Subversion Repositories Kolibri OS

Rev

Rev 1892 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1892 serge 1
/*
2
 * Copyright © 2004 Carl Worth
3
 * Copyright © 2006 Red Hat, Inc.
4
 * Copyright © 2007 David Turner
5
 * Copyright © 2008 M Joonas Pihlaja
6
 * Copyright © 2008 Chris Wilson
7
 * Copyright © 2009 Intel Corporation
8
 *
9
 * This library is free software; you can redistribute it and/or
10
 * modify it either under the terms of the GNU Lesser General Public
11
 * License version 2.1 as published by the Free Software Foundation
12
 * (the "LGPL") or, at your option, under the terms of the Mozilla
13
 * Public License Version 1.1 (the "MPL"). If you do not alter this
14
 * notice, a recipient may use your version of this file under either
15
 * the MPL or the LGPL.
16
 *
17
 * You should have received a copy of the LGPL along with this library
18
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
20
 * You should have received a copy of the MPL along with this library
21
 * in the file COPYING-MPL-1.1
22
 *
23
 * The contents of this file are subject to the Mozilla Public License
24
 * Version 1.1 (the "License"); you may not use this file except in
25
 * compliance with the License. You may obtain a copy of the License at
26
 * http://www.mozilla.org/MPL/
27
 *
28
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
29
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
30
 * the specific language governing rights and limitations.
31
 *
32
 * The Original Code is the cairo graphics library.
33
 *
34
 * The Initial Developer of the Original Code is Carl Worth
35
 *
36
 * Contributor(s):
37
 *	Carl D. Worth 
38
 *      M Joonas Pihlaja 
39
 *	Chris Wilson 
40
 */
41
 
42
/* Provide definitions for standalone compilation */
43
#include "cairoint.h"
44
 
45
#include "cairo-error-private.h"
3959 Serge 46
#include "cairo-list-inline.h"
1892 serge 47
#include "cairo-freelist-private.h"
3959 Serge 48
#include "cairo-combsort-inline.h"
1892 serge 49
 
50
#include 
51
 
52
#define STEP_X CAIRO_FIXED_ONE
53
#define STEP_Y CAIRO_FIXED_ONE
54
#define UNROLL3(x) x x x
55
 
56
#define STEP_XY (2*STEP_X*STEP_Y) /* Unit area in the step. */
57
#define AREA_TO_ALPHA(c)  (((c)*255 + STEP_XY/2) / STEP_XY)
58
 
59
typedef struct _cairo_bo_intersect_ordinate {
60
    int32_t ordinate;
61
    enum { EXACT, INEXACT } exactness;
62
} cairo_bo_intersect_ordinate_t;
63
 
64
typedef struct _cairo_bo_intersect_point {
65
    cairo_bo_intersect_ordinate_t x;
66
    cairo_bo_intersect_ordinate_t y;
67
} cairo_bo_intersect_point_t;
68
 
69
struct quorem {
70
    cairo_fixed_t quo;
71
    cairo_fixed_t rem;
72
};
73
 
74
struct run {
75
    struct run *next;
76
    int sign;
77
    cairo_fixed_t y;
78
};
79
 
80
typedef struct edge {
81
    cairo_list_t link;
82
 
83
    cairo_edge_t edge;
84
 
85
    /* Current x coordinate and advancement.
86
     * Initialised to the x coordinate of the top of the
87
     * edge. The quotient is in cairo_fixed_t units and the
88
     * remainder is mod dy in cairo_fixed_t units.
89
     */
90
    cairo_fixed_t dy;
91
    struct quorem x;
92
    struct quorem dxdy;
93
    struct quorem dxdy_full;
94
 
95
    cairo_bool_t vertical;
96
    unsigned int flags;
97
 
98
    int current_sign;
99
    struct run *runs;
100
} edge_t;
101
 
102
enum {
103
    START = 0x1,
104
    STOP = 0x2,
105
};
106
 
107
/* the parent is always given by index/2 */
108
#define PQ_PARENT_INDEX(i) ((i) >> 1)
109
#define PQ_FIRST_ENTRY 1
110
 
111
/* left and right children are index * 2 and (index * 2) +1 respectively */
112
#define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
113
 
114
typedef enum {
115
    EVENT_TYPE_STOP,
116
    EVENT_TYPE_INTERSECTION,
117
    EVENT_TYPE_START
118
} event_type_t;
119
 
120
typedef struct _event {
121
    cairo_fixed_t y;
122
    event_type_t type;
123
} event_t;
124
 
125
typedef struct _start_event {
126
    cairo_fixed_t y;
127
    event_type_t type;
128
    edge_t *edge;
129
} start_event_t;
130
 
131
typedef struct _queue_event {
132
    cairo_fixed_t y;
133
    event_type_t type;
134
    edge_t *e1;
135
    edge_t *e2;
136
} queue_event_t;
137
 
138
typedef struct _pqueue {
139
    int size, max_size;
140
 
141
    event_t **elements;
142
    event_t *elements_embedded[1024];
143
} pqueue_t;
144
 
145
struct cell {
146
    struct cell	*prev;
147
    struct cell	*next;
148
    int		 x;
149
    int		 uncovered_area;
150
    int		 covered_height;
151
};
152
 
153
typedef struct _sweep_line {
154
    cairo_list_t active;
155
    cairo_list_t stopped;
156
    cairo_list_t *insert_cursor;
157
    cairo_bool_t is_vertical;
158
 
159
    cairo_fixed_t current_row;
160
    cairo_fixed_t current_subrow;
161
 
162
    struct coverage {
163
	struct cell head;
164
	struct cell tail;
165
 
166
	struct cell *cursor;
167
	int count;
168
 
169
	cairo_freepool_t pool;
170
    } coverage;
171
 
172
    struct event_queue {
173
	pqueue_t pq;
174
	event_t **start_events;
175
 
176
	cairo_freepool_t pool;
177
    } queue;
178
 
179
    cairo_freepool_t runs;
180
 
181
    jmp_buf unwind;
182
} sweep_line_t;
183
 
184
cairo_always_inline static struct quorem
185
floored_divrem (int a, int b)
186
{
187
    struct quorem qr;
188
    qr.quo = a/b;
189
    qr.rem = a%b;
190
    if ((a^b)<0 && qr.rem) {
191
	qr.quo--;
192
	qr.rem += b;
193
    }
194
    return qr;
195
}
196
 
197
static struct quorem
198
floored_muldivrem(int x, int a, int b)
199
{
200
    struct quorem qr;
201
    long long xa = (long long)x*a;
202
    qr.quo = xa/b;
203
    qr.rem = xa%b;
204
    if ((xa>=0) != (b>=0) && qr.rem) {
205
	qr.quo--;
206
	qr.rem += b;
207
    }
208
    return qr;
209
}
210
 
211
static cairo_fixed_t
212
line_compute_intersection_x_for_y (const cairo_line_t *line,
213
				   cairo_fixed_t y)
214
{
215
    cairo_fixed_t x, dy;
216
 
217
    if (y == line->p1.y)
218
	return line->p1.x;
219
    if (y == line->p2.y)
220
	return line->p2.x;
221
 
222
    x = line->p1.x;
223
    dy = line->p2.y - line->p1.y;
224
    if (dy != 0) {
225
	x += _cairo_fixed_mul_div_floor (y - line->p1.y,
226
					 line->p2.x - line->p1.x,
227
					 dy);
228
    }
229
 
230
    return x;
231
}
232
 
233
/*
234
 * We need to compare the x-coordinates of a pair of lines for a particular y,
235
 * without loss of precision.
236
 *
237
 * The x-coordinate along an edge for a given y is:
238
 *   X = A_x + (Y - A_y) * A_dx / A_dy
239
 *
240
 * So the inequality we wish to test is:
241
 *   A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy,
242
 * where ∘ is our inequality operator.
243
 *
244
 * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are
245
 * all positive, so we can rearrange it thus without causing a sign change:
246
 *   A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy
247
 *                                 - (Y - A_y) * A_dx * B_dy
248
 *
249
 * Given the assumption that all the deltas fit within 32 bits, we can compute
250
 * this comparison directly using 128 bit arithmetic. For certain, but common,
251
 * input we can reduce this down to a single 32 bit compare by inspecting the
252
 * deltas.
253
 *
254
 * (And put the burden of the work on developing fast 128 bit ops, which are
255
 * required throughout the tessellator.)
256
 *
257
 * See the similar discussion for _slope_compare().
258
 */
259
static int
260
edges_compare_x_for_y_general (const cairo_edge_t *a,
261
			       const cairo_edge_t *b,
262
			       int32_t y)
263
{
264
    /* XXX: We're assuming here that dx and dy will still fit in 32
265
     * bits. That's not true in general as there could be overflow. We
266
     * should prevent that before the tessellation algorithm
267
     * begins.
268
     */
269
    int32_t dx;
270
    int32_t adx, ady;
271
    int32_t bdx, bdy;
272
    enum {
273
       HAVE_NONE    = 0x0,
274
       HAVE_DX      = 0x1,
275
       HAVE_ADX     = 0x2,
276
       HAVE_DX_ADX  = HAVE_DX | HAVE_ADX,
277
       HAVE_BDX     = 0x4,
278
       HAVE_DX_BDX  = HAVE_DX | HAVE_BDX,
279
       HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX,
280
       HAVE_ALL     = HAVE_DX | HAVE_ADX | HAVE_BDX
281
    } have_dx_adx_bdx = HAVE_ALL;
282
 
