Subversion Repositories Kolibri OS

Rev

Rev 3913 | Rev 4437 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2288 clevermous 1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2
;;                                                              ;;
2455 mario79 3
;; Copyright (C) KolibriOS team 2011-2012. All rights reserved. ;;
2288 clevermous 4
;; Distributed under terms of the GNU General Public License    ;;
5
;;                                                              ;;
6
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
7
 
8
$Revision: 4273 $
9
 
10
; =============================================================================
11
; ================================= Constants =================================
12
; =============================================================================
13
; Error codes for callback functions.
14
DISK_STATUS_OK              = 0 ; success
15
DISK_STATUS_GENERAL_ERROR   = -1; if no other code is suitable
16
DISK_STATUS_INVALID_CALL    = 1 ; invalid input parameters
17
DISK_STATUS_NO_MEDIA        = 2 ; no media present
18
DISK_STATUS_END_OF_MEDIA    = 3 ; end of media while reading/writing data
19
; Driver flags. Represent bits in DISK.DriverFlags.
20
DISK_NO_INSERT_NOTIFICATION = 1
21
; Media flags. Represent bits in DISKMEDIAINFO.Flags.
22
DISK_MEDIA_READONLY = 1
23
 
24
; If too many partitions are detected,there is probably an error on the disk.
25
; 256 partitions should be enough for any reasonable use.
26
; Also, the same number is limiting the number of MBRs to process; if
27
; too many MBRs are visible,there probably is a loop in the MBR structure.
28
MAX_NUM_PARTITIONS = 256
29
 
30
; =============================================================================
31
; ================================ Structures =================================
32
; =============================================================================
33
; This structure defines all callback functions for working with the physical
34
; device. They are implemented by a driver. Objects with this structure reside
35
; in a driver.
2381 hidnplayr 36
struct  DISKFUNC
37
        strucsize       dd ?
2288 clevermous 38
; Size of the structure. This field is intended for possible extensions of
39
; this structure. If a new function is added to this structure and a driver
40
; implements an old version, the caller can detect this by checking .strucsize,
41
; so the driver remains compatible.
2381 hidnplayr 42
        close           dd ?
2288 clevermous 43
; The pointer to the function which frees all driver-specific resources for
44
; the disk.
45
; Optional, may be NULL.
46
; void close(void* userdata);
2381 hidnplayr 47
        closemedia      dd ?
2288 clevermous 48
; The pointer to the function which informs the driver that the kernel has
49
; finished all processing with the current media. If media is removed, the
50
; driver should decline all requests to that media with DISK_STATUS_NO_MEDIA,
51
; even if new media is inserted, until this function is called. If media is
52
; removed, a new call to 'disk_media_changed' is not allowed until this
53
; function is called.
54
; Optional, may be NULL (if media is not removable).
55
; void closemedia(void* userdata);
2381 hidnplayr 56
        querymedia      dd ?
2288 clevermous 57
; The pointer to the function which determines capabilities of the media.
58
; int querymedia(void* userdata, DISKMEDIAINFO* info);
59
; Return value: one of DISK_STATUS_*
2381 hidnplayr 60
        read            dd ?
2288 clevermous 61
; The pointer to the function which reads data from the device.
62
; int read(void* userdata, void* buffer, __int64 startsector, int* numsectors);
63
; input: *numsectors = number of sectors to read
64
; output: *numsectors = number of sectors which were successfully read
65
; Return value: one of DISK_STATUS_*
2381 hidnplayr 66
        write           dd ?
2288 clevermous 67
; The pointer to the function which writes data to the device.
68
; Optional, may be NULL.
69
; int write(void* userdata, void* buffer, __int64 startsector, int* numsectors);
70
; input: *numsectors = number of sectors to write
71
; output: *numsectors = number of sectors which were successfully written
72
; Return value: one of DISK_STATUS_*
2381 hidnplayr 73
        flush           dd ?
2288 clevermous 74
; The pointer to the function which flushes the internal device cache.
75
; Optional, may be NULL.
76
; int flush(void* userdata);
77
; Return value: one of DISK_STATUS_*
78
; Note that read/write are called by the cache manager, so a driver should not
79
; create a software cache. This function is implemented for flushing a hardware
80
; cache, if it exists.
2381 hidnplayr 81
        adjust_cache_size       dd ?
2288 clevermous 82
; The pointer to the function which returns the cache size for this device.
83
; Optional, may be NULL.
84
; unsigned int adjust_cache_size(unsigned int suggested_size);
85
; Return value: 0 = disable cache, otherwise = used cache size in bytes.
86
ends
87
 
88
; This structure holds information on a medium.
89
; Objects with this structure are allocated by the kernel as a part of the DISK
90
; structure and are filled by a driver in the 'querymedia' callback.
2381 hidnplayr 91
struct  DISKMEDIAINFO
92
        Flags           dd ?
2288 clevermous 93
; Combination of DISK_MEDIA_* bits.
2381 hidnplayr 94
        SectorSize      dd ?
2288 clevermous 95
; Size of the sector.
2381 hidnplayr 96
        Capacity        dq ?
2288 clevermous 97
; Size of the media in sectors.
98
ends
99
 
100
; This structure represents the disk cache. To follow the old implementation,
101
; there are two distinct caches for a disk, one for "system" data,and the other
102
; for "application" data.
2381 hidnplayr 103
struct  DISKCACHE
104
        mutex           MUTEX
2288 clevermous 105
; Lock to protect the cache.
106
; The following fields are inherited from data32.inc:cache_ideX.
2381 hidnplayr 107
        pointer         dd ?
108
        data_size       dd ?    ; unused
109
        data            dd ?
110
        sad_size        dd ?
111
        search_start    dd ?
2288 clevermous 112
ends
113
 
114
; This structure represents a disk device and its media for the kernel.
115
; This structure is allocated by the kernel in the 'disk_add' function,
116
; freed in the 'disk_dereference' function.
2381 hidnplayr 117
struct  DISK
2288 clevermous 118
; Fields of disk object
2381 hidnplayr 119
        Next            dd ?
120
        Prev            dd ?
2288 clevermous 121
; All disk devices are linked in one list with these two fields.
122
; Head of the list is the 'disk_list' variable.
2381 hidnplayr 123
        Functions       dd ?
2288 clevermous 124
; Pointer to the 'DISKFUNC' structure with driver functions.
2381 hidnplayr 125
        Name            dd ?
2288 clevermous 126
; Pointer to the string used for accesses through the global filesystem.
2381 hidnplayr 127
        UserData        dd ?
2288 clevermous 128
; This field is passed to all callback functions so a driver can decide which
129
; physical device is addressed.
2381 hidnplayr 130
        DriverFlags     dd ?
2288 clevermous 131
; Bitfield. Currently only DISK_NO_INSERT_NOTIFICATION bit is defined.
132
; If it is set, the driver will never issue 'disk_media_changed' notification
133
; with argument set to true, so the kernel must try to detect media during
134
; requests from the file system.
2381 hidnplayr 135
        RefCount        dd ?
2288 clevermous 136
; Count of active references to this structure. One reference is kept during
137
; the lifetime of the structure between 'disk_add' and 'disk_del'.
138
; Another reference is taken during any filesystem operation for this disk.
139
; One reference is added if media is inserted.
140
; The structure is destroyed when the reference count decrements to zero:
141
; this usually occurs in 'disk_del', but can be delayed to the end of last
142
; filesystem operation, if one is active.
2381 hidnplayr 143
        MediaLock       MUTEX
2288 clevermous 144
; Lock to protect the MEDIA structure. See the description after
145
; 'disk_list_mutex' for the locking strategy.
146
; Fields of media object
2381 hidnplayr 147
        MediaInserted   db ?
2288 clevermous 148
; 0 if media is not inserted, nonzero otherwise.
2381 hidnplayr 149
        MediaUsed       db ?
2288 clevermous 150
; 0 if media fields are not used, nonzero otherwise. If .MediaRefCount is
151
; nonzero, this field is nonzero too; however, when .MediaRefCount goes
152
; to zero, there is some time interval during which media object is still used.
3460 clevermous 153
                        dw ? ; padding
2288 clevermous 154
; The following fields are not valid unless either .MediaInserted is nonzero
155
; or they are accessed from a code which has obtained the reference when
156
; .MediaInserted was nonzero.
2381 hidnplayr 157
        MediaRefCount   dd ?
2288 clevermous 158
; Count of active references to the media object. One reference is kept during
159
; the lifetime of the media between two calls to 'disk_media_changed'.
160
; Another reference is taken during any filesystem operation for this media.
161
; The callback 'closemedia' is called when the reference count decrements to
162
; zero: this usually occurs in 'disk_media_changed', but can be delayed to the
163
; end of the last filesystem operation, if one is active.
2381 hidnplayr 164
        MediaInfo       DISKMEDIAINFO
2288 clevermous 165
; This field keeps information on the current media.
2381 hidnplayr 166
        NumPartitions   dd ?
2288 clevermous 167
; Number of partitions on this media.
2381 hidnplayr 168
        Partitions      dd ?
2288 clevermous 169
; Pointer to array of .NumPartitions pointers to PARTITION structures.
2381 hidnplayr 170
        cache_size      dd ?
2288 clevermous 171
; inherited from cache_ideX_size
2381 hidnplayr 172
        SysCache        DISKCACHE
173
        AppCache        DISKCACHE
2288 clevermous 174
; Two caches for the disk.
175
ends
176
 
