Subversion Repositories Kolibri OS

Rev

Rev 3555 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3555 Serge 1
; Code for EHCI controllers.
2
; Note: it should be moved to an external driver,
3
; it was convenient to have this code compiled into the kernel during initial
4
; development, but there are no reasons to keep it here.
5
 
6
; =============================================================================
7
; ================================= Constants =================================
8
; =============================================================================
9
; EHCI register declarations.
10
; Part 1. Capability registers.
11
; Base is MMIO from the PCI space.
12
EhciCapLengthReg    = 0
13
EhciVersionReg      = 2
14
EhciStructParamsReg = 4
15
EhciCapParamsReg    = 8
16
EhciPortRouteReg    = 0Ch
17
; Part 2. Operational registers.
18
; Base is (base for part 1) + (value of EhciCapLengthReg).
19
EhciCommandReg      = 0
20
EhciStatusReg       = 4
21
EhciInterruptReg    = 8
22
EhciFrameIndexReg   = 0Ch
23
EhciCtrlDataSegReg  = 10h
24
EhciPeriodicListReg = 14h
25
EhciAsyncListReg    = 18h
26
EhciConfigFlagReg   = 40h
27
EhciPortsReg        = 44h
28
 
29
; Possible values of ehci_pipe.NextQH.Type bitfield.
30
EHCI_TYPE_ITD  = 0 ; isochronous transfer descriptor
31
EHCI_TYPE_QH   = 1 ; queue head
32
EHCI_TYPE_SITD = 2 ; split-transaction isochronous TD
33
EHCI_TYPE_FSTN = 3 ; frame span traversal node
34
 
35
; =============================================================================
36
; ================================ Structures =================================
37
; =============================================================================
38
 
39
; Hardware part of EHCI general transfer descriptor.
40
struct ehci_hardware_td
41
NextTD          dd      ?
42
; Bit 0 is Terminate bit, 1 = there is no next TD.
43
; Bits 1-4 must be zero.
44
; With masked 5 lower bits, this is the physical address of the next TD, if any.
45
AlternateNextTD dd      ?
46
; Similar to NextTD, used if the transfer terminates with a short packet.
47
Token           dd      ?
48
; 1. Lower byte is Status field:
49
; bit 0 = ping state for USB2 endpoints, ERR handshake signal for USB1 endpoints
50
; bit 1 = split transaction state, meaningless for USB2 endpoints
51
; bit 2 = missed micro-frame
52
; bit 3 = transaction error
53
; bit 4 = babble detected
54
; bit 5 = data buffer error
55
; bit 6 = halted
56
; bit 7 = active
57
; 2. Next two bits (bits 8-9) are PID code, 0 = OUT, 1 = IN, 2 = SETUP.
58
; 3. Next two bits (bits 10-11) is ErrorCounter. Initialized as 3, decremented
59
;    on each error; if it goes to zero, transaction is stopped.
60
; 4. Next 3 bits (bits 12-14) are CurrentPage field.
61
; 5. Next bit (bit 15) is InterruptOnComplete bit.
62
; 6. Next 15 bits (bits 16-30) are TransferLength field,
63
;    number of bytes to transfer.
64
; 7. Upper bit (bit 31) is DataToggle bit.
65
BufferPointers  rd      5
66
; The buffer to be transferred can be spanned on up to 5 physical pages.
67
; The first item of this array is the physical address of the first byte in
68
; the buffer, other items are physical addresses of next pages. Lower 12 bits
69
; in other items must be set to zero; ehci_pipe.Overlay reuses some of them.
70
BufferPointersHigh      rd      5
71
; Upper dwords of BufferPointers for controllers with 64-bit memory access.
72
; Always zero.
73
ends
74
 
75
; EHCI general transfer descriptor.
76
; * The structure describes transfers to be performed on Control, Bulk or
77
;   Interrupt endpoints.
78
; * The structure includes two parts, the hardware part and the software part.
79
; * The hardware part consists of first 52 bytes and corresponds to
80
;   the Queue Element Transfer Descriptor from EHCI specification.
81
; * The hardware requires 32-bytes alignment of the hardware part, so
82
;   the entire descriptor must be 32-bytes aligned. Since the allocator
83
;   (usb_allocate_common) allocates memory sequentially from page start
84
;   (aligned on 0x1000 bytes), size of the structure must be divisible by 32.
85
; * The hardware also requires that the hardware part must not cross page
86
;   boundary; the allocator satisfies this automatically.
87
struct ehci_gtd ehci_hardware_td
88
Flags                   dd      ?
89
; Copy of flags from the call to usb_*_transfer_async.
90
SoftwarePart            rd      sizeof.usb_gtd/4
91
; Software part, common for all controllers.
92
                        rd      3       ; padding
93
ends
94
 
95
if sizeof.ehci_gtd mod 32
96
.err ehci_gtd must be 32-bytes aligned
97
end if
98
 
99
; EHCI-specific part of a pipe descriptor.
100
; * This structure corresponds to the Queue Head from the EHCI specification.
101
; * The hardware requires 32-bytes alignment of the hardware part.
102
;   Since the allocator (usb_allocate_common) allocates memory sequentially
103
;   from page start (aligned on 0x1000 bytes), size of the structure must be
104
;   divisible by 32.
105
; * The hardware requires also that the hardware part must not cross page
106
;   boundary; the allocator satisfies this automatically.
107
struct ehci_pipe
108
NextQH                  dd      ?
109
; 1. First bit (bit 0) is Terminate bit, 1 = there is no next QH.
110
; 2. Next two bits (bits 1-2) are Type field of the next QH,
111
;    one of EHCI_TYPE_* constants.
112
; 3. Next two bits (bits 3-4) are reserved, must be zero.
113
; 4. With masked 5 lower bits, this is the physical address of the next object
114
;    to be processed, usually next QH.
115
Token                   dd      ?
116
; 1. Lower 7 bits are DeviceAddress field. This is the address of the
117
;    target device on the USB bus.
118
; 2. Next bit (bit 7) is Inactivate-on-next-transaction bit. Can be nonzero
119
;    only for interrupt/isochronous USB1 endpoints.
120
; 3. Next 4 bits (bits 8-11) are Endpoint field. This is the target endpoint
121
;    number.
122
; 4. Next 2 bits (bits 12-13) are EndpointSpeed field, one of EHCI_SPEED_*.
123
; 5. Next bit (bit 14) is DataToggleControl bit,
124
;    0 = use DataToggle bit from QH, 1 = from TD.
125
; 6. Next bit (bit 15) is Head-of-reclamation-list. The head of Control list
126
;    has 1 here, all other QHs have zero.
127
; 7. Next 11 bits (bits 16-26) are MaximumPacketLength field for the target
128
;    endpoint.
129
; 8. Next bit (bit 27) is ControlEndpoint bit, must be 1 for USB1 control
130
;    endpoints and 0 for all others.
131
; 9. Upper 4 bits (bits 28-31) are NakCountReload field.
132
;    Zero for USB1 endpoints, zero for periodic endpoints.
133
;    For control/bulk USB2 endpoints, the code sets it to 4,
134
;    which is rather arbitrary.
135
Flags                   dd      ?
136
; 1. Lower byte is S-mask, each bit corresponds to one microframe per frame;
137
;    bit is set <=> enable transactions in this microframe.
138
; 2. Next byte is C-mask, each bit corresponds to one microframe per frame;
139
;    bit is set <=> enable complete-split transactions in this microframe.
140
;    Meaningful only for USB1 endpoints.
141
; 3. Next 14 bits give address of the target device as hub:port, bits 16-22
142
;    are the USB address of the hub, bits 23-29 are the port number.
143
;    Meaningful only for USB1 endpoints.
144
; 4. Upper 2 bits define number of consequetive transactions per micro-frame
145
;    which host is allowed to permit for this endpoint.
146
;    For control/bulk endpoints, it must be 1.
147
;    For periodic endpoints, the value is taken from the endpoint descriptor.
148
HeadTD                  dd      ?
149
; The physical address of the first TD for this pipe.
150
; Lower 5 bits must be zero.
151
Overlay                 ehci_hardware_td        ?
152
; Working area for the current TD, if there is any.
153
; When TD is retired, it is written to that TD and Overlay is loaded
154
; from the new TD, if any.
155
BaseList                dd      ?
156
; Pointer to head of the corresponding pipe list.
157
SoftwarePart            rd      sizeof.usb_pipe/4
158
; Software part, common for all controllers.
159
                        rd      2       ; padding
160
ends
161
 
162
if sizeof.ehci_pipe mod 32
163
.err ehci_pipe must be 32-bytes aligned
164
end if
165
 