283
    /* don't bother solving for abscissa if the edges' bounding boxes
284
     * can be used to order them. */
285
    {
286
           int32_t amin, amax;
287
           int32_t bmin, bmax;
288
           if (a->line.p1.x < a->line.p2.x) {
289
                   amin = a->line.p1.x;
290
                   amax = a->line.p2.x;
291
           } else {
292
                   amin = a->line.p2.x;
293
                   amax = a->line.p1.x;
294
           }
295
           if (b->line.p1.x < b->line.p2.x) {
296
                   bmin = b->line.p1.x;
297
                   bmax = b->line.p2.x;
298
           } else {
299
                   bmin = b->line.p2.x;
300
                   bmax = b->line.p1.x;
301
           }
302
           if (amax < bmin) return -1;
303
           if (amin > bmax) return +1;
304
    }
305
 
306
    ady = a->line.p2.y - a->line.p1.y;
307
    adx = a->line.p2.x - a->line.p1.x;
308
    if (adx == 0)
309
	have_dx_adx_bdx &= ~HAVE_ADX;
310
 
311
    bdy = b->line.p2.y - b->line.p1.y;
312
    bdx = b->line.p2.x - b->line.p1.x;
313
    if (bdx == 0)
314
	have_dx_adx_bdx &= ~HAVE_BDX;
315
 
316
    dx = a->line.p1.x - b->line.p1.x;
317
    if (dx == 0)
318
	have_dx_adx_bdx &= ~HAVE_DX;
319
 
320
#define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)
321
#define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->line.p1.y)
322
#define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->line.p1.y)
323
    switch (have_dx_adx_bdx) {
324
    default:
325
    case HAVE_NONE:
326
	return 0;
327
    case HAVE_DX:
328
	/* A_dy * B_dy * (A_x - B_x) ∘ 0 */
329
	return dx; /* ady * bdy is positive definite */
330
    case HAVE_ADX:
331
	/* 0 ∘  - (Y - A_y) * A_dx * B_dy */
332
	return adx; /* bdy * (y - a->top.y) is positive definite */
333
    case HAVE_BDX:
334
	/* 0 ∘ (Y - B_y) * B_dx * A_dy */
335
	return -bdx; /* ady * (y - b->top.y) is positive definite */
336
    case HAVE_ADX_BDX:
337
	/*  0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */
338
	if ((adx ^ bdx) < 0) {
339
	    return adx;
340
	} else if (a->line.p1.y == b->line.p1.y) { /* common origin */
341
	    cairo_int64_t adx_bdy, bdx_ady;
342
 
343
	    /* ∴ A_dx * B_dy ∘ B_dx * A_dy */
344
 
345
	    adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
346
	    bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
347
 
348
	    return _cairo_int64_cmp (adx_bdy, bdx_ady);
349
	} else
350
	    return _cairo_int128_cmp (A, B);
351
    case HAVE_DX_ADX:
352
	/* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */
353
	if ((-adx ^ dx) < 0) {
354
	    return dx;
355
	} else {
356
	    cairo_int64_t ady_dx, dy_adx;
357
 
358
	    ady_dx = _cairo_int32x32_64_mul (ady, dx);
359
	    dy_adx = _cairo_int32x32_64_mul (a->line.p1.y - y, adx);
360
 
361
	    return _cairo_int64_cmp (ady_dx, dy_adx);
362
	}
363
    case HAVE_DX_BDX:
364
	/* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */
365
	if ((bdx ^ dx) < 0) {
366
	    return dx;
367
	} else {
368
	    cairo_int64_t bdy_dx, dy_bdx;
369
 
370
	    bdy_dx = _cairo_int32x32_64_mul (bdy, dx);
371
	    dy_bdx = _cairo_int32x32_64_mul (y - b->line.p1.y, bdx);
372
 
373
	    return _cairo_int64_cmp (bdy_dx, dy_bdx);
374
	}
375
    case HAVE_ALL:
376
	/* XXX try comparing (a->line.p2.x - b->line.p2.x) et al */
377
	return _cairo_int128_cmp (L, _cairo_int128_sub (B, A));
378
    }
379
#undef B
380
#undef A
381
#undef L
382
}
383
 
384
/*
385
 * We need to compare the x-coordinate of a line for a particular y wrt to a
386
 * given x, without loss of precision.
387
 *
388
 * The x-coordinate along an edge for a given y is:
389
 *   X = A_x + (Y - A_y) * A_dx / A_dy
390
 *
391
 * So the inequality we wish to test is:
392
 *   A_x + (Y - A_y) * A_dx / A_dy ∘ X
393
 * where ∘ is our inequality operator.
394
 *
395
 * By construction, we know that A_dy (and (Y - A_y)) are
396
 * all positive, so we can rearrange it thus without causing a sign change:
397
 *   (Y - A_y) * A_dx ∘ (X - A_x) * A_dy
398
 *
399
 * Given the assumption that all the deltas fit within 32 bits, we can compute
400
 * this comparison directly using 64 bit arithmetic.
401
 *
402
 * See the similar discussion for _slope_compare() and
403
 * edges_compare_x_for_y_general().
404
 */
405
static int
406
edge_compare_for_y_against_x (const cairo_edge_t *a,
407
			      int32_t y,
408
			      int32_t x)
409
{
410
    int32_t adx, ady;
411
    int32_t dx, dy;
412
    cairo_int64_t L, R;
413
 
414
    if (a->line.p1.x <= a->line.p2.x) {
415
	if (x < a->line.p1.x)
416
	    return 1;
417
	if (x > a->line.p2.x)
418
	    return -1;
419
    } else {
420
	if (x < a->line.p2.x)
421
	    return 1;
422
	if (x > a->line.p1.x)
423
	    return -1;
424
    }
425
 
426
    adx = a->line.p2.x - a->line.p1.x;
427
    dx = x - a->line.p1.x;
428
 
429
    if (adx == 0)
430
	return -dx;
431
    if (dx == 0 || (adx ^ dx) < 0)
432
	return adx;
433
 
434
    dy = y - a->line.p1.y;
435
    ady = a->line.p2.y - a->line.p1.y;
436
 
437
    L = _cairo_int32x32_64_mul (dy, adx);
438
    R = _cairo_int32x32_64_mul (dx, ady);
439
 
440
    return _cairo_int64_cmp (L, R);
441
}
442
 
443
static int
444
edges_compare_x_for_y (const cairo_edge_t *a,
445
		       const cairo_edge_t *b,
446
		       int32_t y)
447
{
448
    /* If the sweep-line is currently on an end-point of a line,
449
     * then we know its precise x value (and considering that we often need to
450
     * compare events at end-points, this happens frequently enough to warrant
451
     * special casing).
452
     */
453
    enum {
454
       HAVE_NEITHER = 0x0,
455
       HAVE_AX      = 0x1,
456
       HAVE_BX      = 0x2,
457
       HAVE_BOTH    = HAVE_AX | HAVE_BX
458
    } have_ax_bx = HAVE_BOTH;
459
    int32_t ax, bx;
460
 
461
    /* XXX given we have x and dx? */
462
 
463
    if (y == a->line.p1.y)
464
	ax = a->line.p1.x;
465
    else if (y == a->line.p2.y)
466
	ax = a->line.p2.x;
467
    else
468
	have_ax_bx &= ~HAVE_AX;
469
 
470
    if (y == b->line.p1.y)
471
	bx = b->line.p1.x;
472
    else if (y == b->line.p2.y)
473
	bx = b->line.p2.x;
474
    else
475
	have_ax_bx &= ~HAVE_BX;
476
 
477
    switch (have_ax_bx) {
478
    default:
479
    case HAVE_NEITHER:
480
	return edges_compare_x_for_y_general (a, b, y);
481
    case HAVE_AX:
482
	return -edge_compare_for_y_against_x (b, y, ax);
483
    case HAVE_BX:
484
	return edge_compare_for_y_against_x (a, y, bx);
485
    case HAVE_BOTH:
486
	return ax - bx;
487
    }
488
}
489
 
490
static inline int
491
slope_compare (const edge_t *a,
492
	       const edge_t *b)
493
{
494
    cairo_int64_t L, R;
495
    int cmp;
496
 
497
    cmp = a->dxdy.quo - b->dxdy.quo;
498
    if (cmp)
499
	return cmp;
500
 
501
    if (a->dxdy.rem == 0)
502
	return -b->dxdy.rem;
503
    if (b->dxdy.rem == 0)
504
	return a->dxdy.rem;
505
 
506
    L = _cairo_int32x32_64_mul (b->dy, a->dxdy.rem);
507
    R = _cairo_int32x32_64_mul (a->dy, b->dxdy.rem);
508
    return _cairo_int64_cmp (L, R);
509
}
510
 
511
static inline int
512
line_equal (const cairo_line_t *a, const cairo_line_t *b)
513
{
514
    return a->p1.x == b->p1.x && a->p1.y == b->p1.y &&
515
           a->p2.x == b->p2.x && a->p2.y == b->p2.y;
516
}
517
 
518
static inline int
519
sweep_line_compare_edges (const edge_t	*a,
520
			  const edge_t	*b,
521
			  cairo_fixed_t y)
522
{
523
    int cmp;
524
 
525
    if (line_equal (&a->edge.line, &b->edge.line))
526
	return 0;
527
 
528
    cmp = edges_compare_x_for_y (&a->edge, &b->edge, y);
529
    if (cmp)
530
	return cmp;
531
 
532
    return slope_compare (a, b);
533
}
534
 
535
static inline cairo_int64_t
536
det32_64 (int32_t a, int32_t b,
537
	  int32_t c, int32_t d)
538
{
539
    /* det = a * d - b * c */
540
    return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),
541
			     _cairo_int32x32_64_mul (b, c));
542
}
543
 
544
static inline cairo_int128_t
545
det64x32_128 (cairo_int64_t a, int32_t       b,
546
	      cairo_int64_t c, int32_t       d)
547
{
548
    /* det = a * d - b * c */
549
    return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),
550
			      _cairo_int64x32_128_mul (c, b));
551
}
552
 
