Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1906 serge 1
/*							lgaml()
2
 *
3
 *	Natural logarithm of gamma function
4
 *
5
 *
6
 *
7
 * SYNOPSIS:
8
 *
9
 * long double x, y, __lgammal_r();
10
 * int* sgngaml;
11
 * y = __lgammal_r( x, sgngaml );
12
 *
13
 * long double x, y, lgammal();
14
 * y = lgammal( x);
15
 *
16
 *
17
 *
18
 * DESCRIPTION:
19
 *
20
 * Returns the base e (2.718...) logarithm of the absolute
21
 * value of the gamma function of the argument. In the reentrant
22
 * version, the sign (+1 or -1) of the gamma function is returned
23
 * in the variable referenced by sgngaml.
24
 *
25
 * For arguments greater than 33, the logarithm of the gamma
26
 * function is approximated by the logarithmic version of
27
 * Stirling's formula using a polynomial approximation of
28
 * degree 4. Arguments between -33 and +33 are reduced by
29
 * recurrence to the interval [2,3] of a rational approximation.
30
 * The cosecant reflection formula is employed for arguments
31
 * less than -33.
32
 *
33
 * Arguments greater than MAXLGML (10^4928) return MAXNUML.
34
 *
35
 *
36
 *
37
 * ACCURACY:
38
 *
39
 *
40
 * arithmetic      domain        # trials     peak         rms
41
 *    IEEE         -40, 40        100000     2.2e-19     4.6e-20
42
 *    IEEE    10^-2000,10^+2000    20000     1.6e-19     3.3e-20
43
 * The error criterion was relative when the function magnitude
44
 * was greater than one but absolute when it was less than one.
45
 *
46
 */
47
 
48
/*
49
 * Copyright 1994 by Stephen L. Moshier
50
 */
51
 
52
/*
53
 * 26-11-2002 Modified for mingw.
54
 * Danny Smith 
55
 */
56
 
57
#ifndef __MINGW32__
58
#include "mconf.h"
59
#ifdef ANSIPROT
60
extern long double fabsl ( long double );
61
extern long double lgaml ( long double );
62
extern long double logl ( long double );
63
extern long double expl ( long double );
64
extern long double gammal ( long double );
65
extern long double sinl ( long double );
66
extern long double floorl ( long double );
67
extern long double powl ( long double, long double );
68
extern long double polevll ( long double, void *, int );
69
extern long double p1evll ( long double, void *, int );
70
extern int isnanl ( long double );
71
extern int isfinitel ( long double );
72
#else
73
long double fabsl(), lgaml(), logl(), expl(), gammal(), sinl();
74
long double floorl(), powl(), polevll(), p1evll(), isnanl(), isfinitel();
75
#endif
76
#ifdef INFINITIES
77
extern long double INFINITYL;
78
#endif
79
#ifdef NANS
80
extern long double NANL;
81
#endif
82
#else /* __MINGW32__ */
83
#include "cephes_mconf.h"
84
#endif /* __MINGW32__ */
85
 
86
#if UNK
87
static long double S[9] = {
88
-1.193945051381510095614E-3L,
89
 7.220599478036909672331E-3L,
90
-9.622023360406271645744E-3L,
91
-4.219773360705915470089E-2L,
92
 1.665386113720805206758E-1L,
93
-4.200263503403344054473E-2L,
94
-6.558780715202540684668E-1L,
95
 5.772156649015328608253E-1L,
96
 1.000000000000000000000E0L,
97
};
98
#endif
99
#if IBMPC
100
static const unsigned short S[] = {
101
0xbaeb,0xd6d3,0x25e5,0x9c7e,0xbff5, XPD
102
0xfe9a,0xceb4,0xc74e,0xec9a,0x3ff7, XPD
103
0x9225,0xdfef,0xb0e9,0x9da5,0xbff8, XPD
104
0x10b0,0xec17,0x87dc,0xacd7,0xbffa, XPD
105
0x6b8d,0x7515,0x1905,0xaa89,0x3ffc, XPD
106
0xf183,0x126b,0xf47d,0xac0a,0xbffa, XPD
107
0x7bf6,0x57d1,0xa013,0xa7e7,0xbffe, XPD
108
0xc7a9,0x7db0,0x67e3,0x93c4,0x3ffe, XPD
109
0x0000,0x0000,0x0000,0x8000,0x3fff, XPD
110
};
111
#endif
112
#if MIEEE
113
static long S[27] = {
114
0xbff50000,0x9c7e25e5,0xd6d3baeb,
115
0x3ff70000,0xec9ac74e,0xceb4fe9a,
116
0xbff80000,0x9da5b0e9,0xdfef9225,
117
0xbffa0000,0xacd787dc,0xec1710b0,
118
0x3ffc0000,0xaa891905,0x75156b8d,
119
0xbffa0000,0xac0af47d,0x126bf183,
120
0xbffe0000,0xa7e7a013,0x57d17bf6,
121
0x3ffe0000,0x93c467e3,0x7db0c7a9,
122
0x3fff0000,0x80000000,0x00000000,
123
};
124
#endif
125
 