166
; This structure describes the static head of every list of pipes.
167
; The hardware requires 32-bytes alignment of this structure.
168
; All instances of this structure are located sequentially in ehci_controller,
169
; ehci_controller is page-aligned, so it is sufficient to make this structure
170
; 32-bytes aligned and verify that the first instance is 32-bytes aligned
171
; inside ehci_controller.
172
; The hardware also requires that 44h bytes (size of 64-bit Queue Head
173
; Descriptor) starting at the beginning of this structure must not cross page
174
; boundary. If not, most hardware still behaves correctly (in fact, the last
175
; dword can have any value and this structure is never written), but on some
176
; hardware some things just break in mysterious ways.
177
struct ehci_static_ep
178
; Hardware fields are the same as in ehci_pipe.
179
; Only NextQH and Overlay.Token are actually used.
180
; NB: some emulators ignore Token.Halted bit (probably assuming that it is set
181
; only when device fails and emulation never fails) and always follow
182
; [Alternate]NextTD when they see that OverlayToken.Active bit is zero;
183
; so it is important to also set [Alternate]NextTD to 1.
184
NextQH          dd      ?
185
Token           dd      ?
186
Flags           dd      ?
187
HeadTD          dd      ?
188
NextTD          dd      ?
189
AlternateNextTD dd      ?
190
OverlayToken    dd      ?
191
NextList        dd      ?
192
SoftwarePart    rd      sizeof.usb_static_ep/4
193
Bandwidths      rw      8
194
                dd      ?
195
ends
196
 
197
if sizeof.ehci_static_ep mod 32
198
.err ehci_static_ep must be 32-bytes aligned
199
end if
200
 
201
if ehci_static_ep.OverlayToken <> ehci_pipe.Overlay.Token
202
.err ehci_static_ep.OverlayToken misplaced
203
end if
204
 
205
; EHCI-specific part of controller data.
206
; * The structure includes two parts, the hardware part and the software part.
207
; * The hardware part consists of first 4096 bytes and corresponds to
208
;   the Periodic Frame List from the EHCI specification.
209
; * The hardware requires page-alignment of the hardware part, so
210
;   the entire descriptor must be page-aligned.
211
;   This structure is allocated with kernel_alloc (see usb_init_controller),
212
;   this gives page-aligned data.
213
; * The controller is described by both ehci_controller and usb_controller
214
;   structures, for each controller there is one ehci_controller and one
215
;   usb_controller structure. These structures are located sequentially
216
;   in the memory: beginning from some page start, there is ehci_controller
217
;   structure - this enforces hardware alignment requirements - and then
218
;   usb_controller structure.
219
; * The code keeps pointer to usb_controller structure. The ehci_controller
220
;   structure is addressed as [ptr + ehci_controller.field - sizeof.ehci_controller].
221
struct ehci_controller
222
; ------------------------------ hardware fields ------------------------------
223
FrameList               rd      1024
224
; Entry n corresponds to the head of the frame list to be executed in
3589 Serge 225
; the frames n,n+1024,n+2048,n+3072,...
3555 Serge 226
; The first bit of each entry is Terminate bit, 1 = the frame is empty.
227
; Bits 1-2 are Type field, one of EHCI_TYPE_* constants.
228
; Bits 3-4 must be zero.
229
; With masked 5 lower bits, the entry is a physical address of the first QH/TD
230
; to be executed.
231
; ------------------------------ software fields ------------------------------
232
; Every list has the static head, which is an always halted QH.
233
; The following fields are static heads, one per list:
234
; 32+16+8+4+2+1 = 63 for Periodic lists, 1 for Control list and 1 for Bulk list.
235
IntEDs                  ehci_static_ep
236
                        rb      62 * sizeof.ehci_static_ep
237
; Beware.
238
; Two following strings ensure that 44h bytes at any static head
239
; do not cross page boundary. Without that, the code "works on my machine"...
240
; but fails on some hardware in seemingly unrelated ways.
241
; One hardware TD (without any software fields) fit in the rest of the page.
242
ehci_controller.ControlDelta = 2000h - (ehci_controller.IntEDs + 63 * sizeof.ehci_static_ep)
243
StopQueueTD             ehci_hardware_td
244
; Used as AlternateNextTD for transfers when short packet is considered
245
; as an error; short packet must stop the queue in this case, not advance
246
; to the next transfer.
247
                        rb      ehci_controller.ControlDelta - sizeof.ehci_hardware_td
248
; Padding for page-alignment.
249
ControlED               ehci_static_ep
250
BulkED                  ehci_static_ep
251
MMIOBase1               dd      ?
252
; Virtual address of memory-mapped area with part 1 of EHCI registers EhciXxxReg.
253
MMIOBase2               dd      ?
254
; Pointer inside memory-mapped area MMIOBase1; points to part 2 of EHCI registers.
255
StructuralParams        dd      ?
256
; Copy of EhciStructParamsReg value.
257
CapabilityParams        dd      ?
258
; Copy of EhciCapParamsReg value.
259
DeferredActions         dd      ?
260
; Bitmask of events from EhciStatusReg which were observed by the IRQ handler
261
; and needs to be processed in the IRQ thread.
262
ends
263
 
264
if ehci_controller.IntEDs mod 32
265
.err Static endpoint descriptors must be 32-bytes aligned inside ehci_controller
266
end if
267
 
268
; Description of #HCI-specific data and functions for
269
; controller-independent code.
270
; Implements the structure usb_hardware_func from hccommon.inc for EHCI.
271
iglobal
272
align 4
273
ehci_hardware_func:
274
        dd      'EHCI'
275
        dd      sizeof.ehci_controller
276
        dd      ehci_init
277
        dd      ehci_process_deferred
278
        dd      ehci_set_device_address
279
        dd      ehci_get_device_address
280
        dd      ehci_port_disable
281
        dd      ehci_new_port.reset
282
        dd      ehci_set_endpoint_packet_size
283
        dd      ehci_alloc_pipe
284
        dd      ehci_free_pipe
285
        dd      ehci_init_pipe
286
        dd      ehci_unlink_pipe
287
        dd      ehci_alloc_td
288
        dd      ehci_free_td
289
        dd      ehci_alloc_transfer
290
        dd      ehci_insert_transfer
291
        dd      ehci_new_device
292
endg
293
 
294
; =============================================================================
295
; =================================== Code ====================================
296
; =============================================================================
297
 
