Subversion Repositories Kolibri OS

Rev

Rev 4429 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
4429 Serge 1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2
;;                                                              ;;
4457 Serge 3
;; Copyright (C) KolibriOS team 2011-2014. All rights reserved. ;;
4429 Serge 4
;; Distributed under terms of the GNU General Public License    ;;
5
;;                                                              ;;
6
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
7
 
8
$Revision: 4133 $
9
 
4457 Serge 10
; Read/write functions try to do large operations,
11
; it is significantly faster than several small operations.
12
; This requires large buffers.
13
; We can't use input/output buffers directly - they can be controlled
14
; by user-mode application, so they can be modified between the operation
15
; and copying to/from cache, giving invalid data in cache.
16
; It is unclear how to use cache directly, currently cache items are
17
; allocated/freed sector-wise, so items for sequential sectors can be
18
; scattered over all the cache.
19
; So read/write functions allocate a temporary buffer which is
20
; 1) not greater than half of free memory and
21
; 2) not greater than the following constant.
22
CACHE_MAX_ALLOC_SIZE = 4 shl 20
23
 
24
; Legacy interface for filesystems fs_{read,write}32_{sys,app}
25
; gives only one sector for FS. However, per-sector reading is inefficient,
26
; so internally fs_read32_{sys,app} reads to the cache several sequential
27
; sectors, hoping that they will be useful.
28
; Total number of sectors is given by the following constant.
29
CACHE_LEGACY_READ_SIZE = 16
30
 
31
; This structure describes one item in the cache.
32
struct CACHE_ITEM
33
SectorLo        dd      ?       ; low 32 bits of sector
34
SectorHi        dd      ?       ; high 32 bits of sector
35
Status          dd      ?       ; one of CACHE_ITEM_*
36
ends
37
 
38
; Possible values for CACHE_ITEM_*
39
CACHE_ITEM_EMPTY = 0
40
CACHE_ITEM_COPY = 1
41
CACHE_ITEM_MODIFIED = 2
42
 
43
; Read several sequential sectors using cache #1.
44
; in: edx:eax = start sector, relative to start of partition
45
; in: ecx = number of sectors to read
46
; in: ebx -> buffer
47
; in: ebp -> PARTITION
48
; out: eax = error code, 0 = ok
49
; out: ecx = number of sectors that were read
50
fs_read64_sys:
51
; Save ebx, set ebx to SysCache and let the common part do its work.
52
        push    ebx
53
        mov     ebx, [ebp+PARTITION.Disk]
54
        add     ebx, DISK.SysCache
55
        jmp     fs_read64_common
56
 
57
; Read several sequential sectors using cache #2.
58
; in: edx:eax = start sector, relative to start of partition
59
; in: ecx = number of sectors to read
60
; in: edi -> buffer
61
; in: ebp -> PARTITION
62
; out: eax = error code, 0 = ok
63
; out: ecx = number of sectors that were read
64
fs_read64_app:
65
; Save ebx, set ebx to AppCache and let the common part do its work.
66
        push    ebx
67
        mov     ebx, [ebp+PARTITION.Disk]
68
        add     ebx, DISK.AppCache
69
 