177
; This structure represents one partition for the kernel. This is a base
178
; template, the actual contents after common fields is determined by the
179
; file system code for this partition.
2381 hidnplayr 180
struct  PARTITION
181
        FirstSector     dq ?
2288 clevermous 182
; First sector of the partition.
2381 hidnplayr 183
        Length          dq ?
2288 clevermous 184
; Length of the partition in sectors.
2381 hidnplayr 185
        Disk            dd ?
2288 clevermous 186
; Pointer to parent DISK structure.
2381 hidnplayr 187
        FSUserFunctions dd ?
2288 clevermous 188
; Handlers for the sysfunction 70h. This field is a pointer to the following
3742 clevermous 189
; array. The first dword is pointer to disconnect handler.
190
; The first dword is a number of supported subfunctions, other dwords
2288 clevermous 191
; point to handlers of corresponding subfunctions.
192
; ...fs-specific data may follow...
193
ends
194
 
195
; This is an external structure, it represents an entry in the partition table.
2381 hidnplayr 196
struct  PARTITION_TABLE_ENTRY
197
        Bootable        db ?
2288 clevermous 198
; 80h = bootable partition, 0 = non-bootable partition, other values = invalid
2381 hidnplayr 199
        FirstHead       db ?
200
        FirstSector     db ?
201
        FirstTrack      db ?
2288 clevermous 202
; Coordinates of first sector in CHS.
2381 hidnplayr 203
        Type            db ?
2288 clevermous 204
; Partition type, one of predefined constants. 0 = empty, several types denote
205
; extended partition (see process_partition_table_entry), we are not interested
206
; in other values.
2381 hidnplayr 207
        LastHead        db ?
208
        LastSector      db ?
209
        LastTrack       db ?
2288 clevermous 210
; Coordinates of last sector in CHS.
2381 hidnplayr 211
        FirstAbsSector  dd ?
2288 clevermous 212
; Coordinate of first sector in LBA.
2381 hidnplayr 213
        Length          dd ?
2288 clevermous 214
; Length of the partition in sectors.
215
ends
216
 
217
; =============================================================================
218
; ================================ Global data ================================
219
; =============================================================================
220
iglobal
221
; The pseudo-item for the list of all DISK structures.
222
; Initialized to the empty list.
223
disk_list:
224
        dd      disk_list
225
        dd      disk_list
226
endg
227
uglobal
228
; This mutex guards all operations with the global list of DISK structures.
229
disk_list_mutex MUTEX
230
; * There are two dependent objects, a disk and a media. In the simplest case,
231
;   disk and media are both non-removable. However, in the general case both
232
;   can be removed at any time, simultaneously or only media,and this makes things
233
;   complicated.
234
; * For efficiency, both disk and media objects are located in the one
235
;   structure named DISK. However, logically they are different.
236
; * The following operations use data of disk object: adding (disk_add);
237
;   deleting (disk_del); filesystem (fs_lfn which eventually calls
238
;   dyndisk_handler or dyndisk_enum_root).
239
; * The following operations use data of media object: adding/removing
240
;   (disk_media_changed); filesystem (fs_lfn which eventually calls
241
;   dyndisk_handler; dyndisk_enum_root doesn't work with media).
242
; * Notifications disk_add, disk_media_changed, disk_del are synchronized
243
;   between themselves, this is a requirement for the driver. However, file
244
;   system operations are asynchronous, can be issued at any time by any
245
;   thread.
246
; * We must prevent a situation when a filesystem operation thinks that the
247
;   object is still valid but in fact the notification has destroyed the
248
;   object. So we keep a reference counter for both disk and media and destroy
249
;   the object when this counter goes to zero.
250
; * The driver must know when it is safe to free driver-allocated resources.
251
;   The object can be alive even after death notification has completed.
252
;   We use special callbacks to satisfy both assertions: 'close' for the disk
253
;   and 'closemedia' for the media. The destruction of the object includes
254
;   calling the corresponding callback.
255
; * Each filesystem operation keeps one reference for the disk and one
256
;   reference for the media. Notification disk_del forces notification on the
257
;   media death, so the reference counter for the disk is always not less than
258
;   the reference counter for the media.
259
; * Two operations "get the object" and "increment the reference counter" can
260
;   not be done simultaneously. We use a mutex to guard the consistency here.
261
;   It must be a part of the container for the object, so that this mutex can
262
;   be acquired as a part of getting the object from the container. The
263
;   container for disk object is the global list, and this list is guarded by
264
;   'disk_list_mutex'. The container for media object is the disk object, and
265
;   the corresponding mutex is DISK.MediaLock.
266
; * Notifications do not change the data of objects, they can only remove
267
;   objects. Thus we don't need another synchronization at this level. If two
268
;   filesystem operations are referencing the same filesystem data, this is
269
;   better resolved at the level of the filesystem.
270
endg
271
 
272
iglobal
273
; The function 'disk_scan_partitions' needs three 512-byte buffers for
274
; MBR, bootsector and fs-temporary sector data. It can not use the static
275
; buffers always, since it can be called for two or more disks in parallel.
276
; However, this case is not typical. We reserve three static 512-byte buffers
277
; and a flag that these buffers are currently used. If 'disk_scan_partitions'
278
; detects that the buffers are currently used, it allocates buffers from the
279
; heap.
280
; The flag is implemented as a global dword variable. When the static buffers
281
; are not used, the value is -1. When the static buffers are used, the value
282
; is normally 0 and temporarily can become greater. The function increments
283
; this value. If the resulting value is zero, it uses the buffers and
284
; decrements the value when the job is done. Otherwise, it immediately
285
; decrements the value and uses buffers from the heap, allocated in the
286
; beginning and freed in the end.
287
partition_buffer_users  dd      -1
288
endg
289
uglobal
290
; The static buffers for MBR, bootsector and fs-temporary sector data.
291
align 16
292
mbr_buffer      rb      512
293
bootsect_buffer rb      512
294
fs_tmp_buffer   rb      512
295
endg
296
 