298
; Controller-specific initialization function.
299
; Called from usb_init_controller. Initializes the hardware and
300
; EHCI-specific parts of software structures.
301
; eax = pointer to ehci_controller to be initialized
302
; [ebp-4] = pcidevice
303
proc ehci_init
304
; inherit some variables from the parent (usb_init_controller)
305
.devfn   equ ebp - 4
306
.bus     equ ebp - 3
307
; 1. Store pointer to ehci_controller for further use.
308
        push    eax
309
        mov     edi, eax
310
        mov     esi, eax
311
; 2. Initialize ehci_controller.FrameList.
312
; Note that FrameList is located in the beginning of ehci_controller,
313
; so esi and edi now point to ehci_controller.FrameList.
314
; First 32 entries of FrameList contain physical addresses
315
; of first 32 Periodic static heads, further entries duplicate these.
316
; See the description of structures for full info.
317
; 2a. Get physical address of first static head.
318
; Note that 1) it is located in the beginning of a page
319
; and 2) first 32 static heads fit in the same page,
320
; so one call to get_phys_addr without correction of lower 12 bits
321
; is sufficient.
322
if (ehci_controller.IntEDs / 0x1000) <> ((ehci_controller.IntEDs + 32 * sizeof.ehci_static_ep) / 0x1000)
323
.err assertion failed
324
end if
325
if (ehci_controller.IntEDs mod 0x1000) <> 0
326
.err assertion failed
327
end if
328
        add     eax, ehci_controller.IntEDs
329
        call    get_phys_addr
330
; 2b. Fill first 32 entries.
331
        inc     eax
332
        inc     eax     ; set Type to EHCI_TYPE_QH
333
        push    32
334
        pop     ecx
335
        mov     edx, ecx
336
@@:
337
        stosd
338
        add     eax, sizeof.ehci_static_ep
339
        loop    @b
340
; 2c. Fill the rest entries.
341
        mov     ecx, 1024 - 32
342
        rep movsd
343
; 3. Initialize static heads ehci_controller.*ED.
344
; Use the loop over groups: first group consists of first 32 Periodic
345
; descriptors, next group consists of next 16 Periodic descriptors,
346
; ..., last group consists of the last Periodic descriptor.
347
; 3a. Prepare for the loop.
348
; make esi point to the second group, other registers are already set.
349
        add     esi, 32*4 + 32*sizeof.ehci_static_ep
350
; 3b. Loop over groups. On every iteration:
351
; edx = size of group, edi = pointer to the current group,
352
; esi = pointer to the next group.
353
.init_static_eds:
354
; 3c. Get the size of next group.
355
        shr     edx, 1
356
; 3d. Exit the loop if there is no next group.
357
        jz      .init_static_eds_done
358
; 3e. Initialize the first half of the current group.
359
; Advance edi to the second half.
360
        push    esi
361
        call    ehci_init_static_ep_group
362
        pop     esi
363
; 3f. Initialize the second half of the current group
364
; with the same values.
365
; Advance edi to the next group, esi/eax to the next of the next group.
366
        call    ehci_init_static_ep_group
367
        jmp     .init_static_eds
368
.init_static_eds_done:
369
; 3g. Initialize the last static head.
370
        xor     esi, esi
371
        call    ehci_init_static_endpoint
372
; While we are here, initialize StopQueueTD.
373
if (ehci_controller.StopQueueTD <> ehci_controller.IntEDs + 63 * sizeof.ehci_static_ep)
374
.err assertion failed
375
end if
376
        inc     [edi+ehci_hardware_td.NextTD]   ; 0 -> 1
377
        inc     [edi+ehci_hardware_td.AlternateNextTD]  ; 0 -> 1
378
; leave other fields as zero, including Active bit
379
; 3i. Initialize the head of Control list.
380
        add     edi, ehci_controller.ControlDelta
381
        lea     esi, [edi+sizeof.ehci_static_ep]
382
        call    ehci_init_static_endpoint
383
        or      byte [edi-sizeof.ehci_static_ep+ehci_static_ep.Token+1], 80h
384
; 3j. Initialize the head of Bulk list.
385
        sub     esi, sizeof.ehci_static_ep
386
        call    ehci_init_static_endpoint
387
; 4. Create a virtual memory area to talk with the controller.
388
; 4a. Enable memory & bus master access.
389
        mov     ch, [.bus]
390
        mov     cl, 1
391
        mov     eax, ecx
392
        mov     bh, [.devfn]
393
        mov     bl, 4
394
        call    pci_read_reg
395
        or      al, 6
396
        xchg    eax, ecx
397
        call    pci_write_reg
398
; 4b. Read memory base address.
399
        mov     ah, [.bus]
400
        mov     al, 2
401
        mov     bl, 10h
402
        call    pci_read_reg
403
;       DEBUGF 1,'K : phys MMIO %x\n',eax
404
        and     al, not 0Fh
405
; 4c. Create mapping for physical memory. 200h bytes are always sufficient.
406
        stdcall map_io_mem, eax, 200h, PG_SW+PG_NOCACHE
407
        test    eax, eax
408
        jz      .fail
409
;       DEBUGF 1,'K : MMIO %x\n',eax
410
if ehci_controller.MMIOBase1 <> ehci_controller.BulkED + sizeof.ehci_static_ep
411
.err assertion failed
412
end if
413
        stosd   ; fill ehci_controller.MMIOBase1
414
        movzx   ecx, byte [eax+EhciCapLengthReg]
415
        mov     edx, [eax+EhciCapParamsReg]
416
        mov     ebx, [eax+EhciStructParamsReg]
417
        add     eax, ecx
418
if ehci_controller.MMIOBase2 <> ehci_controller.MMIOBase1 + 4
419
.err assertion failed
420
end if
421
        stosd   ; fill ehci_controller.MMIOBase2
422
if ehci_controller.StructuralParams <> ehci_controller.MMIOBase2 + 4
423
.err assertion failed
424
end if
425
if ehci_controller.CapabilityParams <> ehci_controller.StructuralParams + 4
426
.err assertion failed
427
end if
428
        mov     [edi], ebx      ; fill ehci_controller.StructuralParams
429
        mov     [edi+4], edx    ; fill ehci_controller.CapabilityParams
430
        DEBUGF 1,'K : HCSPARAMS=%x, HCCPARAMS=%x\n',ebx,edx
431
        and     ebx, 15
432
        mov     [edi+usb_controller.NumPorts+sizeof.ehci_controller-ehci_controller.StructuralParams], ebx
433
        mov     edi, eax
434
; now edi = MMIOBase2
435
; 6. Transfer the controller to a known state.
436
; 6b. Stop the controller if it is running.
437
        push    10
438
        pop     ecx
439
        test    dword [edi+EhciStatusReg], 1 shl 12
440
        jnz     .stopped
441
        and     dword [edi+EhciCommandReg], not 1
442
@@:
443
        push    1
444
        pop     esi
445
        call    delay_ms
446
        test    dword [edi+EhciStatusReg], 1 shl 12
447
        jnz     .stopped
448
        loop    @b
449
        dbgstr 'Failed to stop EHCI controller'
450
        jmp     .fail_unmap
451
.stopped:
452
; 6c. Reset the controller. Wait up to 50 ms checking status every 1 ms.
453
        or      dword [edi+EhciCommandReg], 2
454
        push    50
455
        pop     ecx
456
@@:
457
        push    1
458
        pop     esi
459
        call    delay_ms
460
        test    dword [edi+EhciCommandReg], 2
461
        jz      .reset_ok
462
        loop    @b
463
        dbgstr 'Failed to reset EHCI controller'
464
        jmp     .fail_unmap
465
.reset_ok:
466
; 7. Configure the controller.
467
        pop     esi     ; restore the pointer saved at step 1
468
        add     esi, sizeof.ehci_controller
469
; 7a. If the controller is 64-bit, say to it that all structures are located
470
; in first 4G.
471
        test    byte [esi+ehci_controller.CapabilityParams-sizeof.ehci_controller], 1
472
        jz      @f
473
        mov     dword [edi+EhciCtrlDataSegReg], 0
474
@@:
475
; 7b. Hook interrupt and enable appropriate interrupt sources.
476
        mov     ah, [.bus]
477
        mov     al, 0
478
        mov     bh, [.devfn]
479
        mov     bl, 3Ch
480
        call    pci_read_reg
481
; al = IRQ
482
        DEBUGF 1,'K : attaching to IRQ %x\n',al
483
        movzx   eax, al
484
        stdcall attach_int_handler, eax, ehci_irq, esi
485
;       mov     dword [edi+EhciStatusReg], 111111b      ; clear status
486
; disable Frame List Rollover interrupt, enable all other sources
487
        mov     dword [edi+EhciInterruptReg], 110111b
488
; 7c. Inform the controller of the address of periodic lists head.
489
        lea     eax, [esi-sizeof.ehci_controller]
490
        call    get_phys_addr
491
        mov     dword [edi+EhciPeriodicListReg], eax
492
; 7d. Inform the controller of the address of asynchronous lists head.
493
        lea     eax, [esi+ehci_controller.ControlED-sizeof.ehci_controller]
494
        call    get_phys_addr
495
        mov     dword [edi+EhciAsyncListReg], eax
496
; 7e. Configure operational details and run the controller.
497
        mov     dword [edi+EhciCommandReg], \
498
                (1 shl 16) + \ ; interrupt threshold = 1 microframe = 0.125ms
499
                (0 shl 11) + \ ; disable Async Park Mode
500
                (0 shl 8) +  \ ; zero Async Park Mode Count
501
                (1 shl 5) +  \ ; Async Schedule Enable
502
                (1 shl 4) +  \ ; Periodic Schedule Enable
503
                (0 shl 2) +  \ ; 1024 elements in FrameList
504
                1              ; Run
505
; 7f. Route all ports to this controller, not companion controllers.
506
        mov     dword [edi+EhciConfigFlagReg], 1
507
        DEBUGF 1,'K : EHCI controller at %x:%x with %d ports initialized\n',[.bus]:2,[.devfn]:2,[esi+usb_controller.NumPorts]
508
; 8. Apply port power, if needed, and disable all ports.
509
        xor     ecx, ecx
510
@@:
511
        mov     dword [edi+EhciPortsReg+ecx*4], 1000h   ; Port Power enabled, all other bits disabled
512
        inc     ecx
513
        cmp     ecx, [esi+usb_controller.NumPorts]
514
        jb      @b
515
        test    byte [esi+ehci_controller.StructuralParams-sizeof.ehci_controller], 10h
516
        jz      @f
517
        push    esi
518
        push    20
519
        pop     esi
520
        call    delay_ms
521
        pop     esi
522
@@:
523
; 9. Return pointer to usb_controller.
524
        xchg    eax, esi
525
        ret
526
; On error, pop the pointer saved at step 1 and return zero.
527
; Note that the main code branch restores the stack at step 7 and never fails
528
; after step 7.
529
.fail_unmap:
530
        pop     eax
531
        push    eax
532
        stdcall free_kernel_space, [eax+ehci_controller.MMIOBase1]
533
.fail:
534
        pop     ecx
535
        xor     eax, eax
536
        ret
537
endp
538
 
539
; Helper procedure for step 3 of ehci_init, see comments there.
540
; Initializes the static head of one list.
541
; esi = pointer to the "next" list, edi = pointer to head to initialize.
542
; Advances edi to the next head, keeps esi.
543
proc ehci_init_static_endpoint
544
        xor     eax, eax
545
        inc     eax     ; set Terminate bit
546
        mov     [edi+ehci_static_ep.NextTD], eax
547
        mov     [edi+ehci_static_ep.AlternateNextTD], eax
548
        test    esi, esi
549
        jz      @f
550
        mov     eax, esi
551
        call    get_phys_addr
552
        inc     eax
553
        inc     eax     ; set Type to EHCI_TYPE_QH
554
@@:
555
        mov     [edi+ehci_static_ep.NextQH], eax
556
        mov     [edi+ehci_static_ep.NextList], esi
557
        mov     byte [edi+ehci_static_ep.OverlayToken], 1 shl 6 ; halted
558
        add     edi, ehci_static_ep.SoftwarePart
559
        call    usb_init_static_endpoint
560
        add     edi, sizeof.ehci_static_ep - ehci_static_ep.SoftwarePart
561
        ret
562
endp
563
 
564
; Helper procedure for step 3 of ehci_init, see comments there.
565
; Initializes one half of group of static heads.
566
; edx = size of the next group = half of size of the group,
567
; edi = pointer to the group, esi = pointer to the next group.
568
; Advances esi, edi to next group, keeps edx.
569
proc ehci_init_static_ep_group
570
        push    edx
571
@@:
572
        call    ehci_init_static_endpoint
573
        add     esi, sizeof.ehci_static_ep
574
        dec     edx
575
        jnz     @b
576
        pop     edx
577
        ret
578
endp
579
 
