Subversion Repositories Kolibri OS

Rev

Rev 2140 | Rev 2257 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2119 clevermous 1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2
;;                                                              ;;
3
;; Copyright (C) KolibriOS team 2011. All rights reserved.      ;;
4
;; Distributed under terms of the GNU General Public License    ;;
5
;;                                                              ;;
6
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
7
 
2140 clevermous 8
$Revision: 2145 $
9
 
2119 clevermous 10
; =============================================================================
11
; ================================= Constants =================================
12
; =============================================================================
13
; Error codes for callback functions.
14
DISK_STATUS_OK              = 0 ; success
15
DISK_STATUS_GENERAL_ERROR   = -1; if no other code is suitable
16
DISK_STATUS_INVALID_CALL    = 1 ; invalid input parameters
17
DISK_STATUS_NO_MEDIA        = 2 ; no media present
18
DISK_STATUS_END_OF_MEDIA    = 3 ; end of media while reading/writing data
19
; Driver flags. Represent bits in DISK.DriverFlags.
20
DISK_NO_INSERT_NOTIFICATION = 1
21
; Media flags. Represent bits in DISKMEDIAINFO.Flags.
22
DISK_MEDIA_READONLY = 1
23
 
24
; If we see too many partitions, probably there is some error on the disk.
25
; 256 partitions should be enough for any reasonable use.
26
; Also, the same number is limiting the number of MBRs to process; if we see
27
; too many MBRs, probably there is a loop in the MBR structure.
28
MAX_NUM_PARTITIONS = 256
29
 
30
; =============================================================================
31
; ================================ Structures =================================
32
; =============================================================================
33
; This structure defines all callback functions for working with the physical
34
; device. They are implemented by a driver. Objects with this structure reside
35
; in a driver.
36
struct DISKFUNC
37
.strucsize      dd      ?
38
; Size of the structure. This field is intended for possible extensions of
39
; this structure. If a new function is added to this structure and a driver
40
; implements an old version, the caller can detect this by checking .strucsize,
41
; so the driver remains compatible.
42
.close          dd      ?
43
; The pointer to the function which frees all driver-specific resources for
44
; the disk.
45
; Optional, may be NULL.
46
; void close(void* userdata);
47
.closemedia     dd      ?
48
; The pointer to the function which informs the driver that the kernel has
49
; finished all processing with the current media. If media is removed, the
50
; driver should decline all requests to that media with DISK_STATUS_NO_MEDIA,
51
; even if new media is inserted, until this function is called. If media is
52
; removed, a new call to 'disk_media_changed' is not allowed until this
53
; function is called.
54
; Optional, may be NULL (if media is not removable).
55
; void closemedia(void* userdata);
56
.querymedia     dd      ?
57
; The pointer to the function which determines capabilities of the media.
58
; int querymedia(void* userdata, DISKMEDIAINFO* info);
59
; Return value: one of DISK_STATUS_*
60
.read           dd      ?
61
; The pointer to the function which reads data from the device.
62
; int read(void* userdata, void* buffer, __int64 startsector, int* numsectors);
63
; input: *numsectors = number of sectors to read
64
; output: *numsectors = number of sectors which were successfully read
65
; Return value: one of DISK_STATUS_*
66
.write          dd      ?
67
; The pointer to the function which writes data to the device.
68
; Optional, may be NULL.
69
; int write(void* userdata, void* buffer, __int64 startsector, int* numsectors);
70
; input: *numsectors = number of sectors to write
71
; output: *numsectors = number of sectors which were successfully written
72
; Return value: one of DISK_STATUS_*
73
.flush          dd      ?
74
; The pointer to the function which flushes the internal device cache.
75
; Optional, may be NULL.
76
; int flush(void* userdata);
77
; Return value: one of DISK_STATUS_*
78
; Note that read/write are called by the cache manager, so a driver should not
79
; create a software cache. This function is implemented for flushing a hardware
80
; cache, if it exists.
2140 clevermous 81
.adjust_cache_size      dd      ?
82
; The pointer to the function which returns the cache size for this device.
83
; Optional, may be NULL.
84
; unsigned int adjust_cache_size(unsigned int suggested_size);
85
; Return value: 0 = disable cache, otherwise = used cache size in bytes.
2119 clevermous 86
ends
87
 
88
; This structure holds an information about a media.
89
; Objects with this structure are allocated by the kernel as a part of DISK
90
; structure and filled by a driver in the 'querymedia' callback.
91
struct DISKMEDIAINFO
92
.Flags          dd      ?
93
; Combination of DISK_MEDIA_* bits.
94
.SectorSize     dd      ?
95
; Size of the sector.
96
.Capacity       dq      ?
97
; Size of the media in sectors.
98
ends
99
 
2140 clevermous 100
; This structure represents disk cache. To follow the old implementation,
101
; there are two distinct caches for a disk, one for "system" data, other
102
; for "application" data.
103
struct DISKCACHE
104
.Lock           MUTEX
105
; Lock to protect the cache.
106
; The following fields are inherited from data32.inc:cache_ideX.
107
.pointer     rd 1
108
.data_size   rd 1   ; not use
109
.data        rd 1
110
.sad_size    rd 1
111
.search_start       rd 1
112
ends
113
 
2119 clevermous 114
; This structure represents a disk device and its media for the kernel.
115
; This structure is allocated by the kernel in the 'disk_add' function,
116
; freed in the 'disk_dereference' function.
117
struct DISK
118
; Fields of disk object
119
.Next           dd      ?
120
.Prev           dd      ?
121
; All disk devices are linked in one list with these two fields.
122
; Head of the list is the 'disk_list' variable.
123
.Functions      dd      ?
124
; Pointer to the 'DISKFUNC' structure with driver functions.
125
.Name           dd      ?
126
; Pointer to the string used for accesses through the global filesystem.
127
.UserData       dd      ?
128
; This field is passed to all callback functions so a driver can decide which
129
; physical device is addressed.
130
.DriverFlags    dd      ?
131
; Bitfield. Currently only DISK_NO_INSERT_NOTIFICATION bit is defined.
132
; If it is set, the driver will never issue 'disk_media_changed' notification
133
; with argument set to true, so the kernel must try to detect media during
134
; requests from the file system.
135
.RefCount       dd      ?
136
; Count of active references to this structure. One reference is kept during
137
; the lifetime of the structure between 'disk_add' and 'disk_del'.
138
; Another reference is taken during any filesystem operation for this disk.
139
; One reference is added if media is inserted.
140
; The structure is destroyed when the reference count decrements to zero:
141
; this usually occurs in 'disk_del', but can be delayed to the end of last
142
; filesystem operation, if one is active.
2129 serge 143
.MediaLock              MUTEX
2119 clevermous 144
; Lock to protect the MEDIA structure. See the description after
145
; 'disk_list_mutex' for the locking strategy.
146
; Fields of media object
147
.MediaInserted          db      ?
148
; 0 if media is not inserted, nonzero otherwise.
149
.MediaUsed              db      ?
150
; 0 if media fields are not used, nonzero otherwise. If .MediaRefCount is
151
; nonzero, this field is nonzero too; however, when .MediaRefCount goes
152
; to zero, there is some time interval during which media object is still used.
153
                align 4
154
; The following fields are not valid unless either .MediaInserted is nonzero
155
; or they are accessed from a code which has obtained the reference when
156
; .MediaInserted was nonzero.
157
.MediaRefCount          dd      ?
158
; Count of active references to the media object. One reference is kept during
159
; the lifetime of the media between two calls to 'disk_media_changed'.
160
; Another reference is taken during any filesystem operation for this media.
161
; The callback 'closemedia' is called when the reference count decrements to
162
; zero: this usually occurs in 'disk_media_changed', but can be delayed to the
163
; end of last filesystem operation, if one is active.
164
.MediaInfo              DISKMEDIAINFO
165
; This field keeps an information about the current media.
166
.NumPartitions  dd      ?
167
; Number of partitions on this media.
168
.Partitions     dd      ?
169
; Pointer to array of .NumPartitions pointers to PARTITION structures.
2140 clevermous 170
.cache_size     dd      ?
171
; inherited from cache_ideX_size
172
.SysCache       DISKCACHE
173
.AppCache       DISKCACHE
174
; Two caches for the disk.
2119 clevermous 175
ends
176
 