297
iglobal
298
; This is the array of default implementations of driver callbacks.
299
; Same as DRIVERFUNC structure except for the first field; all functions must
300
; have the default implementations.
301
align 4
302
disk_default_callbacks:
303
        dd      disk_default_close
304
        dd      disk_default_closemedia
305
        dd      disk_default_querymedia
306
        dd      disk_default_read
307
        dd      disk_default_write
308
        dd      disk_default_flush
309
        dd      disk_default_adjust_cache_size
310
endg
311
 
312
; =============================================================================
313
; ================================= Functions =================================
314
; =============================================================================
315
 
316
; This function registers a disk device.
317
; This includes:
318
; - allocating an internal structure describing this device;
319
; - registering this structure in the global filesystem.
320
; The function initializes the disk as if there is no media. If a media is
321
; present, the function 'disk_media_changed' should be called after this
322
; function succeeds.
323
; Parameters:
324
; [esp+4] = pointer to DISKFUNC structure with the callbacks
325
; [esp+8] = pointer to name (ASCIIZ string)
326
; [esp+12] = userdata to be passed to the callbacks as is.
327
; [esp+16] = flags, bitfield. Currently only DISK_NO_INSERT_NOTIFICATION bit
328
;            is defined.
329
; Return value:
330
; NULL = operation has failed
331
; non-NULL = handle of the disk. This handle can be used
332
; in the operations with other Disk* functions.
333
; The handle is the pointer to the internal structure DISK.
334
disk_add:
335
        push    ebx esi         ; save used registers to be stdcall
336
; 1. Allocate the DISK structure.
337
; 1a. Call the heap manager.
3598 clevermous 338
        movi    eax, sizeof.DISK
2288 clevermous 339
        call    malloc
340
; 1b. Check the result. If allocation failed, return (go to 9) with eax = 0.
341
        test    eax, eax
342
        jz      .nothing
343
; 2. Copy the disk name to the DISK structure.
344
; 2a. Get length of the name, including the terminating zero.
345
        mov     ebx, [esp+8+8]  ; ebx = pointer to name
346
        push    eax             ; save allocated pointer to DISK
347
        xor     eax, eax        ; the argument of malloc() is in eax
348
@@:
349
        inc     eax
350
        cmp     byte [ebx+eax-1], 0
351
        jnz     @b
3681 clevermous 352
; 2b. Call the heap manager.
2288 clevermous 353
        call    malloc
354
; 2c. Check the result. If allocation failed, go to 7.
355
        pop     esi             ; restore allocated pointer to DISK
356
        test    eax, eax
357
        jz      .free
358
; 2d. Store the allocated pointer to the DISK structure.
359
        mov     [esi+DISK.Name], eax
360
; 2e. Copy the name.
361
@@:
362
        mov     dl, [ebx]
363
        mov     [eax], dl
364
        inc     ebx
365
        inc     eax
366
        test    dl, dl
367
        jnz     @b
368
; 3. Copy other arguments of the function to the DISK structure.
369
        mov     eax, [esp+4+8]
370
        mov     [esi+DISK.Functions], eax
371
        mov     eax, [esp+12+8]
372
        mov     [esi+DISK.UserData], eax
373
        mov     eax, [esp+16+8]
374
        mov     [esi+DISK.DriverFlags], eax
375
; 4. Initialize other fields of the DISK structure.
376
; Media is not inserted, reference counter is 1.
377
        lea     ecx, [esi+DISK.MediaLock]
378
        call    mutex_init
379
        xor     eax, eax
380
        mov     dword [esi+DISK.MediaInserted], eax
3460 clevermous 381
        mov     [esi+DISK.MediaRefCount], eax
2288 clevermous 382
        inc     eax
383
        mov     [esi+DISK.RefCount], eax
384
; The DISK structure is initialized.
385
; 5. Insert the new structure to the global list.
386
; 5a. Acquire the mutex.
387
        mov     ecx, disk_list_mutex
388
        call    mutex_lock
389
; 5b. Insert item to the tail of double-linked list.
390
        mov     edx, disk_list
391
        list_add_tail esi, edx     ;esi= new edx= list head
392
; 5c. Release the mutex.
393
        call    mutex_unlock
394
; 6. Return with eax = pointer to DISK.
395
        xchg    eax, esi
396
        jmp     .nothing
397
.free:
398
; Memory allocation for DISK structure succeeded, but for disk name failed.
399
; 7. Free the DISK structure.
400
        xchg    eax, esi
401
        call    free
402
; 8. Return with eax = 0.
403
        xor     eax, eax
404
.nothing:
405
; 9. Return.
406
        pop     esi ebx         ; restore used registers to be stdcall
407
        ret     16              ; purge 4 dword arguments to be stdcall
408
 
409
; This function deletes a disk device from the global filesystem.
410
; This includes:
411
; - removing a media including all partitions;
412
; - deleting this structure from the global filesystem;
413
; - dereferencing the DISK structure and possibly destroying it.
414
; Parameters:
415
; [esp+4] = handle of the disk, i.e. the pointer to the DISK structure.
416
; Return value: none.
417
disk_del:
418
        push    esi         ; save used registers to be stdcall
419
; 1. Force media to be removed. If the media is already removed, the
420
; call does nothing.
2643 clevermous 421
        mov     esi, [esp+4+4]  ; esi = handle of the disk
2288 clevermous 422
        stdcall disk_media_changed, esi, 0
423
; 2. Delete the structure from the global list.
424
; 2a. Acquire the mutex.
425
        mov     ecx, disk_list_mutex
426
        call    mutex_lock
427
; 2b. Delete item from double-linked list.
428
        mov     eax, [esi+DISK.Next]
429
        mov     edx, [esi+DISK.Prev]
430
        mov     [eax+DISK.Prev], edx
431
        mov     [edx+DISK.Next], eax
432
; 2c. Release the mutex.
433
        call    mutex_unlock
434
; 3. The structure still has one reference created in disk_add. Remove this
435
; reference. If there are no other references, disk_dereference will free the
436
; structure.
437
        call    disk_dereference
438
; 4. Return.
439
        pop     esi             ; restore used registers to be stdcall
440
        ret     4               ; purge 1 dword argument to be stdcall
441
 
442
; This is an internal function which removes a previously obtained reference
443
; to the disk. If this is the last reference, this function lets the driver
444
; finalize all associated data, and afterwards frees the DISK structure.
445
; esi = pointer to DISK structure
446
disk_dereference:
447
; 1. Decrement reference counter. Use atomic operation to correctly handle
448
; possible simultaneous calls.
449
        lock dec [esi+DISK.RefCount]
450
; 2. If the result is nonzero, there are other references, so nothing to do.
451
; In this case, return (go to 4).
452
        jnz     .nothing
453
; 3. If we are here, we just removed the last reference and must destroy the
454
; disk object.
455
; 3a. Call the driver.
456
        mov     al, DISKFUNC.close
457
        stdcall disk_call_driver
458
; 3b. Free the structure.
459
        xchg    eax, esi
3202 clevermous 460
        push    ebx
2288 clevermous 461
        call    free
3202 clevermous 462
        pop     ebx
2288 clevermous 463
; 4. Return.
464
.nothing:
465
        ret
466
 