70
; Common part of fs_read64_{app,sys}:
71
; read several sequential sectors using the given cache.
72
fs_read64_common:
73
; 1. Setup stack frame.
74
        push    esi edi         ; save used registers to be stdcall
75
        push    0               ; initialize .error_code
76
        push    ebx edx eax ecx ecx     ; initialize stack variables
77
virtual at esp
78
.local_vars:
79
.num_sectors_orig dd    ?
80
; Number of sectors that should be read. Used to generate output value of ecx.
81
.num_sectors    dd      ?
82
; Number of sectors that remain to be read. Decreases from .num_sectors_orig to 0.
83
.sector_lo      dd      ?       ; low 32 bits of the current sector
84
.sector_hi      dd      ?       ; high 32 bits of the current sector
85
.cache          dd      ?       ; pointer to DISKCACHE
86
.error_code     dd      ?       ; current status
87
.local_vars_size = $ - .local_vars
88
.saved_regs     rd      2
89
.buffer         dd      ?       ; filled by fs_read64_{sys,app}
90
end virtual
91
; 2. Validate parameters against partition length:
92
; immediately return error if edx:eax are beyond partition end,
93
; decrease .num_sectors and .num_sectors_orig, if needed,
94
; so that the entire operation fits in the partition limits.
95
        mov     eax, dword [ebp+PARTITION.Length]
96
        mov     edx, dword [ebp+PARTITION.Length+4]
97
        sub     eax, [.sector_lo]
98
        sbb     edx, [.sector_hi]
99
        jb      .end_of_media
100
        jnz     .no_end_of_media
101
        cmp     ecx, eax
102
        jbe     .no_end_of_media
103
; If .num_sectors got decreased, set status to DISK_STATUS_END_OF_MEDIA;
104
; if all subsequent operations would be successful, this would become the final
105
; status, otherwise this would be rewritten by failed operation.
106
        mov     [.num_sectors], eax
107
        mov     [.num_sectors_orig], eax
108
        mov     [.error_code], DISK_STATUS_END_OF_MEDIA
109
.no_end_of_media:
110
; 3. If number of sectors to read is zero, either because zero-sectors operation
111
; was requested or because it got decreased to zero due to partition limits,
112
; just return the current status.
113
        cmp     [.num_sectors], 0
114
        jz      .return
115
; 4. Shift sector from partition-relative to absolute.
116
        mov     eax, dword [ebp+PARTITION.FirstSector]
117
        mov     edx, dword [ebp+PARTITION.FirstSector+4]
118
        add     [.sector_lo], eax
119
        adc     [.sector_hi], edx
120
; 5. If the cache is disabled, pass the request directly to the driver.
121
        mov     edi, [.buffer]
122
        cmp     [ebx+DISKCACHE.pointer], 0
123
        jz      .nocache
124
; 6. Look for sectors in the cache, sequentially from the beginning.
125
; Stop at the first sector that is not in the cache
126
; or when all sectors were read from the cache.
127
; 6a. Acquire the lock.
128
        mov     ecx, [ebp+PARTITION.Disk]
129
        add     ecx, DISK.CacheLock
130
        call    mutex_lock
131
.lookup_in_cache_loop:
132
; 6b. For each sector, call the lookup function without adding to the cache.
133
        mov     eax, [.sector_lo]
134
        mov     edx, [.sector_hi]
135
        call    cache_lookup_read
136
; 6c. If it has failed, the sector is not in cache;
137
; release the lock and go to 7.
138
        jc      .not_found_in_cache
139
; The sector is found in cache.
140
; 6d. Copy data for the caller.
141
; Note that buffer in edi is advanced automatically.
142
        mov     esi, ecx
143
        shl     esi, 9
144
        add     esi, [ebx+DISKCACHE.data]
145
        mov     ecx, 512/4
146
        rep movsd
147
; 6e. Advance the sector.
148
        add     [.sector_lo], 1
149
        adc     [.sector_hi], 0
150
; 6f. Decrement number of sectors left.
151
; If all sectors were read, release the lock and return.
152
        dec     [.num_sectors]
153
        jnz     .lookup_in_cache_loop
154
; Release the lock acquired at 6a.
155
        mov     ecx, [ebp+PARTITION.Disk]
156
        add     ecx, DISK.CacheLock
157
        call    mutex_unlock
158
.return:
159
        mov     eax, [.error_code]
160
        mov     ecx, [.num_sectors_orig]
161
        sub     ecx, [.num_sectors]
162
.nothing:
163
        add     esp, .local_vars_size
164
        pop     edi esi ebx     ; restore used registers to be stdcall
165
        ret
166
.not_found_in_cache:
167
; Release the lock acquired at 6a.
168
        mov     ecx, [ebp+PARTITION.Disk]
169
        add     ecx, DISK.CacheLock
170
        call    mutex_unlock
171
; The current sector is not present in the cache.
172
; Ask the driver to read all requested not-yet-read sectors,
173
; put results in the cache.
174
; Also, see the comment before the definition of CACHE_MAX_ALLOC_SIZE.
175
; 7. Allocate buffer for operations.
176
; Normally, create buffer that is sufficient for all remaining data.
177
; However, for extra-large requests make an upper limit:
178
; do not use more than half of the free memory
179
; or more than CACHE_MAX_ALLOC_SIZE bytes.
180
        mov     ebx, [pg_data.pages_free]
181
        shr     ebx, 1
182
        jz      .nomemory
183
        cmp     ebx, CACHE_MAX_ALLOC_SIZE shr 12
184
        jbe     @f
185
        mov     ebx, CACHE_MAX_ALLOC_SIZE shr 12
186
@@:
187
        shl     ebx, 12 - 9
188
        cmp     ebx, [.num_sectors]
189
        jbe     @f
190
        mov     ebx, [.num_sectors]
191
@@:
192
        mov     eax, ebx
193
        shl     eax, 9
194
        stdcall kernel_alloc, eax
195
; If failed, return the appropriate error code.
196
        test    eax, eax
197
        jz      .nomemory
198
        mov     esi, eax
199
; Split the request to chunks that fit in the allocated buffer.
200
.read_loop:
201
; 8. Get iteration size: either size of allocated buffer in sectors
202
; or number of sectors left, select what is smaller.
203
        cmp     ebx, [.num_sectors]
204
        jbe     @f
205
        mov     ebx, [.num_sectors]
206
@@:
207
; 9. Create second portion of local variables.
208
; Note that variables here and above are esp-relative;
209
; it means that all addresses should be corrected when esp is changing.
210
        push    ebx esi esi
211
        push    ebx
212
; In particular, num_sectors is now [.num_sectors+.local_vars2_size].
213
virtual at esp
214
.local_vars2:
215
.current_num_sectors    dd      ?       ; number of sectors that were read
216
.current_buffer         dd      ?
217
; pointer inside .allocated_buffer that points
218
; to the beginning of not-processed data
219
.allocated_buffer       dd      ?       ; saved in safe place
220
.iteration_size         dd      ?       ; saved in safe place
221
.local_vars2_size = $ - .local_vars2
222
end virtual
223
; 10. Call the driver, reading the next chunk.
224
        push    esp     ; numsectors
225
        push    [.sector_hi+.local_vars2_size+4] ; startsector
226
        push    [.sector_lo+.local_vars2_size+8] ; startsector
227
        push    esi     ; buffer
228
        mov     esi, [ebp+PARTITION.Disk]
229
        mov     al, DISKFUNC.read
230
        call    disk_call_driver
231
; If failed, save error code.
232
        test    eax, eax
233
        jz      @f
234
        mov     [.error_code+.local_vars2_size], eax
235
@@:
236
; 11. Copy data for the caller.
237
; Note that buffer in edi is advanced automatically.
238
        cmp     [.current_num_sectors], 0
239
        jz      .copy_done
240
        mov     ecx, [.current_num_sectors]
241
        shl     ecx, 9-2
242
        mov     esi, [.allocated_buffer]
243
        rep movsd
244
; 12. Copy data to the cache.
245
; 12a. Acquire the lock.
246
        mov     ebx, [.cache+.local_vars2_size]
247
        mov     ecx, [ebp+PARTITION.Disk]
248
        add     ecx, DISK.CacheLock
249
        call    mutex_lock
250
; 12b. Prepare for the loop: save edi and create a local variable that
251
; stores number of sectors to be copied.
252
        push    edi
253
        push    [.current_num_sectors+4]
254
.store_to_cache:
255
; 12c. For each sector, call the lookup function with adding to the cache, if not yet.
256
        mov     eax, [.sector_lo+.local_vars2_size+8]
257
        mov     edx, [.sector_hi+.local_vars2_size+8]
258
        call    cache_lookup_write
259
        test    eax, eax
260
        jnz     .cache_error
261
; 12d. For each sector, copy data, mark the item as not-modified copy of the disk,
262
; advance .current_buffer and .sector_hi:.sector_lo to the next sector.
263
        mov     [esi+CACHE_ITEM.Status], CACHE_ITEM_COPY
264
        mov     esi, [.current_buffer+8]
265
        mov     edi, ecx
266
        shl     edi, 9
267
        add     edi, [ebx+DISKCACHE.data]
268
        mov     ecx, 512/4
269
        rep movsd
270
        mov     [.current_buffer+8], esi
271
        add     [.sector_lo+.local_vars2_size+8], 1
272
        adc     [.sector_hi+.local_vars2_size+8], 0
273
; 12e. Continue the loop 12c-12d until all sectors are read.
274
        dec     dword [esp]
275
        jnz     .store_to_cache
276
.cache_error:
277
; 12f. Restore after the loop: pop the local variable and restore edi.
278
        pop     ecx
279
        pop     edi
280
; 12g. Release the lock.
281
        mov     ecx, [ebp+PARTITION.Disk]
282
        add     ecx, DISK.CacheLock
283
        call    mutex_unlock
284
.copy_done:
285
; 13. Remove portion of local variables created at step 9.
286
        pop     ecx
287
        pop     esi esi ebx
288
; 14. Continue iterations while number of sectors read by the driver
289
; is equal to number of sectors requested and there are additional sectors.
290
        cmp     ecx, ebx
291
        jnz     @f
292
        sub     [.num_sectors], ebx
293
        jnz     .read_loop
294
@@:
295
; 15. Free the buffer allocated at step 7 and return.
296
        stdcall kernel_free, esi
297
        jmp     .return
298
 
299
; Special branches:
300
.nomemory:
301
; memory allocation failed at step 7: return the corresponding error
302
        mov     [.error_code], DISK_STATUS_NO_MEMORY
303
        jmp     .return
304
.nocache:
305
; step 5, after correcting number of sectors to fit in partition limits
306
; and advancing partition-relative sector to absolute,
307
; sees that cache is disabled: pass corrected request to the driver
308
        lea     eax, [.num_sectors]
309
        push    eax             ; numsectors
310
        push    [.sector_hi+4]  ; startsector
311
        push    [.sector_lo+8]  ; startsector
312
        push    edi     ; buffer
313
        mov     esi, [ebp+PARTITION.Disk]
314
        mov     al, DISKFUNC.read
315
        call    disk_call_driver
316
        test    eax, eax
317
        jnz     @f
318
        mov     eax, [.error_code]
319
@@:
320
        mov     ecx, [.num_sectors]
321
        jmp     .nothing
322
.end_of_media:
323
; requested sector is beyond the partition end: return the corresponding error
324
        mov     [.error_code], DISK_STATUS_END_OF_MEDIA
325
        jmp     .return
326
 
327
; Write several sequential sectors using cache #1.
328
; in: edx:eax = start sector
329
; in: ecx = number of sectors to write
330
; in: ebx -> buffer
331
; in: ebp -> PARTITION
332
; out: eax = error code, 0 = ok
333
; out: ecx = number of sectors that were written
334
fs_write64_sys:
335
; Save ebx, set ebx to SysCache and let the common part do its work.
336
        push    ebx
337
        mov     ebx, [ebp+PARTITION.Disk]
338
        add     ebx, DISK.SysCache
339
        jmp     fs_write64_common
340
 
