Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
4973 right-hear 1
/* Copyright (C) 1994 DJ Delorie, see COPYING.DJ for details */
2
/* @(#)k_rem_pio2.c 5.1 93/09/24 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Developed at SunPro, a Sun Microsystems, Inc. business.
8
 * Permission to use, copy, modify, and distribute this
9
 * software is freely granted, provided that this notice
10
 * is preserved.
11
 * ====================================================
12
 */
13
 
14
#if defined(LIBM_SCCS) && !defined(lint)
15
static char rcsid[] = "$Id: k_rem_pio2.c,v 1.5 1994/08/18 23:06:11 jtc Exp $";
16
#endif
17
 
18
/*
19
 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
20
 * double x[],y[]; int e0,nx,prec; int ipio2[];
21
 *
22
 * __kernel_rem_pio2 return the last three digits of N with
23
 *		y = x - N*pi/2
24
 * so that |y| < pi/2.
25
 *
26
 * The method is to compute the integer (mod 8) and fraction parts of
27
 * (2/pi)*x without doing the full multiplication. In general we
28
 * skip the part of the product that are known to be a huge integer (
29
 * more accurately, = 0 mod 8 ). Thus the number of operations are
30
 * independent of the exponent of the input.
31
 *
32
 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
33
 *
34
 * Input parameters:
35
 * 	x[]	The input value (must be positive) is broken into nx
36
 *		pieces of 24-bit integers in double precision format.
37
 *		x[i] will be the i-th 24 bit of x. The scaled exponent
38
 *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
39
 *		match x's up to 24 bits.
40
 *
41
 *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
42
 *			e0 = ilogb(z)-23
43
 *			z  = scalbn(z,-e0)
44
 *		for i = 0,1,2
45
 *			x[i] = floor(z)
46
 *			z    = (z-x[i])*2**24
47
 *
48
 *
49
 *	y[]	ouput result in an array of double precision numbers.
50
 *		The dimension of y[] is:
51
 *			24-bit  precision	1
52
 *			53-bit  precision	2
53
 *			64-bit  precision	2
54
 *			113-bit precision	3
55
 *		The actual value is the sum of them. Thus for 113-bit
56
 *		precison, one may have to do something like:
57
 *
58
 *		long double t,w,r_head, r_tail;
59
 *		t = (long double)y[2] + (long double)y[1];
60
 *		w = (long double)y[0];
61
 *		r_head = t+w;
62
 *		r_tail = w - (r_head - t);
63
 *
64
 *	e0	The exponent of x[0]
65
 *
66
 *	nx	dimension of x[]
67
 *
68
 *  	prec	an integer indicating the precision:
69
 *			0	24  bits (single)
70
 *			1	53  bits (double)
71
 *			2	64  bits (extended)
72
 *			3	113 bits (quad)
73
 *
74
 *	ipio2[]
75
 *		integer array, contains the (24*i)-th to (24*i+23)-th
76
 *		bit of 2/pi after binary point. The corresponding
77
 *		floating value is
78
 *
79
 *			ipio2[i] * 2^(-24(i+1)).
80
 *
81
 * External function:
82
 *	double scalbn(), floor();
83
 *
84
 *
85
 * Here is the description of some local variables:
86
 *
87
 * 	jk	jk+1 is the initial number of terms of ipio2[] needed
88
 *		in the computation. The recommended value is 2,3,4,
89
 *		6 for single, double, extended,and quad.
90
 *
91
 * 	jz	local integer variable indicating the number of
92
 *		terms of ipio2[] used.
93
 *
94
 *	jx	nx - 1
95
 *
96
 *	jv	index for pointing to the suitable ipio2[] for the
97
 *		computation. In general, we want
98
 *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
99
 *		is an integer. Thus
100
 *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
101
 *		Hence jv = max(0,(e0-3)/24).
102
 *
103
 *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
104
 *
105
 * 	q[]	double array with integral value, representing the
106
 *		24-bits chunk of the product of x and 2/pi.
107
 *
108
 *	q0	the corresponding exponent of q[0]. Note that the
109
 *		exponent for q[i] would be q0-24*i.
110
 *
111
 *	PIo2[]	double precision array, obtained by cutting pi/2
112
 *		into 24 bits chunks.
113
 *
114
 *	f[]	ipio2[] in floating point
115
 *
116
 *	iq[]	integer array by breaking up q[] in 24-bits chunk.
117
 *
118
 *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
119
 *
120
 *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
121
 *		it also indicates the *sign* of the result.
122
 *
123
 */
124
 
125
 
126
/*
127
 * Constants:
128
 * The hexadecimal values are the intended ones for the following
129
 * constants. The decimal values may be used, provided that the
130
 * compiler will convert from decimal to binary accurately enough
131
 * to produce the hexadecimal values shown.
132
 */
133
 
134
#include "math.h"
135
#include "math_private.h"
136
 
137
#ifdef __STDC__
138
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
139
#else
140
static int init_jk[] = {2,3,4,6};
141
#endif
142
 
143
#ifdef __STDC__
144
static const double PIo2[] = {
145
#else
146
static double PIo2[] = {
147
#endif
148
  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
149
  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
150
  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
151
  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
152
  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
153
  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
154
  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
155
  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
156
};
157
 
158
#ifdef __STDC__
159
static const double
160
#else
161
static double
162
#endif
163
zero   = 0.0,
164
one    = 1.0,
165
two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
166
twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
167
 