467
; This is an internal function which removes a previously obtained reference
468
; to the media. If this is the last reference, this function calls 'closemedia'
469
; callback to signal the driver that the processing has finished and it is safe
470
; to inform about a new media.
471
; esi = pointer to DISK structure
472
disk_media_dereference:
473
; 1. Decrement reference counter. Use atomic operation to correctly handle
474
; possible simultaneous calls.
475
        lock dec [esi+DISK.MediaRefCount]
476
; 2. If the result is nonzero, there are other references, so nothing to do.
477
; In this case, return (go to 4).
478
        jnz     .nothing
479
; 3. If we are here, we just removed the last reference and must destroy the
480
; media object.
481
; Note that the same place inside the DISK structure is reused for all media
482
; objects, so we must guarantee that reusing does not happen while freeing.
483
; Reusing is only possible when someone processes a new media. There are two
484
; mutually exclusive variants:
485
; * driver issues media insert notifications (DISK_NO_INSERT_NOTIFICATION bit
486
;   in DISK.DriverFlags is not set). In this case, we require from the driver
487
;   that such notification (except for the first one) can occur only after a
488
;   call to 'closemedia' callback.
489
; * driver does not issue media insert notifications. In this case, the kernel
490
;   itself must sometimes check whether media is inserted. We have the flag
491
;   DISK.MediaUsed, visible to the kernel. This flag signals to the other parts
492
;   of kernel that the way is free.
493
; In the first case other parts of the kernel do not use DISK.MediaUsed, so it
494
; does not matter when this flag is cleared. In the second case this flag must
495
; be cleared after all other actions, including call to 'closemedia'.
496
; 3a. Free all partitions.
497
        push    esi edi
498
        mov     edi, [esi+DISK.NumPartitions]
499
        mov     esi, [esi+DISK.Partitions]
500
        test    edi, edi
501
        jz      .nofree
502
.freeloop:
503
        lodsd
3742 clevermous 504
        mov     ecx, [eax+PARTITION.FSUserFunctions]
505
        call    dword [ecx]
2288 clevermous 506
        dec     edi
507
        jnz     .freeloop
508
.nofree:
509
        pop     edi esi
510
; 3b. Free the cache.
511
        call    disk_free_cache
512
; 3c. Call the driver.
513
        mov     al, DISKFUNC.closemedia
514
        stdcall disk_call_driver
515
; 3d. Clear the flag.
516
        mov     [esi+DISK.MediaUsed], 0
517
.nothing:
518
        ret
519
 
520
; This function is called by the driver and informs the kernel that the media
521
; has changed. If the media is non-removable, it is called exactly once
522
; immediately after 'disk_add' and once from 'disk_del'.
523
; Parameters:
524
; [esp+4] = handle of the disk, i.e. the pointer to the DISK structure.
525
; [esp+8] = new status of the media: zero = no media, nonzero = media inserted.
526
disk_media_changed:
527
        push    ebx esi edi             ; save used registers to be stdcall
528
; 1. Remove the existing media, if it is present.
529
        mov     esi, [esp+4+12]         ; esi = pointer to DISK
530
; 1a. Check whether it is present. Since DISK.MediaInserted is changed only
531
; in this function and calls to this function are synchronized, no lock is
532
; required for checking.
533
        cmp     [esi+DISK.MediaInserted], 0
534
        jz      .noremove
535
; We really need to remove the media.
536
; 1b. Acquire mutex.
537
        lea     ecx, [esi+DISK.MediaLock]
538
        call    mutex_lock
539
; 1c. Clear the flag.
540
        mov     [esi+DISK.MediaInserted], 0
541
; 1d. Release mutex.
542
        call    mutex_unlock
543
; 1e. Remove the "lifetime" reference and possibly destroy the structure.
544
        call    disk_media_dereference
545
.noremove:
546
; 2. Test whether there is new media.
547
        cmp     dword [esp+8+12], 0
548
        jz      .noinsert
549
; Yep, there is.
550
; 3. Process the new media. We assume that all media fields are available to
551
; use, see comments in 'disk_media_dereference' (this covers using by previous
552
; media referencers) and note that calls to this function are synchronized
553
; (this covers using by new media referencers).
554
; 3a. Call the 'querymedia' callback.
555
; .Flags are set to zero for possible future extensions.
556
        lea     edx, [esi+DISK.MediaInfo]
557
        and     [edx+DISKMEDIAINFO.Flags], 0
558
        mov     al, DISKFUNC.querymedia
559
        stdcall disk_call_driver, edx
560
; 3b. Check the result of the callback. Abort if it failed.
561
        test    eax, eax
562
        jnz     .noinsert
563
; 3c. Allocate the cache unless disabled by the driver. Abort if failed.
564
        call    disk_init_cache
565
        test    al, al
566
        jz      .noinsert
567
; 3d. Acquire the lifetime reference for the media object.
568
        inc     [esi+DISK.MediaRefCount]
569
; 3e. Scan for partitions. Ignore result; the list of partitions is valid even
570
; on errors.
571
        call    disk_scan_partitions
572
; 3f. Media is inserted and available for use.
573
        inc     [esi+DISK.MediaInserted]
574
.noinsert:
575
; 4. Return.
576
        pop     edi esi ebx             ; restore used registers to be stdcall
577
        ret     8                       ; purge 2 dword arguments to be stdcall
578
 
579
; This function is a thunk for all functions of a disk driver.
580
; It checks whether the referenced function is implemented in the driver.
581
; If so, this function jumps to the function in the driver.
582
; Otherwise, it jumps to the default implementation.
583
; al = offset of function in the DISKFUNC structure;
584
; esi = pointer to the DISK structure;
585
; stack is the same as for the corresponding function except that the
586
; first parameter (void* userdata) is prepended automatically.
587
disk_call_driver:
588
        movzx   eax, al ; eax = offset of function in the DISKFUNC structure
589
; 1. Prepend the first argument to the stack.
590
        pop     ecx     ; ecx = return address
591
        push    [esi+DISK.UserData]     ; add argument
592
        push    ecx     ; save return address
593
; 2. Check that the required function is inside the table. If not, go to 5.
594
        mov     ecx, [esi+DISK.Functions]
595
        cmp     eax, [ecx+DISKFUNC.strucsize]
596
        jae     .default
597
; 3. Check that the required function is implemented. If not, go to 5.
598
        mov     ecx, [ecx+eax]
599
        test    ecx, ecx
600
        jz      .default
601
; 4. Jump to the required function.
602
        jmp     ecx
603
.default:
604
; 5. Driver does not implement the required function; use default implementation.
605
        jmp     dword [disk_default_callbacks+eax-4]
606
 
607
; The default implementation of DISKFUNC.querymedia.
608
disk_default_querymedia:
3598 clevermous 609
        movi    eax, DISK_STATUS_INVALID_CALL
2288 clevermous 610
        ret     8
611
 
612
; The default implementation of DISKFUNC.read and DISKFUNC.write.
613
disk_default_read:
614
disk_default_write:
3598 clevermous 615
        movi    eax, DISK_STATUS_INVALID_CALL
2288 clevermous 616
        ret     20
617
 
618
; The default implementation of DISKFUNC.close, DISKFUNC.closemedia and
619
; DISKFUNC.flush.
620
disk_default_close:
621
disk_default_closemedia:
622
disk_default_flush:
623
        xor     eax, eax
624
        ret     4
625
 
626
; The default implementation of DISKFUNC.adjust_cache_size.
627
disk_default_adjust_cache_size:
3164 clevermous 628
        mov     eax, [esp+8]
629
        ret     8
2288 clevermous 630
 