580
; Controller-specific pre-initialization function: take ownership from BIOS.
581
; Some BIOSes, although not all of them, use USB controllers themselves
582
; to support USB flash drives. In this case,
583
; we must notify the BIOS that we don't need that emulation and know how to
584
; deal with USB devices.
585
proc ehci_kickoff_bios
586
; 1. Get the physical address of MMIO registers.
587
        mov     ah, [esi+PCIDEV.bus]
588
        mov     bh, [esi+PCIDEV.devfn]
589
        mov     al, 2
590
        mov     bl, 10h
591
        call    pci_read_reg
592
        and     al, not 0Fh
593
; 2. Create mapping for physical memory. 200h bytes are always sufficient.
594
        stdcall map_io_mem, eax, 200h, PG_SW+PG_NOCACHE
595
        test    eax, eax
596
        jz      .nothing
597
        push    eax     ; push argument for step 8
598
; 3. Some BIOSes enable controller interrupts as a result of giving
599
; controller away. At this point the system knows nothing about how to serve
600
; EHCI interrupts, so such an interrupt will send the system into an infinite
601
; loop handling the same IRQ again and again. Thus, we need to block EHCI
602
; interrupts. We can't do this at the controller level until step 5,
603
; because the controller is currently owned by BIOS, so we block all hardware
604
; interrupts on this processor until step 5.
605
        pushf
606
        cli
607
; 4. Take the ownership over the controller.
608
; 4a. Locate take-ownership capability in the PCI configuration space.
609
; Limit the loop with 100h iterations; since the entire configuration space is
610
; 100h bytes long, hitting this number of iterations means that something is
611
; corrupted.
612
; Use a value from MMIO as a starting point.
613
        mov     edx, [eax+EhciCapParamsReg]
614
        DEBUGF 1,'K : edx=%x\n',edx
615
        movzx   edi, byte [eax+EhciCapLengthReg]
616
        add     edi, eax
617
        push    0
618
        mov     bl, dh          ; get Extended Capabilities Pointer
619
        test    bl, bl
620
        jz      .has_ownership2
621
        cmp     bl, 40h
622
        jb      .no_capability
623
.look_bios_handoff:
624
        test    bl, 3
625
        jnz     .no_capability
626
; In each iteration, read the current dword,
627
        mov     ah, [esi+PCIDEV.bus]
628
        mov     al, 2
629
        mov     bh, [esi+PCIDEV.devfn]
630
        call    pci_read_reg
631
; check, whether the capability ID is take-ownership ID = 1,
632
        cmp     al, 1
633
        jz      .found_bios_handoff
634
; if not, advance to next-capability link and continue loop.
635
        dec     byte [esp]
636
        jz      .no_capability
637
        mov     bl, ah
638
        cmp     bl, 40h
639
        jae     .look_bios_handoff
640
.no_capability:
641
        dbgstr 'warning: cannot locate take-ownership capability'
642
        jmp     .has_ownership2
643
.found_bios_handoff:
644
; 4b. Check whether BIOS has ownership.
645
; Some BIOSes release ownership before loading OS, but forget to unwatch for
646
; change-ownership requests; they cannot handle ownership request, so
647
; such a request sends the system into infinite loop of handling the same SMI
648
; over and over. Avoid this.
649
        inc     ebx
650
        inc     ebx
651
        test    eax, 0x10000
652
        jz      .has_ownership
653
; 4c. Request ownership.
654
        inc     ebx
655
        mov     cl, 1
656
        mov     ah, [esi+PCIDEV.bus]
657
        mov     al, 0
658
        call    pci_write_reg
659
; 4d. Some BIOSes set ownership flag, but forget to watch for change-ownership
660
; requests; if so, there is no sense in waiting.
661
        inc     ebx
662
        mov     ah, [esi+PCIDEV.bus]
663
        mov     al, 2
664
        call    pci_read_reg
665
        dec     ebx
666
        dec     ebx
667
        test    ah, 20h
668
        jz      .force_ownership
669
; 4e. Wait for result no more than 1 s, checking for status every 1 ms.
670
; If successful, go to 5.
671
        mov     dword [esp], 1000
672
@@:
673
        mov     ah, [esi+PCIDEV.bus]
674
        mov     al, 0
675
        call    pci_read_reg
676
        test    al, 1
677
        jz      .has_ownership
678
        push    esi
679
        push    1
680
        pop     esi
681
        call    delay_ms
682
        pop     esi
683
        dec     dword [esp]
684
        jnz     @b
685
        dbgstr  'warning: taking EHCI ownership from BIOS timeout'
686
.force_ownership:
687
; 4f. BIOS has not responded within the timeout.
688
; Let's just clear BIOS ownership flag and hope that everything will be ok.
689
        mov     ah, [esi+PCIDEV.bus]
690
        mov     al, 0
691
        mov     cl, 0
692
        call    pci_write_reg
693
.has_ownership:
694
; 5. Just in case clear all SMI event sources except change-ownership.
695
        dbgstr 'has_ownership'
696
        inc     ebx
697
        inc     ebx
698
        mov     ah, [esi+PCIDEV.bus]
699
        mov     al, 2
700
        mov     ecx, eax
701
        call    pci_read_reg
702
        and     ax, 2000h
703
        xchg    eax, ecx
704
        call    pci_write_reg
705
.has_ownership2:
706
        pop     ecx
707
; 6. Disable all controller interrupts until the system will be ready to
708
; process them.
709
        mov     dword [edi+EhciInterruptReg], 0
710
; 7. Now we can unblock interrupts in the processor.
711
        popf
712
; 8. Release memory mapping created in step 2 and return.
713
        call    free_kernel_space
714
.nothing:
715
        ret
716
endp
717
 
718
; IRQ handler for EHCI controllers.
719
ehci_irq.noint:
720
        spin_unlock_irqrestore [esi+usb_controller.WaitSpinlock]
721
; Not our interrupt: restore registers and return zero.
722
        xor     eax, eax
723
        pop     edi esi ebx
724
        ret
725
 
726
proc ehci_irq
727
        push    ebx esi edi     ; save registers to be cdecl
728
virtual at esp
729
        rd      3       ; saved registers
730
        dd      ?       ; return address
731
.controller     dd      ?
732
end virtual
733
; 1. ebx will hold whether some deferred processing is needed,
734
; that cannot be done from the interrupt handler. Initialize to zero.
735
        xor     ebx, ebx
736
; 2. Get the mask of events which should be processed.
737
        mov     esi, [.controller]
738
        mov     edi, [esi+ehci_controller.MMIOBase2-sizeof.ehci_controller]
739
        spin_lock_irqsave [esi+usb_controller.WaitSpinlock]
740
        mov     eax, [edi+EhciStatusReg]
741
;       DEBUGF 1,'K : [%d] EHCI status %x\n',[timer_ticks],eax
742
; 3. Check whether that interrupt has been generated by our controller.
743
; (One IRQ can be shared by several devices.)
744
        and     eax, [edi+EhciInterruptReg]
745
        jz      .noint
746
; 4. Clear the events we know of.
747
; Note that this should be done before processing of events:
748
; new events could arise while we are processing those, this way we won't lose
749
; them (the controller would generate another interrupt after completion
750
; of this one).
751
;       DEBUGF 1,'K : EHCI interrupt: status = %x\n',eax
752
        mov     [edi+EhciStatusReg], eax
753
; 5. Sanity check.
754
        test    al, 10h
755
        jz      @f
756
        DEBUGF 1,'K : something terrible happened with EHCI %x (%x)\n',esi,al
757
@@:
758
; We can't do too much from an interrupt handler. Inform the processing thread
759
; that it should perform appropriate actions.
760
        or      [esi+ehci_controller.DeferredActions-sizeof.ehci_controller], eax
761
        spin_unlock_irqrestore [esi+usb_controller.WaitSpinlock]
762
        inc     ebx
763
        call    usb_wakeup_if_needed
764
; 6. Interrupt processed; return non-zero.
765
        mov     al, 1
766
        pop     edi esi ebx     ; restore used registers to be cdecl
767
        ret
768
endp
769
 
770
; This procedure is called from usb_set_address_callback
771
; and stores USB device address in the ehci_pipe structure.
772
; in: esi -> usb_controller, ebx -> usb_pipe, cl = address
773
proc ehci_set_device_address
774
        mov     byte [ebx+ehci_pipe.Token-ehci_pipe.SoftwarePart], cl
775
        call    usb_subscribe_control
776
        ret
777
endp
778
 
779
; This procedure returns USB device address from the ehci_pipe structure.
780
; in: esi -> usb_controller, ebx -> usb_pipe
781
; out: eax = endpoint address
782
proc ehci_get_device_address
783
        mov     eax, [ebx+ehci_pipe.Token-ehci_pipe.SoftwarePart]
784
        and     eax, 7Fh
785
        ret
786
endp
787
 
788
; This procedure is called from usb_set_address_callback
789
; if the device does not accept SET_ADDRESS command and needs
790
; to be disabled at the port level.
791
; in: esi -> usb_controller, ecx = port (zero-based)
792
proc ehci_port_disable
793
        mov     eax, [esi+ehci_controller.MMIOBase2-sizeof.ehci_controller]
794
        and     dword [eax+EhciPortsReg+ecx*4], not (4 or 2Ah)
795
        ret
796
endp
797
 