341
; Write several sequential sectors using cache #2.
342
; in: edx:eax = start sector
343
; in: ecx = number of sectors to write
344
; in: ebx -> buffer
345
; in: ebp -> PARTITION
346
; out: eax = error code, 0 = ok
347
; out: ecx = number of sectors that were written
348
fs_write64_app:
349
; Save ebx, set ebx to AppCache and let the common part do its work.
350
        push    ebx
351
        mov     ebx, [ebp+PARTITION.Disk]
352
        add     ebx, DISK.AppCache
353
 
354
; Common part of fs_write64_{app,sys}:
355
; write several sequential sectors using the given cache.
356
fs_write64_common:
357
; 1. Setup stack frame.
358
        push    esi edi         ; save used registers to be stdcall
359
        push    0               ; initialize .error_code
360
        push    edx eax ecx ecx ; initialize stack variables
361
        push    [.buffer-4]     ; copy [.buffer] to [.cur_buffer]
362
                                ; -4 is due to esp-relative addressing
363
virtual at esp
364
.local_vars:
365
.cur_buffer     dd      ?       ; pointer to data that are currently copying
366
.num_sectors_orig dd    ?
367
; Number of sectors that should be written. Used to generate output value of ecx.
368
.num_sectors    dd      ?
369
; Number of sectors that remain to be written.
370
.sector_lo      dd      ?       ; low 32 bits of the current sector
371
.sector_hi      dd      ?       ; high 32 bits of the current sector
372
.error_code     dd      ?       ; current status
373
.local_vars_size = $ - .local_vars
374
.saved_regs     rd      2
375
.buffer         dd      ?       ; filled by fs_write64_{sys,app}
376
end virtual
377
; 2. Validate parameters against partition length:
378
; immediately return error if edx:eax are beyond partition end,
379
; decrease .num_sectors and .num_sectors_orig, if needed,
380
; so that the entire operation fits in the partition limits.
381
        mov     eax, dword [ebp+PARTITION.Length]
382
        mov     edx, dword [ebp+PARTITION.Length+4]
383
        sub     eax, [.sector_lo]
384
        sbb     edx, [.sector_hi]
385
        jb      .end_of_media
386
        jnz     .no_end_of_media
387
        cmp     ecx, eax
388
        jbe     .no_end_of_media
389
; If .num_sectors got decreased, set status to DISK_STATUS_END_OF_MEDIA;
390
; if all subsequent operations would be successful, this would become the final
391
; status, otherwise this would be rewritten by failed operation.
392
        mov     [.num_sectors], eax
393
        mov     [.num_sectors_orig], eax
394
        mov     [.error_code], DISK_STATUS_END_OF_MEDIA
395
.no_end_of_media:
396
; 3. If number of sectors to write is zero, either because zero-sectors operation
397
; was requested or because it got decreased to zero due to partition limits,
398
; just return the current status.
399
        cmp     [.num_sectors], 0
400
        jz      .return
401
; 4. Shift sector from partition-relative to absolute.
402
        mov     eax, dword [ebp+PARTITION.FirstSector]
403
        mov     edx, dword [ebp+PARTITION.FirstSector+4]
404
        add     [.sector_lo], eax
405
        adc     [.sector_hi], edx
406
; 5. If the cache is disabled, pass the request directly to the driver.
407
        cmp     [ebx+DISKCACHE.pointer], 0
408
        jz      .nocache
409
; 6. Store sectors in the cache, sequentially from the beginning.
410
; 6a. Acquire the lock.
411
        mov     ecx, [ebp+PARTITION.Disk]
412
        add     ecx, DISK.CacheLock
413
        call    mutex_lock
414
.lookup_in_cache_loop:
415
; 6b. For each sector, call the lookup function with adding to the cache, if not yet.
416
        mov     eax, [.sector_lo]
417
        mov     edx, [.sector_hi]
418
        call    cache_lookup_write
419
        test    eax, eax
420
        jnz     .cache_error
421
; 6c. For each sector, copy data, mark the item as modified and not saved,
422
; advance .current_buffer to the next sector.
423
        mov     [esi+CACHE_ITEM.Status], CACHE_ITEM_MODIFIED
424
        mov     esi, [.cur_buffer]
425
        mov     edi, ecx
426
        shl     edi, 9
427
        add     edi, [ebx+DISKCACHE.data]
428
        mov     ecx, 512/4
429
        rep movsd
430
        mov     [.cur_buffer], esi
431
; 6d. Remove the sector from the other cache.
432
; Normally it should not be there, but prefetching could put to the app cache
433
; data that normally should belong to the sys cache and vice versa.
434
; Note: this requires that both caches must be protected by the same lock.
435
        mov     eax, [.sector_lo]
436
        mov     edx, [.sector_hi]
437
        push    ebx
438
        sub     ebx, [ebp+PARTITION.Disk]
439
        xor     ebx, DISK.SysCache xor DISK.AppCache
440
        add     ebx, [ebp+PARTITION.Disk]
441
        call    cache_lookup_read
442
        jc      @f
443
        mov     [esi+CACHE_ITEM.Status], CACHE_ITEM_EMPTY
444
@@:
445
        pop     ebx
446
; 6e. Advance .sector_hi:.sector_lo to the next sector.
447
        add     [.sector_lo], 1
448
        adc     [.sector_hi], 0
449
; 6f. Continue the loop at 6b-6e until all sectors are processed.
450
        dec     [.num_sectors]
451
        jnz     .lookup_in_cache_loop
452
.unlock_return:
453
; 6g. Release the lock and return.
454
        mov     ecx, [ebp+PARTITION.Disk]
455
        add     ecx, DISK.CacheLock
456
        call    mutex_unlock
457
.return:
458
        mov     eax, [.error_code]
459
        mov     ecx, [.num_sectors_orig]
460
        sub     ecx, [.num_sectors]
461
.nothing:
462
        add     esp, .local_vars_size
463
        pop     edi esi ebx
464
        ret
465
 
466
; Special branches:
467
.cache_error:
468
; error at flushing the cache while adding sector to the cache:
469
; return the error from the lookup function
470
        mov     [.error_code], eax
471
        jmp     .unlock_return
472
.end_of_media:
473
; requested sector is beyond the partition end: return the corresponding error
474
        mov     eax, DISK_STATUS_END_OF_MEDIA
475
        xor     ecx, ecx
476
        jmp     .nothing
477
.nocache:
478
; step 5, after correcting number of sectors to fit in partition limits
479
; and advancing partition-relative sector to absolute,
480
; sees that cache is disabled: pass corrected request to the driver
481
        lea     eax, [.num_sectors]
482
        push    eax             ; numsectors
483
        push    [.sector_hi+4]  ; startsector
484
        push    [.sector_lo+8]  ; startsector
485
        push    [.buffer+12]    ; buffer
486
        mov     esi, [ebp+PARTITION.Disk]
487
        mov     al, DISKFUNC.write
488
        call    disk_call_driver
489
        mov     ecx, [.num_sectors]
490
        jmp     .nothing
491
 
492
; Legacy. Use fs_read64_sys instead.
4429 Serge 493
; This function is intended to replace the old 'hd_read' function when
494
; [hdd_appl_data] = 0, so its input/output parameters are the same, except
495
; that it can't use the global variables 'hd_error' and 'hdd_appl_data'.
496
; in: eax = sector, ebx = buffer, ebp = pointer to PARTITION structure
497
; eax is relative to partition start
498
; out: eax = error code; 0 = ok
499
fs_read32_sys:
4457 Serge 500
; Save ebx, set ebx to SysCache and let the common part do its work.
501
        push    ebx
502
        mov     ebx, [ebp+PARTITION.Disk]
503
        add     ebx, DISK.SysCache
4429 Serge 504
        jmp     fs_read32_common
505
 