553
/* Compute the intersection of two lines as defined by two edges. The
554
 * result is provided as a coordinate pair of 128-bit integers.
555
 *
556
 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
557
 * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
558
 */
559
static cairo_bool_t
560
intersect_lines (const edge_t *a, const edge_t *b,
561
		 cairo_bo_intersect_point_t	*intersection)
562
{
563
    cairo_int64_t a_det, b_det;
564
 
565
    /* XXX: We're assuming here that dx and dy will still fit in 32
566
     * bits. That's not true in general as there could be overflow. We
567
     * should prevent that before the tessellation algorithm begins.
568
     * What we're doing to mitigate this is to perform clamping in
569
     * cairo_bo_tessellate_polygon().
570
     */
571
    int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x;
572
    int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y;
573
 
574
    int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x;
575
    int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y;
576
 
577
    cairo_int64_t den_det;
578
    cairo_int64_t R;
579
    cairo_quorem64_t qr;
580
 
581
    den_det = det32_64 (dx1, dy1, dx2, dy2);
582
 
583
     /* Q: Can we determine that the lines do not intersect (within range)
584
      * much more cheaply than computing the intersection point i.e. by
585
      * avoiding the division?
586
      *
587
      *   X = ax + t * adx = bx + s * bdx;
588
      *   Y = ay + t * ady = by + s * bdy;
589
      *   ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx)
590
      *   => t * L = R
591
      *
592
      * Therefore we can reject any intersection (under the criteria for
593
      * valid intersection events) if:
594
      *   L^R < 0 => t < 0, or
595
      *   L t > 1
596
      *
597
      * (where top/bottom must at least extend to the line endpoints).
598
      *
599
      * A similar substitution can be performed for s, yielding:
600
      *   s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by)
601
      */
602
    R = det32_64 (dx2, dy2,
603
		  b->edge.line.p1.x - a->edge.line.p1.x,
604
		  b->edge.line.p1.y - a->edge.line.p1.y);
605
    if (_cairo_int64_negative (den_det)) {
606
	if (_cairo_int64_ge (den_det, R))
607
	    return FALSE;
608
    } else {
609
	if (_cairo_int64_le (den_det, R))
610
	    return FALSE;
611
    }
612
 
613
    R = det32_64 (dy1, dx1,
614
		  a->edge.line.p1.y - b->edge.line.p1.y,
615
		  a->edge.line.p1.x - b->edge.line.p1.x);
616
    if (_cairo_int64_negative (den_det)) {
617
	if (_cairo_int64_ge (den_det, R))
618
	    return FALSE;
619
    } else {
620
	if (_cairo_int64_le (den_det, R))
621
	    return FALSE;
622
    }
623
 
624
    /* We now know that the two lines should intersect within range. */
625
 
626
    a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y,
627
		      a->edge.line.p2.x, a->edge.line.p2.y);
628
    b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y,
629
		      b->edge.line.p2.x, b->edge.line.p2.y);
630
 
631
    /* x = det (a_det, dx1, b_det, dx2) / den_det */
632
    qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1,
633
						       b_det, dx2),
634
					 den_det);
635
    if (_cairo_int64_eq (qr.rem, den_det))
636
	return FALSE;
637
#if 0
638
    intersection->x.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
639
#else
640
    intersection->x.exactness = EXACT;
641
    if (! _cairo_int64_is_zero (qr.rem)) {
642
	if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
643
	    qr.rem = _cairo_int64_negate (qr.rem);
644
	qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
645
	if (_cairo_int64_ge (qr.rem, den_det)) {
646
	    qr.quo = _cairo_int64_add (qr.quo,
647
				       _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
648
	} else
649
	    intersection->x.exactness = INEXACT;
650
    }
651
#endif
652
    intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo);
653
 
654
    /* y = det (a_det, dy1, b_det, dy2) / den_det */
655
    qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1,
656
						       b_det, dy2),
657
					 den_det);
658
    if (_cairo_int64_eq (qr.rem, den_det))
659
	return FALSE;
660
#if 0
661
    intersection->y.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
662
#else
663
    intersection->y.exactness = EXACT;
664
    if (! _cairo_int64_is_zero (qr.rem)) {
665
	/* compute ceiling away from zero */
666
	qr.quo = _cairo_int64_add (qr.quo,
667
				   _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
668
	intersection->y.exactness = INEXACT;
669
    }
670
#endif
671
    intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo);
672
 
673
    return TRUE;
674
}
675
 
676
static int
677
bo_intersect_ordinate_32_compare (int32_t a, int32_t b, int exactness)
678
{
679
    int cmp;
680
 
681
    /* First compare the quotient */
682
    cmp = a - b;
683
    if (cmp)
684
	return cmp;
685
 
686
    /* With quotient identical, if remainder is 0 then compare equal */
687
    /* Otherwise, the non-zero remainder makes a > b */
688
    return -(INEXACT == exactness);
689
}
690
 
691
/* Does the given edge contain the given point. The point must already
692
 * be known to be contained within the line determined by the edge,
693
 * (most likely the point results from an intersection of this edge
694
 * with another).
695
 *
696
 * If we had exact arithmetic, then this function would simply be a
697
 * matter of examining whether the y value of the point lies within
698
 * the range of y values of the edge. But since intersection points
699
 * are not exact due to being rounded to the nearest integer within
700
 * the available precision, we must also examine the x value of the
701
 * point.
702
 *
703
 * The definition of "contains" here is that the given intersection
704
 * point will be seen by the sweep line after the start event for the
705
 * given edge and before the stop event for the edge. See the comments
706
 * in the implementation for more details.
707
 */
708
static cairo_bool_t
709
bo_edge_contains_intersect_point (const edge_t			*edge,
710
				  cairo_bo_intersect_point_t	*point)
711
{
712
    int cmp_top, cmp_bottom;
713
 
714
    /* XXX: When running the actual algorithm, we don't actually need to
715
     * compare against edge->top at all here, since any intersection above
716
     * top is eliminated early via a slope comparison. We're leaving these
717
     * here for now only for the sake of the quadratic-time intersection
718
     * finder which needs them.
719
     */
720
 
721
    cmp_top = bo_intersect_ordinate_32_compare (point->y.ordinate,
722
						edge->edge.top,
723
						point->y.exactness);
724
    if (cmp_top < 0)
725
	return FALSE;
726
 
727
    cmp_bottom = bo_intersect_ordinate_32_compare (point->y.ordinate,
728
						   edge->edge.bottom,
729
						   point->y.exactness);
730
    if (cmp_bottom > 0)
731
	return FALSE;
732
 
733
    if (cmp_top > 0 && cmp_bottom < 0)
734
	return TRUE;
735
 
736
    /* At this stage, the point lies on the same y value as either
737
     * edge->top or edge->bottom, so we have to examine the x value in
738
     * order to properly determine containment. */
739
 
740
    /* If the y value of the point is the same as the y value of the
741
     * top of the edge, then the x value of the point must be greater
742
     * to be considered as inside the edge. Similarly, if the y value
743
     * of the point is the same as the y value of the bottom of the
744
     * edge, then the x value of the point must be less to be
745
     * considered as inside. */
746
 
747
    if (cmp_top == 0) {
748
	cairo_fixed_t top_x;
749
 
750
	top_x = line_compute_intersection_x_for_y (&edge->edge.line,
751
						   edge->edge.top);
752
	return bo_intersect_ordinate_32_compare (top_x, point->x.ordinate, point->x.exactness) < 0;
753
    } else { /* cmp_bottom == 0 */
754
	cairo_fixed_t bot_x;
755
 
756
	bot_x = line_compute_intersection_x_for_y (&edge->edge.line,
757
						   edge->edge.bottom);
758
	return bo_intersect_ordinate_32_compare (point->x.ordinate, bot_x, point->x.exactness) < 0;
759
    }
760
}
761
 
762
static cairo_bool_t
763
edge_intersect (const edge_t		*a,
764
		const edge_t		*b,
765
		cairo_point_t	*intersection)
766
{
767
    cairo_bo_intersect_point_t quorem;
768
 
769
    if (! intersect_lines (a, b, &quorem))
770
	return FALSE;
771
 
772
    if (a->edge.top != a->edge.line.p1.y || a->edge.bottom != a->edge.line.p2.y) {
773
	if (! bo_edge_contains_intersect_point (a, &quorem))
774
	    return FALSE;
775
    }
776
 
777
    if (b->edge.top != b->edge.line.p1.y || b->edge.bottom != b->edge.line.p2.y) {
778
	if (! bo_edge_contains_intersect_point (b, &quorem))
779
	    return FALSE;
780
    }
781
 
782
    /* Now that we've correctly compared the intersection point and
783
     * determined that it lies within the edge, then we know that we
784
     * no longer need any more bits of storage for the intersection
785
     * than we do for our edge coordinates. We also no longer need the
786
     * remainder from the division. */
787
    intersection->x = quorem.x.ordinate;
788
    intersection->y = quorem.y.ordinate;
789
 
790
    return TRUE;
791
}
792
 
793
static inline int
794
event_compare (const event_t *a, const event_t *b)
795
{
796
    return a->y - b->y;
797
}
798
 
799
static void
800
pqueue_init (pqueue_t *pq)
801
{
802
    pq->max_size = ARRAY_LENGTH (pq->elements_embedded);
803
    pq->size = 0;
804
 
805
    pq->elements = pq->elements_embedded;
806
}
807
 
808
static void
809
pqueue_fini (pqueue_t *pq)
810
{
811
    if (pq->elements != pq->elements_embedded)
812
	free (pq->elements);
813
}
814
 
815
static cairo_bool_t
816
pqueue_grow (pqueue_t *pq)
817
{
818
    event_t **new_elements;
819
    pq->max_size *= 2;
820
 
821
    if (pq->elements == pq->elements_embedded) {
822
	new_elements = _cairo_malloc_ab (pq->max_size,
823
					 sizeof (event_t *));
824
	if (unlikely (new_elements == NULL))
825
	    return FALSE;
826
 