126
#if UNK
127
static long double SN[9] = {
128
 1.133374167243894382010E-3L,
129
 7.220837261893170325704E-3L,
130
 9.621911155035976733706E-3L,
131
-4.219773343731191721664E-2L,
132
-1.665386113944413519335E-1L,
133
-4.200263503402112910504E-2L,
134
 6.558780715202536547116E-1L,
135
 5.772156649015328608727E-1L,
136
-1.000000000000000000000E0L,
137
};
138
#endif
139
#if IBMPC
140
static const unsigned SN[] = {
141
0x5dd1,0x02de,0xb9f7,0x948d,0x3ff5, XPD
142
0x989b,0xdd68,0xc5f1,0xec9c,0x3ff7, XPD
143
0x2ca1,0x18f0,0x386f,0x9da5,0x3ff8, XPD
144
0x783f,0x41dd,0x87d1,0xacd7,0xbffa, XPD
145
0x7a5b,0xd76d,0x1905,0xaa89,0xbffc, XPD
146
0x7f64,0x1234,0xf47d,0xac0a,0xbffa, XPD
147
0x5e26,0x57d1,0xa013,0xa7e7,0x3ffe, XPD
148
0xc7aa,0x7db0,0x67e3,0x93c4,0x3ffe, XPD
149
0x0000,0x0000,0x0000,0x8000,0xbfff, XPD
150
};
151
#endif
152
#if MIEEE
153
static long SN[27] = {
154
0x3ff50000,0x948db9f7,0x02de5dd1,
155
0x3ff70000,0xec9cc5f1,0xdd68989b,
156
0x3ff80000,0x9da5386f,0x18f02ca1,
157
0xbffa0000,0xacd787d1,0x41dd783f,
158
0xbffc0000,0xaa891905,0xd76d7a5b,
159
0xbffa0000,0xac0af47d,0x12347f64,
160
0x3ffe0000,0xa7e7a013,0x57d15e26,
161
0x3ffe0000,0x93c467e3,0x7db0c7aa,
162
0xbfff0000,0x80000000,0x00000000,
163
};
164
#endif
165
 
166
 
167
/* A[]: Stirling's formula expansion of log gamma
168
 * B[], C[]: log gamma function between 2 and 3
169
 */
170
 
171
 
172
/* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x A(1/x^2)
173
 * x >= 8
174
 * Peak relative error 1.51e-21
175
 * Relative spread of error peaks 5.67e-21
176
 */
177
#if UNK
178
static long double A[7] = {
179
 4.885026142432270781165E-3L,
180
-1.880801938119376907179E-3L,
181
 8.412723297322498080632E-4L,
182
-5.952345851765688514613E-4L,
183
 7.936507795855070755671E-4L,
184
-2.777777777750349603440E-3L,
185
 8.333333333333331447505E-2L,
186
};
187
#endif
188
#if IBMPC
189
static const unsigned short A[] = {
190
0xd984,0xcc08,0x91c2,0xa012,0x3ff7, XPD
191
0x3d91,0x0304,0x3da1,0xf685,0xbff5, XPD
192
0x3bdc,0xaad1,0xd492,0xdc88,0x3ff4, XPD
193
0x8b20,0x9fce,0x844e,0x9c09,0xbff4, XPD
194
0xf8f2,0x30e5,0x0092,0xd00d,0x3ff4, XPD
195
0x4d88,0x03a8,0x60b6,0xb60b,0xbff6, XPD
196
0x9fcc,0xaaaa,0xaaaa,0xaaaa,0x3ffb, XPD
197
};
198
#endif
199
#if MIEEE
200
static long A[21] = {
201
0x3ff70000,0xa01291c2,0xcc08d984,
202
0xbff50000,0xf6853da1,0x03043d91,
203
0x3ff40000,0xdc88d492,0xaad13bdc,
204
0xbff40000,0x9c09844e,0x9fce8b20,
205
0x3ff40000,0xd00d0092,0x30e5f8f2,
206
0xbff60000,0xb60b60b6,0x03a84d88,
207
0x3ffb0000,0xaaaaaaaa,0xaaaa9fcc,
208
};
209
#endif
210
 