798
; This procedure is called from usb_get_descr8_callback when
799
; the packet size for zero endpoint becomes known and
800
; stores the packet size in ehci_pipe structure.
801
; in: esi -> usb_controller, ebx -> usb_pipe, ecx = packet size
802
proc ehci_set_endpoint_packet_size
803
        mov     eax, [ebx+ehci_pipe.Token-ehci_pipe.SoftwarePart]
804
        and     eax, not (0x7FF shl 16)
805
        shl     ecx, 16
806
        or      eax, ecx
807
        mov     [ebx+ehci_pipe.Token-ehci_pipe.SoftwarePart], eax
808
; Wait until hardware cache is evicted.
809
        call    usb_subscribe_control
810
        ret
811
endp
812
 
813
uglobal
814
align 4
815
; Data for memory allocator, see memory.inc.
816
ehci_ep_first_page      dd      ?
817
ehci_ep_mutex           MUTEX
818
ehci_gtd_first_page     dd      ?
819
ehci_gtd_mutex          MUTEX
820
endg
821
 
822
; This procedure allocates memory for pipe.
823
; Both hardware+software parts must be allocated, returns pointer to usb_pipe
824
; (software part).
825
proc ehci_alloc_pipe
826
        push    ebx
827
        mov     ebx, ehci_ep_mutex
828
        stdcall usb_allocate_common, sizeof.ehci_pipe
829
        test    eax, eax
830
        jz      @f
831
        add     eax, ehci_pipe.SoftwarePart
832
@@:
833
        pop     ebx
834
        ret
835
endp
836
 
837
; This procedure frees memory for pipe allocated by ehci_alloc_pipe.
838
; void stdcall with one argument = pointer to usb_pipe.
839
proc ehci_free_pipe
840
virtual at esp
841
        dd      ?       ; return address
842
.ptr    dd      ?
843
end virtual
844
        sub     [.ptr], ehci_pipe.SoftwarePart
845
        jmp     usb_free_common
846
endp
847
 
848
; This procedure is called from API usb_open_pipe and processes
849
; the controller-specific part of this API. See docs.
850
; in: edi -> usb_pipe for target, ecx -> usb_pipe for config pipe,
851
; esi -> usb_controller, eax -> usb_gtd for the first TD,
852
; [ebp+12] = endpoint, [ebp+16] = maxpacket, [ebp+20] = type
853
proc ehci_init_pipe
854
virtual at ebp+8
855
.config_pipe    dd      ?
856
.endpoint       dd      ?
857
.maxpacket      dd      ?
858
.type           dd      ?
859
.interval       dd      ?
860
end virtual
861
; 1. Zero all fields in the hardware part.
862
        push    eax ecx
863
        sub     edi, ehci_pipe.SoftwarePart
864
        xor     eax, eax
865
        push    ehci_pipe.SoftwarePart/4
866
        pop     ecx
867
        rep stosd
868
        pop     ecx eax
869
; 2. Setup PID in the first TD and make sure that the it is not active.
870
        xor     edx, edx
871
        test    byte [.endpoint], 80h
872
        setnz   dh
873
        mov     [eax+ehci_gtd.Token-ehci_gtd.SoftwarePart], edx
874
        mov     [eax+ehci_gtd.NextTD-ehci_gtd.SoftwarePart], 1
875
        mov     [eax+ehci_gtd.AlternateNextTD-ehci_gtd.SoftwarePart], 1
876
; 3. Store physical address of the first TD.
877
        sub     eax, ehci_gtd.SoftwarePart
878
        call    get_phys_addr
879
        mov     [edi+ehci_pipe.Overlay.NextTD-ehci_pipe.SoftwarePart], eax
880
; 4. Fill ehci_pipe.Flags except for S- and C-masks.
881
; Copy location from the config pipe.
882
        mov     eax, [ecx+ehci_pipe.Flags-ehci_pipe.SoftwarePart]
883
        and     eax, 3FFF0000h
884
; Use 1 requests per microframe for control/bulk endpoints,
885
; use value from the endpoint descriptor for periodic endpoints
886
        push    1
887
        pop     edx
888
        test    [.type], 1
889
        jz      @f
890
        mov     edx, [.maxpacket]
891
        shr     edx, 11
892
        inc     edx
893
@@:
894
        shl     edx, 30
895
        or      eax, edx
896
        mov     [edi+ehci_pipe.Flags-ehci_pipe.SoftwarePart], eax
897
; 5. Fill ehci_pipe.Token.
898
        mov     eax, [ecx+ehci_pipe.Token-ehci_pipe.SoftwarePart]
899
; copy following fields from the config pipe:
900
; DeviceAddress, EndpointSpeed, ControlEndpoint if new type is control
901
        mov     ecx, eax
902
        and     eax, 307Fh
903
        and     ecx, 8000000h
904
        or      ecx, 4000h
905
        mov     edx, [.endpoint]
906
        and     edx, 15
907
        shl     edx, 8
908
        or      eax, edx
909
        mov     edx, [.maxpacket]
910
        shl     edx, 16
911
        or      eax, edx
912
; for control endpoints, use DataToggle from TD, otherwise use DataToggle from QH
913
        cmp     [.type], CONTROL_PIPE
914
        jnz     @f
915
        or      eax, ecx
916
@@:
917
; for control/bulk USB2 endpoints, set NakCountReload to 4
918
        test    eax, USB_SPEED_HS shl 12
919
        jz      .nonak
920
        cmp     [.type], CONTROL_PIPE
921
        jz      @f
922
        cmp     [.type], BULK_PIPE
923
        jnz     .nonak
924
@@:
925
        or      eax, 40000000h
926
.nonak:
927
        mov     [edi+ehci_pipe.Token-ehci_pipe.SoftwarePart], eax
928
; 5. Select the corresponding list and insert to the list.
929
; 5a. Use Control list for control pipes, Bulk list for bulk pipes.
930
        lea     edx, [esi+ehci_controller.ControlED.SoftwarePart-sizeof.ehci_controller]
931
        cmp     [.type], BULK_PIPE
932
        jb      .insert ; control pipe
933
        lea     edx, [esi+ehci_controller.BulkED.SoftwarePart-sizeof.ehci_controller]
934
        jz      .insert ; bulk pipe
935
.interrupt_pipe:
936
; 5b. For interrupt pipes, let the scheduler select the appropriate list
937
; and the appropriate microframe(s) (which goes to S-mask and C-mask)
938
; based on the current bandwidth distribution and the requested bandwidth.
939
; There are two schedulers, one for high-speed devices,
940
; another for split transactions.
941
; This could fail if the requested bandwidth is not available;
942
; if so, return an error.
943
        test    word [edi+ehci_pipe.Flags-ehci_pipe.SoftwarePart+2], 3FFFh
944
        jnz     .interrupt_fs
945
        call    ehci_select_hs_interrupt_list
946
        jmp     .interrupt_common
947
.interrupt_fs:
948
        call    ehci_select_fs_interrupt_list
949
.interrupt_common:
950
        test    edx, edx
951
        jz      .return0
952
        mov     word [edi+ehci_pipe.Flags-ehci_pipe.SoftwarePart], ax
953
.insert:
954
        mov     [edi+ehci_pipe.BaseList-ehci_pipe.SoftwarePart], edx
955
; Insert to the head of the corresponding list.
956
; Note: inserting to the head guarantees that the list traverse in
957
; ehci_process_updated_schedule, once started, will not interact with new pipes.
958
; However, we still need to ensure that links in the new pipe (edi.NextVirt)
959
; are initialized before links to the new pipe (edx.NextVirt).
960
; 5c. Insert in the list of virtual addresses.
961
        mov     ecx, [edx+usb_pipe.NextVirt]
962
        mov     [edi+usb_pipe.NextVirt], ecx
963
        mov     [edi+usb_pipe.PrevVirt], edx
964
        mov     [ecx+usb_pipe.PrevVirt], edi
965
        mov     [edx+usb_pipe.NextVirt], edi
966
; 5d. Insert in the hardware list: copy previous NextQH to the new pipe,
967
; store the physical address of the new pipe to previous NextQH.
968
        mov     ecx, [edx+ehci_static_ep.NextQH-ehci_static_ep.SoftwarePart]
969
        mov     [edi+ehci_pipe.NextQH-ehci_pipe.SoftwarePart], ecx
970
        lea     eax, [edi-ehci_pipe.SoftwarePart]
971
        call    get_phys_addr
972
        inc     eax
973
        inc     eax
974
        mov     [edx+ehci_static_ep.NextQH-ehci_static_ep.SoftwarePart], eax
975
; 6. Return with nonzero eax.
976
        ret
977
.return0:
978
        xor     eax, eax
979
        ret
980
endp
981
 
982
; This function is called from ehci_process_deferred when
983
; a new device was connected at least USB_CONNECT_DELAY ticks
984
; and therefore is ready to be configured.
985
; ecx = port, esi -> ehci_controller, edi -> EHCI MMIO
986
proc ehci_new_port
987
; 1. If the device operates at low-speed, just release it to a companion.
988
        mov     eax, [edi+EhciPortsReg+ecx*4]
989
        DEBUGF 1,'K : [%d] EHCI %x port %d state is %x\n',[timer_ticks],esi,ecx,eax
990
        mov     edx, eax
991
        and     ah, 0Ch
992
        cmp     ah, 4
993
        jz      .low_speed
994
; 2. Devices operating at full-speed and high-speed must now have ah == 8.
995
; Some broken hardware asserts both D+ and D- even after initial decoupling;
996
; if so, stop initialization here, no sense in further actions.
997
        cmp     ah, 0Ch
998
        jz      .se1
999
; 3. If another port is resetting right now, mark this port as 'reset pending'
1000
; and return.
1001
        bts     [esi+usb_controller.PendingPorts], ecx
1002
        cmp     [esi+usb_controller.ResettingPort], -1
1003
        jnz     .nothing
1004
        btr     [esi+usb_controller.PendingPorts], ecx
1005
; Otherwise, fall through to ohci_new_port.reset.
1006
 
