Subversion Repositories Kolibri OS

Rev

Rev 1892 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1892 serge 1
/* cairo - a vector graphics library with display and print output
2
 *
3
 * Copyright © 2005 Red Hat, Inc
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it either under the terms of the GNU Lesser General Public
7
 * License version 2.1 as published by the Free Software Foundation
8
 * (the "LGPL") or, at your option, under the terms of the Mozilla
9
 * Public License Version 1.1 (the "MPL"). If you do not alter this
10
 * notice, a recipient may use your version of this file under either
11
 * the MPL or the LGPL.
12
 *
13
 * You should have received a copy of the LGPL along with this library
14
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
15
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
16
 * You should have received a copy of the MPL along with this library
17
 * in the file COPYING-MPL-1.1
18
 *
19
 * The contents of this file are subject to the Mozilla Public License
20
 * Version 1.1 (the "License"); you may not use this file except in
21
 * compliance with the License. You may obtain a copy of the License at
22
 * http://www.mozilla.org/MPL/
23
 *
24
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
25
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
26
 * the specific language governing rights and limitations.
27
 *
28
 * The Original Code is the cairo graphics library.
29
 *
30
 * The Initial Developer of the Original Code is Red Hat, Inc.
31
 *
32
 * Contributor(s):
33
 *	Carl Worth 
34
 */
35
 
36
#include "cairoint.h"
37
#include "cairo-error-private.h"
38
 
39
void
40
_cairo_stroke_style_init (cairo_stroke_style_t *style)
41
{
42
    VG (VALGRIND_MAKE_MEM_UNDEFINED (style, sizeof (cairo_stroke_style_t)));
43
 
44
    style->line_width = CAIRO_GSTATE_LINE_WIDTH_DEFAULT;
45
    style->line_cap = CAIRO_GSTATE_LINE_CAP_DEFAULT;
46
    style->line_join = CAIRO_GSTATE_LINE_JOIN_DEFAULT;
47
    style->miter_limit = CAIRO_GSTATE_MITER_LIMIT_DEFAULT;
48
 
49
    style->dash = NULL;
50
    style->num_dashes = 0;
51
    style->dash_offset = 0.0;
52
}
53
 
54
cairo_status_t
55
_cairo_stroke_style_init_copy (cairo_stroke_style_t *style,
56
			       const cairo_stroke_style_t *other)
57
{
58
    if (CAIRO_INJECT_FAULT ())
59
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);
60
 
61
    VG (VALGRIND_MAKE_MEM_UNDEFINED (style, sizeof (cairo_stroke_style_t)));
62
 
63
    style->line_width = other->line_width;
64
    style->line_cap = other->line_cap;
65
    style->line_join = other->line_join;
66
    style->miter_limit = other->miter_limit;
67
 
68
    style->num_dashes = other->num_dashes;
69
 
70
    if (other->dash == NULL) {
71
	style->dash = NULL;
72
    } else {
73
	style->dash = _cairo_malloc_ab (style->num_dashes, sizeof (double));
74
	if (unlikely (style->dash == NULL))
75
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
76
 
77
	memcpy (style->dash, other->dash,
78
		style->num_dashes * sizeof (double));
79
    }
80
 
81
    style->dash_offset = other->dash_offset;
82
 
83
    return CAIRO_STATUS_SUCCESS;
84
}
85
 
86
void
87
_cairo_stroke_style_fini (cairo_stroke_style_t *style)
88
{
3959 Serge 89
    free (style->dash);
90
    style->dash = NULL;
91
 
1892 serge 92
    style->num_dashes = 0;
93
 
94
    VG (VALGRIND_MAKE_MEM_NOACCESS (style, sizeof (cairo_stroke_style_t)));
95
}
96
 
97
/*
98
 * For a stroke in the given style, compute the maximum distance
99
 * from the path that vertices could be generated.  In the case
100
 * of rotation in the ctm, the distance will not be exact.
101
 */
102
void
103
_cairo_stroke_style_max_distance_from_path (const cairo_stroke_style_t *style,
3959 Serge 104
					    const cairo_path_fixed_t *path,
1892 serge 105
                                            const cairo_matrix_t *ctm,
106
                                            double *dx, double *dy)
107
{
108
    double style_expansion = 0.5;
109
 
110
    if (style->line_cap == CAIRO_LINE_CAP_SQUARE)
111
	style_expansion = M_SQRT1_2;
112
 
113
    if (style->line_join == CAIRO_LINE_JOIN_MITER &&
3959 Serge 114
	! path->stroke_is_rectilinear &&
1892 serge 115
	style_expansion < M_SQRT2 * style->miter_limit)
116
    {
117
	style_expansion = M_SQRT2 * style->miter_limit;
118
    }
119
 
120
    style_expansion *= style->line_width;
121
 
3959 Serge 122
    if (_cairo_matrix_has_unity_scale (ctm)) {
123
	*dx = *dy = style_expansion;
124
    } else {
125
	*dx = style_expansion * hypot (ctm->xx, ctm->xy);
126
	*dy = style_expansion * hypot (ctm->yy, ctm->yx);
127
    }
1892 serge 128
}
129
 
