
 *	   where
125
 *		R1(z) = degree 7 poly in z, (z=1/x^2)
126
 *		S1(z) = degree 8 poly in z
127
 *
128
 *      4. For x in [1/0.35,28]
129
 *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
130
 *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6
131
 *			= 2.0 - tiny		(if x <= -6)
132
 *         	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
133
 *         	erf(x)  = sign(x)*(1.0 - tiny)
134
 *	   where
135
 *		R2(z) = degree 6 poly in z, (z=1/x^2)
136
 *		S2(z) = degree 7 poly in z
137
 *
138
 *      Note1:
139
 *	   To compute exp(-x*x-0.5625+R/S), let s be a single
140
 *	   precision number and s := x; then
141
 *		-x*x = -s*s + (s-x)*(s+x)
142
 *	        exp(-x*x-0.5626+R/S) =
143
 *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
144
 *      Note2:
145
 *	   Here 4 and 5 make use of the asymptotic series
146
 *			  exp(-x*x)
147
 *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
148
 *			  x*sqrt(pi)
149
 *	   We use rational approximation to approximate
150
 *      	g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
151
 *	   Here is the error bound for R1/S1 and R2/S2
152
 *      	|R1/S1 - f(x)|  < 2**(-62.57)
153
 *      	|R2/S2 - f(x)|  < 2**(-61.52)
154
 *
155
 *      5. For inf > x >= 28
156
 *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
157
 *         	erfc(x) = tiny*tiny (raise underflow) if x > 0
158
 *			= 2 - tiny if x<0
159
 *
160
 *      7. Special case:
161
 *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
162
 *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
163
 *	   	erfc/erf(NaN) is NaN
164
 */
165
166
 
167
 
168
169
 
170
171
 
172
static const double
173
#else
174
static double
175
#endif
176
tiny	    = 1e-300,
177
half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
178
one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
179
two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
180
	/* c = (float)0.84506291151 */
181
erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
182
/*
183
 * Coefficients for approximation to  erf on [0,0.84375]
184
 */
185
efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
186
efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
187
pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
188
pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
189
pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
190
pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
191
pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
192
qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
193
qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
194
qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
195
qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
196
qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
197
/*
198
 * Coefficients for approximation to  erf  in [0.84375,1.25]
199
 */
200
pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
201
pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
202
pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
203
pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
204
pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
205
pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
206
pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
207
qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
208
qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
209
qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
210
qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
211
qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
212
qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
213
/*
214
 * Coefficients for approximation to  erfc in [1.25,1/0.35]
215
 */
216
ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
217
ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
218
ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
219
ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
220
ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
221
ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
222
ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
223
ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
224
sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
225
sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
226
sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
227
sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
228
sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
229
sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
230
sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
231
sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
232
/*
233
 * Coefficients for approximation to  erfc in [1/.35,28]
234
 */
235
rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
236
rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
237
rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
238
rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
239
rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
240
rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
241
rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
242
sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
243
sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
244
sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
245
sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
246
sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
247
sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
248
sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
249
250
 
251
	double erf(double x)
252
#else
253
	double erf(x)
254
	double x;
255
#endif
256
{
257
	__int32_t hx,ix,i;
258
	double R,S,P,Q,s,y,z,r;
259
	GET_HIGH_WORD(hx,x);
260
	ix = hx&0x7fffffff;
261
	if(ix>=0x7ff00000) {		/* erf(nan)=nan */
262
	    i = ((__uint32_t)hx>>31)<<1;
263
	    return (double)(1-i)+one/x;	/* erf(+-inf)=+-1 */
264
	}
265
266
 
267
	    if(ix < 0x3e300000) { 	/* |x|<2**-28 */
268
	        if (ix < 0x00800000)
269
		    return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
270
		return x + efx*x;
271
	    }
272
	    z = x*x;
273
	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
274
	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
275
	    y = r/s;
276
	    return x + x*y;
277
	}
278
	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
279
	    s = fabs(x)-one;
280
	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
281
	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
282
	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
283
	}
284
	if (ix >= 0x40180000) {		/* inf>|x|>=6 */
285
	    if(hx>=0) return one-tiny; else return tiny-one;
286
	}
287
	x = fabs(x);
288
 	s = one/(x*x);
289
	if(ix< 0x4006DB6E) {	/* |x| < 1/0.35 */
290
	    R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
291
				ra5+s*(ra6+s*ra7))))));
292
	    S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
293
				sa5+s*(sa6+s*(sa7+s*sa8)))))));
294
	} else {	/* |x| >= 1/0.35 */
295
	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
296
				rb5+s*rb6)))));
297
	    S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
298
				sb5+s*(sb6+s*sb7))))));
299
	}
300
	z  = x;
301
	SET_LOW_WORD(z,0);
302
	r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
303
	if(hx>=0) return one-r/x; else return  r/x-one;
304
}
305
306
 
307
	double erfc(double x)
308
#else
309
	double erfc(x)
310
	double x;
311
#endif
312
{
313
	__int32_t hx,ix;
314
	double R,S,P,Q,s,y,z,r;
315
	GET_HIGH_WORD(hx,x);
316
	ix = hx&0x7fffffff;
317
	if(ix>=0x7ff00000) {			/* erfc(nan)=nan */
318
						/* erfc(+-inf)=0,2 */
319
	    return (double)(((__uint32_t)hx>>31)<<1)+one/x;
320
	}
321
322
 
323
	    if(ix < 0x3c700000)  	/* |x|<2**-56 */
324
		return one-x;
325
	    z = x*x;
326
	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
327
	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
328
	    y = r/s;
329
	    if(hx < 0x3fd00000) {  	/* x<1/4 */
330
		return one-(x+x*y);
331
	    } else {
332
		r = x*y;
333
		r += (x-half);
334
	        return half - r ;
335
	    }
336
	}
337
	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
338
	    s = fabs(x)-one;
339
	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
340
	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
341
	    if(hx>=0) {
342
	        z  = one-erx; return z - P/Q;
343
	    } else {
344
		z = erx+P/Q; return one+z;
345
	    }
346
	}
347
	if (ix < 0x403c0000) {		/* |x|<28 */
348
	    x = fabs(x);
349
 	    s = one/(x*x);
350
	    if(ix< 0x4006DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
351
	        R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
352
				ra5+s*(ra6+s*ra7))))));
353
	        S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
354
				sa5+s*(sa6+s*(sa7+s*sa8)))))));
355
	    } else {			/* |x| >= 1/.35 ~ 2.857143 */
356
		if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
357
	        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
358
				rb5+s*rb6)))));
359
	        S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
360
				sb5+s*(sb6+s*sb7))))));
361
	    }
362
	    z  = x;
363
	    SET_LOW_WORD(z,0);
364
	    r  =  __ieee754_exp(-z*z-0.5625)*
365
			__ieee754_exp((z-x)*(z+x)+R/S);
366
	    if(hx>0) return r/x; else return two-r/x;
367
	} else {
368
	    if(hx>0) return tiny*tiny; else return two-tiny;
369
	}
370
}
371
372
 
373
>