177
; This structure represents one partition for the kernel. This is a base
178
; template, the actual contents after common fields is determined by the
2129 serge 179
; file system code for this partition.
2119 clevermous 180
struct PARTITION
181
.FirstSector    dq      ?
182
; First sector of the partition.
183
.Length         dq      ?
184
; Length of the partition in sectors.
2140 clevermous 185
.Disk           dd      ?
186
; Pointer to parent DISK structure.
2119 clevermous 187
.FSUserFunctions        dd      ?
188
; Handlers for the sysfunction 70h. This field is a pointer to the following
189
; array. The first dword is a number of supported subfunctions, other dwords
190
; point to handlers of corresponding subfunctions.
191
; This field is 0 if file system is not recognized.
192
; ...fs-specific data may follow...
193
ends
194
 
195
; This is an external structure, it represents an entry in the partition table.
196
struct PARTITION_TABLE_ENTRY
197
.Bootable       db      ?
198
; 80h = bootable partition, 0 = non-bootable partition, other values = invalid
199
.FirstHead      db      ?
200
.FirstSector    db      ?
201
.FirstTrack     db      ?
202
; Coordinates of first sector in CHS.
203
.Type           db      ?
204
; Partition type, one of predefined constants. 0 = empty, several types denote
205
; extended partition (see process_partition_table_entry), we are not interested
206
; in other values.
207
.LastHead       db      ?
208
.LastSector     db      ?
209
.LastTrack      db      ?
210
; Coordinates of last sector in CHS.
211
.FirstAbsSector dd      ?
212
; Coordinate of first sector in LBA.
213
.Length         dd      ?
214
; Length of the partition in sectors.
215
ends
216
 
217
; =============================================================================
218
; ================================ Global data ================================
219
; =============================================================================
220
iglobal
221
; The pseudo-item for the list of all DISK structures.
222
; Initialized to the empty list.
223
disk_list:
224
        dd      disk_list
225
        dd      disk_list
226
endg
227
uglobal
228
; This mutex guards all operations with the global list of DISK structures.
2129 serge 229
disk_list_mutex MUTEX
2119 clevermous 230
; * There are two dependent objects, a disk and a media. In the simplest case
231
;   disk and media are both non-removable. However, in the general case both
232
;   can be removed at any time, simultaneously or only media, this makes things
233
;   complicated.
234
; * For efficiency, both disk and media objects are located in the one
235
;   structure named DISK. However, logically they are different.
236
; * The following operations use data of disk object: adding (disk_add);
237
;   deleting (disk_del); filesystem (fs_lfn which eventually calls
238
;   dyndisk_handler or dyndisk_enum_root).
239
; * The following operations use data of media object: adding/removing
240
;   (disk_media_changed); filesystem (fs_lfn which eventually calls
241
;   dyndisk_handler; dyndisk_enum_root doesn't work with media).
242
; * Notifications disk_add, disk_media_changed, disk_del are synchronized
243
;   between themselves, this is a requirement for the driver. However, file
244
;   system operations are asynchronous, can be issued at any time by any
245
;   thread.
246
; * We must prevent a situation when a filesystem operation thinks that the
247
;   object is still valid but in fact the notification has destroyed the
248
;   object. So we keep a reference counter for both disk and media and destroy
249
;   the object when this counter goes to zero.
250
; * The driver must know when it is safe to free driver-allocated resources.
251
;   The object can be alive even after death notification has completed.
252
;   We use special callbacks to satisfy both assertions: 'close' for the disk
253
;   and 'closemedia' for the media. The destruction of the object includes
254
;   calling the corresponding callback.
255
; * Each filesystem operation keeps one reference for the disk and one
256
;   reference for the media. Notification disk_del forces notification on the
257
;   media death, so the reference counter for the disk is always not less than
258
;   the reference counter for the media.
259
; * Two operations "get the object" and "increment the reference counter" can
260
;   not be done simultaneously. We use a mutex to guard the consistency here.
261
;   It must be a part of the container for the object, so that this mutex can
262
;   be acquired as a part of getting the object from the container. The
263
;   container for disk object is the global list, and this list is guarded by
264
;   'disk_list_mutex'. The container for media object is the disk object, and
265
;   the corresponding mutex is DISK.MediaLock.
266
; * Notifications do not change the data of objects, they can only remove
267
;   objects. Thus we don't need another synchronization at this level. If two
268
;   filesystem operations are referencing the same filesystem data, this is
269
;   better resolved at the level of the filesystem.
270
endg
271
 
272
iglobal
2140 clevermous 273
; The function 'disk_scan_partitions' needs three 512-byte buffers for
274
; MBR, bootsector and fs-temporary sector data. It can not use the static
275
; buffers always, since it can be called for two or more disks in parallel.
276
; However, this case is not typical. We reserve three static 512-byte buffers
277
; and a flag that these buffers are currently used. If 'disk_scan_partitions'
278
; detects that the buffers are currently used, it allocates buffers from the
279
; heap.
2119 clevermous 280
; The flag is implemented as a global dword variable. When the static buffers
281
; are not used, the value is -1. When the static buffers are used, the value
282
; is normally 0 and temporarily can become greater. The function increments
283
; this value. If the resulting value is zero, it uses the buffers and
284
; decrements the value when the job is done. Otherwise, it immediately
285
; decrements the value and uses buffers from the heap, allocated in the
286
; beginning and freed in the end.
287
partition_buffer_users  dd      -1
288
endg
289
uglobal
2140 clevermous 290
; The static buffers for MBR, bootsector and fs-temporary sector data.
2119 clevermous 291
align 16
292
mbr_buffer      rb      512
293
bootsect_buffer rb      512
2140 clevermous 294
fs_tmp_buffer   rb      512
2119 clevermous 295
endg
296
 
297
iglobal
298
; This is the array of default implementations of driver callbacks.
299
; Same as DRIVERFUNC structure except for the first field; all functions must
300
; have the default implementations.
301
align 4
302
disk_default_callbacks:
303
        dd      disk_default_close
304
        dd      disk_default_closemedia
305
        dd      disk_default_querymedia
306
        dd      disk_default_read
307
        dd      disk_default_write
308
        dd      disk_default_flush
2140 clevermous 309
        dd      disk_default_adjust_cache_size
2119 clevermous 310
endg
311
 