168
#ifdef __STDC__
169
	int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
170
#else
171
	int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
172
	double x[], y[]; int e0,nx,prec; int32_t ipio2[];
173
#endif
174
{
175
	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
176
	double z,fw,f[20],fq[20],q[20];
177
 
178
    /* initialize jk*/
179
	jk = init_jk[prec];
180
	jp = jk;
181
 
182
    /* determine jx,jv,q0, note that 3>q0 */
183
	jx =  nx-1;
184
	jv = (e0-3)/24; if(jv<0) jv=0;
185
	q0 =  e0-24*(jv+1);
186
 
187
    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
188
	j = jv-jx; m = jx+jk;
189
	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
190
 
191
    /* compute q[0],q[1],...q[jk] */
192
	for (i=0;i<=jk;i++) {
193
	    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
194
	}
195
 
196
	jz = jk;
197
recompute:
198
    /* distill q[] into iq[] reversingly */
199
	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
200
	    fw    =  (double)((int32_t)(twon24* z));
201
	    iq[i] =  (int32_t)(z-two24*fw);
202
	    z     =  q[j-1]+fw;
203
	}
204
 
205
    /* compute n */
206
	z  = scalbn(z,q0);		/* actual value of z */
207
	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
208
	n  = (int32_t) z;
209
	z -= (double)n;
210
	ih = 0;
211
	if(q0>0) {	/* need iq[jz-1] to determine n */
212
	    i  = (iq[jz-1]>>(24-q0)); n += i;
213
	    iq[jz-1] -= i<<(24-q0);
214
	    ih = iq[jz-1]>>(23-q0);
215
	}
216
	else if(q0==0) ih = iq[jz-1]>>23;
217
	else if(z>=0.5) ih=2;
218
 
219
	if(ih>0) {	/* q > 0.5 */
220
	    n += 1; carry = 0;
221
	    for(i=0;i
222
		j = iq[i];
223
		if(carry==0) {
224
		    if(j!=0) {
225
			carry = 1; iq[i] = 0x1000000- j;
226
		    }
227
		} else  iq[i] = 0xffffff - j;
228
	    }
229
	    if(q0>0) {		/* rare case: chance is 1 in 12 */
230
	        switch(q0) {
231
	        case 1:
232
	    	   iq[jz-1] &= 0x7fffff; break;
233
	    	case 2:
234
	    	   iq[jz-1] &= 0x3fffff; break;
235
	        }
236
	    }
237
	    if(ih==2) {
238
		z = one - z;
239
		if(carry!=0) z -= scalbn(one,q0);
240
	    }
241
	}
242
 
243
    /* check if recomputation is needed */
244
	if(z==zero) {
245
	    j = 0;
246
	    for (i=jz-1;i>=jk;i--) j |= iq[i];
247
	    if(j==0) { /* need recomputation */
248
		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
249
 
250
		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
251
		    f[jx+i] = (double) ipio2[jv+i];
252
		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
253
		    q[i] = fw;
254
		}
255
		jz += k;
256
		goto recompute;
257
	    }
258
	}
259
 
260
    /* chop off zero terms */
261
	if(z==0.0) {
262
	    jz -= 1; q0 -= 24;
263
	    while(iq[jz]==0) { jz--; q0-=24;}
264
	} else { /* break z into 24-bit if necessary */
265
	    z = scalbn(z,-q0);
266
	    if(z>=two24) {
267
		fw = (double)((int32_t)(twon24*z));
268
		iq[jz] = (int32_t)(z-two24*fw);
269
		jz += 1; q0 += 24;
270
		iq[jz] = (int32_t) fw;
271
	    } else iq[jz] = (int32_t) z ;
272
	}
273
 
274
    /* convert integer "bit" chunk to floating-point value */
275
	fw = scalbn(one,q0);
276
	for(i=jz;i>=0;i--) {
277
	    q[i] = fw*(double)iq[i]; fw*=twon24;
278
	}
279
 
280
    /* compute PIo2[0,...,jp]*q[jz,...,0] */
281
	for(i=jz;i>=0;i--) {
282
	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
283
	    fq[jz-i] = fw;
284
	}
285
 
286
    /* compress fq[] into y[] */
287
	switch(prec) {
288
	    case 0:
289
		fw = 0.0;
290
		for (i=jz;i>=0;i--) fw += fq[i];
291
		y[0] = (ih==0)? fw: -fw;
292
		break;
293
	    case 1:
294
	    case 2:
295
		fw = 0.0;
296
		for (i=jz;i>=0;i--) fw += fq[i];
297
		y[0] = (ih==0)? fw: -fw;
298
		fw = fq[0]-fw;
299
		for (i=1;i<=jz;i++) fw += fq[i];
300
		y[1] = (ih==0)? fw: -fw;
301
		break;
302
	    case 3:	/* painful */
303
		for (i=jz;i>0;i--) {
304
		    fw      = fq[i-1]+fq[i];
305
		    fq[i]  += fq[i-1]-fw;
306
		    fq[i-1] = fw;
307
		}
308
		for (i=jz;i>1;i--) {
309
		    fw      = fq[i-1]+fq[i];
310
		    fq[i]  += fq[i-1]-fw;
311
		    fq[i-1] = fw;
312
		}
313
		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
314
		if(ih==0) {
315
		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
316
		} else {
317
		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
318
		}
319
	}
320
	return n&7;
321
}