827
	memcpy (new_elements, pq->elements_embedded,
828
		sizeof (pq->elements_embedded));
829
    } else {
830
	new_elements = _cairo_realloc_ab (pq->elements,
831
					  pq->max_size,
832
					  sizeof (event_t *));
833
	if (unlikely (new_elements == NULL))
834
	    return FALSE;
835
    }
836
 
837
    pq->elements = new_elements;
838
    return TRUE;
839
}
840
 
841
static inline void
842
pqueue_push (sweep_line_t *sweep_line, event_t *event)
843
{
844
    event_t **elements;
845
    int i, parent;
846
 
847
    if (unlikely (sweep_line->queue.pq.size + 1 == sweep_line->queue.pq.max_size)) {
848
	if (unlikely (! pqueue_grow (&sweep_line->queue.pq))) {
849
	    longjmp (sweep_line->unwind,
850
		     _cairo_error (CAIRO_STATUS_NO_MEMORY));
851
	}
852
    }
853
 
854
    elements = sweep_line->queue.pq.elements;
855
    for (i = ++sweep_line->queue.pq.size;
856
	 i != PQ_FIRST_ENTRY &&
857
	 event_compare (event,
858
			elements[parent = PQ_PARENT_INDEX (i)]) < 0;
859
	 i = parent)
860
    {
861
	elements[i] = elements[parent];
862
    }
863
 
864
    elements[i] = event;
865
}
866
 
867
static inline void
868
pqueue_pop (pqueue_t *pq)
869
{
870
    event_t **elements = pq->elements;
871
    event_t *tail;
872
    int child, i;
873
 
874
    tail = elements[pq->size--];
875
    if (pq->size == 0) {
876
	elements[PQ_FIRST_ENTRY] = NULL;
877
	return;
878
    }
879
 
880
    for (i = PQ_FIRST_ENTRY;
881
	 (child = PQ_LEFT_CHILD_INDEX (i)) <= pq->size;
882
	 i = child)
883
    {
884
	if (child != pq->size &&
885
	    event_compare (elements[child+1],
886
			   elements[child]) < 0)
887
	{
888
	    child++;
889
	}
890
 
891
	if (event_compare (elements[child], tail) >= 0)
892
	    break;
893
 
894
	elements[i] = elements[child];
895
    }
896
    elements[i] = tail;
897
}
898
 
899
static inline void
900
event_insert (sweep_line_t	*sweep_line,
901
	      event_type_t	 type,
902
	      edge_t		*e1,
903
	      edge_t		*e2,
904
	      cairo_fixed_t	 y)
905
{
906
    queue_event_t *event;
907
 
908
    event = _cairo_freepool_alloc (&sweep_line->queue.pool);
909
    if (unlikely (event == NULL)) {
910
	longjmp (sweep_line->unwind,
911
		 _cairo_error (CAIRO_STATUS_NO_MEMORY));
912
    }
913
 
914
    event->y = y;
915
    event->type = type;
916
    event->e1 = e1;
917
    event->e2 = e2;
918
 
919
    pqueue_push (sweep_line, (event_t *) event);
920
}
921
 
922
static void
923
event_delete (sweep_line_t	*sweep_line,
924
	      event_t		*event)
925
{
926
    _cairo_freepool_free (&sweep_line->queue.pool, event);
927
}
928
 
929
static inline event_t *
930
event_next (sweep_line_t *sweep_line)
931
{
932
    event_t *event, *cmp;
933
 
934
    event = sweep_line->queue.pq.elements[PQ_FIRST_ENTRY];
935
    cmp = *sweep_line->queue.start_events;
936
    if (event == NULL ||
937
	(cmp != NULL && event_compare (cmp, event) < 0))
938
    {
939
	event = cmp;
940
	sweep_line->queue.start_events++;
941
    }
942
    else
943
    {
944
	pqueue_pop (&sweep_line->queue.pq);
945
    }
946
 
947
    return event;
948
}
949
 
950
CAIRO_COMBSORT_DECLARE (start_event_sort, event_t *, event_compare)
951
 
952
static inline void
953
event_insert_stop (sweep_line_t	*sweep_line,
954
		   edge_t	*edge)
955
{
956
    event_insert (sweep_line,
957
		  EVENT_TYPE_STOP,
958
		  edge, NULL,
959
		  edge->edge.bottom);
960
}
961
 
962
static inline void
963
event_insert_if_intersect_below_current_y (sweep_line_t	*sweep_line,
964
					   edge_t	*left,
965
					   edge_t	*right)
966
{
967
    cairo_point_t intersection;
968
 
969
    /* start points intersect */
970
    if (left->edge.line.p1.x == right->edge.line.p1.x &&
971
	left->edge.line.p1.y == right->edge.line.p1.y)
972
    {
973
	return;
974
    }
975
 
976
    /* end points intersect, process DELETE events first */
977
    if (left->edge.line.p2.x == right->edge.line.p2.x &&
978
	left->edge.line.p2.y == right->edge.line.p2.y)
979
    {
980
	return;
981
    }
982
 
983
    if (slope_compare (left, right) <= 0)
984
	return;
985
 
986
    if (! edge_intersect (left, right, &intersection))
987
	return;
988
 
989
    event_insert (sweep_line,
990
		  EVENT_TYPE_INTERSECTION,
991
		  left, right,
992
		  intersection.y);
993
}
994
 
995
static inline edge_t *
996
link_to_edge (cairo_list_t *link)
997
{
998
    return (edge_t *) link;
999
}
1000
 
1001
static void
1002
sweep_line_insert (sweep_line_t	*sweep_line,
1003
		   edge_t	*edge)
1004
{
1005
    cairo_list_t *pos;
1006
    cairo_fixed_t y = sweep_line->current_subrow;
1007
 
1008
    pos = sweep_line->insert_cursor;
1009
    if (pos == &sweep_line->active)
1010
	pos = sweep_line->active.next;
1011
    if (pos != &sweep_line->active) {
1012
	int cmp;
1013
 
1014
	cmp = sweep_line_compare_edges (link_to_edge (pos),
1015
					edge,
1016
					y);
1017
	if (cmp < 0) {
1018
	    while (pos->next != &sweep_line->active &&
1019
		   sweep_line_compare_edges (link_to_edge (pos->next),
1020
					     edge,
1021
					     y) < 0)
1022
	    {
1023
		pos = pos->next;
1024
	    }
1025
	} else if (cmp > 0) {
1026
	    do {
1027
		pos = pos->prev;
1028
	    } while (pos != &sweep_line->active &&
1029
		     sweep_line_compare_edges (link_to_edge (pos),
1030
					       edge,
1031
					       y) > 0);
1032
	}
1033
    }
1034
    cairo_list_add (&edge->link, pos);
1035
    sweep_line->insert_cursor = &edge->link;
1036
}
1037
 
1038
inline static void
1039
coverage_rewind (struct coverage *cells)
1040
{
1041
    cells->cursor = &cells->head;
1042
}
1043
 
1044
static void
1045
coverage_init (struct coverage *cells)
1046
{
1047
    _cairo_freepool_init (&cells->pool,
1048
			  sizeof (struct cell));
1049
    cells->head.prev = NULL;
1050
    cells->head.next = &cells->tail;
1051
    cells->head.x = INT_MIN;
1052
    cells->tail.prev = &cells->head;
1053
    cells->tail.next = NULL;
1054
    cells->tail.x = INT_MAX;
1055
    cells->count = 0;
1056
    coverage_rewind (cells);
1057
}
1058
 
1059
static void
1060
coverage_fini (struct coverage *cells)
1061
{
1062
    _cairo_freepool_fini (&cells->pool);
1063
}
1064
 
1065
inline static void
1066
coverage_reset (struct coverage *cells)
1067
{
1068
    cells->head.next = &cells->tail;
1069
    cells->tail.prev = &cells->head;
1070
    cells->count = 0;
1071
    _cairo_freepool_reset (&cells->pool);
1072
    coverage_rewind (cells);
1073
}
1074
 
3959 Serge 1075
static struct cell *
1892 serge 1076
coverage_alloc (sweep_line_t *sweep_line,
1077
		struct cell *tail,
1078
		int x)
1079
{
1080
    struct cell *cell;
1081
 
1082
    cell = _cairo_freepool_alloc (&sweep_line->coverage.pool);
1083
    if (unlikely (NULL == cell)) {
1084
	longjmp (sweep_line->unwind,
1085
		 _cairo_error (CAIRO_STATUS_NO_MEMORY));
1086
    }
1087
 
1088
    tail->prev->next = cell;
1089
    cell->prev = tail->prev;
1090
    cell->next = tail;
1091
    tail->prev = cell;
1092
    cell->x = x;
1093
    cell->uncovered_area = 0;
1094
    cell->covered_height = 0;
1095
    sweep_line->coverage.count++;
1096
    return cell;
1097
}
1098
 
1099
inline static struct cell *
1100
coverage_find (sweep_line_t *sweep_line, int x)
1101
{
1102
    struct cell *cell;
1103
 
1104
    cell = sweep_line->coverage.cursor;
1105
    if (unlikely (cell->x > x)) {
1106
	do {
1107
	    if (cell->prev->x < x)
1108
		break;
1109
	    cell = cell->prev;
1110
	} while (TRUE);
1111
    } else {
1112
	if (cell->x == x)
1113
	    return cell;
1114
 
1115
	do {
1116
	    UNROLL3({
1117
		    cell = cell->next;
1118
		    if (cell->x >= x)
1119
			break;
1120
		    });
1121
	} while (TRUE);
1122
    }
1123
 
1124
    if (cell->x != x)
1125
	cell = coverage_alloc (sweep_line, cell, x);
1126
 