631
; This is an internal function called from 'disk_media_changed' when a new media
632
; is detected. It creates the list of partitions for the media.
633
; If media is not partitioned, then the list consists of one partition which
634
; covers all the media.
635
; esi = pointer to the DISK structure.
636
disk_scan_partitions:
637
; 1. Initialize .NumPartitions and .Partitions fields as zeros: empty list.
638
        and     [esi+DISK.NumPartitions], 0
639
        and     [esi+DISK.Partitions], 0
640
; 2. Currently we can work only with 512-bytes sectors. Check this restriction.
641
; The only exception is 2048-bytes CD/DVD, but they are not supported yet by
642
; this code.
643
        cmp     [esi+DISK.MediaInfo.SectorSize], 512
644
        jz      .doscan
645
        DEBUGF 1,'K : sector size is %d, only 512 is supported\n',[esi+DISK.MediaInfo.SectorSize]
646
        ret
647
.doscan:
648
; 3. Acquire the buffer for MBR and bootsector tests. See the comment before
649
; the 'partition_buffer_users' variable.
650
        mov     ebx, mbr_buffer         ; assume the global buffer is free
651
        lock inc [partition_buffer_users]
652
        jz      .buffer_acquired        ; yes, it is free
653
        lock dec [partition_buffer_users]       ; no, we must allocate
654
        stdcall kernel_alloc, 512*3
655
        test    eax, eax
656
        jz      .nothing
657
        xchg    eax, ebx
658
.buffer_acquired:
659
; MBR/EBRs are organized in the chain. We use a loop over MBR/EBRs, but no
660
; more than MAX_NUM_PARTITION times.
661
; 4. Prepare things for the loop.
662
; ebp will hold the sector number for current MBR/EBR.
663
; [esp] will hold the sector number for current extended partition, if there
664
; is one.
665
; [esp+4] will hold the counter that prevents long loops.
666
        push    ebp             ; save ebp
667
        push    MAX_NUM_PARTITIONS      ; the counter of max MBRs to process
668
        xor     ebp, ebp        ; start from sector zero
669
        push    ebp             ; no extended partition yet
670
.new_mbr:
671
; 5. Read the current sector.
672
; Note that 'read' callback operates with 64-bit sector numbers, so we must
673
; push additional zero as a high dword of sector number.
674
        mov     al, DISKFUNC.read
675
        push    1
676
        stdcall disk_call_driver, ebx, ebp, 0, esp
677
        pop     ecx
678
; 6. If the read has failed, abort the loop.
679
        dec     ecx
680
        jnz     .mbr_failed
681
; 7. Check the MBR/EBR signature. If it is wrong, abort the loop.
682
; Soon we will access the partition table which starts at ebx+0x1BE,
683
; so we can fill its address right now. If we do it now, then the addressing
684
; [ecx+0x40] is shorter than [ebx+0x1fe]: one-byte offset vs 4-bytes offset.
685
        lea     ecx, [ebx+0x1be]        ; ecx -> partition table
686
        cmp     word [ecx+0x40], 0xaa55
687
        jnz     .mbr_failed
688
; 8. The MBR is treated differently from EBRs. For MBR we additionally need to
689
; execute step 9 and possibly step 10.
690
        test    ebp, ebp
691
        jnz     .mbr
692
; The partition table can be present or not present. In the first case, we just
693
; read the MBR. In the second case, we just read the bootsector for a
694
; filesystem.
695
; The following algorithm is used to distinguish between these cases.
696
; A. If at least one entry of the partition table is invalid, this is
697
;    a bootsector. See the description of 'is_partition_table_entry' for
698
;    definition of validity.
699
; B. If all entries are empty (filesystem type field is zero) and the first
700
;    byte is jmp opcode (0EBh or 0E9h), this is a bootsector which happens to
701
;    have zeros in the place of partition table.
702
; C. Otherwise, this is an MBR.
703
; 9. Test for MBR vs bootsector.
704
; 9a. Check entries. If any is invalid, go to 10 (rule A).
705
        call    is_partition_table_entry
706
        jc      .notmbr
707
        add     ecx, 10h
708
        call    is_partition_table_entry
709
        jc      .notmbr
710
        add     ecx, 10h
711
        call    is_partition_table_entry
712
        jc      .notmbr
713
        add     ecx, 10h
714
        call    is_partition_table_entry
715
        jc      .notmbr
716
; 9b. Check types of the entries. If at least one is nonzero, go to 11 (rule C).
717
        mov     al, [ecx-30h+PARTITION_TABLE_ENTRY.Type]
718
        or      al, [ecx-20h+PARTITION_TABLE_ENTRY.Type]
719
        or      al, [ecx-10h+PARTITION_TABLE_ENTRY.Type]
720
        or      al, [ecx+PARTITION_TABLE_ENTRY.Type]
721
        jnz     .mbr
722
; 9c. Empty partition table or bootsector with many zeroes? (rule B)
723
        cmp     byte [ebx], 0EBh
724
        jz      .notmbr
725
        cmp     byte [ebx], 0E9h
726
        jnz     .mbr
727
.notmbr:
728
; 10. This is not an  MBR. The media is not partitioned. Create one partition
729
; which covers all the media and abort the loop.
730
        stdcall disk_add_partition, 0, 0, \
3742 clevermous 731
                dword [esi+DISK.MediaInfo.Capacity], dword [esi+DISK.MediaInfo.Capacity+4], esi
2288 clevermous 732
        jmp     .done
733
.mbr:
734
; 11. Process all entries of the new MBR/EBR
735
        lea     ecx, [ebx+0x1be]        ; ecx -> partition table
736
        push    0       ; assume no extended partition
737
        call    process_partition_table_entry
738
        add     ecx, 10h
739
        call    process_partition_table_entry
740
        add     ecx, 10h
741
        call    process_partition_table_entry
742
        add     ecx, 10h
743
        call    process_partition_table_entry
744
        pop     ebp
745
; 12. Test whether we found a new EBR and should continue the loop.
746
; 12a. If there was no next EBR, return.
747
        test    ebp, ebp
748
        jz      .done
749
; Ok, we have EBR.
750
; 12b. EBRs addresses are relative to the start of extended partition.
751
; For simplicity, just abort if an 32-bit overflow occurs; large disks
752
; are most likely partitioned with GPT, not MBR scheme, since the precise
753
; calculation here would increase limit just twice at the price of big
754
; compatibility problems.
755
        pop     eax     ; load extended partition
756
        add     ebp, eax
757
        jc      .mbr_failed
758
; 12c. If extended partition has not yet started, start it.
759
        test    eax, eax
760
        jnz     @f
761
        mov     eax, ebp
762
@@:
763
; 12c. If the limit is not exceeded, continue the loop.
764
        dec     dword [esp]
765
        push    eax     ; store extended partition
766
        jnz     .new_mbr
767
.mbr_failed:
768
.done:
769
; 13. Cleanup after the loop.
770
        pop     eax     ; not important anymore
771
        pop     eax     ; not important anymore
772
        pop     ebp     ; restore ebp
773
; 14. Release the buffer.
774
; 14a. Test whether it is the global buffer or we have allocated it.
775
        cmp     ebx, mbr_buffer
776
        jz      .release_partition_buffer
777
; 14b. If we have allocated it, free it.
778
        xchg    eax, ebx
779
        call    free
780
        jmp     .nothing
781
; 14c. Otherwise, release reference.
782
.release_partition_buffer:
783
        lock dec [partition_buffer_users]
784
.nothing:
785
; 15. Return.
786
        ret
787
 
788
; This is an internal function called from disk_scan_partitions. It checks
789
; whether the entry pointed to by ecx is a valid entry of partition table.
790
; The entry is valid if the first byte is 0 or 80h, the first sector plus the
791
; length is less than twice the size of media. Multiplication by two is
792
; required since the size mentioned in the partition table can be slightly
793
; greater than the real size.
794
is_partition_table_entry:
795
; 1. Check .Bootable field.
796
        mov     al, [ecx+PARTITION_TABLE_ENTRY.Bootable]
797
        and     al, 7Fh
798
        jnz     .invalid
799
; 3. Calculate first sector + length. Note that .FirstAbsSector is relative
800
; to the MBR/EBR, so the real sum is ebp + .FirstAbsSector + .Length.
801
        mov     eax, ebp
802
        xor     edx, edx
803
        add     eax, [ecx+PARTITION_TABLE_ENTRY.FirstAbsSector]
804
        adc     edx, 0
805
        add     eax, [ecx+PARTITION_TABLE_ENTRY.Length]
806
        adc     edx, 0
807
; 4. Divide by two.
808
        shr     edx, 1
809
        rcr     eax, 1
810
; 5. Compare with capacity. If the subtraction (edx:eax) - .Capacity does not
811
; overflow, this is bad.
812
        sub     eax, dword [esi+DISK.MediaInfo.Capacity]
813
        sbb     edx, dword [esi+DISK.MediaInfo.Capacity+4]
814
        jnc     .invalid
815
.valid:
816
; 5. Return success: CF is cleared.
817
        clc
818
        ret
819
.invalid:
820
; 6. Return fail: CF is set.
821
        stc
822
        ret
823
 