211
/* log gamma(x+2) = x B(x)/C(x)
212
 * 0 <= x <= 1
213
 * Peak relative error 7.16e-22
214
 * Relative spread of error peaks 4.78e-20
215
 */
216
#if UNK
217
static long double B[7] = {
218
-2.163690827643812857640E3L,
219
-8.723871522843511459790E4L,
220
-1.104326814691464261197E6L,
221
-6.111225012005214299996E6L,
222
-1.625568062543700591014E7L,
223
-2.003937418103815175475E7L,
224
-8.875666783650703802159E6L,
225
};
226
static long double C[7] = {
227
/* 1.000000000000000000000E0L,*/
228
-5.139481484435370143617E2L,
229
-3.403570840534304670537E4L,
230
-6.227441164066219501697E5L,
231
-4.814940379411882186630E6L,
232
-1.785433287045078156959E7L,
233
-3.138646407656182662088E7L,
234
-2.099336717757895876142E7L,
235
};
236
#endif
237
#if IBMPC
238
static const unsigned short B[] = {
239
0x9557,0x4995,0x0da1,0x873b,0xc00a, XPD
240
0xfe44,0x9af8,0x5b8c,0xaa63,0xc00f, XPD
241
0x5aa8,0x7cf5,0x3684,0x86ce,0xc013, XPD
242
0x259a,0x258c,0xf206,0xba7f,0xc015, XPD
243
0xbe18,0x1ca3,0xc0a0,0xf80a,0xc016, XPD
244
0x168f,0x2c42,0x6717,0x98e3,0xc017, XPD
245
0x2051,0x9d55,0x92c8,0x876e,0xc016, XPD
246
};
247
static const unsigned short C[] = {
248
/*0x0000,0x0000,0x0000,0x8000,0x3fff, XPD*/
249
0xaa77,0xcf2f,0xae76,0x807c,0xc008, XPD
250
0xb280,0x0d74,0xb55a,0x84f3,0xc00e, XPD
251
0xa505,0xcd30,0x81dc,0x9809,0xc012, XPD
252
0x3369,0x4246,0xb8c2,0x92f0,0xc015, XPD
253
0x63cf,0x6aee,0xbe6f,0x8837,0xc017, XPD
254
0x26bb,0xccc7,0xb009,0xef75,0xc017, XPD
255
0x462b,0xbae8,0xab96,0xa02a,0xc017, XPD
256
};
257
#endif
258
#if MIEEE
259
static long B[21] = {
260
0xc00a0000,0x873b0da1,0x49959557,
261
0xc00f0000,0xaa635b8c,0x9af8fe44,
262
0xc0130000,0x86ce3684,0x7cf55aa8,
263
0xc0150000,0xba7ff206,0x258c259a,
264
0xc0160000,0xf80ac0a0,0x1ca3be18,
265
0xc0170000,0x98e36717,0x2c42168f,
266
0xc0160000,0x876e92c8,0x9d552051,
267
};
268
static long C[21] = {
269
/*0x3fff0000,0x80000000,0x00000000,*/
270
0xc0080000,0x807cae76,0xcf2faa77,
271
0xc00e0000,0x84f3b55a,0x0d74b280,
272
0xc0120000,0x980981dc,0xcd30a505,
273
0xc0150000,0x92f0b8c2,0x42463369,
274
0xc0170000,0x8837be6f,0x6aee63cf,
275
0xc0170000,0xef75b009,0xccc726bb,
276
0xc0170000,0xa02aab96,0xbae8462b,
277
};
278
#endif
279
 