312
; =============================================================================
313
; ================================= Functions =================================
314
; =============================================================================
315
 
316
; This function registers a disk device.
317
; This includes:
318
; - allocating an internal structure describing this device;
319
; - registering this structure in the global filesystem.
320
; The function initializes the disk as if there is no media. If a media is
321
; present, the function 'disk_media_changed' should be called after this
322
; function succeeds.
323
; Parameters:
324
; [esp+4] = pointer to DISKFUNC structure with the callbacks
325
; [esp+8] = pointer to name (ASCIIZ string)
326
; [esp+12] = userdata to be passed to the callbacks as is.
327
; [esp+16] = flags, bitfield. Currently only DISK_NO_INSERT_NOTIFICATION bit
328
;            is defined.
329
; Return value:
330
; NULL = operation has failed
331
; non-NULL = handle of the disk. This handle can be used
332
; in the operations with other Disk* functions.
333
; The handle is the pointer to the internal structure DISK.
334
disk_add:
335
        push    ebx esi         ; save used registers to be stdcall
336
; 1. Allocate the DISK structure.
337
; 1a. Call the heap manager.
338
        push    sizeof.DISK
339
        pop     eax
340
        call    malloc
341
; 1b. Check the result. If allocation failed, return (go to 9) with eax = 0.
342
        test    eax, eax
343
        jz      .nothing
344
; 2. Copy disk name to the DISK structure.
345
; 2a. Get length of the name, including the terminating zero.
2140 clevermous 346
        mov     ebx, [esp+8+8]  ; ebx = pointer to name
2119 clevermous 347
        push    eax             ; save allocated pointer to DISK
348
        xor     eax, eax        ; the argument of malloc() is in eax
349
@@:
350
        inc     eax
2140 clevermous 351
        cmp     byte [ebx+eax-1], 0
2119 clevermous 352
        jnz     @b
353
; 2b. Call the heap manager.
354
        call    malloc
355
; 2c. Check the result. If allocation failed, go to 7.
2140 clevermous 356
        pop     esi             ; restore allocated pointer to DISK
2119 clevermous 357
        test    eax, eax
358
        jz      .free
359
; 2d. Store the allocated pointer to the DISK structure.
2140 clevermous 360
        mov     [esi+DISK.Name], eax
2119 clevermous 361
; 2e. Copy the name.
362
@@:
2140 clevermous 363
        mov     dl, [ebx]
2119 clevermous 364
        mov     [eax], dl
2140 clevermous 365
        inc     ebx
2119 clevermous 366
        inc     eax
367
        test    dl, dl
368
        jnz     @b
369
; 3. Copy other arguments of the function to the DISK structure.
370
        mov     eax, [esp+4+8]
2140 clevermous 371
        mov     [esi+DISK.Functions], eax
2119 clevermous 372
        mov     eax, [esp+12+8]
2140 clevermous 373
        mov     [esi+DISK.UserData], eax
2119 clevermous 374
        mov     eax, [esp+16+8]
2140 clevermous 375
        mov     [esi+DISK.DriverFlags], eax
2119 clevermous 376
; 4. Initialize other fields of the DISK structure.
2140 clevermous 377
; Media is not inserted, reference counter is 1.
378
        lea     ecx, [esi+DISK.MediaLock]
2129 serge 379
        call    mutex_init
2119 clevermous 380
        xor     eax, eax
2140 clevermous 381
        mov     dword [esi+DISK.MediaInserted], eax
2119 clevermous 382
        inc     eax
2140 clevermous 383
        mov     [esi+DISK.RefCount], eax
2119 clevermous 384
; The DISK structure is initialized.
385
; 5. Insert the new structure to the global list.
386
; 5a. Acquire the mutex.
2129 serge 387
        mov     ecx, disk_list_mutex
388
        call    mutex_lock
2119 clevermous 389
; 5b. Insert item to the tail of double-linked list.
390
        mov     edx, disk_list
2140 clevermous 391
        list_add_tail esi, edx     ;esi= new edx= list head
2119 clevermous 392
; 5c. Release the mutex.
2140 clevermous 393
        call    mutex_unlock
2119 clevermous 394
; 6. Return with eax = pointer to DISK.
2140 clevermous 395
        xchg    eax, esi
2119 clevermous 396
        jmp     .nothing
397
.free:
398
; Memory allocation for DISK structure succeeded, but for disk name failed.
399
; 7. Free the DISK structure.
2140 clevermous 400
        xchg    eax, esi
2119 clevermous 401
        call    free
402
; 8. Return with eax = 0.
403
        xor     eax, eax
404
.nothing:
405
; 9. Return.
406
        pop     esi ebx         ; restore used registers to be stdcall
407
        ret     16              ; purge 4 dword arguments to be stdcall
408
 
409
; This function deletes a disk device from the global filesystem.
410
; This includes:
411
; - removing a media including all partitions;
412
; - deleting this structure from the global filesystem;
413
; - dereferencing the DISK structure and possibly destroying it.
414
; Parameters:
415
; [esp+4] = handle of the disk, i.e. the pointer to the DISK structure.
416
; Return value: none.
417
disk_del:
2129 serge 418
        push    esi         ; save used registers to be stdcall
2119 clevermous 419
; 1. Force media to be removed. If the media is already removed, the
420
; call does nothing.
421
        mov     esi, [esp+4+8]  ; esi = handle of the disk
422
        stdcall disk_media_changed, esi, 0
423
; 2. Delete the structure from the global list.
424
; 2a. Acquire the mutex.
2129 serge 425
        mov     ecx, disk_list_mutex
426
        call    mutex_lock
2119 clevermous 427
; 2b. Delete item from double-linked list.
428
        mov     eax, [esi+DISK.Next]
429
        mov     edx, [esi+DISK.Prev]
430
        mov     [eax+DISK.Prev], edx
431
        mov     [edx+DISK.Next], eax
432
; 2c. Release the mutex.
2129 serge 433
        call    mutex_unlock
2119 clevermous 434
; 3. The structure still has one reference created in disk_add. Remove this
435
; reference. If there are no other references, disk_dereference will free the
436
; structure.
437
        call    disk_dereference
438
; 4. Return.
2129 serge 439
        pop     esi             ; restore used registers to be stdcall
2119 clevermous 440
        ret     4               ; purge 1 dword argument to be stdcall
441
 
442
; This is an internal function which removes a previously obtained reference
443
; to the disk. If this is the last reference, this function lets the driver
444
; finalize all associated data, and afterwards frees the DISK structure.
445
; esi = pointer to DISK structure
446
disk_dereference:
447
; 1. Decrement reference counter. Use atomic operation to correctly handle
448
; possible simultaneous calls.
449
lock    dec     [esi+DISK.RefCount]
450
; 2. If the result is nonzero, there are other references, so nothing to do.
451
; In this case, return (go to 4).
452
        jnz     .nothing
453
; 3. If we are here, we just removed the last reference and must destroy the
454
; disk object.
455
; 3a. Call the driver.
456
        mov     al, DISKFUNC.close
457
        stdcall disk_call_driver
458
; 3b. Free the structure.
459
        xchg    eax, esi
460
        call    free
461
; 4. Return.
462
.nothing:
463
        ret
464
 