4457 Serge 506
; Legacy. Use fs_read64_app instead.
4429 Serge 507
; This function is intended to replace the old 'hd_read' function when
508
; [hdd_appl_data] = 1, so its input/output parameters are the same, except
509
; that it can't use the global variables 'hd_error' and 'hdd_appl_data'.
510
; in: eax = sector, ebx = buffer, ebp = pointer to PARTITION structure
511
; eax is relative to partition start
512
; out: eax = error code; 0 = ok
513
fs_read32_app:
4457 Serge 514
; Save ebx, set ebx to AppCache and let the common part do its work.
515
        push    ebx
516
        mov     ebx, [ebp+PARTITION.Disk]
517
        add     ebx, DISK.AppCache
4429 Serge 518
 
519
; This label is the common part of fs_read32_sys and fs_read32_app.
520
fs_read32_common:
521
; 1. Check that the required sector is inside the partition. If no, return
522
; DISK_STATUS_END_OF_MEDIA.
523
        cmp     dword [ebp+PARTITION.Length+4], 0
524
        jnz     @f
525
        cmp     dword [ebp+PARTITION.Length], eax
526
        ja      @f
527
        mov     eax, DISK_STATUS_END_OF_MEDIA
4457 Serge 528
        pop     ebx
4429 Serge 529
        ret
530
@@:
531
; 2. Get the absolute sector on the disk.
4457 Serge 532
        push    ecx edx esi edi
4429 Serge 533
        xor     edx, edx
534
        add     eax, dword [ebp+PARTITION.FirstSector]
535
        adc     edx, dword [ebp+PARTITION.FirstSector+4]
536
; 3. If there is no cache for this disk, just pass the request to the driver.
4457 Serge 537
        cmp     [ebx+DISKCACHE.pointer], 0
4429 Serge 538
        jnz     .scancache
539
        push    1
540
        push    esp     ; numsectors
541
        push    edx     ; startsector
542
        push    eax     ; startsector
4457 Serge 543
        pushd   [esp+32]; buffer
4429 Serge 544
        mov     esi, [ebp+PARTITION.Disk]
545
        mov     al, DISKFUNC.read
546
        call    disk_call_driver
547
        pop     ecx
4457 Serge 548
        pop     edi esi edx ecx
549
        pop     ebx
4429 Serge 550
        ret
551
.scancache:
4457 Serge 552
        push    ebx edx eax
4429 Serge 553
virtual at esp
4457 Serge 554
.local_vars:
4429 Serge 555
.sector_lo      dd      ?
556
.sector_hi      dd      ?
557
.cache          dd      ?
4457 Serge 558
.local_vars_size = $ - .local_vars
559
.saved_regs     rd      4
560
.buffer         dd      ?
4429 Serge 561
end virtual
4457 Serge 562
; 4. Scan for the requested sector in the cache.
563
; If found, copy the data and return.
564
; 4a. Acquire the lock.
565
        mov     ecx, [ebp+PARTITION.Disk]
566
        add     ecx, DISK.CacheLock
4429 Serge 567
        call    mutex_lock
4457 Serge 568
; 4b. Call the lookup function without adding to the cache.
4429 Serge 569
        mov     eax, [.sector_lo]
570
        mov     edx, [.sector_hi]
4457 Serge 571
        call    cache_lookup_read
572
; If not found, go to 5.
573
        jc      .not_found_in_cache
574
.found_in_cache:
575
; 4c. Copy the data.
576
        mov     edi, [.buffer]
577
        mov     esi, ecx
578
        shl     esi, 9
579
        add     esi, [ebx+DISKCACHE.data]
580
        mov     ecx, 512/4
581
        rep movsd
582
; 4d. Release the lock and return success.
583
        mov     ecx, [ebp+PARTITION.Disk]
584
        add     ecx, DISK.CacheLock
585
        call    mutex_unlock
586
.return:
587
        xor     eax, eax
588
.return_eax:
589
        add     esp, .local_vars_size
590
        pop     edi esi edx ecx
591
        pop     ebx
592
        ret
593
.not_found_in_cache:
594
; 5. Decide whether we need to prefetch further sectors.
595
; If so, advance to 6. If not, go to 13.
596
; Assume that devices < 3MB are floppies which are slow
597
; (ramdisk does not have a cache, so we don't even get here for ramdisk).
598
; This is a dirty hack, but the entire function is somewhat hacky. Use fs_read64*.
599
        mov     eax, [ebp+PARTITION.Disk]
600
        cmp     dword [eax+DISK.MediaInfo.Capacity+4], 0
601
        jnz     @f
602
        cmp     dword [eax+DISK.MediaInfo.Capacity], 3 shl (20-9)
603
        jb      .floppy
604
@@:
605
; We want to prefetch CACHE_LEGACY_READ_SIZE sectors.
606
; 6. Release the lock acquired at step 4a.
607
        mov     ecx, [ebp+PARTITION.Disk]
608
        add     ecx, DISK.CacheLock
609
        call    mutex_unlock
610
; 7. Allocate buffer for CACHE_LEGACY_READ_SIZE sectors.
611
        stdcall kernel_alloc, CACHE_LEGACY_READ_SIZE shl 9
612
; If failed, return the corresponding error code.
4429 Serge 613
        test    eax, eax
4457 Serge 614
        jz      .nomemory
615
; 8. Create second portion of local variables.
616
        push    eax eax
617
        push    CACHE_LEGACY_READ_SIZE
618
virtual at esp
619
.local_vars2:
620
.num_sectors            dd      ?       ; number of sectors left
621
.current_buffer         dd      ?       ; pointer to data that are currently copying
622
.allocated_buffer       dd      ?       ; saved at safe place
623
.local_vars2_size = $ - .local_vars2
624
end virtual
625
; 9. Call the driver to read CACHE_LEGACY_READ_SIZE sectors.
626
        push    esp     ; numsectors
627
        push    [.sector_hi+.local_vars2_size+4]        ; startsector
628
        push    [.sector_lo+.local_vars2_size+8]        ; startsector
629
        push    eax     ; buffer
630
        mov     esi, [ebp+PARTITION.Disk]
631
        mov     al, DISKFUNC.read
632
        call    disk_call_driver
633
; Note: we're ok if at least one sector is read,
634
; read error somewhere after that just limits data to be put in cache.
635
        cmp     [.num_sectors], 0
636
        jz      .read_error
637
; 10. Copy data for the caller.
638
        mov     esi, [.allocated_buffer]
639
        mov     edi, [.buffer+.local_vars2_size]
640
        mov     ecx, 512/4
641
        rep movsd
642
; 11. Store all sectors that were successfully read to the cache.
643
; 11a. Acquire the lock.
644
        mov     ecx, [ebp+PARTITION.Disk]
645
        add     ecx, DISK.CacheLock
646
        call    mutex_lock
647
.store_to_cache:
648
; 11b. For each sector, call the lookup function with adding to the cache, if not yet.
649
        mov     eax, [.sector_lo+.local_vars2_size]
650
        mov     edx, [.sector_hi+.local_vars2_size]
651
        call    cache_lookup_write
652
        test    eax, eax
653
        jnz     .cache_error
654
; 11c. For each sector, copy data, mark the item as not-modified copy of the disk,
655
; advance .current_buffer and .sector_hi:.sector_lo to the next sector.
656
        mov     [esi+CACHE_ITEM.Status], CACHE_ITEM_COPY
657
        mov     esi, [.current_buffer]
658
        mov     edi, ecx
659
        shl     edi, 9
660
        add     edi, [ebx+DISKCACHE.data]
661
        mov     ecx, 512/4
662
        rep movsd
663
        mov     [.current_buffer], esi
664
        add     [.sector_lo+.local_vars2_size], 1
665
        adc     [.sector_hi+.local_vars2_size], 0
666
; 11d. Continue the loop at 11b-11c until all sectors are processed.
667
        dec     [.num_sectors]
668
        jnz     .store_to_cache
669
.cache_error:
670
; 11e. Release the lock.
671
        mov     ecx, [ebp+PARTITION.Disk]
672
        add     ecx, DISK.CacheLock
673
        call    mutex_unlock
674
.copy_done:
675
; 12. Remove portion of local variables created at step 8,
676
; free the buffer allocated at step 7 and return.
677
        pop     ecx ecx
678
        stdcall kernel_free
679
        jmp     .return
680
.read_error:
681
; If no sectors were read, free the buffer allocated at step 7
682
; and pass the error to the caller.
683
        push    eax
684
        stdcall kernel_free, [.allocated_buffer+4]
685
        pop     eax
686
        add     esp, .local_vars2_size
687
        jmp     .return_eax
688
.nomemory:
689
        mov     eax, DISK_STATUS_NO_MEMORY
690
        jmp     .return_eax
691
.floppy:
692
; We don't want to prefetch anything, just read one sector.
693
; We are still holding the lock acquired at step 4a.
694
; 13. Call the lookup function adding sector to the cache.
695
        call    cache_lookup_write
696
        test    eax, eax
697
        jnz     .floppy_cache_error
698
; 14. Mark the item as empty for the case of read error.
699
        mov     [esi+CACHE_ITEM.Status], CACHE_ITEM_EMPTY
700
        push    ecx
4429 Serge 701
 