824
; This is an internal function called from disk_scan_partitions. It processes
825
; the entry pointed to by ecx.
826
; * If the entry is invalid, just ignore this entry.
827
; * If the type is zero, just ignore this entry.
828
; * If the type is one of types for extended partition, store the address
829
;   of this partition as the new MBR in [esp+4].
830
; * Otherwise, add the partition to the list of partitions for this disk.
831
;   We don't use the type from the entry to identify the file system;
832
;   fs-specific checks do this more reliably.
833
process_partition_table_entry:
834
; 1. Check for valid entry. If invalid, return (go to 5).
835
        call    is_partition_table_entry
836
        jc      .nothing
837
; 2. Check for empty entry. If invalid, return (go to 5).
838
        mov     al, [ecx+PARTITION_TABLE_ENTRY.Type]
839
        test    al, al
840
        jz      .nothing
841
; 3. Check for extended partition. If extended, go to 6.
842
irp type,\
843
    0x05,\                 ; DOS: extended partition
844
    0x0f,\                 ; WIN95: extended partition, LBA-mapped
845
    0xc5,\                 ; DRDOS/secured: extended partition
846
    0xd5                   ; Old Multiuser DOS secured: extended partition
847
{
848
        cmp     al, type
849
        jz      .extended
850
}
851
; 4. If we are here, that is a normal partition. Add it to the list.
852
; Note that the first sector is relative to MBR/EBR.
853
        mov     eax, ebp
854
        xor     edx, edx
855
        add     eax, [ecx+PARTITION_TABLE_ENTRY.FirstAbsSector]
856
        adc     edx, 0
857
        push    ecx
858
        stdcall disk_add_partition, eax, edx, \
3742 clevermous 859
                [ecx+PARTITION_TABLE_ENTRY.Length], 0, esi
2288 clevermous 860
        pop     ecx
861
.nothing:
862
; 5. Return.
863
        ret
864
.extended:
865
; 6. If we are here, that is an extended partition. Store the address.
866
        mov     eax, [ecx+PARTITION_TABLE_ENTRY.FirstAbsSector]
867
        mov     [esp+4], eax
868
        ret
869
 
870
; This is an internal function called from disk_scan_partitions and
871
; process_partition_table_entry. It adds one partition to the list of
872
; partitions for the media.
3742 clevermous 873
; Important note: start, length, disk MUST be present and
874
; MUST be in the same order as in PARTITION structure.
875
; esi duplicates [disk].
876
proc disk_add_partition stdcall uses ebx edi, start:qword, length:qword, disk:dword
2288 clevermous 877
; 1. Check that this partition will not exceed the limit on total number.
878
        cmp     [esi+DISK.NumPartitions], MAX_NUM_PARTITIONS
879
        jae     .nothing
880
; 2. Check that this partition does not overlap with any already registered
881
; partition. Since any file system assumes that the disk data will not change
882
; outside of its control, such overlap could be destructive.
883
; Since the number of partitions is usually very small and is guaranteed not
884
; to be large, the simple linear search is sufficient.
885
; 2a. Prepare the loop: edi will point to the current item of .Partitions
886
; array, ecx will be the current item, ebx will hold number of items left.
887
        mov     edi, [esi+DISK.Partitions]
888
        mov     ebx, [esi+DISK.NumPartitions]
889
        test    ebx, ebx
890
        jz      .partitionok
891
.scan_existing:
892
; 2b. Get the next partition.
893
        mov     ecx, [edi]
894
        add     edi, 4
895
; The range [.FirstSector, .FirstSector+.Length) must be either entirely to
896
; the left of [start, start+length) or entirely to the right.
897
; 2c. Subtract .FirstSector - start. The possible overflow distinguish between
898
; cases "to the left" (2e) and "to the right" (2d).
899
        mov     eax, dword [ecx+PARTITION.FirstSector]
900
        mov     edx, dword [ecx+PARTITION.FirstSector+4]
901
        sub     eax, dword [start]
902
        sbb     edx, dword [start+4]
903
        jb      .less
904
; 2d. .FirstSector is greater than or equal to start. Check that .FirstSector
905
; is greater than or equal to start+length; the subtraction
906
; (.FirstSector-start) - length must not cause overflow. Go to 2g if life is
907
; good or to 2f in the other case.
908
        sub     eax, dword [length]
909
        sbb     edx, dword [length+4]
910
        jb      .overlap
911
        jmp     .next_existing
912
.less:
913
; 2e. .FirstSector is less than start. Check that .FirstSector+.Length is less
914
; than or equal to start. If the addition (.FirstSector-start) + .Length does
915
; not cause overflow, then .FirstSector + .Length is strictly less than start;
916
; since the equality is also valid, use decrement preliminarily. Go to 2g or
917
; 2f depending on the overflow.
918
        sub     eax, 1
919
        sbb     edx, 0
920
        add     eax, dword [ecx+PARTITION.Length]
921
        adc     edx, dword [ecx+PARTITION.Length+4]
922
        jnc     .next_existing
923
.overlap:
924
; 2f. The partition overlaps with previously registered partition. Say warning
925
; and return with nothing done.
926
        dbgstr 'two partitions overlap, ignoring the last one'
927
        jmp     .nothing
928
.next_existing:
929
; 2g. The partition does not overlap with the current partition. Continue the
930
; loop.
931
        dec     ebx
932
        jnz     .scan_existing
933
.partitionok:
934
; 3. The partition has passed tests. Reallocate the partitions array for a new
935
; entry.
936
; 3a. Call the allocator.
937
        mov     eax, [esi+DISK.NumPartitions]
938
        inc     eax     ; one more entry
939
        shl     eax, 2  ; each entry is dword
940
        call    malloc
941
; 3b. Test the result. If failed, return with nothing done.
942
        test    eax, eax
943
        jz      .nothing
944
; 3c. Copy the old array to the new array.
945
        mov     edi, eax
946
        push    esi
947
        mov     ecx, [esi+DISK.NumPartitions]
948
        mov     esi, [esi+DISK.Partitions]
949
        rep movsd
950
        pop     esi
951
; 3d. Set the field in the DISK structure to the new array.
952
        xchg    [esi+DISK.Partitions], eax
953
; 3e. Free the old array.
954
        call    free
955
; 4. Recognize the file system.
956
; 4a. Call the filesystem recognizer. It will allocate the PARTITION structure
957
; with possible filesystem-specific fields.
958
        call    disk_detect_partition
959
; 4b. Check return value. If zero, return with list not changed; so far only
960
; the array was reallocated, this is ok for other code.
961
        test    eax, eax
962
        jz      .nothing
963
; 5. Insert the new partition to the list.
964
        stosd
965
        inc     [esi+DISK.NumPartitions]
966
; 6. Return.
967
.nothing:
968
        ret
969
endp
970
 