465
; This is an internal function which removes a previously obtained reference
466
; to the media. If this is the last reference, this function calls 'closemedia'
467
; callback to signal the driver that the processing has finished and it is safe
468
; to inform about a new media.
469
; esi = pointer to DISK structure
470
disk_media_dereference:
471
; 1. Decrement reference counter. Use atomic operation to correctly handle
472
; possible simultaneous calls.
473
lock    dec     [esi+DISK.MediaRefCount]
474
; 2. If the result is nonzero, there are other references, so nothing to do.
475
; In this case, return (go to 4).
476
        jnz     .nothing
477
; 3. If we are here, we just removed the last reference and must destroy the
478
; media object.
479
; Note that the same place inside the DISK structure is reused for all media
480
; objects, so we must guarantee that reusing does not happen while freeing.
481
; Reusing is only possible when someone processes a new media. There are two
482
; mutually exclusive variants:
483
; * driver issues media insert notifications (DISK_NO_INSERT_NOTIFICATION bit
484
;   in DISK.DriverFlags is not set). In this case, we require from the driver
485
;   that such notification (except for the first one) can occur only after a
486
;   call to 'closemedia' callback.
487
; * driver does not issue media insert notifications. In this case, the kernel
488
;   itself must sometimes check whether media is inserted. We have the flag
489
;   DISK.MediaUsed, visible to the kernel. This flag signals to the other parts
490
;   of kernel that the way is free.
491
; In the first case other parts of the kernel do not use DISK.MediaUsed, so it
492
; does not matter when this flag is cleared. In the second case this flag must
493
; be cleared after all other actions, including call to 'closemedia'.
494
; 3a. Free all partitions.
495
        push    esi edi
496
        mov     edi, [esi+DISK.NumPartitions]
497
        mov     esi, [esi+DISK.Partitions]
498
        test    edi, edi
499
        jz      .nofree
500
.freeloop:
501
        lodsd
502
        call    free
503
        dec     edi
504
        jnz     .freeloop
505
.nofree:
506
        pop     edi esi
2140 clevermous 507
; 3b. Free the cache.
508
        call    disk_free_cache
509
; 3c. Call the driver.
2119 clevermous 510
        mov     al, DISKFUNC.closemedia
511
        stdcall disk_call_driver
2140 clevermous 512
; 3d. Clear the flag.
2119 clevermous 513
        mov     [esi+DISK.MediaUsed], 0
514
.nothing:
515
        ret
516
 
517
; This function is called by the driver and informs the kernel that the media
518
; has changed. If the media is non-removable, it is called exactly once
519
; immediately after 'disk_add' and once from 'disk_del'.
520
; Parameters:
521
; [esp+4] = handle of the disk, i.e. the pointer to the DISK structure.
522
; [esp+8] = new status of the media: zero = no media, nonzero = media inserted.
523
disk_media_changed:
524
        push    ebx esi edi             ; save used registers to be stdcall
525
; 1. Remove the existing media, if it is present.
526
        mov     esi, [esp+4+12]         ; esi = pointer to DISK
527
; 1a. Check whether it is present. Since DISK.MediaInserted is changed only
528
; in this function and calls to this function are synchronized, no lock is
529
; required for checking.
530
        cmp     [esi+DISK.MediaInserted], 0
531
        jz      .noremove
532
; We really need to remove the media.
533
; 1b. Acquire mutex.
2129 serge 534
        lea     ecx, [esi+DISK.MediaLock]
535
        call    mutex_lock
2119 clevermous 536
; 1c. Clear the flag.
537
        mov     [esi+DISK.MediaInserted], 0
538
; 1d. Release mutex.
2129 serge 539
        call    mutex_unlock
2119 clevermous 540
; 1e. Remove the "lifetime" reference and possibly destroy the structure.
541
        call    disk_media_dereference
542
.noremove:
543
; 2. Test whether there is new media.
544
        cmp     dword [esp+8+12], 0
545
        jz      .noinsert
546
; Yep, there is.
547
; 3. Process the new media. We assume that all media fields are available to
548
; use, see comments in 'disk_media_dereference' (this covers using by previous
549
; media referencers) and note that calls to this function are synchronized
550
; (this covers using by new media referencers).
551
; 3a. Call the 'querymedia' callback.
552
; .Flags are set to zero for possible future extensions.
553
        lea     edx, [esi+DISK.MediaInfo]
554
        and     [edx+DISKMEDIAINFO.Flags], 0
555
        mov     al, DISKFUNC.querymedia
556
        stdcall disk_call_driver, edx
557
; 3b. Check the result of the callback. Abort if it failed.
558
        test    eax, eax
559
        jnz     .noinsert
2140 clevermous 560
; 3c. Allocate the cache unless disabled by the driver. Abort if failed.
561
        call    disk_init_cache
562
        test    al, al
563
        jz      .noinsert
564
; 3d. Acquire the lifetime reference for the media object.
2119 clevermous 565
        inc     [esi+DISK.MediaRefCount]
2140 clevermous 566
; 3e. Scan for partitions. Ignore result; the list of partitions is valid even
2119 clevermous 567
; on errors.
568
        call    disk_scan_partitions
2140 clevermous 569
; 3f. Media is inserted and available for use.
2119 clevermous 570
        inc     [esi+DISK.MediaInserted]
571
.noinsert:
572
; 4. Return.
573
        pop     edi esi ebx             ; restore used registers to be stdcall
574
        ret     8                       ; purge 2 dword arguments to be stdcall
575
 
576
; This function is a thunk for all functions of a disk driver.
577
; It checks whether the referenced function is implemented in the driver.
578
; If so, this function jumps to the function in the driver.
579
; Otherwise, it jumps to the default implementation.
580
; al = offset of function in the DISKFUNC structure;
581
; esi = pointer to the DISK structure;
582
; stack is the same as for the corresponding function except that the
583
; first parameter (void* userdata) is prepended automatically.
584
disk_call_driver:
585
        movzx   eax, al ; eax = offset of function in the DISKFUNC structure
586
; 1. Prepend the first argument to the stack.
587
        pop     ecx     ; ecx = return address
588
        push    [esi+DISK.UserData]     ; add argument
589
        push    ecx     ; save return address
590
; 2. Check that the required function is inside the table. If not, go to 5.
591
        mov     ecx, [esi+DISK.Functions]
592
        cmp     eax, [ecx+DISKFUNC.strucsize]
593
        jae     .default
594
; 3. Check that the required function is implemented. If not, go to 5.
595
        mov     ecx, [ecx+eax]
596
        test    ecx, ecx
597
        jz      .default
598
; 4. Jump to the required function.
599
        jmp     ecx
600
.default:
601
; 5. Driver does not implement the required function; use default implementation.
602
        jmp     dword [disk_default_callbacks+eax-4]
603
 
604
; The default implementation of DISKFUNC.querymedia.
605
disk_default_querymedia:
606
        push    DISK_STATUS_INVALID_CALL
607
        pop     eax
608
        ret     8
609
 
610
; The default implementation of DISKFUNC.read and DISKFUNC.write.
611
disk_default_read:
612
disk_default_write:
613
        push    DISK_STATUS_INVALID_CALL
614
        pop     eax
615
        ret     20
616
 
617
; The default implementation of DISKFUNC.close, DISKFUNC.closemedia and
618
; DISKFUNC.flush.
619
disk_default_close:
620
disk_default_closemedia:
621
disk_default_flush:
622
        xor     eax, eax
623
        ret     4
624
 