4457 Serge 702
; 15. Call the driver to read one sector.
4429 Serge 703
        push    1
704
        push    esp
705
        push    edx
4457 Serge 706
        push    [.sector_lo+16]
707
        shl     ecx, 9
708
        add     ecx, [ebx+DISKCACHE.data]
709
        push    ecx
4429 Serge 710
        mov     esi, [ebp+PARTITION.Disk]
711
        mov     al, DISKFUNC.read
712
        call    disk_call_driver
713
        pop     ecx
714
        dec     ecx
4457 Serge 715
        jnz     .floppy_read_error
716
; 16. Get the slot and pointer to the cache item,
717
; change the status to not-modified copy of the disk
718
; and go to 4c.
719
        pop     ecx
720
        lea     esi, [ecx*sizeof.CACHE_ITEM/4]
721
        shl     esi, 2
722
        add     esi, [ebx+DISKCACHE.pointer]
723
        mov     [esi+CACHE_ITEM.Status], CACHE_ITEM_COPY
724
        jmp     .found_in_cache
4429 Serge 725
 
4457 Serge 726
; On error at steps 13-15, release the lock
727
; and pass the error to the caller.
728
.floppy_read_error:
729
        pop     ecx
730
.floppy_cache_error:
731
        mov     ecx, [ebp+PARTITION.Disk]
732
        add     ecx, DISK.CacheLock
4429 Serge 733
        push    eax
734
        call    mutex_unlock
735
        pop     eax
4457 Serge 736
        jmp     .return_eax
4429 Serge 737
 
738
; This function is intended to replace the old 'hd_write' function when
739
; [hdd_appl_data] = 0, so its input/output parameters are the same, except
740
; that it can't use the global variables 'hd_error' and 'hdd_appl_data'.
741
; in: eax = sector, ebx = buffer, ebp = pointer to PARTITION structure
742
; eax is relative to partition start
743
; out: eax = error code; 0 = ok
744
fs_write32_sys:
4457 Serge 745
; Just call the advanced function.
746
        push    ecx edx
747
        xor     edx, edx
748
        mov     ecx, 1
749
        call    fs_write64_sys
750
        pop     edx ecx
751
        ret
4429 Serge 752
 
753
; This function is intended to replace the old 'hd_write' function when
754
; [hdd_appl_data] = 1, so its input/output parameters are the same, except
755
; that it can't use the global variables 'hd_error' and 'hdd_appl_data'.
756
; in: eax = sector, ebx = buffer, ebp = pointer to PARTITION structure
757
; eax is relative to partition start
758
; out: eax = error code; 0 = ok
759
fs_write32_app:
4457 Serge 760
; Just call the advanced function.
761
        push    ecx edx
4429 Serge 762
        xor     edx, edx
4457 Serge 763
        mov     ecx, 1
764
        call    fs_write64_app
765
        pop     edx ecx
4429 Serge 766
        ret
767
 
4457 Serge 768
; Lookup for the given sector in the given cache.
769
; If the sector is not present, return error.
770
; The caller must acquire the cache lock.
771
; in: edx:eax = sector
772
; in: ebx -> DISKCACHE structure
773
; out: CF set if sector is not in cache
774
; out: ecx = index in cache
775
; out: esi -> sector:status
776
proc cache_lookup_read
777
        mov     esi, [ebx+DISKCACHE.pointer]
778
        add     esi, sizeof.CACHE_ITEM
4429 Serge 779
 
4457 Serge 780
        mov     ecx, 1
4429 Serge 781
 
4457 Serge 782
.hdreadcache:
4429 Serge 783
 
4457 Serge 784
        cmp     [esi+CACHE_ITEM.Status], CACHE_ITEM_EMPTY
785
        je      .nohdcache
4429 Serge 786
 
4457 Serge 787
        cmp     [esi+CACHE_ITEM.SectorLo], eax
788
        jne     .nohdcache
789
        cmp     [esi+CACHE_ITEM.SectorHi], edx
790
        jne     .nohdcache
791
        clc
792
        ret
4429 Serge 793
 
4457 Serge 794
.nohdcache:
4429 Serge 795
 
4457 Serge 796
        add     esi, sizeof.CACHE_ITEM
797
        inc     ecx
798
        cmp     ecx, [ebx+DISKCACHE.sad_size]
799
        jbe     .hdreadcache
800
        stc
4429 Serge 801
        ret
4457 Serge 802
endp
4429 Serge 803
 
4457 Serge 804
; Lookup for the given sector in the given cache.
805
; If the sector is not present, allocate space for it,
806
; possibly flushing data.
807
; in: edx:eax = sector
808
; in: ebx -> DISKCACHE structure
809
; in: ebp -> PARTITION structure
810
; out: eax = error code
811
; out: ecx = index in cache
812
; out: esi -> sector:status
813
proc cache_lookup_write
814
        call    cache_lookup_read
815
        jnc     .return0
816
        push    edx eax
4429 Serge 817
;-----------------------------------------------------------
818
; find empty or read slot, flush cache if next 12.5% is used by write
4457 Serge 819
; output : ecx = cache slot
4429 Serge 820
;-----------------------------------------------------------
4457 Serge 821
; Note: the code is essentially inherited, so probably
822
; no analysis of efficiency were done.
823
; However, it works.
4429 Serge 824
.search_again:
4457 Serge 825
        mov     eax, [ebx+DISKCACHE.sad_size]
826
        mov     ecx, [ebx+DISKCACHE.search_start]
827
        shr     eax, 3
828
        lea     esi, [ecx*sizeof.CACHE_ITEM/4]
829
        shl     esi, 2
830
        add     esi, [ebx+DISKCACHE.pointer]
4429 Serge 831
.search_for_empty:
4457 Serge 832
        inc     ecx
833
        add     esi, sizeof.CACHE_ITEM
834
        cmp     ecx, [ebx+DISKCACHE.sad_size]
4429 Serge 835
        jbe     .inside_cache
4457 Serge 836
        mov     ecx, 1
837
        mov     esi, [ebx+DISKCACHE.pointer]
838
        add     esi, sizeof.CACHE_ITEM
4429 Serge 839
.inside_cache:
4457 Serge 840
        cmp     [esi+CACHE_ITEM.Status], CACHE_ITEM_MODIFIED
4429 Serge 841
        jb      .found_slot             ; it's empty or read
4457 Serge 842
        dec     eax
4429 Serge 843
        jnz     .search_for_empty
844
        stdcall write_cache64, [ebp+PARTITION.Disk] ; no empty slots found, write all
845
        test    eax, eax
846
        jne     .found_slot_access_denied
847
        jmp     .search_again           ; and start again
848
.found_slot:
4457 Serge 849
        mov     [ebx+DISKCACHE.search_start], ecx
850
        popd    [esi+CACHE_ITEM.SectorLo]
851
        popd    [esi+CACHE_ITEM.SectorHi]
852
.return0:
4429 Serge 853
        xor     eax, eax        ; success
4457 Serge 854
        ret
4429 Serge 855
.found_slot_access_denied:
4457 Serge 856
        add     esp, 8
4429 Serge 857
        ret
4457 Serge 858
endp
4429 Serge 859
 