1007
; This function is called from ehci_new_port and usb_test_pending_port.
1008
; It starts reset signalling for the port. Note that in USB first stages
1009
; of configuration can not be done for several ports in parallel.
1010
.reset:
1011
        push    edi
1012
        mov     edi, [esi+ehci_controller.MMIOBase2-sizeof.ehci_controller]
1013
        mov     eax, [edi+EhciPortsReg+ecx*4]
1014
; 1. Store information about resetting hub (roothub) and port.
1015
        and     [esi+usb_controller.ResettingHub], 0
1016
        mov     [esi+usb_controller.ResettingPort], cl
1017
; 2. Initiate reset signalling.
1018
        or      ah, 1
1019
        and     al, not (4 or 2Ah)
1020
        mov     [edi+EhciPortsReg+ecx*4], eax
1021
; 3. Store the current time and set status to 1 = reset signalling active.
1022
        mov     eax, [timer_ticks]
1023
        mov     [esi+usb_controller.ResetTime], eax
1024
        mov     [esi+usb_controller.ResettingStatus], 1
1025
;       dbgstr 'high-speed or full-speed device, resetting'
1026
        DEBUGF 1,'K : [%d] EHCI %x: port %d has HS or FS device, resetting\n',[timer_ticks],esi,ecx
1027
        pop     edi
1028
.nothing:
1029
        ret
1030
.low_speed:
1031
;       dbgstr 'low-speed device, releasing'
1032
        DEBUGF 1,'K : [%d] EHCI %x: port %d has LS device, releasing\n',[timer_ticks],esi,ecx
1033
        or      dh, 20h
1034
        and     dl, not 2Ah
1035
        mov     [edi+EhciPortsReg+ecx*4], edx
1036
        ret
1037
.se1:
1038
        dbgstr 'SE1 after connect debounce. Broken hardware?'
1039
        ret
1040
endp
1041
 
1042
; This procedure is called from several places in main USB code
1043
; and allocates required packets for the given transfer.
1044
; ebx = pipe, other parameters are passed through the stack:
1045
; buffer,size = data to transfer
1046
; flags = same as in usb_open_pipe: bit 0 = allow short transfer, other bits reserved
1047
; td = pointer to the current end-of-queue descriptor
1048
; direction =
1049
;   0000b for normal transfers,
1050
;   1000b for control SETUP transfer,
1051
;   1101b for control OUT transfer,
1052
;   1110b for control IN transfer
1053
; returns eax = pointer to the new end-of-queue descriptor
1054
; (not included in the queue itself) or 0 on error
1055
proc ehci_alloc_transfer stdcall uses edi, \
1056
        buffer:dword, size:dword, flags:dword, td:dword, direction:dword
1057
locals
1058
origTD          dd      ?
1059
packetSize      dd      ?       ; must be last variable, see usb_init_transfer
1060
endl
1061
; 1. Save original value of td:
1062
; it will be useful for rollback if something would fail.
1063
        mov     eax, [td]
1064
        mov     [origTD], eax
1065
; One transfer descriptor can describe up to 5 pages.
1066
; In the worst case (when the buffer is something*1000h+0FFFh)
1067
; this corresponds to 4001h bytes. If the requested size is
1068
; greater, we should split the transfer into several descriptors.
1069
; Boundaries to split must be multiples of endpoint transfer size
1070
; to avoid short packets except in the end of the transfer,
1071
; 4000h is always a good value.
1072
; 2. While the remaining data cannot fit in one descriptor,
1073
; allocate full descriptors (of maximal possible size).
1074
        mov     edi, 4000h
1075
        mov     [packetSize], edi
1076
.fullpackets:
1077
        cmp     [size], edi
1078
        jbe     .lastpacket
1079
        call    ehci_alloc_packet
1080
        test    eax, eax
1081
        jz      .fail
1082
        mov     [td], eax
1083
        add     [buffer], edi
1084
        sub     [size], edi
1085
        jmp     .fullpackets
1086
; 3. The remaining data can fit in one packet;
1087
; allocate the last descriptor with size = size of remaining data.
1088
.lastpacket:
1089
        mov     eax, [size]
1090
        mov     [packetSize], eax
1091
        call    ehci_alloc_packet
1092
        test    eax, eax
1093
        jz      .fail
1094
; 9. Update flags in the last packet.
1095
        mov     edx, [flags]
1096
        mov     [ecx+ehci_gtd.Flags-ehci_gtd.SoftwarePart], edx
1097
; 10. Fill AlternateNextTD field in all allocated TDs.
1098
; If the caller says that short transfer is ok, the queue must advance to
1099
; the next descriptor, which is in eax.
1100
; Otherwise, the queue should stop, so make AlternateNextTD point to
1101
; always-inactive descriptor StopQueueTD.
1102
        push    eax
1103
        test    dl, 1
1104
        jz      .disable_short
1105
        sub     eax, ehci_gtd.SoftwarePart
1106
        jmp     @f
1107
.disable_short:
1108
        mov     eax, [ebx+usb_pipe.Controller]
1109
        add     eax, ehci_controller.StopQueueTD - sizeof.ehci_controller
1110
@@:
1111
        call    get_phys_addr
1112
        mov     edx, [origTD]
1113
@@:
1114
        cmp     edx, [esp]
1115
        jz      @f
1116
        mov     [edx+ehci_gtd.AlternateNextTD-ehci_gtd.SoftwarePart], eax
1117
        mov     edx, [edx+usb_gtd.NextVirt]
1118
        jmp     @b
1119
@@:
1120
        pop     eax
1121
        ret
1122
.fail:
1123
        mov     edi, ehci_hardware_func
1124
        mov     eax, [td]
1125
        stdcall usb_undo_tds, [origTD]
1126
        xor     eax, eax
1127
        ret
1128
endp
1129
 
1130
; Helper procedure for ehci_alloc_transfer.
1131
; Allocates and initializes one transfer descriptor.
1132
; ebx = pipe, other parameters are passed through the stack;
1133
; fills the current last descriptor and
1134
; returns eax = next descriptor (not filled).
1135
proc ehci_alloc_packet
1136
; inherit some variables from the parent ehci_alloc_transfer
1137
virtual at ebp-8
1138
.origTD         dd      ?
1139
.packetSize     dd      ?
1140
                rd      2
1141
.buffer         dd      ?
1142
.transferSize   dd      ?
1143
.Flags          dd      ?
1144
.td             dd      ?
1145
.direction      dd      ?
1146
end virtual
1147
; 1. Allocate the next TD.
1148
        call    ehci_alloc_td
1149
        test    eax, eax
1150
        jz      .nothing
1151
; 2. Initialize controller-independent parts of both TDs.
1152
        push    eax
1153
        call    usb_init_transfer
1154
        pop     eax
1155
; 3. Copy PID to the new descriptor.
1156
        mov     edx, [ecx+ehci_gtd.Token-ehci_gtd.SoftwarePart]
1157
        mov     [eax+ehci_gtd.Token-ehci_gtd.SoftwarePart], edx
1158
        mov     [eax+ehci_gtd.NextTD-ehci_gtd.SoftwarePart], 1
1159
        mov     [eax+ehci_gtd.AlternateNextTD-ehci_gtd.SoftwarePart], 1
1160
; 4. Save the returned value (next descriptor).
1161
        push    eax
1162
; 5. Store the physical address of the next descriptor.
1163
        sub     eax, ehci_gtd.SoftwarePart
1164
        call    get_phys_addr
1165
        mov     [ecx+ehci_gtd.NextTD-ehci_gtd.SoftwarePart], eax
1166
; 6. For zero-length transfers, store zero in all fields for buffer addresses.
1167
; Otherwise, fill them with real values.
1168
        xor     eax, eax
1169
        mov     [ecx+ehci_gtd.Flags-ehci_gtd.SoftwarePart], eax
1170
repeat 10
1171
        mov     [ecx+ehci_gtd.BufferPointers-ehci_gtd.SoftwarePart+(%-1)*4], eax
1172
end repeat
1173
        cmp     [.packetSize], eax
1174
        jz      @f
1175
        mov     eax, [.buffer]
1176
        call    get_phys_addr
1177
        mov     [ecx+ehci_gtd.BufferPointers-ehci_gtd.SoftwarePart], eax
1178
        and     eax, 0xFFF
1179
        mov     edx, [.packetSize]
1180
        add     edx, eax
1181
        sub     edx, 0x1000
1182
        jbe     @f
1183
        mov     eax, [.buffer]
1184
        add     eax, 0x1000
1185
        call    get_pg_addr
1186
        mov     [ecx+ehci_gtd.BufferPointers+4-ehci_gtd.SoftwarePart], eax
1187
        sub     edx, 0x1000
1188
        jbe     @f
1189
        mov     eax, [.buffer]
1190
        add     eax, 0x2000
1191
        call    get_pg_addr
1192
        mov     [ecx+ehci_gtd.BufferPointers+8-ehci_gtd.SoftwarePart], eax
1193
        sub     edx, 0x1000
1194
        jbe     @f
1195
        mov     eax, [.buffer]
1196
        add     eax, 0x3000
1197
        call    get_pg_addr
1198
        mov     [ecx+ehci_gtd.BufferPointers+12-ehci_gtd.SoftwarePart], eax
1199
        sub     edx, 0x1000
1200
        jbe     @f
1201
        mov     eax, [.buffer]
1202
        add     eax, 0x4000
1203
        call    get_pg_addr
1204
        mov     [ecx+ehci_gtd.BufferPointers+16-ehci_gtd.SoftwarePart], eax
1205
@@:
1206
; 7. Fill Token field:
1207
; set Status = 0 (inactive, ehci_insert_transfer would mark everything active);
1208
; keep current PID if [.direction] is zero, use two lower bits of [.direction]
1209
; otherwise shifted as (0|1|2) -> (2|0|1);
1210
; set error counter to 3;
1211
; set current page to 0;
1212
; do not interrupt on complete (ehci_insert_transfer sets this bit where needed);
1213
; set DataToggle to bit 2 of [.direction].
1214
        mov     eax, [ecx+ehci_gtd.Token-ehci_gtd.SoftwarePart]
1215
        and     eax, 300h       ; keep PID code
1216
        mov     edx, [.direction]
1217
        test    edx, edx
1218
        jz      .haspid
1219
        and     edx, 3
1220
        dec     edx
1221
        jns     @f
1222
        add     edx, 3
1223
@@:
1224
        mov     ah, dl
1225
        mov     edx, [.direction]
1226
        and     edx, not 3
1227
        shl     edx, 29
1228
        or      eax, edx
1229
.haspid:
1230
        or      eax, 0C00h
1231
        mov     edx, [.packetSize]
1232
        shl     edx, 16
1233
        or      eax, edx
1234
        mov     [ecx+ehci_gtd.Token-ehci_gtd.SoftwarePart], eax
1235
; 4. Restore the returned value saved in step 2.
1236
        pop     eax
1237
.nothing:
1238
        ret
1239
endp
1240
 