2140 clevermous 625
; The default implementation of DISKFUNC.adjust_cache_size.
626
disk_default_adjust_cache_size:
627
        mov     eax, [esp+4]
628
        ret     4
629
 
2119 clevermous 630
; This is an internal function called from 'disk_media_changed' when new media
631
; is detected. It creates the list of partitions for the media.
632
; If media is not partitioned, then the list consists of one partition which
633
; covers all the media.
634
; esi = pointer to the DISK structure.
635
disk_scan_partitions:
636
; 1. Initialize .NumPartitions and .Partitions fields as zeros: empty list.
637
        and     [esi+DISK.NumPartitions], 0
638
        and     [esi+DISK.Partitions], 0
639
; 2. Currently we can work only with 512-bytes sectors. Check this restriction.
640
; The only exception is 2048-bytes CD/DVD, but they are not supported yet by
641
; this code.
642
        cmp     [esi+DISK.MediaInfo.SectorSize], 512
643
        jz      .doscan
644
        DEBUGF 1,'K : sector size is %d, only 512 is supported\n',[esi+DISK.MediaInfo.SectorSize]
645
        ret
646
.doscan:
647
; 3. Acquire the buffer for MBR and bootsector tests. See the comment before
648
; the 'partition_buffer_users' variable.
649
        mov     ebx, mbr_buffer         ; assume the global buffer is free
650
lock    inc     [partition_buffer_users]
651
        jz      .buffer_acquired        ; yes, it is free
652
lock    dec     [partition_buffer_users]        ; no, we must allocate
2140 clevermous 653
        stdcall kernel_alloc, 512*3
2119 clevermous 654
        test    eax, eax
655
        jz      .nothing
656
        xchg    eax, ebx
657
.buffer_acquired:
658
; MBR/EBRs are organized in the chain. We use a loop over MBR/EBRs, but no
659
; more than MAX_NUM_PARTITION times.
660
; 4. Prepare things for the loop.
661
; ebp will hold the sector number for current MBR/EBR.
662
; [esp] will hold the sector number for current extended partition, if there
663
; is one.
664
; [esp+4] will hold the counter that prevents long loops.
665
        push    ebp             ; save ebp
666
        push    MAX_NUM_PARTITIONS      ; the counter of max MBRs to process
667
        xor     ebp, ebp        ; start from sector zero
668
        push    ebp             ; no extended partition yet
669
.new_mbr:
670
; 5. Read the current sector.
671
; Note that 'read' callback operates with 64-bit sector numbers, so we must
672
; push additional zero as a high dword of sector number.
673
        mov     al, DISKFUNC.read
2120 clevermous 674
        push    1
675
        stdcall disk_call_driver, ebx, ebp, 0, esp
676
        pop     ecx
2119 clevermous 677
; 6. If the read has failed, abort the loop.
2120 clevermous 678
        dec     ecx
679
        jnz     .mbr_failed
2119 clevermous 680
; 7. Check the MBR/EBR signature. If it is wrong, abort the loop.
681
; Soon we will access the partition table which starts at ebx+0x1BE,
682
; so we can fill its address right now. If we do it now, then the addressing
683
; [ecx+0x40] is shorter than [ebx+0x1fe]: one-byte offset vs 4-bytes offset.
684
        lea     ecx, [ebx+0x1be]        ; ecx -> partition table
685
        cmp     word [ecx+0x40], 0xaa55
686
        jnz     .mbr_failed
687
; 8. The MBR is treated differently from EBRs. For MBR we additionally need to
688
; execute step 9 and possibly step 10.
689
        test    ebp, ebp
690
        jnz     .mbr
691
; Partition table can be present or not present. In the first case, we just
692
; read the MBR. In the second case, we just read the bootsector for some
693
; filesystem.
694
; We use the following algorithm to distinguish between these cases.
695
; A. If at least one entry of the partition table is invalid, this is
696
;    a bootsector. See the description of 'is_partition_table_entry' for
697
;    definition of validity.
698
; B. If all entries are empty (filesystem type field is zero) and the first
699
;    byte is jmp opcode (0EBh or 0E9h), this is a bootsector which happens to
700
;    have zeros in the place of partition table.
701
; C. Otherwise, this is a MBR.
702
; 9. Test for MBR vs bootsector.
703
; 9a. Check entries. If any is invalid, go to 10 (rule A).
704
        call    is_partition_table_entry
705
        jc      .notmbr
706
        add     ecx, 10h
707
        call    is_partition_table_entry
708
        jc      .notmbr
709
        add     ecx, 10h
710
        call    is_partition_table_entry
711
        jc      .notmbr
712
        add     ecx, 10h
713
        call    is_partition_table_entry
714
        jc      .notmbr
715
; 9b. Check types of the entries. If at least one is nonzero, go to 11 (rule C).
716
        mov     al, [ecx-30h+PARTITION_TABLE_ENTRY.Type]
717
        or      al, [ecx-20h+PARTITION_TABLE_ENTRY.Type]
718
        or      al, [ecx-10h+PARTITION_TABLE_ENTRY.Type]
719
        or      al, [ecx+PARTITION_TABLE_ENTRY.Type]
720
        jnz     .mbr
721
; 9c. Empty partition table or bootsector with many zeroes? (rule B)
722
        cmp     byte [ebx], 0EBh
723
        jz      .notmbr
724
        cmp     byte [ebx], 0E9h
725
        jnz     .mbr
726
.notmbr:
727
; 10. This is not MBR. The media is not partitioned. Create one partition
728
; which covers all the media and abort the loop.
729
        stdcall disk_add_partition, 0, 0, \
730
                dword [esi+DISK.MediaInfo.Capacity], dword [esi+DISK.MediaInfo.Capacity+4]
731
        jmp     .done
732
.mbr:
733
; 11. Process all entries of the new MBR/EBR
734
        lea     ecx, [ebx+0x1be]        ; ecx -> partition table
735
        push    0       ; assume no extended partition
736
        call    process_partition_table_entry
737
        add     ecx, 10h
738
        call    process_partition_table_entry
739
        add     ecx, 10h
740
        call    process_partition_table_entry
741
        add     ecx, 10h
742
        call    process_partition_table_entry
743
        pop     ebp
744
; 12. Test whether we found a new EBR and should continue the loop.
745
; 12a. If there was no next EBR, return.
746
        test    ebp, ebp
747
        jz      .done
748
; Ok, we have EBR.
749
; 12b. EBRs addresses are relative to the start of extended partition.
750
; For simplicity, just abort if an 32-bit overflow occurs; large disks
751
; are most likely partitioned with GPT, not MBR scheme, since the precise
752
; calculation here would increase limit just twice at the price of big
753
; compatibility problems.
754
        pop     eax     ; load extended partition
755
        add     ebp, eax
2140 clevermous 756
        jc      .mbr_failed
2119 clevermous 757
; 12c. If extended partition has not yet started, start it.
758
        test    eax, eax
759
        jnz     @f
760
        mov     eax, ebp
761
@@:
762
; 12c. If the limit is not exceeded, continue the loop.
763
        dec     dword [esp]
764
        push    eax     ; store extended partition
765
        jnz     .new_mbr
766
.mbr_failed:
767
.done:
768
; 13. Cleanup after the loop.
769
        pop     eax     ; not important anymore
770
        pop     eax     ; not important anymore
771
        pop     ebp     ; restore ebp
772
; 14. Release the buffer.
773
; 14a. Test whether it is the global buffer or we have allocated it.
774
        cmp     ebx, mbr_buffer
775
        jz      .release_partition_buffer
776
; 14b. If we have allocated it, free it.
777
        xchg    eax, ebx
778
        call    free
779
        jmp     .nothing
780
; 14c. Otherwise, release reference.
781
.release_partition_buffer:
782
lock    dec     [partition_buffer_users]
783
.nothing:
784
; 15. Return.
785
        ret
786
 