971
; This is an internal function called from disk_add_partition.
972
; It tries to recognize the file system on the partition and allocates the
973
; corresponding PARTITION structure with filesystem-specific fields.
974
disk_detect_partition:
975
; This function inherits the stack frame from disk_add_partition. In stdcall
976
; with ebp-based frame arguments start from ebp+8, since [ebp]=saved ebp
977
; and [ebp+4]=return address.
978
virtual at ebp+8
979
.start  dq      ?
980
.length dq      ?
3742 clevermous 981
.disk   dd      ?
2288 clevermous 982
end virtual
3742 clevermous 983
; 1. Read the bootsector to the buffer.
2643 clevermous 984
; When disk_add_partition is called, ebx contains a pointer to
3742 clevermous 985
; a three-sectors-sized buffer. This function saves ebx in the stack
2643 clevermous 986
; immediately before ebp.
3742 clevermous 987
        mov     ebx, [ebp-4] ; get buffer
988
        add     ebx, 512     ; advance over MBR data to bootsector data
989
        add     ebp, 8       ; ebp points to part of PARTITION structure
990
        xor     eax, eax     ; first sector of the partition
991
        call    fs_read32_sys
992
        push    eax
2643 clevermous 993
; 2. Run tests for all supported filesystems. If at least one test succeeded,
994
; go to 4.
3742 clevermous 995
; For tests:
996
; ebp -> first three fields of PARTITION structure, .start, .length, .disk;
997
; [esp] = error code after bootsector read: 0 = ok, otherwise = failed,
998
; ebx points to the buffer for bootsector,
999
; ebx+512 points to 512-bytes buffer that can be used for anything.
2643 clevermous 1000
        call    fat_create_partition
1001
        test    eax, eax
1002
        jnz     .success
3742 clevermous 1003
        call    ntfs_create_partition
1004
        test    eax, eax
1005
        jnz     .success
1006
        call    ext2_create_partition
1007
        test    eax, eax
1008
        jnz     .success
3913 dunkaist 1009
        call    xfs_create_partition
1010
        test    eax, eax
1011
        jnz     .success
2643 clevermous 1012
; 3. No file system has recognized the volume, so just allocate the PARTITION
2288 clevermous 1013
; structure without extra fields.
3598 clevermous 1014
        movi    eax, sizeof.PARTITION
2288 clevermous 1015
        call    malloc
1016
        test    eax, eax
1017
        jz      .nothing
3742 clevermous 1018
        mov     edx, dword [ebp+PARTITION.FirstSector]
2288 clevermous 1019
        mov     dword [eax+PARTITION.FirstSector], edx
3742 clevermous 1020
        mov     edx, dword [ebp+PARTITION.FirstSector+4]
2288 clevermous 1021
        mov     dword [eax+PARTITION.FirstSector+4], edx
3742 clevermous 1022
        mov     edx, dword [ebp+PARTITION.Length]
2288 clevermous 1023
        mov     dword [eax+PARTITION.Length], edx
3742 clevermous 1024
        mov     edx, dword [ebp+PARTITION.Length+4]
2288 clevermous 1025
        mov     dword [eax+PARTITION.Length+4], edx
2643 clevermous 1026
        mov     [eax+PARTITION.Disk], esi
3742 clevermous 1027
        mov     [eax+PARTITION.FSUserFunctions], default_fs_functions
2643 clevermous 1028
.success:
2288 clevermous 1029
.nothing:
3742 clevermous 1030
        sub     ebp, 8 ; restore ebp
2643 clevermous 1031
; 4. Return with eax = pointer to PARTITION or NULL.
1032
        pop     ecx
2288 clevermous 1033
        ret
1034
 
3742 clevermous 1035
iglobal
1036
align 4
1037
default_fs_functions:
1038
        dd      free
1039
        dd      0       ; no user functions
1040
endg
1041
 
2288 clevermous 1042
; This function is called from file_system_lfn.
1043
; This handler gets the control each time when fn 70 is called
1044
; with unknown item of root subdirectory.
1045
; in: esi -> name
1046
;     ebp = 0 or rest of name relative to esi
1047
; out: if the handler processes path, it must not return in file_system_lfn,
1048
;      but instead pop return address and return directly to the caller
1049
;      otherwise simply return
1050
dyndisk_handler:
1051
        push    ebx edi         ; save registers used in file_system_lfn
1052
; 1. Acquire the mutex.
1053
        mov     ecx, disk_list_mutex
1054
        call    mutex_lock
1055
; 2. Loop over the list of DISK structures.
1056
; 2a. Initialize.
1057
        mov     ebx, disk_list
1058
.scan:
1059
; 2b. Get the next item.
1060
        mov     ebx, [ebx+DISK.Next]
1061
; 2c. Check whether the list is done. If so, go to 3.
1062
        cmp     ebx, disk_list
1063
        jz      .notfound
1064
; 2d. Compare names. If names match, go to 5.
1065
        mov     edi, [ebx+DISK.Name]
1066
        push    esi
1067
@@:
1068
; esi points to the name from fs operation; it is terminated by zero or slash.
1069
        lodsb
1070
        test    al, al
1071
        jz      .eoin_dec
1072
        cmp     al, '/'
1073
        jz      .eoin
1074
; edi points to the disk name.
1075
        inc     edi
1076
; edi points to lowercase name, this is a requirement for the driver.
1077
; Characters at esi can have any register. Lowercase the current character.
1078
; This lowercasing works for latin letters and digits; since the disk name
1079
; should not contain other symbols, this is ok.
1080
        or      al, 20h
1081
        cmp     al, [edi-1]
1082
        jz      @b
1083
.wrongname:
1084
; 2f. Names don't match. Continue the loop.
1085
        pop     esi
1086
        jmp     .scan
1087
.notfound:
1088
; The loop is done and no name matches.
1089
; 3. Release the mutex.
1090
        call    mutex_unlock
1091
; 4. Return normally.
1092
        pop     edi ebx         ; restore registers used in file_system_lfn
1093
        ret
1094
; part of 2d: the name matches partially, but we must check that this is full
1095
; equality.
1096
.eoin_dec:
1097
        dec     esi
1098
.eoin:
1099
        cmp     byte [edi], 0
1100
        jnz     .wrongname
1101
; We found the addressed DISK structure.
1102
; 5. Reference the disk.
1103
        lock inc [ebx+DISK.RefCount]
1104
; 6. Now we are sure that the DISK structure is not going to die at least
1105
; while we are working with it, so release the global mutex.
1106
        call    mutex_unlock
2643 clevermous 1107
        pop     ecx             ; pop from the stack saved value of esi
2288 clevermous 1108
; 7. Acquire the mutex for media object.
1109
        pop     edi             ; restore edi
1110
        lea     ecx, [ebx+DISK.MediaLock]
1111
        call    mutex_lock
1112
; 8. Get the media object. If it is not NULL, reference it.
1113
        xor     edx, edx
1114
        cmp     [ebx+DISK.MediaInserted], dl
1115
        jz      @f
1116
        mov     edx, ebx
1117
        inc     [ebx+DISK.MediaRefCount]
1118
@@:
1119
; 9. Now we are sure that the media object, if it exists, is not going to die
1120
; at least while we are working with it, so release the mutex for media object.
1121
        call    mutex_unlock
1122
        mov     ecx, ebx
1123
        pop     ebx eax         ; restore ebx, pop return address
1124
; 10. Check whether the fs operation wants to enumerate partitions (go to 11)
1125
; or work with some concrete partition (go to 12).
1126
        cmp     byte [esi], 0
1127
        jnz     .haspartition
1128
; 11. The fs operation wants to enumerate partitions.
1129
; 11a. Only "list directory" operation is applicable to / path. Check
1130
; the operation code. If wrong, go to 13.
1131
        cmp     dword [ebx], 1
1132
        jnz     .access_denied
1133
; 11b. If the media is inserted, use 'fs_dyndisk_next' as an enumeration
1134
; procedure. Otherwise, use 'fs_dyndisk_next_nomedia'.
1135
        mov     esi, fs_dyndisk_next_nomedia
1136
        test    edx, edx
1137
        jz      @f
1138
        mov     esi, fs_dyndisk_next
1139
@@:
1140
; 11c. Let the procedure from fs_lfn.inc do the job.
1141
        jmp     file_system_lfn.maindir_noesi
1142
.haspartition:
1143
; 12. The fs operation has specified some partition.
1144
; 12a. Store parameters for callback functions.
1145
        push    edx
1146
        push    ecx
1147
; 12b. Store callback functions.
1148
        push    dyndisk_cleanup
1149
        push    fs_dyndisk
1150
        mov     edi, esp
1151
; 12c. Let the procedure from fs_lfn.inc do the job.
1152
        jmp     file_system_lfn.found2
1153
.access_denied:
1154
; 13. Fail the operation with the appropriate code.
1155
        mov     dword [esp+32], ERROR_ACCESS_DENIED
1156
.cleanup:
1157
; 14. Cleanup.
1158
        mov     esi, ecx        ; disk*dereference assume that esi points to DISK
1159
.cleanup_esi:
1160
        test    edx, edx        ; if there are no media, we didn't reference it
1161
        jz      @f
1162
        call    disk_media_dereference
1163
@@:
1164
        call    disk_dereference
1165
; 15. Return.
1166
        ret
1167
 