1241
; This procedure is called from several places in main USB code
1242
; and activates the transfer which was previously allocated by
1243
; ehci_alloc_transfer.
1244
; ecx -> last descriptor for the transfer, ebx -> usb_pipe
1245
proc ehci_insert_transfer
1246
        or      byte [ecx+ehci_gtd.Token+1-ehci_gtd.SoftwarePart], 80h  ; set IOC bit
1247
        mov     eax, [esp+4]
1248
.activate:
1249
        or      byte [eax+ehci_gtd.Token-ehci_gtd.SoftwarePart], 80h    ; set Active bit
1250
        cmp     eax, ecx
1251
        mov     eax, [eax+usb_gtd.NextVirt]
1252
        jnz     .activate
1253
        ret
1254
endp
1255
 
1256
; This function is called from ehci_process_deferred when
1257
; reset signalling for a new device needs to be finished.
1258
proc ehci_port_reset_done
1259
        movzx   ecx, [esi+usb_controller.ResettingPort]
1260
        and     dword [edi+EhciPortsReg+ecx*4], not 12Ah
1261
        mov     eax, [timer_ticks]
1262
        mov     [esi+usb_controller.ResetTime], eax
1263
        mov     [esi+usb_controller.ResettingStatus], 2
1264
        DEBUGF 1,'K : [%d] EHCI %x: reset port %d done\n',[timer_ticks],esi,ecx
1265
        ret
1266
endp
1267
 
1268
; This function is called from ehci_process_deferred when
1269
; a new device has been reset, recovered after reset and needs to be configured.
1270
proc ehci_port_init
1271
; 1. Get the status and set it to zero.
1272
; If reset has been failed (device disconnected during reset),
1273
; continue to next device (if there is one).
1274
        xor     eax, eax
1275
        xchg    al, [esi+usb_controller.ResettingStatus]
1276
        test    al, al
1277
        js      usb_test_pending_port
1278
; 2. Get the port status. High-speed devices should be now enabled,
1279
; full-speed devices are left disabled;
1280
; if the port is disabled, release it to a companion and continue to
1281
; next device (if there is one).
1282
        movzx   ecx, [esi+usb_controller.ResettingPort]
1283
        mov     eax, [edi+EhciPortsReg+ecx*4]
1284
        DEBUGF 1,'K : [%d] EHCI %x status of port %d is %x\n',[timer_ticks],esi,ecx,eax
1285
        test    al, 4
1286
        jnz     @f
1287
;       DEBUGF 1,'K : USB port disabled after reset, status = %x\n',eax
1288
        dbgstr 'releasing to companion'
1289
        or      ah, 20h
1290
        mov     [edi+EhciPortsReg+ecx*4], eax
1291
        jmp     usb_test_pending_port
1292
@@:
1293
; 3. Call the worker procedure to notify the protocol layer
1294
; about new EHCI device. It is high-speed.
1295
        push    USB_SPEED_HS
1296
        pop     eax
1297
        call    ehci_new_device
1298
        test    eax, eax
1299
        jnz     .nothing
1300
; 4. If something at the protocol layer has failed
1301
; (no memory, no bus address), disable the port and stop the initialization.
1302
.disable_exit:
1303
        and     dword [edi+EhciPortsReg+ecx*4], not (4 or 2Ah)
1304
        jmp     usb_test_pending_port
1305
.nothing:
1306
        ret
1307
endp
1308
 
1309
; This procedure is called from ehci_port_init and from hub support code
1310
; when a new device is connected and has been reset.
1311
; It calls usb_new_device at the protocol layer with correct parameters.
1312
; in: esi -> usb_controller, eax = speed.
1313
proc ehci_new_device
1314
        push    ebx ecx ; save used registers (ecx is important for ehci_port_init)
1315
; 1. Store the speed for the protocol layer.
1316
        mov     [esi+usb_controller.ResettingSpeed], al
1317
; 2. Shift speed bits to the proper place in ehci_pipe.Token.
1318
        shl     eax, 12
1319
; 3. For high-speed devices, go to step 5 with edx = 0.
1320
        xor     edx, edx
1321
        cmp     ah, USB_SPEED_HS shl (12-8)
1322
        jz      .common
1323
; 4. For low-speed and full-speed devices, fill address:port
1324
; of the last high-speed hub (the closest to the device hub)
1325
; for split transactions, and set ControlEndpoint bit in eax;
1326
; ehci_init_pipe assumes that the parent pipe is a control pipe.
1327
        movzx   ecx, [esi+usb_controller.ResettingPort]
1328
        mov     edx, [esi+usb_controller.ResettingHub]
1329
        push    eax
1330
.find_hs_hub:
1331
        mov     eax, [edx+usb_hub.ConfigPipe]
1332
        mov     eax, [eax+usb_pipe.DeviceData]
1333
        cmp     [eax+usb_device_data.Speed], USB_SPEED_HS
1334
        jz      .found_hs_hub
1335
        movzx   ecx, [eax+usb_device_data.Port]
1336
        mov     edx, [eax+usb_device_data.Hub]
1337
        jmp     .find_hs_hub
1338
.found_hs_hub:
1339
        mov     edx, [edx+usb_hub.ConfigPipe]
1340
        inc     ecx
1341
        mov     edx, [edx+ehci_pipe.Token-ehci_pipe.SoftwarePart]
1342
        shl     ecx, 23
1343
        and     edx, 7Fh
1344
        shl     edx, 16
1345
        or      edx, ecx        ; ehci_pipe.Flags
1346
        pop     eax
1347
        or      eax, 1 shl 27   ; ehci_pipe.Token
1348
.common:
1349
; 5. Create pseudo-pipe in the stack.
1350
; See ehci_init_pipe: only .Controller, .Token, .Flags fields are used.
1351
        push    esi     ; ehci_pipe.SoftwarePart.Controller
1352
        mov     ecx, esp
1353
        sub     esp, ehci_pipe.SoftwarePart - ehci_pipe.Flags - 4
1354
        push    edx     ; ehci_pipe.Flags
1355
        push    eax     ; ehci_pipe.Token
1356
; 6. Notify the protocol layer.
1357
        call    usb_new_device
1358
; 7. Cleanup the stack after step 5 and return.
1359
        add     esp, ehci_pipe.SoftwarePart - ehci_pipe.Flags + 8
1360
        pop     ecx ebx ; restore used registers
1361
        ret
1362
endp
1363
 