787
; This is an internal function called from disk_scan_partitions. It checks
788
; whether the entry pointed to by ecx is a valid entry of partition table.
789
; The entry is valid if the first byte is 0 or 80h, the first sector plus the
790
; length is less than twice the size of media. Multiplication by two is
791
; required since the size mentioned in the partition table can be slightly
792
; greater than the real size.
793
is_partition_table_entry:
794
; 1. Check .Bootable field.
795
        mov     al, [ecx+PARTITION_TABLE_ENTRY.Bootable]
796
        and     al, 7Fh
797
        jnz     .invalid
798
; 3. Calculate first sector + length. Note that .FirstAbsSector is relative
799
; to the MBR/EBR, so the real sum is ebp + .FirstAbsSector + .Length.
800
        mov     eax, ebp
801
        xor     edx, edx
802
        add     eax, [ecx+PARTITION_TABLE_ENTRY.FirstAbsSector]
803
        adc     edx, 0
804
        add     eax, [ecx+PARTITION_TABLE_ENTRY.Length]
805
        adc     edx, 0
806
; 4. Divide by two.
807
        shr     edx, 1
808
        rcr     eax, 1
809
; 5. Compare with capacity. If the subtraction (edx:eax) - .Capacity does not
810
; overflow, this is bad.
811
        sub     eax, dword [esi+DISK.MediaInfo.Capacity]
812
        sbb     edx, dword [esi+DISK.MediaInfo.Capacity+4]
813
        jnc     .invalid
814
.valid:
815
; 5. Return success: CF is cleared.
816
        clc
817
        ret
818
.invalid:
819
; 6. Return fail: CF is set.
820
        stc
821
        ret
822
 
823
; This is an internal function called from disk_scan_partitions. It processes
824
; the entry pointed to by ecx.
825
; * If the entry is invalid, just ignore this entry.
826
; * If the type is zero, just ignore this entry.
827
; * If the type is one of types for extended partition, store the address
828
;   of this partition as the new MBR in [esp+4].
829
; * Otherwise, add the partition to the list of partitions for this disk.
830
;   We don't use the type from the entry to identify the file system;
831
;   fs-specific checks do this more reliably.
832
process_partition_table_entry:
833
; 1. Check for valid entry. If invalid, return (go to 5).
834
        call    is_partition_table_entry
835
        jc      .nothing
836
; 2. Check for empty entry. If invalid, return (go to 5).
837
        mov     al, [ecx+PARTITION_TABLE_ENTRY.Type]
838
        test    al, al
839
        jz      .nothing
840
; 3. Check for extended partition. If extended, go to 6.
841
irp type,\
842
    0x05,\                 ; DOS: extended partition
843
    0x0f,\                 ; WIN95: extended partition, LBA-mapped
844
    0xc5,\                 ; DRDOS/secured: extended partition
845
    0xd5                   ; Old Multiuser DOS secured: extended partition
846
{
847
        cmp     al, type
848
        jz      .extended
849
}
850
; 4. If we are here, that is a normal partition. Add it to the list.
851
; Note that the first sector is relative to MBR/EBR.
852
        mov     eax, ebp
853
        xor     edx, edx
854
        add     eax, [ecx+PARTITION_TABLE_ENTRY.FirstAbsSector]
855
        adc     edx, 0
856
        push    ecx
857
        stdcall disk_add_partition, eax, edx, \
858
                [ecx+PARTITION_TABLE_ENTRY.Length], 0
859
        pop     ecx
860
.nothing:
861
; 5. Return.
862
        ret
863
.extended:
864
; 6. If we are here, that is an extended partition. Store the address.
865
        mov     eax, [ecx+PARTITION_TABLE_ENTRY.FirstAbsSector]
866
        mov     [esp+4], eax
867
        ret
868
 
869
; This is an internal function called from disk_scan_partitions and
870
; process_partition_table_entry. It adds one partition to the list of
871
; partitions for the media.
872
proc disk_add_partition stdcall uses ebx edi, start:qword, length:qword
873
; 1. Check that this partition will not exceed the limit on total number.
874
        cmp     [esi+DISK.NumPartitions], MAX_NUM_PARTITIONS
875
        jae     .nothing
876
; 2. Check that this partition does not overlap with any already registered
877
; partition. Since any file system assumes that the disk data will not change
878
; outside of its control, such overlap could be destructive.
879
; Since the number of partitions is usually very small and is guaranteed not
880
; to be large, the simple linear search is sufficient.
881
; 2a. Prepare the loop: edi will point to the current item of .Partitions
882
; array, ecx will be the current item, ebx will hold number of items left.
883
        mov     edi, [esi+DISK.Partitions]
884
        mov     ebx, [esi+DISK.NumPartitions]
885
        test    ebx, ebx
886
        jz      .partitionok
887
.scan_existing:
888
; 2b. Get the next partition.
889
        mov     ecx, [edi]
890
        add     edi, 4
891
; The range [.FirstSector, .FirstSector+.Length) must be either entirely to
892
; the left of [start, start+length) or entirely to the right.
893
; 2c. Subtract .FirstSector - start. The possible overflow distinguish between
2140 clevermous 894
; cases "to the left" (2e) and "to the right" (2d).
2119 clevermous 895
        mov     eax, dword [ecx+PARTITION.FirstSector]
896
        mov     edx, dword [ecx+PARTITION.FirstSector+4]
897
        sub     eax, dword [start]
898
        sbb     edx, dword [start+4]
899
        jb      .less
900
; 2d. .FirstSector is greater than or equal to start. Check that .FirstSector
901
; is greater than or equal to start+length; the subtraction
902
; (.FirstSector-start) - length must not cause overflow. Go to 2g if life is
903
; good or to 2f in the other case.
904
        sub     eax, dword [length]
905
        sbb     edx, dword [length+4]
906
        jb      .overlap
907
        jmp     .next_existing
908
.less:
909
; 2e. .FirstSector is less than start. Check that .FirstSector+.Length is less
910
; than or equal to start. If the addition (.FirstSector-start) + .Length does
911
; not cause overflow, then .FirstSector + .Length is strictly less than start;
912
; since the equality is also valid, use decrement preliminarily. Go to 2g or
913
; 2f depending on the overflow.
914
        sub     eax, 1
915
        sbb     edx, 0
916
        add     eax, dword [ecx+PARTITION.Length]
917
        adc     edx, dword [ecx+PARTITION.Length+4]
918
        jnc     .next_existing
919
.overlap:
920
; 2f. The partition overlaps with previously registered partition. Say warning
921
; and return with nothing done.
922
        dbgstr 'two partitions overlap, ignoring the last one'
923
        jmp     .nothing
924
.next_existing:
925
; 2g. The partition does not overlap with the current partition. Continue the
926
; loop.
927
        dec     ebx
928
        jnz     .scan_existing
929
.partitionok:
930
; 3. The partition has passed tests. Reallocate the partitions array for a new
931
; entry.
932
; 3a. Call the allocator.
933
        mov     eax, [esi+DISK.NumPartitions]
934
        inc     eax     ; one more entry
935
        shl     eax, 2  ; each entry is dword
936
        call    malloc
937
; 3b. Test the result. If failed, return with nothing done.
938
        test    eax, eax
939
        jz      .nothing
940
; 3c. Copy the old array to the new array.
941
        mov     edi, eax
942
        push    esi
943
        mov     ecx, [esi+DISK.NumPartitions]
944
        mov     esi, [esi+DISK.Partitions]
945
        rep     movsd
946
        pop     esi
947
; 3d. Set the field in the DISK structure to the new array.
948
        xchg    [esi+DISK.Partitions], eax
949
; 3e. Free the old array.
950
        call    free
951
; 4. Recognize the file system.
952
; 4a. Call the filesystem recognizer. It will allocate the PARTITION structure
953
; with possible filesystem-specific fields.
954
        call    disk_detect_partition
955
; 4b. Check return value. If zero, return with list not changed; so far only
956
; the array was reallocated, this is ok for other code.
957
        test    eax, eax
958
        jz      .nothing
959
; 5. Insert the new partition to the list.
960
        stosd
961
        inc     [esi+DISK.NumPartitions]
962
; 6. Return.
963
.nothing:
964
        ret
965
endp
966
 