3959 Serge 130
void
131
_cairo_stroke_style_max_line_distance_from_path (const cairo_stroke_style_t *style,
132
						 const cairo_path_fixed_t *path,
133
						 const cairo_matrix_t *ctm,
134
						 double *dx, double *dy)
135
{
136
    double style_expansion = 0.5 * style->line_width;
137
    if (_cairo_matrix_has_unity_scale (ctm)) {
138
	*dx = *dy = style_expansion;
139
    } else {
140
	*dx = style_expansion * hypot (ctm->xx, ctm->xy);
141
	*dy = style_expansion * hypot (ctm->yy, ctm->yx);
142
    }
143
}
144
 
145
void
146
_cairo_stroke_style_max_join_distance_from_path (const cairo_stroke_style_t *style,
147
						 const cairo_path_fixed_t *path,
148
						 const cairo_matrix_t *ctm,
149
						 double *dx, double *dy)
150
{
151
    double style_expansion = 0.5;
152
 
153
    if (style->line_join == CAIRO_LINE_JOIN_MITER &&
154
	! path->stroke_is_rectilinear &&
155
	style_expansion < M_SQRT2 * style->miter_limit)
156
    {
157
	style_expansion = M_SQRT2 * style->miter_limit;
158
    }
159
 
160
    style_expansion *= style->line_width;
161
 
162
    if (_cairo_matrix_has_unity_scale (ctm)) {
163
	*dx = *dy = style_expansion;
164
    } else {
165
	*dx = style_expansion * hypot (ctm->xx, ctm->xy);
166
	*dy = style_expansion * hypot (ctm->yy, ctm->yx);
167
    }
168
}
1892 serge 169
/*
170
 * Computes the period of a dashed stroke style.
171
 * Returns 0 for non-dashed styles.
172
 */
173
double
174
_cairo_stroke_style_dash_period (const cairo_stroke_style_t *style)
175
{
176
    double period;
177
    unsigned int i;
178
 
179
    period = 0.0;
180
    for (i = 0; i < style->num_dashes; i++)
181
	period += style->dash[i];
182
 
183
    if (style->num_dashes & 1)
184
	period *= 2.0;
185
 
186
    return period;
187
}
188
 
189
/*
190
 * Coefficient of the linear approximation (minimizing square difference)
191
 * of the surface covered by round caps
192
 *
193
 * This can be computed in the following way:
194
 * the area inside the circle with radius w/2 and the region -d/2 <= x <= d/2 is:
195
 *   f(w,d) = 2 * integrate (sqrt (w*w/4 - x*x), x, -d/2, d/2)
196
 * The square difference to a generic linear approximation (c*d) in the range (0,w) would be:
197
 *   integrate ((f(w,d) - c*d)^2, d, 0, w)
198
 * To minimize this difference it is sufficient to find a solution of the differential with
199
 * respect to c:
200
 *   solve ( diff (integrate ((f(w,d) - c*d)^2, d, 0, w), c), c)
201
 * Which leads to c = 9/32*pi*w
202
 * Since we're not interested in the true area, but just in a coverage extimate,
203
 * we always divide the real area by the line width (w).
204
 * The same computation for square caps would be
205
 *   f(w,d) = 2 * integrate(w/2, x, -d/2, d/2)
206
 *   c = 1*w
207
 * but in this case it would not be an approximation, since f is already linear in d.
208
 */
209
#define ROUND_MINSQ_APPROXIMATION (9*M_PI/32)
210
 
211
/*
212
 * Computes the length of the "on" part of a dashed stroke style,
213
 * taking into account also line caps.
214
 * Returns 0 for non-dashed styles.
215
 */
216
double
217
_cairo_stroke_style_dash_stroked (const cairo_stroke_style_t *style)
218
{
219
    double stroked, cap_scale;
220
    unsigned int i;
221
 
222
    switch (style->line_cap) {
223
    default: ASSERT_NOT_REACHED;
224
    case CAIRO_LINE_CAP_BUTT:   cap_scale = 0.0; break;
225
    case CAIRO_LINE_CAP_ROUND:  cap_scale = ROUND_MINSQ_APPROXIMATION; break;
226
    case CAIRO_LINE_CAP_SQUARE: cap_scale = 1.0; break;
227
    }
228
 
229
    stroked = 0.0;
230
    if (style->num_dashes & 1) {
231
        /* Each dash element is used both as on and as off. The order in which they are summed is
232
	 * irrelevant, so sum the coverage of one dash element, taken both on and off at each iteration */
233
	for (i = 0; i < style->num_dashes; i++)
234
	    stroked += style->dash[i] + cap_scale * MIN (style->dash[i], style->line_width);
235
    } else {
236
        /* Even (0, 2, ...) dashes are on and simply counted for the coverage, odd dashes are off, thus
237
	 * their coverage is approximated based on the area covered by the caps of adjacent on dases. */
3959 Serge 238
	for (i = 0; i + 1 < style->num_dashes; i += 2)
1892 serge 239
	    stroked += style->dash[i] + cap_scale * MIN (style->dash[i+1], style->line_width);
240
    }
241
 