4457 Serge 860
; Flush the given cache.
861
; The caller must acquire the cache lock.
862
; in: ebx -> DISKCACHE
863
; in: first argument in stdcall convention -> PARTITION
864
proc write_cache64
865
; 1. Setup stack frame.
866
        push    esi edi         ; save used registers to be stdcall
867
        sub     esp, .local_vars_size   ; reserve space for local vars
868
virtual at esp
869
.local_vars:
870
.cache_end      dd      ?       ; item past the end of the cache
871
.size_left      dd      ?       ; items left to scan
872
.current_ptr    dd      ?       ; pointer to the current item
873
;
874
; Write operations are coalesced in chains,
875
; one chain describes a sequential interval of sectors,
876
; they can be sequential or scattered in the cache.
877
.sequential     dd      ?
878
; boolean variable, 1 if the current chain is sequential in the cache,
879
; 0 if additional buffer is needed to perform the operation
880
.chain_start_pos dd     ?       ; slot of chain start item
881
.chain_start_ptr dd     ?       ; pointer to chain start item
882
.chain_size     dd      ?       ; chain size (thanks, C.O.)
883
.iteration_size dd      ?
884
; If the chain size is too large, split the operation to several iterations.
885
; This is size in sectors for one iterations.
886
.iteration_buffer dd    ?       ; temporary buffer for non-sequential chains
887
.local_vars_size = $ - .local_vars
888
                rd      2       ; saved registers
889
                dd      ?       ; return address
890
.disk           dd      ?       ; first argument
891
end virtual
892
; 1. If there is no cache for this disk, nothing to do, just return zero.
893
        cmp     [ebx+DISKCACHE.pointer], 0
894
        jz      .return0
895
; 2. Prepare for the loop: initialize current pointer and .size_left,
896
; calculate .cache_end.
897
        mov     ecx, [ebx+DISKCACHE.sad_size]
898
        mov     [.size_left], ecx
899
        lea     ecx, [ecx*sizeof.CACHE_ITEM/4]
900
        shl     ecx, 2
901
        mov     esi, [ebx+DISKCACHE.pointer]
902
        add     esi, sizeof.CACHE_ITEM
903
        add     ecx, esi
904
        mov     [.cache_end], ecx
905
; 3. Main loop: go over all items, go to 5 for every modified item.
906
.look:
907
        cmp     [esi+CACHE_ITEM.Status], CACHE_ITEM_MODIFIED
908
        jz      .begin_write
909
.look_next:
910
        add     esi, sizeof.CACHE_ITEM
911
        dec     [.size_left]
912
        jnz     .look
913
; 4. Return success.
914
.return0:
915
        xor     eax, eax
916
.return:
917
        add     esp, .local_vars_size
918
        pop     edi esi         ; restore used registers to be stdcall
919
        ret     4               ; return popping one argument
920
.begin_write:
921
; We have found a modified item.
922
; 5. Prepare for chain finding: save the current item, initialize chain variables.
923
        mov     [.current_ptr], esi
924
; Initialize chain as sequential zero-length starting at the current item.
925
        mov     [.chain_start_ptr], esi
926
        mov     eax, [ebx+DISKCACHE.sad_size]
927
        sub     eax, [.size_left]
928
        inc     eax
929
        mov     [.chain_start_pos], eax
930
        mov     [.chain_size], 0
931
        mov     [.sequential], 1
932
; 6. Expand the chain backward.
933
; Note: the main loop in step 2 looks for items sequentially,
934
; so the previous item is not modified. If the previous sector
935
; is present in the cache, it automatically makes the chain scattered.
936
; 6a. Calculate sector number: one before the sector for the current item.
937
        mov     eax, [esi+CACHE_ITEM.SectorLo]
938
        mov     edx, [esi+CACHE_ITEM.SectorHi]
939
        sub     eax, 1
940
        sbb     edx, 0
941
.find_chain_start:
942
; 6b. For each sector where the previous item does not expand the chain,
943
; call the lookup function without adding to the cache.
944
        call    cache_lookup_read
945
; 6c. If the sector is not found in cache or is not modified, stop expanding
946
; and advance to step 7.
947
        jc      .found_chain_start
948
        cmp     [esi+CACHE_ITEM.Status], CACHE_ITEM_MODIFIED
949
        jnz     .found_chain_start
950
; 6d. We have found a new block that expands the chain backwards.
951
; It makes the chain non-sequential.
952
; Normally, sectors come in sequential blocks, so try to look at previous items
953
; before returning to 6b; if there is a sequential block indeed, this saves some
954
; time instead of many full-fledged lookups.
955
        mov     [.sequential], 0
956
        mov     [.chain_start_pos], ecx
957
.look_backward:
958
; 6e. For each sector, update chain start pos/ptr, decrement sector number,
959
; look at the previous item.
960
        mov     [.chain_start_ptr], esi
961
        inc     [.chain_size]
962
        sub     eax, 1
963
        sbb     edx, 0
964
        sub     esi, sizeof.CACHE_ITEM
965
; If the previous item exists...
966
        cmp     esi, [ebx+DISKCACHE.pointer]
967
        jbe     .find_chain_start
968
; ...describes the correct sector...
969
        cmp     [esi+CACHE_ITEM.SectorLo], eax
970
        jnz     .find_chain_start
971
        cmp     [esi+CACHE_ITEM.SectorHi], edx
972
        jnz     .find_chain_start
973
; ...and is modified...
974
        cmp     [esi+CACHE_ITEM.Status], CACHE_ITEM_MODIFIED
975
        jnz     .found_chain_start
976
; ...expand the chain one sector backwards and continue the loop at 6e.
977
; Otherwise, advance to step 7 if the previous item describes the correct sector
978
; but is not modified, and return to step 6b otherwise.
979
        dec     [.chain_start_pos]
980
        jmp     .look_backward
981
.found_chain_start:
982
; 7. Expand the chain forward.
983
; 7a. Prepare for the loop at 7b:
984
; set esi = pointer to current item, edx:eax = current sector.
985
        mov     esi, [.current_ptr]
986
        mov     eax, [esi+CACHE_ITEM.SectorLo]
987
        mov     edx, [esi+CACHE_ITEM.SectorHi]
988
.look_forward:
989
; 7b. First, look at the next item. If it describes the next sector:
990
; if it is modified, expand the chain with that sector and continue this step,
991
; if it is not modified, the chain is completed, so advance to step 8.
992
        inc     [.chain_size]
4429 Serge 993
        add     eax, 1
994
        adc     edx, 0
4457 Serge 995
        add     esi, sizeof.CACHE_ITEM
996
        cmp     esi, [.cache_end]
997
        jae     .find_chain_end
998
        cmp     [esi+CACHE_ITEM.SectorLo], eax
999
        jnz     .find_chain_end
1000
        cmp     [esi+CACHE_ITEM.SectorHi], edx
1001
        jnz     .find_chain_end
1002
        cmp     [esi+CACHE_ITEM.Status], CACHE_ITEM_MODIFIED
1003
        jnz     .found_chain_end
1004
        jmp     .look_forward
1005
.find_chain_end:
1006
; 7c. Otherwise, call the lookup function.
1007
        call    cache_lookup_read
1008
; 7d. If the next sector is present in the cache and is modified,
1009
; mark the chain as non-sequential and continue to step 7b.
1010
        jc      .found_chain_end
1011
        cmp     [esi+CACHE_ITEM.Status], CACHE_ITEM_MODIFIED
1012
        jnz     .found_chain_end
1013
        mov     [.sequential], 0
1014
        jmp     .look_forward
1015
.found_chain_end:
1016
; 8. Decide whether the chain is sequential or scattered.
1017
; Advance to step 9 for sequential chains, go to step 10 for scattered chains.
1018
        cmp     [.sequential], 0
1019
        jz      .write_non_sequential
1020
.write_sequential:
1021
; 9. Write a sequential chain to disk.
1022
; 9a. Pass the entire chain to the driver.
1023
        mov     eax, [.chain_start_ptr]
1024
        mov     edx, [.chain_start_pos]
1025
        shl     edx, 9
1026
        add     edx, [ebx+DISKCACHE.data]
1027
        lea     ecx, [.chain_size]
1028
        push    ecx     ; numsectors
1029
        pushd   [eax+CACHE_ITEM.SectorHi]       ; startsector
1030
        pushd   [eax+CACHE_ITEM.SectorLo]       ; startsector
1031
        push    edx     ; buffer
1032
        mov     esi, [ebp+PARTITION.Disk]
1033
        mov     al, DISKFUNC.write
1034
        call    disk_call_driver
1035
; 9b. If failed, pass the error code to the driver.
1036
        test    eax, eax
1037
        jnz     .return
1038
; 9c. If succeeded, mark all sectors in the chain as not-modified,
1039
; advance current item and number of items left to skip the chain.
1040
        mov     esi, [.current_ptr]
1041
        mov     eax, [.chain_size]
1042
        sub     [.size_left], eax
4429 Serge 1043
@@:
4457 Serge 1044
        mov     [esi+CACHE_ITEM.Status], CACHE_ITEM_COPY
1045
        add     esi, sizeof.CACHE_ITEM
1046
        dec     eax
1047
        jnz     @b
1048
; 9d. Continue the main loop at step 2 if there are more sectors.
1049
; Return success otherwise.
1050
        cmp     [.size_left], 0
1051
        jnz     .look
1052
        jmp     .return0
1053
.write_non_sequential:
1054
; Write a non-sequential chain to the disk.
1055
; 10. Allocate a temporary buffer.
1056
; Use [.chain_size] sectors, but
1057
; not greater than CACHE_MAX_ALLOC_SIZE bytes
1058
; and not greater than half of free memory.
1059
        mov     eax, [pg_data.pages_free]
1060
        shr     eax, 1
1061
        jz      .nomemory
1062
        cmp     eax, CACHE_MAX_ALLOC_SIZE shr 12
1063
        jbe     @f
1064
        mov     eax, CACHE_MAX_ALLOC_SIZE shr 12
4429 Serge 1065
@@:
4457 Serge 1066
        shl     eax, 12 - 9
1067
        cmp     eax, [.chain_size]
1068
        jbe     @f
1069
        mov     eax, [.chain_size]
1070
@@:
1071
        mov     [.iteration_size], eax
1072
        shl     eax, 9
1073
        stdcall kernel_alloc, eax
4429 Serge 1074
        test    eax, eax
4457 Serge 1075
        jz      .nomemory
1076
        mov     [.iteration_buffer], eax
1077
.write_non_sequential_iteration:
1078
; 11. Split the chain so that each iteration fits in the allocated buffer.
1079
; Iteration size is the minimum of chain size and allocated size.
1080
        mov     eax, [.chain_size]
1081
        cmp     eax, [.iteration_size]
1082
        jae     @f
1083
        mov     [.iteration_size], eax
4429 Serge 1084
@@:
4457 Serge 1085
; 12. Prepare arguments for the driver.
1086
        mov     esi, [.chain_start_ptr]
1087
        mov     edi, [.iteration_buffer]
1088
        push    [.iteration_size]
4429 Serge 1089
        push    esp     ; numsectors
4457 Serge 1090
        push    [esi+CACHE_ITEM.SectorHi]       ; startsector
1091
        push    [esi+CACHE_ITEM.SectorLo]       ; startsector
4429 Serge 1092
        push    edi     ; buffer
4457 Serge 1093
; 13. Copy data from the cache to the temporary buffer,
1094
; advancing chain_start pos/ptr and marking sectors as not-modified.
1095
; 13a. Prepare for the loop: push number of sectors to process.
1096
        push    [.iteration_size+20]    ; temporary variable
1097
.copy_loop:
1098
; 13b. For each sector, copy the data.
1099
; Note that edi is advanced automatically.
1100
        mov     esi, [.chain_start_pos+24]
1101
        shl     esi, 9
1102
        add     esi, [ebx+DISKCACHE.data]
1103
        mov     ecx, 512/4
1104
        rep movsd
1105
; 13c. Mark the item as not-modified.
1106
        mov     esi, [.chain_start_ptr+24]
1107
        mov     [esi+CACHE_ITEM.Status], CACHE_ITEM_COPY
1108
; 13d. Check whether the next sector continues the chain.
1109
; If so, advance to 13e. Otherwise, go to 13f.
1110
        mov     eax, [esi+CACHE_ITEM.SectorLo]
1111
        mov     edx, [esi+CACHE_ITEM.SectorHi]
1112
        add     esi, sizeof.CACHE_ITEM
1113
        add     eax, 1
1114
        adc     edx, 0
1115
        cmp     esi, [.cache_end+24]
1116
        jae     .no_forward
1117
        cmp     [esi+CACHE_ITEM.SectorLo], eax
1118
        jnz     .no_forward
1119
        cmp     [esi+CACHE_ITEM.SectorHi], edx
1120
        jnz     .no_forward
1121
; 13e. Increment position/pointer to the chain and
1122
; continue the loop.
1123
        inc     [.chain_start_pos+24]
1124
        mov     [.chain_start_ptr+24], esi
1125
        dec     dword [esp]
1126
        jnz     .copy_loop
1127
        jmp     .copy_done
1128
.no_forward:
1129
; 13f. Call the lookup function without adding to the cache.
1130
; Update position/pointer with returned value.
1131
; Note: for the last sector in the chain, ecx/esi may contain
1132
; garbage; we are not going to use them in this case.
1133
        call    cache_lookup_read
1134
        mov     [.chain_start_pos+24], ecx
1135
        mov     [.chain_start_ptr+24], esi
1136
        dec     dword [esp]
1137
        jnz     .copy_loop
1138
.copy_done:
1139
; 13g. Restore the stack after 13a.
1140
        pop     ecx
1141
; 14. Call the driver.
1142
        mov     esi, [ebp+PARTITION.Disk]
4429 Serge 1143
        mov     al, DISKFUNC.write
1144
        call    disk_call_driver
4457 Serge 1145
        pop     ecx     ; numsectors
1146
; 15. If the driver has returned an error, free the buffer allocated at step 10
1147
; and pass the error to the caller.
1148
; Otherwise, remove the processed part from the chain and continue iterations
1149
; starting in step 11 if there are more data to process.
1150
        test    eax, eax
1151
        jnz     .nonsequential_error
1152
        sub     [.chain_size], ecx
1153
        jnz     .write_non_sequential_iteration
1154
; 16. The chain is written. Free the temporary buffer
1155
; and continue the loop at step 2.
1156
        stdcall kernel_free, [.iteration_buffer]
1157
        mov     esi, [.current_ptr]
1158
        jmp     .look_next
1159
.nonsequential_error:
1160
        push    eax
1161
        stdcall kernel_free, [.iteration_buffer+4]
1162
        pop     eax
1163
        jmp     .return
1164
.nomemory:
1165
        mov     eax, DISK_STATUS_NO_MEMORY
1166
        jmp     .return
4429 Serge 1167
endp
1168
 