280
/* log( sqrt( 2*pi ) ) */
281
static const long double LS2PI  =  0.91893853320467274178L;
282
#define MAXLGM 1.04848146839019521116e+4928L
283
 
284
 
285
/* Logarithm of gamma function */
286
/* Reentrant version */
287
 
288
long double __lgammal_r(long double x, int* sgngaml)
289
{
290
long double p, q, w, z, f, nx;
291
int i;
292
 
293
*sgngaml = 1;
294
#ifdef NANS
295
if( isnanl(x) )
296
	return(NANL);
297
#endif
298
#ifdef INFINITIES
299
if( !isfinitel(x) )
300
	return(INFINITYL);
301
#endif
302
if( x < -34.0L )
303
	{
304
	q = -x;
305
	w = __lgammal_r(q, sgngaml); /* note this modifies sgngam! */
306
	p = floorl(q);
307
	if( p == q )
308
		{
309
lgsing:
310
		_SET_ERRNO(EDOM);
311
		mtherr( "lgammal", SING );
312
#ifdef INFINITIES
313
		return (INFINITYL);
314
#else
315
		return (MAXNUML);
316
#endif
317
		}
318
	i = p;
319
	if( (i & 1) == 0 )
320
		*sgngaml = -1;
321
	else
322
		*sgngaml = 1;
323
	z = q - p;
324
	if( z > 0.5L )
325
		{
326
		p += 1.0L;
327
		z = p - q;
328
		}
329
	z = q * sinl( PIL * z );
330
	if( z == 0.0L )
331
		goto lgsing;
332
/*	z = LOGPI - logl( z ) - w; */
333
	z = logl( PIL/z ) - w;
334
	return( z );
335
	}
336
 
337
if( x < 13.0L )
338
	{
339
	z = 1.0L;
340
	nx = floorl( x +  0.5L );
341
	f = x - nx;
342
	while( x >= 3.0L )
343
		{
344
		nx -= 1.0L;
345
		x = nx + f;
346
		z *= x;
347
		}
348
	while( x < 2.0L )
349
		{
350
		if( fabsl(x) <= 0.03125 )
351
			goto lsmall;
352
		z /= nx +  f;
353
		nx += 1.0L;
354
		x = nx + f;
355
		}
356
	if( z < 0.0L )
357
		{
358
		*sgngaml = -1;
359
		z = -z;
360
		}
361
	else
362
		*sgngaml = 1;
363
	if( x == 2.0L )
364
		return( logl(z) );
365
	x = (nx - 2.0L) + f;
366
	p = x * polevll( x, B, 6 ) / p1evll( x, C, 7);
367
	return( logl(z) + p );
368
	}
369
 
370
if( x > MAXLGM )
371
	{
372
	_SET_ERRNO(ERANGE);
373
	mtherr( "lgammal", OVERFLOW );
374
#ifdef INFINITIES
375
	return( *sgngaml * INFINITYL );
376
#else
377
	return( *sgngaml * MAXNUML );
378
#endif
379
	}
380
 
381
q = ( x - 0.5L ) * logl(x) - x + LS2PI;
382
if( x > 1.0e10L )
383
	return(q);
384
p = 1.0L/(x*x);
385
q += polevll( p, A, 6 ) / x;
386
return( q );
387
 
388
 
389
lsmall:
390
if( x == 0.0L )
391
	goto lgsing;
392
if( x < 0.0L )
393
	{
394
	x = -x;
395
	q = z / (x * polevll( x, SN, 8 ));
396
	}
397
else
398
	q = z / (x * polevll( x, S, 8 ));
399
if( q < 0.0L )
400
	{
401
	*sgngaml = -1;
402
	q = -q;
403
	}
404
else
405
	*sgngaml = 1;
406
q = logl( q );
407
return(q);
408
}
409
 
410
/* This is the C99 version */
411
 
412
long double lgammal(long double x)
413
{
414
  int local_sgngaml=0;
415
  return (__lgammal_r(x, &local_sgngaml));
416
}