967
; This is an internal function called from disk_add_partition.
968
; It tries to recognize the file system on the partition and allocates the
969
; corresponding PARTITION structure with filesystem-specific fields.
970
disk_detect_partition:
971
; This function inherits the stack frame from disk_add_partition. In stdcall
972
; with ebp-based frame arguments start from ebp+8, since [ebp]=saved ebp
973
; and [ebp+4]=return address.
974
virtual at ebp+8
975
.start  dq      ?
976
.length dq      ?
977
end virtual
978
; Currently no file systems are supported, so just allocate the PARTITION
979
; structure without extra fields.
980
; 1. Allocate and check result.
981
        push    sizeof.PARTITION
982
        pop     eax
983
        call    malloc
984
        test    eax, eax
985
        jz      .nothing
986
; 2. Fill the common fields: copy .start and .length.
987
        mov     edx, dword [.start]
988
        mov     dword [eax+PARTITION.FirstSector], edx
989
        mov     edx, dword [.start+4]
990
        mov     dword [eax+PARTITION.FirstSector+4], edx
991
        mov     edx, dword [.length]
992
        mov     dword [eax+PARTITION.Length], edx
993
        mov     edx, dword [.length+4]
994
        mov     dword [eax+PARTITION.Length+4], edx
995
.nothing:
996
; 3. Return with eax = pointer to PARTITION or NULL.
997
        ret
998
 
999
; This function is called from file_system_lfn.
1000
; This handler gets the control each time when fn 70 is called
1001
; with unknown item of root subdirectory.
1002
; in: esi -> name
1003
;     ebp = 0 or rest of name relative to esi
1004
; out: if the handler processes path, it must not return in file_system_lfn,
1005
;      but instead pop return address and return directly to the caller
1006
;      otherwise simply return
1007
dyndisk_handler:
1008
        push    ebx edi         ; save registers used in file_system_lfn
1009
; 1. Acquire the mutex.
2129 serge 1010
        mov     ecx, disk_list_mutex
1011
        call    mutex_lock
2119 clevermous 1012
; 2. Loop over the list of DISK structures.
1013
; 2a. Initialize.
2129 serge 1014
        mov     ebx, disk_list
2119 clevermous 1015
.scan:
1016
; 2b. Get the next item.
2129 serge 1017
        mov     ebx, [ebx+DISK.Next]
2119 clevermous 1018
; 2c. Check whether the list is done. If so, go to 3.
2129 serge 1019
        cmp     ebx, disk_list
2119 clevermous 1020
        jz      .notfound
1021
; 2d. Compare names. If names match, go to 5.
2129 serge 1022
        mov     edi, [ebx+DISK.Name]
2119 clevermous 1023
        push    esi
1024
@@:
1025
; esi points to the name from fs operation; it is terminated by zero or slash.
1026
        lodsb
1027
        test    al, al
1028
        jz      .eoin_dec
1029
        cmp     al, '/'
1030
        jz      .eoin
1031
; edi points to the disk name.
1032
        inc     edi
1033
; edi points to lowercase name, this is a requirement for the driver.
1034
; Characters at esi can have any register. Lowercase the current character.
1035
; This lowercasing works for latin letters and digits; since the disk name
1036
; should not contain other symbols, this is ok.
1037
        or      al, 20h
1038
        cmp     al, [edi-1]
1039
        jz      @b
1040
.wrongname:
1041
; 2f. Names don't match. Continue the loop.
1042
        pop     esi
1043
        jmp     .scan
1044
.notfound:
1045
; The loop is done and no name matches.
1046
; 3. Release the mutex.
2129 serge 1047
        call mutex_unlock
2119 clevermous 1048
; 4. Return normally.
1049
        pop     edi ebx         ; restore registers used in file_system_lfn
1050
        ret
1051
; part of 2d: the name matches partially, but we must check that this is full
1052
; equality.
1053
.eoin_dec:
1054
        dec     esi
1055
.eoin:
1056
        cmp     byte [edi], 0
1057
        jnz     .wrongname
1058
; We found the addressed DISK structure.
1059
; 5. Reference the disk.
2129 serge 1060
lock    inc     [ebx+DISK.RefCount]
2119 clevermous 1061
; 6. Now we are sure that the DISK structure is not going to die at least
1062
; while we are working with it, so release the global mutex.
2129 serge 1063
        call    mutex_unlock
2119 clevermous 1064
; 7. Acquire the mutex for media object.
1065
        pop     edi             ; restore edi
2129 serge 1066
        lea     ecx, [ebx+DISK.MediaLock]
1067
        call    mutex_lock
2119 clevermous 1068
; 8. Get the media object. If it is not NULL, reference it.
1069
        xor     edx, edx
2129 serge 1070
        cmp     [ebx+DISK.MediaInserted], dl
2119 clevermous 1071
        jz      @f
2129 serge 1072
        mov     edx, ebx
1073
        inc     [ebx+DISK.MediaRefCount]
2119 clevermous 1074
@@:
1075
; 9. Now we are sure that the media object, if it exists, is not going to die
1076
; at least while we are working with it, so release the mutex for media object.
2129 serge 1077
        call    mutex_unlock
1078
        mov     ecx, ebx
2119 clevermous 1079
        pop     ebx eax         ; restore ebx, pop return address
1080
; 10. Check whether the fs operation wants to enumerate partitions (go to 11)
1081
; or work with some concrete partition (go to 12).
1082
        cmp     byte [esi], 0
1083
        jnz     .haspartition
1084
; 11. The fs operation wants to enumerate partitions.
1085
; 11a. Only "list directory" operation is applicable to / path. Check
1086
; the operation code. If wrong, go to 13.
1087
        cmp     dword [ebx], 1
1088
        jnz     .access_denied
1089
; 11b. If the media is inserted, use 'fs_dyndisk_next' as an enumeration
1090
; procedure. Otherwise, use 'fs_dyndisk_next_nomedia'.
1091
        mov     esi, fs_dyndisk_next_nomedia
1092
        test    edx, edx
1093
        jz      @f
1094
        mov     esi, fs_dyndisk_next
1095
@@:
1096
; 11c. Let the procedure from fs_lfn.inc do the job.
1097
        jmp     file_system_lfn.maindir_noesi
1098
.haspartition:
1099
; 12. The fs operation has specified some partition.
1100
; 12a. Store parameters for callback functions.
1101
        push    edx
1102
        push    ecx
1103
; 12b. Store callback functions.
1104
        push    dyndisk_cleanup
1105
        push    fs_dyndisk
1106
        mov     edi, esp
1107
; 12c. Let the procedure from fs_lfn.inc do the job.
1108
        jmp     file_system_lfn.found2
1109
.access_denied:
1110
; 13. Fail the operation with the appropriate code.
1111
        mov     dword [esp+32], ERROR_ACCESS_DENIED
1112
.cleanup:
1113
; 14. Cleanup.
1114
        mov     esi, ecx        ; disk*dereference assume that esi points to DISK
1115
.cleanup_esi:
1116
        test    edx, edx        ; if there are no media, we didn't reference it
1117
        jz      @f
1118
        call    disk_media_dereference
1119
@@:
1120
        call    disk_dereference
1121
; 15. Return.
1122
        ret
1123
 