1169
; This internal function is called from disk_add to initialize the caching for
1170
; a new DISK.
1171
; The algorithm is inherited from getcache.inc: take 1/32 part of the available
1172
; physical memory, round down to 8 pages, limit by 128K from below and by 1M
1173
; from above. Reserve 1/8 part of the cache for system data and 7/8 for app
1174
; data.
1175
; After the size is calculated, but before the cache is allocated, the device
1176
; driver can adjust the size. In particular, setting size to zero disables
1177
; caching: there is no sense in a cache for a ramdisk. In fact, such action
1178
; is most useful example of a non-trivial adjustment.
1179
; esi = pointer to DISK structure
1180
disk_init_cache:
1181
; 1. Calculate the suggested cache size.
1182
; 1a. Get the size of free physical memory in pages.
1183
        mov     eax, [pg_data.pages_free]
1184
; 1b. Use the value to calculate the size.
1185
        shl     eax, 12 - 5     ; 1/32 of it in bytes
1186
        and     eax, -8*4096    ; round down to the multiple of 8 pages
1187
; 1c. Force lower and upper limits.
1188
        cmp     eax, 1024*1024
1189
        jb      @f
1190
        mov     eax, 1024*1024
1191
@@:
1192
        cmp     eax, 128*1024
1193
        ja      @f
1194
        mov     eax, 128*1024
1195
@@:
1196
; 1d. Give a chance to the driver to adjust the size.
1197
        push    eax
1198
        mov     al, DISKFUNC.adjust_cache_size
1199
        call    disk_call_driver
1200
; Cache size calculated.
1201
        mov     [esi+DISK.cache_size], eax
1202
        test    eax, eax
1203
        jz      .nocache
1204
; 2. Allocate memory for the cache.
1205
; 2a. Call the allocator.
1206
        stdcall kernel_alloc, eax
1207
        test    eax, eax
1208
        jnz     @f
1209
; 2b. If it failed, say a message and return with eax = 0.
1210
        dbgstr 'no memory for disk cache'
1211
        jmp     .nothing
1212
@@:
1213
; 3. Fill two DISKCACHE structures.
1214
        mov     [esi+DISK.SysCache.pointer], eax
4457 Serge 1215
        lea     ecx, [esi+DISK.CacheLock]
4429 Serge 1216
        call    mutex_init
1217
; The following code is inherited from getcache.inc.
1218
        mov     edx, [esi+DISK.SysCache.pointer]
1219
        and     [esi+DISK.SysCache.search_start], 0
1220
        and     [esi+DISK.AppCache.search_start], 0
1221
        mov     eax, [esi+DISK.cache_size]
1222
        shr     eax, 3
1223
        mov     [esi+DISK.SysCache.data_size], eax
1224
        add     edx, eax
1225
        imul    eax, 7
1226
        mov     [esi+DISK.AppCache.data_size], eax
1227
        mov     [esi+DISK.AppCache.pointer], edx
1228
 
