Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
3362 Serge 1
 
2
/*
3
 * ====================================================
4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5
 *
6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
13
 
14
 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
15
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
16
 * Input y is the tail of x.
17
 * Input k indicates whether tan (if k=1) or
18
 * -1/tan (if k= -1) is returned.
19
 *
20
 * Algorithm
21
 *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
22
 *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
23
 *	3. tan(x) is approximated by a odd polynomial of degree 27 on
24
 *	   [0,0.67434]
25
 *		  	         3             27
26
 *	   	tan(x) ~ x + T1*x + ... + T13*x
27
 *	   where
28
 *
29
 * 	        |tan(x)         2     4            26   |     -59.2
30
 * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
31
 * 	        |  x 					|
32
 *
33
 *	   Note: tan(x+y) = tan(x) + tan'(x)*y
34
 *		          ~ tan(x) + (1+x*x)*y
35
 *	   Therefore, for better accuracy in computing tan(x+y), let
36
 *		     3      2      2       2       2
37
 *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
38
 *	   then
39
 *		 		    3    2
40
 *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
41
 *
42
 *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
43
 *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
44
 *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
45
 */
46
47
 
48
49
 
50
51
 
52
static const double
53
#else
54
static double
55
#endif
56
one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
57
pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
58
pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
59
T[] =  {
60
  3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
61
  1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
62
  5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
63
  2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
64
  8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
65
  3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
66
  1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
67
  5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
68
  2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
69
  7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
70
  7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
71
 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
72
  2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
73
};
74
75
 
76
	double __kernel_tan(double x, double y, int iy)
77
#else
78
	double __kernel_tan(x, y, iy)
79
	double x,y; int iy;
80
#endif
81
{
82
	double z,r,v,w,s;
83
	__int32_t ix,hx;
84
	GET_HIGH_WORD(hx,x);
85
	ix = hx&0x7fffffff;	/* high word of |x| */
86
	if(ix<0x3e300000)			/* x < 2**-28 */
87
	    {if((int)x==0) {			/* generate inexact */
88
	        __uint32_t low;
89
		GET_LOW_WORD(low,x);
90
		if(((ix|low)|(iy+1))==0) return one/fabs(x);
91
		else return (iy==1)? x: -one/x;
92
	    }
93
	    }
94
	if(ix>=0x3FE59428) { 			/* |x|>=0.6744 */
95
	    if(hx<0) {x = -x; y = -y;}
96
	    z = pio4-x;
97
	    w = pio4lo-y;
98
	    x = z+w; y = 0.0;
99
	}
100
	z	=  x*x;
101
	w 	=  z*z;
102
    /* Break x^5*(T[1]+x^2*T[2]+...) into
103
     *	  x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
104
     *	  x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
105
     */
106
	r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
107
	v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
108
	s = z*x;
109
	r = y + z*(s*(r+v)+y);
110
	r += T[0]*s;
111
	w = x+r;
112
	if(ix>=0x3FE59428) {
113
	    v = (double)iy;
114
	    return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
115
	}
116
	if(iy==1) return w;
117
	else {		/* if allow error up to 2 ulp,
118
			   simply return -1.0/(x+r) here */
119
     /*  compute -1.0/(x+r) accurately */
120
	    double a,t;
121
	    z  = w;
122
	    SET_LOW_WORD(z,0);
123
	    v  = r-(z - x); 	/* z+v = r+x */
124
	    t = a  = -1.0/w;	/* a = -1.0/w */
125
	    SET_LOW_WORD(t,0);
126
	    s  = 1.0+t*z;
127
	    return t+a*(s+t*v);
128
	}
129
}
130
131
 
132