242
    return stroked;
243
}
244
 
245
/*
246
 * Verifies if _cairo_stroke_style_dash_approximate should be used to generate
247
 * an approximation of the dash pattern in the specified style, when used for
248
 * stroking a path with the given CTM and tolerance.
249
 * Always %FALSE for non-dashed styles.
250
 */
251
cairo_bool_t
252
_cairo_stroke_style_dash_can_approximate (const cairo_stroke_style_t *style,
253
					  const cairo_matrix_t *ctm,
254
					  double tolerance)
255
{
256
    double period;
257
 
258
    if (! style->num_dashes)
259
        return FALSE;
260
 
261
    period = _cairo_stroke_style_dash_period (style);
262
    return _cairo_matrix_transformed_circle_major_axis (ctm, period) < tolerance;
263
}
264
 
265
/*
266
 * Create a 2-dashes approximation of a dashed style, by making the "on" and "off"
267
 * parts respect the original ratio.
268
 */
269
void
270
_cairo_stroke_style_dash_approximate (const cairo_stroke_style_t *style,
271
				      const cairo_matrix_t *ctm,
272
				      double tolerance,
273
				      double *dash_offset,
274
				      double *dashes,
275
				      unsigned int *num_dashes)
276
{
277
    double coverage, scale, offset;
278
    cairo_bool_t on = TRUE;
279
    unsigned int i = 0;
280
 
281
    coverage = _cairo_stroke_style_dash_stroked (style) / _cairo_stroke_style_dash_period (style);
282
    coverage = MIN (coverage, 1.0);
283
    scale = tolerance / _cairo_matrix_transformed_circle_major_axis (ctm, 1.0);
284
 
285
    /* We stop searching for a starting point as soon as the
286
     * offset reaches zero.  Otherwise when an initial dash
287
     * segment shrinks to zero it will be skipped over. */
288
    offset = style->dash_offset;
289
    while (offset > 0.0 && offset >= style->dash[i]) {
290
	offset -= style->dash[i];
291
	on = !on;
292
	if (++i == style->num_dashes)
293
	    i = 0;
294
    }
295
 
296
    *num_dashes = 2;
297
 
298
    /*
299
     * We want to create a new dash pattern with the same relative coverage,
300
     * but composed of just 2 elements with total length equal to scale.
301
     * Based on the formula in _cairo_stroke_style_dash_stroked:
302
     * scale * coverage = dashes[0] + cap_scale * MIN (dashes[1], line_width)
303
     *                  = MIN (dashes[0] + cap_scale * (scale - dashes[0]),
304
     *                         dashes[0] + cap_scale * line_width) =
305
     *                  = MIN (dashes[0] * (1 - cap_scale) + cap_scale * scale,
306
     *	                       dashes[0] + cap_scale * line_width)
307
     *
308
     * Solving both cases we get:
309
     *   dashes[0] = scale * (coverage - cap_scale) / (1 - cap_scale)
310
     *	  when scale - dashes[0] <= line_width
311
     *	dashes[0] = scale * coverage - cap_scale * line_width
312
     *	  when scale - dashes[0] > line_width.
313
     *
314
     * Comparing the two cases we get:
315
     *   second > first
316
     *   second > scale * (coverage - cap_scale) / (1 - cap_scale)
317
     *   second - cap_scale * second - scale * coverage + scale * cap_scale > 0
318
     * 	 (scale * coverage - cap_scale * line_width) - cap_scale * second - scale * coverage + scale * cap_scale > 0
319
     *   - line_width - second + scale > 0
320
     *   scale - second > line_width
321
     * which is the condition for the second solution to be the valid one.
322
     * So when second > first, the second solution is the correct one (i.e.
323
     * the solution is always MAX (first, second).
324
     */
325
    switch (style->line_cap) {
326
    default:
327
        ASSERT_NOT_REACHED;
328
	dashes[0] = 0.0;
329
	break;
330
 
331
    case CAIRO_LINE_CAP_BUTT:
332
        /* Simplified formula (substituting 0 for cap_scale): */
333
        dashes[0] = scale * coverage;
334
	break;
335
 
336
    case CAIRO_LINE_CAP_ROUND:
337
        dashes[0] = MAX(scale * (coverage - ROUND_MINSQ_APPROXIMATION) / (1.0 - ROUND_MINSQ_APPROXIMATION),
338
			scale * coverage - ROUND_MINSQ_APPROXIMATION * style->line_width);
339
	break;
340
 
341
    case CAIRO_LINE_CAP_SQUARE:
342
        /*
343
	 * Special attention is needed to handle the case cap_scale == 1 (since the first solution
344
	 * is either indeterminate or -inf in this case). Since dash lengths are always >=0, using
345
	 * 0 as first solution always leads to the correct solution.
346
	 */
347
        dashes[0] = MAX(0.0, scale * coverage - style->line_width);
348
	break;
349
    }
350
 
351
    dashes[1] = scale - dashes[0];
352
 
353
    *dash_offset = on ? 0.0 : dashes[0];
354
}