1127
    return sweep_line->coverage.cursor = cell;
1128
}
1129
 
1130
static void
1131
coverage_render_cells (sweep_line_t *sweep_line,
1132
		       cairo_fixed_t left, cairo_fixed_t right,
1133
		       cairo_fixed_t y1, cairo_fixed_t y2,
1134
		       int sign)
1135
{
1136
    int fx1, fx2;
1137
    int ix1, ix2;
1138
    int dx, dy;
1139
 
1140
    /* Orient the edge left-to-right. */
1141
    dx = right - left;
1142
    if (dx >= 0) {
1143
	ix1 = _cairo_fixed_integer_part (left);
1144
	fx1 = _cairo_fixed_fractional_part (left);
1145
 
1146
	ix2 = _cairo_fixed_integer_part (right);
1147
	fx2 = _cairo_fixed_fractional_part (right);
1148
 
1149
	dy = y2 - y1;
1150
    } else {
1151
	ix1 = _cairo_fixed_integer_part (right);
1152
	fx1 = _cairo_fixed_fractional_part (right);
1153
 
1154
	ix2 = _cairo_fixed_integer_part (left);
1155
	fx2 = _cairo_fixed_fractional_part (left);
1156
 
1157
	dx = -dx;
1158
	sign = -sign;
1159
	dy = y1 - y2;
1160
	y1 = y2 - dy;
1161
	y2 = y1 + dy;
1162
    }
1163
 
1164
    /* Add coverage for all pixels [ix1,ix2] on this row crossed
1165
     * by the edge. */
1166
    {
1167
	struct quorem y = floored_divrem ((STEP_X - fx1)*dy, dx);
1168
	struct cell *cell;
1169
 
1170
	cell = sweep_line->coverage.cursor;
1171
	if (cell->x != ix1) {
1172
	    if (unlikely (cell->x > ix1)) {
1173
		do {
1174
		    if (cell->prev->x < ix1)
1175
			break;
1176
		    cell = cell->prev;
1177
		} while (TRUE);
1178
	    } else do {
1179
		UNROLL3({
1180
			if (cell->x >= ix1)
1181
			    break;
1182
			cell = cell->next;
1183
			});
1184
	    } while (TRUE);
1185
 
1186
	    if (cell->x != ix1)
1187
		cell = coverage_alloc (sweep_line, cell, ix1);
1188
	}
1189
 
1190
	cell->uncovered_area += sign * y.quo * (STEP_X + fx1);
1191
	cell->covered_height += sign * y.quo;
1192
	y.quo += y1;
1193
 
1194
	cell = cell->next;
1195
	if (cell->x != ++ix1)
1196
	    cell = coverage_alloc (sweep_line, cell, ix1);
1197
	if (ix1 < ix2) {
1198
	    struct quorem dydx_full = floored_divrem (STEP_X*dy, dx);
1199
 
1200
	    do {
1201
		cairo_fixed_t y_skip = dydx_full.quo;
1202
		y.rem += dydx_full.rem;
1203
		if (y.rem >= dx) {
1204
		    ++y_skip;
1205
		    y.rem -= dx;
1206
		}
1207
 
1208
		y.quo += y_skip;
1209
 
1210
		y_skip *= sign;
1211
		cell->covered_height += y_skip;
1212
		cell->uncovered_area += y_skip*STEP_X;
1213
 
1214
		cell = cell->next;
1215
		if (cell->x != ++ix1)
1216
		    cell = coverage_alloc (sweep_line, cell, ix1);
1217
	    } while (ix1 != ix2);
1218
	}
1219
	cell->uncovered_area += sign*(y2 - y.quo)*fx2;
1220
	cell->covered_height += sign*(y2 - y.quo);
1221
	sweep_line->coverage.cursor = cell;
1222
    }
1223
}
1224
 
1225
inline static void
1226
full_inc_edge (edge_t *edge)
1227
{
1228
    edge->x.quo += edge->dxdy_full.quo;
1229
    edge->x.rem += edge->dxdy_full.rem;
1230
    if (edge->x.rem >= 0) {
1231
	++edge->x.quo;
1232
	edge->x.rem -= edge->dy;
1233
    }
1234
}
1235
 
1236
static void
1237
full_add_edge (sweep_line_t *sweep_line, edge_t *edge, int sign)
1238
{
1239
    struct cell *cell;
1240
    cairo_fixed_t x1, x2;
1241
    int ix1, ix2;
1242
    int frac;
1243
 
1244
    edge->current_sign = sign;
1245
 
1246
    ix1 = _cairo_fixed_integer_part (edge->x.quo);
1247
 
1248
    if (edge->vertical) {
1249
	frac = _cairo_fixed_fractional_part (edge->x.quo);
1250
	cell = coverage_find (sweep_line, ix1);
1251
	cell->covered_height += sign * STEP_Y;
1252
	cell->uncovered_area += sign * 2 * frac * STEP_Y;
1253
	return;
1254
    }
1255
 
1256
    x1 = edge->x.quo;
1257
    full_inc_edge (edge);
1258
    x2 = edge->x.quo;
1259
 
1260
    ix2 = _cairo_fixed_integer_part (edge->x.quo);
1261
 
1262
    /* Edge is entirely within a column? */
1263
    if (likely (ix1 == ix2)) {
1264
	frac = _cairo_fixed_fractional_part (x1) +
1265
	       _cairo_fixed_fractional_part (x2);
1266
	cell = coverage_find (sweep_line, ix1);
1267
	cell->covered_height += sign * STEP_Y;
1268
	cell->uncovered_area += sign * frac * STEP_Y;
1269
	return;
1270
    }
1271
 
1272
    coverage_render_cells (sweep_line, x1, x2, 0, STEP_Y, sign);
1273
}
1274
 
1275
static void
1276
full_nonzero (sweep_line_t *sweep_line)
1277
{
1278
    cairo_list_t *pos;
1279
 
1280
    sweep_line->is_vertical = TRUE;
1281
    pos = sweep_line->active.next;
1282
    do {
1283
	edge_t *left = link_to_edge (pos), *right;
1284
	int winding = left->edge.dir;
1285
 
1286
	sweep_line->is_vertical &= left->vertical;
1287
 
1288
	pos = left->link.next;
1289
	do {
1290
	    if (unlikely (pos == &sweep_line->active)) {
1291
		full_add_edge (sweep_line, left, +1);
1292
		return;
1293
	    }
1294
 
1295
	    right = link_to_edge (pos);
1296
	    pos = pos->next;
1297
	    sweep_line->is_vertical &= right->vertical;
1298
 
1299
	    winding += right->edge.dir;
1300
	    if (0 == winding) {
1301
		if (pos == &sweep_line->active ||
1302
		    link_to_edge (pos)->x.quo != right->x.quo)
1303
		{
1304
		    break;
1305
		}
1306
	    }
1307
 
1308
	    if (! right->vertical)
1309
		full_inc_edge (right);
1310
	} while (TRUE);
1311
 
1312
	full_add_edge (sweep_line, left,  +1);
1313
	full_add_edge (sweep_line, right, -1);
1314
    } while (pos != &sweep_line->active);
1315
}
1316
 
1317
static void
1318
full_evenodd (sweep_line_t *sweep_line)
1319
{
1320
    cairo_list_t *pos;
1321
 
1322
    sweep_line->is_vertical = TRUE;
1323
    pos = sweep_line->active.next;
1324
    do {
1325
	edge_t *left = link_to_edge (pos), *right;
1326
	int winding = 0;
1327
 
1328
	sweep_line->is_vertical &= left->vertical;
1329
 
1330
	pos = left->link.next;
1331
	do {
1332
	    if (pos == &sweep_line->active) {
1333
		full_add_edge (sweep_line, left, +1);
1334
		return;
1335
	    }
1336
 
1337
	    right = link_to_edge (pos);
1338
	    pos = pos->next;
1339
	    sweep_line->is_vertical &= right->vertical;
1340
 
1341
	    if (++winding & 1) {
1342
		if (pos == &sweep_line->active ||
1343
		    link_to_edge (pos)->x.quo != right->x.quo)
1344
		{
1345
		    break;
1346
		}
1347
	    }
1348
 
1349
	    if (! right->vertical)
1350
		full_inc_edge (right);
1351
	} while (TRUE);
1352
 
1353
	full_add_edge (sweep_line, left,  +1);
1354
	full_add_edge (sweep_line, right, -1);
1355
    } while (pos != &sweep_line->active);
1356
}
1357
 
1358
static void
1359
render_rows (cairo_botor_scan_converter_t *self,
1360
	     sweep_line_t *sweep_line,
1361
	     int y, int height,
1362
	     cairo_span_renderer_t *renderer)
1363
{
1364
    cairo_half_open_span_t spans_stack[CAIRO_STACK_ARRAY_LENGTH (cairo_half_open_span_t)];
1365
    cairo_half_open_span_t *spans = spans_stack;
1366
    struct cell *cell;
1367
    int prev_x, cover;
1368
    int num_spans;
1369
    cairo_status_t status;
1370
 
1371
    if (unlikely (sweep_line->coverage.count == 0)) {
1372
	status = renderer->render_rows (renderer, y, height, NULL, 0);
1373
	if (unlikely (status))
1374
	    longjmp (sweep_line->unwind, status);
1375
	return;
1376
    }
1377
 
1378
    /* Allocate enough spans for the row. */
1379
 
1380
    num_spans = 2*sweep_line->coverage.count+2;
1381
    if (unlikely (num_spans > ARRAY_LENGTH (spans_stack))) {
1382
	spans = _cairo_malloc_ab (num_spans, sizeof (cairo_half_open_span_t));
1383
	if (unlikely (spans == NULL)) {
1384
	    longjmp (sweep_line->unwind,
1385
		     _cairo_error (CAIRO_STATUS_NO_MEMORY));
1386
	}
1387
    }
1388
 
1389
    /* Form the spans from the coverage and areas. */
1390
    num_spans = 0;
1391
    prev_x = self->xmin;
1392
    cover = 0;
1393
    cell = sweep_line->coverage.head.next;
1394
    do {
1395
	int x = cell->x;
1396
	int area;
1397
 