1229
        mov     eax, [esi+DISK.SysCache.data_size]
1230
        push    ebx
1231
        call    calculate_for_hd64
1232
        pop     ebx
1233
        add     eax, [esi+DISK.SysCache.pointer]
1234
        mov     [esi+DISK.SysCache.data], eax
1235
        mov     [esi+DISK.SysCache.sad_size], ecx
1236
 
1237
        push    edi
1238
        mov     edi, [esi+DISK.SysCache.pointer]
1239
        lea     ecx, [(ecx+1)*3]
1240
        xor     eax, eax
1241
        rep stosd
1242
        pop     edi
1243
 
1244
        mov     eax, [esi+DISK.AppCache.data_size]
1245
        push    ebx
1246
        call    calculate_for_hd64
1247
        pop     ebx
1248
        add     eax, [esi+DISK.AppCache.pointer]
1249
        mov     [esi+DISK.AppCache.data], eax
1250
        mov     [esi+DISK.AppCache.sad_size], ecx
1251
 
1252
        push    edi
1253
        mov     edi, [esi+DISK.AppCache.pointer]
1254
        lea     ecx, [(ecx+1)*3]
1255
        xor     eax, eax
1256
        rep stosd
1257
        pop     edi
1258
 
1259
; 4. Return with nonzero al.
1260
        mov     al, 1
1261
; 5. Return.
1262
.nothing:
1263
        ret
1264
; No caching is required for this driver. Zero cache pointers and return with
1265
; nonzero al.
1266
.nocache:
1267
        mov     [esi+DISK.SysCache.pointer], eax
1268
        mov     [esi+DISK.AppCache.pointer], eax
1269
        mov     al, 1
1270
        ret
1271
 
1272
calculate_for_hd64:
1273
        push    eax
1274
        mov     ebx, eax
1275
        shr     eax, 9
1276
        lea     eax, [eax*3]
1277
        shl     eax, 2
1278
        sub     ebx, eax
1279
        shr     ebx, 9
1280
        mov     ecx, ebx
1281
        shl     ebx, 9
1282
        pop     eax
1283
        sub     eax, ebx
1284
        dec     ecx
1285
        ret
1286
 
1287
 
1288
; This internal function is called from disk_media_dereference to free the
1289
; allocated cache, if there is one.
1290
; esi = pointer to DISK structure
1291
disk_free_cache:
1292
; The algorithm is straightforward.
1293
        mov     eax, [esi+DISK.SysCache.pointer]
1294
        test    eax, eax
1295
        jz      .nothing
1296
        stdcall kernel_free, eax
1297
.nothing:
1298
        ret
1299
 
1300
; This function flushes all modified data from both caches for the given DISK.
1301
; esi = pointer to DISK
1302
disk_sync:
1303
; The algorithm is straightforward.
4457 Serge 1304
        cmp     [esi+DISK.SysCache.pointer], 0
1305
        jz      .nothing
1306
        lea     ecx, [esi+DISK.CacheLock]
1307
        call    mutex_lock
1308
        push    ebx
4429 Serge 1309
        push    esi     ; for second write_cache64
1310
        push    esi     ; for first write_cache64
4457 Serge 1311
        lea     ebx, [esi+DISK.SysCache]
4429 Serge 1312
        call    write_cache64
4457 Serge 1313
        add     ebx, DISK.AppCache - DISK.SysCache
4429 Serge 1314
        call    write_cache64
4457 Serge 1315
        pop     ebx
1316
        lea     ecx, [esi+DISK.CacheLock]
1317
        call    mutex_unlock
1318
.nothing:
1319
        mov     al, DISKFUNC.flush
1320
        call    disk_call_driver
4429 Serge 1321
        ret