1124
; This is a callback for cleaning up things called from file_system_lfn.found2.
1125
dyndisk_cleanup:
1126
        mov     esi, [edi+8]
1127
        mov     edx, [edi+12]
1128
        jmp     dyndisk_handler.cleanup_esi
1129
 
1130
; This is a callback for enumerating partitions called from
1131
; file_system_lfn.maindir in the case of inserted media.
1132
; It just increments eax until DISK.NumPartitions reached and then
1133
; cleans up.
1134
fs_dyndisk_next:
1135
        cmp     eax, [ecx+DISK.NumPartitions]
1136
        jae     .nomore
1137
        inc     eax
1138
        clc
1139
        ret
1140
.nomore:
1141
        pusha
1142
        mov     esi, ecx
1143
        call    disk_media_dereference
1144
        call    disk_dereference
1145
        popa
1146
        stc
1147
        ret
1148
 
1149
; This is a callback for enumerating partitions called from
1150
; file_system_lfn.maindir in the case of missing media.
1151
; In this case we create one pseudo-partition.
1152
fs_dyndisk_next_nomedia:
1153
        cmp     eax, 1
1154
        jae     .nomore
1155
        inc     eax
1156
        clc
1157
        ret
1158
.nomore:
1159
        pusha
1160
        mov     esi, ecx
1161
        call    disk_dereference
1162
        popa
1163
        stc
1164
        ret
1165
 
1166
; This is a callback for doing real work with selected partition.
1167
; Currently this is just placeholder, since no file systems are supported.
1168
; edi = esp -> {dd fs_dyndisk, dd dyndisk_cleanup, dd pointer to DISK, dd media object}
1169
; ecx = partition number, esi+ebp = ASCIIZ name
1170
fs_dyndisk:
1171
        dec     ecx     ; convert to zero-based partition index
1172
        pop     edx edx edx eax ; edx = pointer to DISK, eax = NULL or edx
1173
        test    eax, eax
1174
        jz      .nomedia
1175
.main:
1176
        cmp     ecx, [edx+DISK.NumPartitions]
1177
        jae     .notfound
1178
        mov     dword [esp+32], ERROR_UNKNOWN_FS
1179
.cleanup:
1180
        mov     esi, edx
1181
        call    disk_media_dereference
1182
        call    disk_dereference
1183
        ret
1184
.notfound:
1185
        mov     dword [esp+32], ERROR_FILE_NOT_FOUND
1186
        jmp     .cleanup
1187
.nomedia:
1188
        test    ecx, ecx
1189
        jnz     .notfound
1190
        test    byte [edx+DISK.DriverFlags], DISK_NO_INSERT_NOTIFICATION
1191
        jz      .deverror
1192
; if the driver does not support insert notifications and we are the only fs
1193
; operation with this disk, issue the fake insert notification; if media is
1194
; still not inserted, 'disk_media_changed' will detect this and do nothing
2129 serge 1195
;;;        push    ebx
1196
        lea     ecx, [edx+DISK.MediaLock]
1197
        call    mutex_lock
2119 clevermous 1198
        cmp     [edx+DISK.MediaRefCount], 1
1199
        jnz     .noluck
2129 serge 1200
        call    mutex_unlock
2119 clevermous 1201
        push    edx
1202
        stdcall disk_media_changed, edx, 1
1203
        pop     edx
2129 serge 1204
        lea     ecx, [edx+DISK.MediaLock]
1205
        call    mutex_lock
2119 clevermous 1206
        cmp     [edx+DISK.MediaInserted], 0
1207
        jz      .noluck
1208
lock    inc     [edx+DISK.MediaRefCount]
2129 serge 1209
        call    mutex_unlock
2119 clevermous 1210
        xor     ecx, ecx
1211
        jmp     .main
1212
.noluck:
2129 serge 1213
        call    mutex_unlock
2119 clevermous 1214
.deverror:
1215
        mov     dword [esp+32], ERROR_DEVICE
1216
        mov     esi, edx
1217
        call    disk_dereference
1218
        ret
1219
 
1220
; This function is called from file_system_lfn.
1221
; This handler is called when virtual root is enumerated
1222
; and must return all items which can be handled by this.
1223
; It is called several times, first time with eax=0
1224
; in: eax = 0 for first call, previously returned value for subsequent calls
1225
; out: eax = 0 => no more items
1226
;      eax != 0 => buffer pointed to by edi contains name of item
1227
dyndisk_enum_root:
2145 clevermous 1228
        push    edx             ; save register used in file_system_lfn
2129 serge 1229
        mov     ecx, disk_list_mutex    ; it will be useful
2119 clevermous 1230
; 1. If this is the first call, acquire the mutex and initialize.
1231
        test    eax, eax
1232
        jnz     .notfirst
2129 serge 1233
        call    mutex_lock
2119 clevermous 1234
        mov     eax, disk_list
1235
.notfirst:
1236
; 2. Get next item.
1237
        mov     eax, [eax+DISK.Next]
1238
; 3. If there are no more items, go to 6.
1239
        cmp     eax, disk_list
1240
        jz      .last
1241
; 4. Copy name from the DISK structure to edi.
1242
        push    eax esi
1243
        mov     esi, [eax+DISK.Name]
1244
@@:
1245
        lodsb
1246
        stosb
1247
        test    al, al
1248
        jnz     @b
1249
        pop     esi eax
1250
; 5. Return with eax = item.
2145 clevermous 1251
        pop     edx             ; restore register used in file_system_lfn
2119 clevermous 1252
        ret
1253
.last:
1254
; 6. Release the mutex and return with eax = 0.
2129 serge 1255
        call    mutex_unlock
2119 clevermous 1256
        xor     eax, eax
2145 clevermous 1257
        pop     edx             ; restore register used in file_system_lfn
2119 clevermous 1258
        ret