1168
; This is a callback for cleaning up things called from file_system_lfn.found2.
1169
dyndisk_cleanup:
1170
        mov     esi, [edi+8]
1171
        mov     edx, [edi+12]
1172
        jmp     dyndisk_handler.cleanup_esi
1173
 
1174
; This is a callback for enumerating partitions called from
1175
; file_system_lfn.maindir in the case of inserted media.
1176
; It just increments eax until DISK.NumPartitions reached and then
1177
; cleans up.
1178
fs_dyndisk_next:
1179
        cmp     eax, [ecx+DISK.NumPartitions]
1180
        jae     .nomore
1181
        inc     eax
1182
        clc
1183
        ret
1184
.nomore:
1185
        pusha
1186
        mov     esi, ecx
1187
        call    disk_media_dereference
1188
        call    disk_dereference
1189
        popa
1190
        stc
1191
        ret
1192
 
1193
; This is a callback for enumerating partitions called from
1194
; file_system_lfn.maindir in the case of missing media.
1195
; In this case we create one pseudo-partition.
1196
fs_dyndisk_next_nomedia:
1197
        cmp     eax, 1
1198
        jae     .nomore
1199
        inc     eax
1200
        clc
1201
        ret
1202
.nomore:
1203
        pusha
1204
        mov     esi, ecx
1205
        call    disk_dereference
1206
        popa
1207
        stc
1208
        ret
1209
 
1210
; This is a callback for doing real work with selected partition.
1211
; Currently this is just placeholder, since no file systems are supported.
1212
; edi = esp -> {dd fs_dyndisk, dd dyndisk_cleanup, dd pointer to DISK, dd media object}
1213
; ecx = partition number, esi+ebp = ASCIIZ name
1214
fs_dyndisk:
1215
        dec     ecx     ; convert to zero-based partition index
4273 clevermous 1216
        pop     edx edx edx ; edx = pointer to DISK, dword [esp] = NULL or edx
1217
; If the driver does not support insert notifications and we are the only fs
1218
; operation with this disk, ask the driver whether the media
1219
; was inserted/removed/changed. Otherwise, assume that media status is valid.
1220
        test    byte [edx+DISK.DriverFlags], DISK_NO_INSERT_NOTIFICATION
1221
        jz      .media_accurate
1222
        push    ecx esi
1223
        mov     esi, edx
1224
        cmp     dword [esp+8], 0
1225
        jz      .test_no_media
1226
        cmp     [esi+DISK.MediaRefCount], 2
1227
        jnz     .media_accurate_pop
1228
        lea     edx, [esi+DISK.MediaInfo]
1229
        and     [edx+DISKMEDIAINFO.Flags], 0
1230
        mov     al, DISKFUNC.querymedia
1231
        stdcall disk_call_driver, edx
2288 clevermous 1232
        test    eax, eax
4273 clevermous 1233
        jz      .media_accurate_pop
1234
        stdcall disk_media_dereference  ; drop our reference so that disk_media_changed could close the media
1235
        stdcall disk_media_changed, esi, 0
1236
        and     dword [esp+8], 0        ; no media
1237
.test_no_media:
1238
        stdcall disk_media_changed, esi, 1      ; issue fake notification
1239
                ; if querymedia() inside disk_media_changed returns error, the notification is ignored
1240
        cmp     [esi+DISK.MediaInserted], 0
1241
        jz      .media_accurate_pop
1242
        lock inc [esi+DISK.MediaRefCount]
1243
        mov     dword [esp+8], esi
1244
.media_accurate_pop:
1245
        mov     edx, esi
1246
        pop     esi ecx
1247
.media_accurate:
1248
        pop     eax
1249
        test    eax, eax
2288 clevermous 1250
        jz      .nomedia
1251
.main:
1252
        cmp     ecx, [edx+DISK.NumPartitions]
1253
        jae     .notfound
2643 clevermous 1254
        mov     eax, [edx+DISK.Partitions]
1255
        mov     eax, [eax+ecx*4]
1256
        mov     edi, [eax+PARTITION.FSUserFunctions]
1257
        mov     ecx, [ebx]
3742 clevermous 1258
        cmp     [edi+4], ecx
2643 clevermous 1259
        jbe     .unsupported
1260
        push    edx
1261
        push    ebp
1262
        mov     ebp, eax
3742 clevermous 1263
        call    dword [edi+8+ecx*4]
2643 clevermous 1264
        pop     ebp
1265
        pop     edx
1266
        mov     dword [esp+32], eax
1267
        mov     dword [esp+20], ebx
2288 clevermous 1268
.cleanup:
1269
        mov     esi, edx
1270
        call    disk_media_dereference
1271
        call    disk_dereference
1272
        ret
2643 clevermous 1273
.nofs:
1274
        mov     dword [esp+32], ERROR_UNKNOWN_FS
1275
        jmp     .cleanup
2288 clevermous 1276
.notfound:
1277
        mov     dword [esp+32], ERROR_FILE_NOT_FOUND
1278
        jmp     .cleanup
2643 clevermous 1279
.unsupported:
3742 clevermous 1280
        cmp     edi, default_fs_functions
1281
        jz      .nofs
2643 clevermous 1282
        mov     dword [esp+32], ERROR_UNSUPPORTED_FS
1283
        jmp     .cleanup
2288 clevermous 1284
.nomedia:
1285
        test    ecx, ecx
1286
        jnz     .notfound
1287
        mov     dword [esp+32], ERROR_DEVICE
1288
        mov     esi, edx
1289
        call    disk_dereference
1290
        ret
1291
 
1292
; This function is called from file_system_lfn.
1293
; This handler is called when virtual root is enumerated
1294
; and must return all items which can be handled by this.
1295
; It is called several times, first time with eax=0
1296
; in: eax = 0 for first call, previously returned value for subsequent calls
1297
; out: eax = 0 => no more items
1298
;      eax != 0 => buffer pointed to by edi contains name of item
1299
dyndisk_enum_root:
1300
        push    edx             ; save register used in file_system_lfn
1301
        mov     ecx, disk_list_mutex    ; it will be useful
1302
; 1. If this is the first call, acquire the mutex and initialize.
1303
        test    eax, eax
1304
        jnz     .notfirst
1305
        call    mutex_lock
1306
        mov     eax, disk_list
1307
.notfirst:
1308
; 2. Get next item.
1309
        mov     eax, [eax+DISK.Next]
1310
; 3. If there are no more items, go to 6.
1311
        cmp     eax, disk_list
1312
        jz      .last
1313
; 4. Copy name from the DISK structure to edi.
1314
        push    eax esi
1315
        mov     esi, [eax+DISK.Name]
1316
@@:
1317
        lodsb
1318
        stosb
1319
        test    al, al
1320
        jnz     @b
1321
        pop     esi eax
1322
; 5. Return with eax = item.
1323
        pop     edx             ; restore register used in file_system_lfn
1324
        ret
1325
.last:
1326
; 6. Release the mutex and return with eax = 0.
1327
        call    mutex_unlock
1328
        xor     eax, eax
1329
        pop     edx             ; restore register used in file_system_lfn
1330
        ret