1398
	if (x > prev_x) {
1399
	    spans[num_spans].x = prev_x;
3959 Serge 1400
	    spans[num_spans].inverse = 0;
1892 serge 1401
	    spans[num_spans].coverage = AREA_TO_ALPHA (cover);
1402
	    ++num_spans;
1403
	}
1404
 
1405
	cover += cell->covered_height*STEP_X*2;
1406
	area = cover - cell->uncovered_area;
1407
 
1408
	spans[num_spans].x = x;
1409
	spans[num_spans].coverage = AREA_TO_ALPHA (area);
1410
	++num_spans;
1411
 
1412
	prev_x = x + 1;
1413
    } while ((cell = cell->next) != &sweep_line->coverage.tail);
1414
 
1415
    if (prev_x <= self->xmax) {
1416
	spans[num_spans].x = prev_x;
3959 Serge 1417
	spans[num_spans].inverse = 0;
1892 serge 1418
	spans[num_spans].coverage = AREA_TO_ALPHA (cover);
1419
	++num_spans;
1420
    }
1421
 
1422
    if (cover && prev_x < self->xmax) {
1423
	spans[num_spans].x = self->xmax;
3959 Serge 1424
	spans[num_spans].inverse = 1;
1892 serge 1425
	spans[num_spans].coverage = 0;
1426
	++num_spans;
1427
    }
1428
 
1429
    status = renderer->render_rows (renderer, y, height, spans, num_spans);
1430
 
1431
    if (unlikely (spans != spans_stack))
1432
	free (spans);
1433
 
1434
    coverage_reset (&sweep_line->coverage);
1435
 
1436
    if (unlikely (status))
1437
	longjmp (sweep_line->unwind, status);
1438
}
1439
 
1440
static void
1441
full_repeat (sweep_line_t *sweep)
1442
{
1443
    edge_t *edge;
1444
 
1445
    cairo_list_foreach_entry (edge, edge_t, &sweep->active, link) {
1446
	if (edge->current_sign)
1447
	    full_add_edge (sweep, edge, edge->current_sign);
1448
	else if (! edge->vertical)
1449
	    full_inc_edge (edge);
1450
    }
1451
}
1452
 
1453
static void
1454
full_reset (sweep_line_t *sweep)
1455
{
1456
    edge_t *edge;
1457
 
1458
    cairo_list_foreach_entry (edge, edge_t, &sweep->active, link)
1459
	edge->current_sign = 0;
1460
}
1461
 
1462
static void
1463
full_step (cairo_botor_scan_converter_t *self,
1464
	   sweep_line_t *sweep_line,
1465
	   cairo_fixed_t row,
1466
	   cairo_span_renderer_t *renderer)
1467
{
1468
    int top, bottom;
1469
 
1470
    top = _cairo_fixed_integer_part (sweep_line->current_row);
1471
    bottom = _cairo_fixed_integer_part (row);
1472
    if (cairo_list_is_empty (&sweep_line->active)) {
1473
	cairo_status_t  status;
1474
 
1475
	status = renderer->render_rows (renderer, top, bottom - top, NULL, 0);
1476
	if (unlikely (status))
1477
	    longjmp (sweep_line->unwind, status);
1478
 
1479
	return;
1480
    }
1481
 
1482
    if (self->fill_rule == CAIRO_FILL_RULE_WINDING)
1483
	full_nonzero (sweep_line);
1484
    else
1485
	full_evenodd (sweep_line);
1486
 
1487
    if (sweep_line->is_vertical || bottom == top + 1) {
1488
	render_rows (self, sweep_line, top, bottom - top, renderer);
1489
	full_reset (sweep_line);
1490
	return;
1491
    }
1492
 
1493
    render_rows (self, sweep_line, top++, 1, renderer);
1494
    do {
1495
	full_repeat (sweep_line);
1496
	render_rows (self, sweep_line, top, 1, renderer);
1497
    } while (++top != bottom);
1498
 
1499
    full_reset (sweep_line);
1500
}
1501
 
1502
cairo_always_inline static void
1503
sub_inc_edge (edge_t *edge,
1504
	      cairo_fixed_t height)
1505
{
1506
    if (height == 1) {
1507
	edge->x.quo += edge->dxdy.quo;
1508
	edge->x.rem += edge->dxdy.rem;
1509
	if (edge->x.rem >= 0) {
1510
	    ++edge->x.quo;
1511
	    edge->x.rem -= edge->dy;
1512
	}
1513
    } else {
1514
	edge->x.quo += height * edge->dxdy.quo;
1515
	edge->x.rem += height * edge->dxdy.rem;
1516
	if (edge->x.rem >= 0) {
1517
	    int carry = edge->x.rem / edge->dy + 1;
1518
	    edge->x.quo += carry;
1519
	    edge->x.rem -= carry * edge->dy;
1520
	}
1521
    }
1522
}
1523
 
1524
static void
1525
sub_add_run (sweep_line_t *sweep_line, edge_t *edge, int y, int sign)
1526
{
1527
    struct run *run;
1528
 
1529
    run = _cairo_freepool_alloc (&sweep_line->runs);
1530
    if (unlikely (run == NULL))
1531
	longjmp (sweep_line->unwind, _cairo_error (CAIRO_STATUS_NO_MEMORY));
1532
 
1533
    run->y = y;
1534
    run->sign = sign;
1535
    run->next = edge->runs;
1536
    edge->runs = run;
1537
 
1538
    edge->current_sign = sign;
1539
}
1540
 
1541
inline static cairo_bool_t
1542
edges_coincident (edge_t *left, edge_t *right, cairo_fixed_t y)
1543
{
1544
    /* XXX is compare_x_for_y() worth executing during sub steps? */
1545
    return line_equal (&left->edge.line, &right->edge.line);
1546
    //edges_compare_x_for_y (&left->edge, &right->edge, y) >= 0;
1547
}
1548
 
1549
static void
1550
sub_nonzero (sweep_line_t *sweep_line)
1551
{
1552
    cairo_fixed_t y = sweep_line->current_subrow;
1553
    cairo_fixed_t fy = _cairo_fixed_fractional_part (y);
1554
    cairo_list_t *pos;
1555
 
1556
    pos = sweep_line->active.next;
1557
    do {
1558
	edge_t *left = link_to_edge (pos), *right;
1559
	int winding = left->edge.dir;
1560
 
1561
	pos = left->link.next;
1562
	do {
1563
	    if (unlikely (pos == &sweep_line->active)) {
1564
		if (left->current_sign != +1)
1565
		    sub_add_run (sweep_line, left, fy, +1);
1566
		return;
1567
	    }
1568
 
1569
	    right = link_to_edge (pos);
1570
	    pos = pos->next;
1571
 
1572
	    winding += right->edge.dir;
1573
	    if (0 == winding) {
1574
		if (pos == &sweep_line->active ||
1575
		    ! edges_coincident (right, link_to_edge (pos), y))
1576
		{
1577
		    break;
1578
		}
1579
	    }
1580
 
1581
	    if (right->current_sign)
1582
		sub_add_run (sweep_line, right, fy, 0);
1583
	} while (TRUE);
1584
 
1585
	if (left->current_sign != +1)
1586
	    sub_add_run (sweep_line, left, fy, +1);
1587
	if (right->current_sign != -1)
1588
	    sub_add_run (sweep_line, right, fy, -1);
1589
    } while (pos != &sweep_line->active);
1590
}
1591
 
1592
static void
1593
sub_evenodd (sweep_line_t *sweep_line)
1594
{
1595
    cairo_fixed_t y = sweep_line->current_subrow;
1596
    cairo_fixed_t fy = _cairo_fixed_fractional_part (y);
1597
    cairo_list_t *pos;
1598
 
1599
    pos = sweep_line->active.next;
1600
    do {
1601
	edge_t *left = link_to_edge (pos), *right;
1602
	int winding = 0;
1603
 
1604
	pos = left->link.next;
1605
	do {
1606
	    if (unlikely (pos == &sweep_line->active)) {
1607
		if (left->current_sign != +1)
1608
		    sub_add_run (sweep_line, left, fy, +1);
1609
		return;
1610
	    }
1611
 
1612
	    right = link_to_edge (pos);
1613
	    pos = pos->next;
1614
 
1615
	    if (++winding & 1) {
1616
		if (pos == &sweep_line->active ||
1617
		    ! edges_coincident (right, link_to_edge (pos), y))
1618
		{
1619
		    break;
1620
		}
1621
	    }
1622
 
1623
	    if (right->current_sign)
1624
		sub_add_run (sweep_line, right, fy, 0);
1625
	} while (TRUE);
1626
 
1627
	if (left->current_sign != +1)
1628
	    sub_add_run (sweep_line, left, fy, +1);
1629
	if (right->current_sign != -1)
1630
	    sub_add_run (sweep_line, right, fy, -1);
1631
    } while (pos != &sweep_line->active);
1632
}
1633
 
1634
cairo_always_inline static void
1635
sub_step (cairo_botor_scan_converter_t *self,
1636
	  sweep_line_t *sweep_line)
1637
{
1638
    if (cairo_list_is_empty (&sweep_line->active))
1639
	return;
1640
 
1641
    if (self->fill_rule == CAIRO_FILL_RULE_WINDING)
1642
	sub_nonzero (sweep_line);
1643
    else
1644
	sub_evenodd (sweep_line);
1645
}
1646
 
1647
static void
1648
coverage_render_runs (sweep_line_t *sweep, edge_t *edge,
1649
		      cairo_fixed_t y1, cairo_fixed_t y2)
1650
{
1651
    struct run tail;
1652
    struct run *run = &tail;
1653
 
1654
    tail.next = NULL;
1655
    tail.y = y2;
1656
 
1657
    /* Order the runs top->bottom */
1658
    while (edge->runs) {
1659
	struct run *r;
1660
 
1661
	r = edge->runs;
1662
	edge->runs = r->next;
1663
	r->next = run;
1664
	run = r;
1665
    }
1666
 
1667
    if (run->y > y1)
1668
	sub_inc_edge (edge, run->y - y1);
1669
 
1670
    do {
1671
	cairo_fixed_t x1, x2;
1672
 
1673
	y1 = run->y;
1674
	y2 = run->next->y;
1675
 
1676
	x1 = edge->x.quo;
1677
	if (y2 - y1 == STEP_Y)
1678
	    full_inc_edge (edge);
1679
	else
1680
	    sub_inc_edge (edge, y2 - y1);
1681
	x2 = edge->x.quo;
1682
 
1683
	if (run->sign) {
1684
	    int ix1, ix2;
1685
 
1686
	    ix1 = _cairo_fixed_integer_part (x1);
1687
	    ix2 = _cairo_fixed_integer_part (x2);
1688
 
1689
	    /* Edge is entirely within a column? */
1690
	    if (likely (ix1 == ix2)) {
1691
		struct cell *cell;
1692
		int frac;
1693
 
1694
		frac = _cairo_fixed_fractional_part (x1) +
1695
		       _cairo_fixed_fractional_part (x2);
1696
		cell = coverage_find (sweep, ix1);
1697
		cell->covered_height += run->sign * (y2 - y1);
1698
		cell->uncovered_area += run->sign * (y2 - y1) * frac;
1699
	    } else {
1700
		coverage_render_cells (sweep, x1, x2, y1, y2, run->sign);
1701
	    }
1702
	}
1703
 
1704
	run = run->next;
1705
    } while (run->next != NULL);
1706
}
1707
 
1708
static void
1709
coverage_render_vertical_runs (sweep_line_t *sweep, edge_t *edge, cairo_fixed_t y2)
1710
{
1711
    struct cell *cell;
1712
    struct run *run;
1713
    int height = 0;
1714
 
1715
    for (run = edge->runs; run != NULL; run = run->next) {
1716
	if (run->sign)
1717
	    height += run->sign * (y2 - run->y);
1718
	y2 = run->y;
1719
    }
1720
 
1721
    cell = coverage_find (sweep, _cairo_fixed_integer_part (edge->x.quo));
1722
    cell->covered_height += height;
1723
    cell->uncovered_area += 2 * _cairo_fixed_fractional_part (edge->x.quo) * height;
1724
}
1725
 
1726
cairo_always_inline static void
1727
sub_emit (cairo_botor_scan_converter_t *self,
1728
	  sweep_line_t *sweep,
1729
	  cairo_span_renderer_t *renderer)
1730
{
1731
    edge_t *edge;
1732
 
1733
    sub_step (self, sweep);
1734
 
1735
    /* convert the runs into coverages */
1736
 
1737
    cairo_list_foreach_entry (edge, edge_t, &sweep->active, link) {
1738
	if (edge->runs == NULL) {
1739
	    if (! edge->vertical) {
1740
		if (edge->flags & START) {
1741
		    sub_inc_edge (edge,
1742
				  STEP_Y - _cairo_fixed_fractional_part (edge->edge.top));
1743
		    edge->flags &= ~START;
1744
		} else
1745
		    full_inc_edge (edge);
1746
	    }
1747
	} else {
1748
	    if (edge->vertical) {
1749
		coverage_render_vertical_runs (sweep, edge, STEP_Y);
1750
	    } else {
1751
		int y1 = 0;
1752
		if (edge->flags & START) {
1753
		    y1 = _cairo_fixed_fractional_part (edge->edge.top);
1754
		    edge->flags &= ~START;
1755
		}
1756
		coverage_render_runs (sweep, edge, y1, STEP_Y);
1757
	    }
1758
	}
1759
	edge->current_sign = 0;
1760
	edge->runs = NULL;
1761
    }
1762
 
1763
    cairo_list_foreach_entry (edge, edge_t, &sweep->stopped, link) {
1764
	int y2 = _cairo_fixed_fractional_part (edge->edge.bottom);
1765
	if (edge->vertical) {
1766
	    coverage_render_vertical_runs (sweep, edge, y2);
1767
	} else {
1768
	    int y1 = 0;
1769
	    if (edge->flags & START)
1770
		y1 = _cairo_fixed_fractional_part (edge->edge.top);
1771
	    coverage_render_runs (sweep, edge, y1, y2);
1772
	}
1773
    }
1774
    cairo_list_init (&sweep->stopped);
1775
 
1776
    _cairo_freepool_reset (&sweep->runs);
1777
 
1778
    render_rows (self, sweep,
1779
		 _cairo_fixed_integer_part (sweep->current_row), 1,
1780
		 renderer);
1781
}
1782
 
1783
static void
1784
sweep_line_init (sweep_line_t	 *sweep_line,
1785
		 event_t	**start_events,
1786
		 int		  num_events)
1787
{
1788
    cairo_list_init (&sweep_line->active);
1789
    cairo_list_init (&sweep_line->stopped);
1790
    sweep_line->insert_cursor = &sweep_line->active;
1791
 
1792
    sweep_line->current_row = INT32_MIN;
1793
    sweep_line->current_subrow = INT32_MIN;
1794
 
1795
    coverage_init (&sweep_line->coverage);
1796
    _cairo_freepool_init (&sweep_line->runs, sizeof (struct run));
1797
 
1798
    start_event_sort (start_events, num_events);
1799
    start_events[num_events] = NULL;
1800
 
1801
    sweep_line->queue.start_events = start_events;
1802
 
1803
    _cairo_freepool_init (&sweep_line->queue.pool,
1804
			  sizeof (queue_event_t));
1805
    pqueue_init (&sweep_line->queue.pq);
1806
    sweep_line->queue.pq.elements[PQ_FIRST_ENTRY] = NULL;
1807
}
1808
 
1809
static void
1810
sweep_line_delete (sweep_line_t	*sweep_line,
1811
		   edge_t	*edge)
1812
{
1813
    if (sweep_line->insert_cursor == &edge->link)
1814
	sweep_line->insert_cursor = edge->link.prev;
1815
 
1816
    cairo_list_del (&edge->link);
1817
    if (edge->runs)
1818
	cairo_list_add_tail (&edge->link, &sweep_line->stopped);
1819
    edge->flags |= STOP;
1820
}
1821
 
1822
static void
1823
sweep_line_swap (sweep_line_t	*sweep_line,
1824
		 edge_t	*left,
1825
		 edge_t	*right)
1826
{
1827
    right->link.prev = left->link.prev;
1828
    left->link.next = right->link.next;
1829
    right->link.next = &left->link;
1830
    left->link.prev = &right->link;
1831
    left->link.next->prev = &left->link;
1832
    right->link.prev->next = &right->link;
1833
}
1834
 
1835
static void
1836
sweep_line_fini (sweep_line_t *sweep_line)
1837
{
1838
    pqueue_fini (&sweep_line->queue.pq);
1839
    _cairo_freepool_fini (&sweep_line->queue.pool);
1840
    coverage_fini (&sweep_line->coverage);
1841
    _cairo_freepool_fini (&sweep_line->runs);
1842
}
1843
 
1844
static cairo_status_t
1845
botor_generate (cairo_botor_scan_converter_t	 *self,
1846
		event_t				**start_events,
1847
		cairo_span_renderer_t		 *renderer)
1848
{
1849
    cairo_status_t status;
1850
    sweep_line_t sweep_line;
1851
    cairo_fixed_t ybot;
1852
    event_t *event;
1853
    cairo_list_t *left, *right;
1854
    edge_t *e1, *e2;
1855
    int bottom;
1856
 
1857
    sweep_line_init (&sweep_line, start_events, self->num_edges);
1858
    if ((status = setjmp (sweep_line.unwind)))
1859
	goto unwind;
1860
 
1861
    ybot = self->extents.p2.y;
1862
    sweep_line.current_subrow = self->extents.p1.y;
1863
    sweep_line.current_row = _cairo_fixed_floor (self->extents.p1.y);
1864
    event = *sweep_line.queue.start_events++;
1865
    do {
1866
	/* Can we process a full step in one go? */
1867
	if (event->y >= sweep_line.current_row + STEP_Y) {
1868
	    bottom = _cairo_fixed_floor (event->y);
1869
	    full_step (self, &sweep_line, bottom, renderer);
1870
	    sweep_line.current_row = bottom;
1871
	    sweep_line.current_subrow = bottom;
1872
	}
1873
 
1874
	do {
1875
	    if (event->y > sweep_line.current_subrow) {
1876
		sub_step (self, &sweep_line);
1877
		sweep_line.current_subrow = event->y;
1878
	    }
1879
 
1880
	    do {
1881
		/* Update the active list using Bentley-Ottmann */
1882
		switch (event->type) {
1883
		case EVENT_TYPE_START:
1884
		    e1 = ((start_event_t *) event)->edge;
1885
 
1886
		    sweep_line_insert (&sweep_line, e1);
1887
		    event_insert_stop (&sweep_line, e1);
1888
 
1889
		    left = e1->link.prev;
1890
		    right = e1->link.next;
1891
 
1892
		    if (left != &sweep_line.active) {
1893
			event_insert_if_intersect_below_current_y (&sweep_line,
1894
								   link_to_edge (left), e1);
1895
		    }
1896
 
1897
		    if (right != &sweep_line.active) {
1898
			event_insert_if_intersect_below_current_y (&sweep_line,
1899
								   e1, link_to_edge (right));
1900
		    }
1901
 
1902
		    break;
1903
 
1904
		case EVENT_TYPE_STOP:
1905
		    e1 = ((queue_event_t *) event)->e1;
1906
		    event_delete (&sweep_line, event);
1907
 
1908
		    left = e1->link.prev;
1909
		    right = e1->link.next;
1910
 
1911
		    sweep_line_delete (&sweep_line, e1);
1912
 
1913
		    if (left != &sweep_line.active &&
1914
			right != &sweep_line.active)
1915
		    {
1916
			 event_insert_if_intersect_below_current_y (&sweep_line,
1917
								    link_to_edge (left),
1918
								    link_to_edge (right));
1919
		    }
1920
 
1921
		    break;
1922
 
1923
		case EVENT_TYPE_INTERSECTION:
1924
		    e1 = ((queue_event_t *) event)->e1;
1925
		    e2 = ((queue_event_t *) event)->e2;
1926
 
1927
		    event_delete (&sweep_line, event);
1928
		    if (e1->flags & STOP)
1929
			break;
1930
		    if (e2->flags & STOP)
1931
			break;
1932
 
1933
		    /* skip this intersection if its edges are not adjacent */
1934
		    if (&e2->link != e1->link.next)
1935
			break;
1936
 
1937
		    left = e1->link.prev;
1938
		    right = e2->link.next;
1939
 
1940
		    sweep_line_swap (&sweep_line, e1, e2);
1941
 
1942
		    /* after the swap e2 is left of e1 */
1943
		    if (left != &sweep_line.active) {
1944
			event_insert_if_intersect_below_current_y (&sweep_line,
1945
								   link_to_edge (left), e2);
1946
		    }
1947
 
1948
		    if (right != &sweep_line.active) {
1949
			event_insert_if_intersect_below_current_y (&sweep_line,
1950
								   e1, link_to_edge (right));
1951
		    }
1952
 
1953
		    break;
1954
		}
1955
 
1956
		event = event_next (&sweep_line);
1957
		if (event == NULL)
1958
		    goto end;
1959
	    } while (event->y == sweep_line.current_subrow);
1960
	} while (event->y < sweep_line.current_row + STEP_Y);
1961
 
1962
	bottom = sweep_line.current_row + STEP_Y;
1963
	sub_emit (self, &sweep_line, renderer);
1964
	sweep_line.current_subrow = bottom;
1965
	sweep_line.current_row = sweep_line.current_subrow;
1966
    } while (TRUE);
1967
 
1968
  end:
1969
    /* flush any partial spans */
1970
    if (sweep_line.current_subrow != sweep_line.current_row) {
1971
	sub_emit (self, &sweep_line, renderer);
1972
	sweep_line.current_row += STEP_Y;
1973
	sweep_line.current_subrow = sweep_line.current_row;
1974
    }
1975
    /* clear the rest */
1976
    if (sweep_line.current_subrow < ybot) {
1977
	bottom = _cairo_fixed_integer_part (sweep_line.current_row);
1978
	status = renderer->render_rows (renderer,
1979
					bottom, _cairo_fixed_integer_ceil (ybot) - bottom,
1980
					NULL, 0);
1981
    }
1982
 
1983
 unwind:
1984
    sweep_line_fini (&sweep_line);
1985
 
1986
    return status;
1987
}
1988
 
1989
static cairo_status_t
1990
_cairo_botor_scan_converter_generate (void			*converter,
1991
				      cairo_span_renderer_t	*renderer)
1992
{
1993
    cairo_botor_scan_converter_t *self = converter;
1994
    start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (start_event_t)];
1995
    start_event_t *events;
1996
    event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
1997
    event_t **event_ptrs;
1998
    struct _cairo_botor_scan_converter_chunk *chunk;
1999
    cairo_status_t status;
2000
    int num_events;
2001
    int i, j;
2002
 
2003
    num_events = self->num_edges;
2004
    if (unlikely (0 == num_events)) {
2005
	return renderer->render_rows (renderer,
2006
				      _cairo_fixed_integer_floor (self->extents.p1.y),
2007
				      _cairo_fixed_integer_ceil (self->extents.p2.y) -
2008
				      _cairo_fixed_integer_floor (self->extents.p1.y),
2009
				      NULL, 0);
2010
    }
2011
 
2012
    events = stack_events;
2013
    event_ptrs = stack_event_ptrs;
2014
    if (unlikely (num_events >= ARRAY_LENGTH (stack_events))) {
2015
	events = _cairo_malloc_ab_plus_c (num_events,
2016
					  sizeof (start_event_t) + sizeof (event_t *),
2017
					  sizeof (event_t *));
2018
	if (unlikely (events == NULL))
2019
	    return _cairo_error (CAIRO_STATUS_NO_MEMORY);
2020
 
2021
	event_ptrs = (event_t **) (events + num_events);
2022
    }
2023
 
2024
    j = 0;
2025
    for (chunk = &self->chunks; chunk != NULL; chunk = chunk->next) {
2026
	edge_t *edge;
2027
 
2028
	edge = chunk->base;
2029
	for (i = 0; i < chunk->count; i++) {
2030
	    event_ptrs[j] = (event_t *) &events[j];
2031
 
2032
	    events[j].y = edge->edge.top;
2033
	    events[j].type = EVENT_TYPE_START;
2034
	    events[j].edge = edge;
2035
 
2036
	    edge++, j++;
2037
	}
2038
    }
2039
 
2040
    status = botor_generate (self, event_ptrs, renderer);
2041
 
2042
    if (events != stack_events)
2043
	free (events);
2044
 
2045
    return status;
2046
}
2047
 
2048
static edge_t *
2049
botor_allocate_edge (cairo_botor_scan_converter_t *self)
2050
{
2051
    struct _cairo_botor_scan_converter_chunk *chunk;
2052
 
2053
    chunk = self->tail;
2054
    if (chunk->count == chunk->size) {
2055
	int size;
2056
 
2057
	size = chunk->size * 2;
2058
	chunk->next = _cairo_malloc_ab_plus_c (size,
2059
					       sizeof (edge_t),
2060
					       sizeof (struct _cairo_botor_scan_converter_chunk));
2061
	if (unlikely (chunk->next == NULL))
2062
	    return NULL;
2063
 
2064
	chunk = chunk->next;
2065
	chunk->next = NULL;
2066
	chunk->count = 0;
2067
	chunk->size = size;
2068
	chunk->base = chunk + 1;
2069
	self->tail = chunk;
2070
    }
2071
 
2072
    return (edge_t *) chunk->base + chunk->count++;
2073
}
2074
 
2075
static cairo_status_t
2076
botor_add_edge (cairo_botor_scan_converter_t *self,
2077
		const cairo_edge_t *edge)
2078
{
2079
    edge_t *e;
2080
    cairo_fixed_t dx, dy;
2081
 
2082
    e = botor_allocate_edge (self);
2083
    if (unlikely (e == NULL))
2084
	return _cairo_error (CAIRO_STATUS_NO_MEMORY);
2085
 
2086
    cairo_list_init (&e->link);
2087
    e->edge = *edge;
2088
 
2089
    dx = edge->line.p2.x - edge->line.p1.x;
2090
    dy = edge->line.p2.y - edge->line.p1.y;
2091
    e->dy = dy;
2092
 
2093
    if (dx == 0) {
2094
	e->vertical = TRUE;
2095
	e->x.quo = edge->line.p1.x;
2096
	e->x.rem = 0;
2097
	e->dxdy.quo = 0;
2098
	e->dxdy.rem = 0;
2099
	e->dxdy_full.quo = 0;
2100
	e->dxdy_full.rem = 0;
2101
    } else {
2102
	e->vertical = FALSE;
2103
	e->dxdy = floored_divrem (dx, dy);
2104
	if (edge->top == edge->line.p1.y) {
2105
	    e->x.quo = edge->line.p1.x;
2106
	    e->x.rem = 0;
2107
	} else {
2108
	    e->x = floored_muldivrem (edge->top - edge->line.p1.y,
2109
				      dx, dy);
2110
	    e->x.quo += edge->line.p1.x;
2111
	}
2112
 
2113
	if (_cairo_fixed_integer_part (edge->bottom) - _cairo_fixed_integer_part (edge->top) > 1) {
2114
	    e->dxdy_full = floored_muldivrem (STEP_Y, dx, dy);
2115
	} else {
2116
	    e->dxdy_full.quo = 0;
2117
	    e->dxdy_full.rem = 0;
2118
	}
2119
    }
2120
 
2121
    e->x.rem = -e->dy;
2122
    e->current_sign = 0;
2123
    e->runs = NULL;
2124
    e->flags = START;
2125
 
2126
    self->num_edges++;
2127
 
2128
    return CAIRO_STATUS_SUCCESS;
2129
}
2130
 
2131
static void
2132
_cairo_botor_scan_converter_destroy (void *converter)
2133
{
2134
    cairo_botor_scan_converter_t *self = converter;
2135
    struct _cairo_botor_scan_converter_chunk *chunk, *next;
2136
 
2137
    for (chunk = self->chunks.next; chunk != NULL; chunk = next) {
2138
	next = chunk->next;
2139
	free (chunk);
2140
    }
2141
}
2142
 
2143
void
2144
_cairo_botor_scan_converter_init (cairo_botor_scan_converter_t *self,
2145
				  const cairo_box_t *extents,
2146
				  cairo_fill_rule_t fill_rule)
2147
{
2148
    self->base.destroy     = _cairo_botor_scan_converter_destroy;
2149
    self->base.generate    = _cairo_botor_scan_converter_generate;
2150
 
2151
    self->extents   = *extents;
2152
    self->fill_rule = fill_rule;
2153
 
2154
    self->xmin = _cairo_fixed_integer_floor (extents->p1.x);
2155
    self->xmax = _cairo_fixed_integer_ceil (extents->p2.x);
2156
 
2157
    self->chunks.base = self->buf;
2158
    self->chunks.next = NULL;
2159
    self->chunks.count = 0;
2160
    self->chunks.size = sizeof (self->buf) / sizeof (edge_t);
2161
    self->tail = &self->chunks;
2162
 
2163
    self->num_edges = 0;
2164
}