1364
; This procedure is called in the USB thread from usb_thread_proc,
1365
; processes regular actions and those actions which can't be safely done
1366
; from interrupt handler.
1367
; Returns maximal time delta before the next call.
1368
proc ehci_process_deferred
1369
        push    ebx edi         ; save used registers to be stdcall
1370
        mov     edi, [esi+ehci_controller.MMIOBase2-sizeof.ehci_controller]
1371
; 1. Get the mask of events to process.
1372
        xor     eax, eax
1373
        xchg    eax, [esi+ehci_controller.DeferredActions-sizeof.ehci_controller]
1374
        push    eax
1375
; 2. Initialize the return value.
1376
        push    -1
1377
; Handle roothub events.
1378
; 3a. Test whether there are such events.
1379
        test    al, 4
1380
        jz      .skip_roothub
1381
; Status of some port has changed. Loop over all ports.
1382
; 3b. Prepare for the loop: start from port 0.
1383
        xor     ecx, ecx
1384
.portloop:
1385
; 3c. Get the port status and changes of it.
1386
; If there are no changes, just continue to the next port.
1387
        mov     eax, [edi+EhciPortsReg+ecx*4]
1388
        test    al, 2Ah
1389
        jz      .nextport
1390
; 3d. Clear change bits and read the status again.
1391
; (It is possible, although quite unlikely, that some event occurs between
1392
; the first read and the clearing, invalidating the old status. If an event
1393
; occurs after the clearing, we will not miss it, looking in the next scan.
1394
        mov     [edi+EhciPortsReg+ecx*4], eax
1395
        mov     ebx, eax
1396
        mov     eax, [edi+EhciPortsReg+ecx*4]
1397
        DEBUGF 1,'K : [%d] EHCI %x: status of port %d changed to %x\n',[timer_ticks],esi,ecx,ebx
1398
; 3e. Handle overcurrent.
1399
; Note: that needs work.
1400
        test    bl, 20h ; overcurrent change
1401
        jz      .noovercurrent
1402
        test    al, 10h ; overcurrent active
1403
        jz      .noovercurrent
1404
        DEBUGF 1,'K : overcurrent at port %d\n',ecx
1405
.noovercurrent:
1406
; 3f. Handle changing of connection status.
1407
        test    bl, 2
1408
        jz      .nocsc
1409
; There was a connect or disconnect event at this port.
1410
; 3g. Disconnect the old device on this port, if any.
1411
; If the port was resetting, indicate fail; later stages will process it.
1412
        cmp     [esi+usb_controller.ResettingHub], 0
1413
        jnz     @f
1414
        cmp     cl, [esi+usb_controller.ResettingPort]
1415
        jnz     @f
1416
        mov     [esi+usb_controller.ResettingStatus], -1
1417
@@:
1418
        bts     [esi+usb_controller.NewDisconnected], ecx
1419
; 3h. Change connected status. For the connection event, also store
1420
; the connection time; any further processing is permitted only after
1421
; USB_CONNECT_DELAY ticks.
1422
        test    al, 1
1423
        jz      .disconnect
1424
        mov     eax, [timer_ticks]
1425
        mov     [esi+usb_controller.ConnectedTime+ecx*4], eax
1426
        bts     [esi+usb_controller.NewConnected], ecx
1427
        jmp     .nextport
1428
.disconnect:
1429
        btr     [esi+usb_controller.NewConnected], ecx
1430
        jmp     .nextport
1431
.nocsc:
1432
; 3i. Handle port disabling.
1433
; Note: that needs work.
1434
        test    al, 8
1435
        jz      @f
1436
        test    al, 4
1437
        jz      @f
1438
        DEBUGF 1,'K : port %d disabled\n',ecx
1439
@@:
1440
; 3j. Continue the loop for the next port.
1441
.nextport:
1442
        inc     ecx
1443
        cmp     ecx, [esi+usb_controller.NumPorts]
1444
        jb      .portloop
1445
.skip_roothub:
1446
; 4. Process disconnect events. This should be done after step 3
1447
; (which includes the first stage of disconnect processing).
1448
        call    usb_disconnect_stage2
1449
; 5. Check for previously connected devices.
1450
; If there is a connected device which was connected less than
1451
; USB_CONNECT_DELAY ticks ago, plan to wake up when the delay will be over.
1452
; Otherwise, call ehci_new_port.
1453
; This should be done after step 3.
1454
        xor     ecx, ecx
1455
        cmp     [esi+usb_controller.NewConnected], ecx
1456
        jz      .skip_newconnected
1457
.portloop2:
1458
        bt      [esi+usb_controller.NewConnected], ecx
1459
        jnc     .noconnect
1460
        mov     eax, [timer_ticks]
1461
        sub     eax, [esi+usb_controller.ConnectedTime+ecx*4]
1462
        sub     eax, USB_CONNECT_DELAY
1463
        jge     .connected
1464
        neg     eax
1465
        cmp     [esp], eax
1466
        jb      .nextport2
1467
        mov     [esp], eax
1468
        jmp     .nextport2
1469
.connected:
1470
        btr     [esi+usb_controller.NewConnected], ecx
1471
        call    ehci_new_port
1472
        jmp     .portloop2
1473
.noconnect:
1474
.nextport2:
1475
        inc     ecx
1476
        cmp     ecx, [esi+usb_controller.NumPorts]
1477
        jb      .portloop2
1478
.skip_newconnected:
1479
; 6. Process wait lists.
1480
; 6a. Periodic endpoints.
1481
; If a request is pending >8 microframes, satisfy it.
1482
; If a request is pending <=8 microframes, schedule next wakeup in 0.01s.
1483
        mov     eax, [esi+usb_controller.WaitPipeRequestPeriodic]
1484
        cmp     eax, [esi+usb_controller.ReadyPipeHeadPeriodic]
1485
        jz      .noperiodic
1486
        mov     edx, [edi+EhciFrameIndexReg]
1487
        sub     edx, [esi+usb_controller.StartWaitFrame]
1488
        and     edx, 0x3FFF
1489
        cmp     edx, 8
1490
        jbe     @f
1491
        mov     [esi+usb_controller.ReadyPipeHeadPeriodic], eax
1492
        jmp     .noperiodic
1493
@@:
1494
        pop     eax
1495
        push    1               ; wakeup in 0.01 sec for next test
1496
.noperiodic:
1497
; 6b. Asynchronous endpoints.
1498
; Satisfy a request when InterruptOnAsyncAdvance fired.
1499
        test    byte [esp+4], 20h
1500
        jz      @f
1501
        dbgstr 'async advance int'
1502
        mov     eax, [esi+usb_controller.WaitPipeRequestAsync]
1503
        mov     [esi+usb_controller.ReadyPipeHeadAsync], eax
1504
@@:
1505
; Some hardware in some (rarely) conditions set the status bit,
1506
; but just does not generate the corresponding interrupt.
1507
; Force checking the status here.
1508
        mov     eax, [esi+usb_controller.WaitPipeRequestAsync]
1509
        cmp     [esi+usb_controller.ReadyPipeHeadAsync], eax
1510
        jz      .noasync
1511
        spin_lock_irq [esi+usb_controller.WaitSpinlock]
1512
        mov     edx, [edi+EhciStatusReg]
1513
        test    dl, 20h
1514
        jz      @f
1515
        mov     dword [edi+EhciStatusReg], 20h
1516
        and     dword [esi+ehci_controller.DeferredActions-sizeof.ehci_controller], not 20h
1517
        dbgstr 'warning: async advance int missed'
1518
        mov     [esi+usb_controller.ReadyPipeHeadAsync], eax
1519
        jmp     .async_unlock
1520
@@:
1521
        cmp     dword [esp], 100
1522
        jb      .async_unlock
1523
        mov     dword [esp], 100
1524
.async_unlock:
1525
        spin_unlock_irq [esi+usb_controller.WaitSpinlock]
1526
.noasync:
1527
; 7. Finalize transfers processed by hardware.
1528
; It is better to perform this step after step 4 (disconnect events),
1529
; although not strictly obligatory. This way, an active transfer aborted
1530
; due to disconnect would be handled with more specific USB_STATUS_CLOSED,
1531
; not USB_STATUS_NORESPONSE.
1532
        test    byte [esp+4], 3
1533
        jz      @f
1534
        call    ehci_process_updated_schedule
1535
@@:
1536
; 8. Test whether reset signalling has been started and should be stopped now.
1537
; This must be done after step 7, because completion of some transfer could
1538
; result in resetting a new port.
1539
.test_reset:
1540
; 8a. Test whether reset signalling is active.
1541
        cmp     [esi+usb_controller.ResettingStatus], 1
1542
        jnz     .no_reset_in_progress
1543
; 8b. Yep. Test whether it should be stopped.
1544
        mov     eax, [timer_ticks]
1545
        sub     eax, [esi+usb_controller.ResetTime]
1546
        sub     eax, USB_RESET_TIME
1547
        jge     .reset_done
1548
; 8c. Not yet, but initiate wakeup in -eax ticks and exit this step.
1549
        neg     eax
1550
        cmp     [esp], eax
1551
        jb      .skip_reset
1552
        mov     [esp], eax
1553
        jmp     .skip_reset
1554
.reset_done:
1555
; 8d. Yep, call the worker function and proceed to 8e.
1556
        call    ehci_port_reset_done
1557
.no_reset_in_progress:
1558
; 8e. Test whether reset process is done, either successful or failed.
1559
        cmp     [esi+usb_controller.ResettingStatus], 0
1560
        jz      .skip_reset
1561
; 8f. Yep. Test whether it should be stopped.
1562
        mov     eax, [timer_ticks]
1563
        sub     eax, [esi+usb_controller.ResetTime]
1564
        sub     eax, USB_RESET_RECOVERY_TIME
1565
        jge     .reset_recovery_done
1566
; 8g. Not yet, but initiate wakeup in -eax ticks and exit this step.
1567
        neg     eax
1568
        cmp     [esp], eax
1569
        jb      .skip_reset
1570
        mov     [esp], eax
1571
        jmp     .skip_reset
1572
.reset_recovery_done:
1573
; 8h. Yep, call the worker function. This could initiate another reset,
1574
; so return to the beginning of this step.
1575
        call    ehci_port_init
1576
        jmp     .test_reset
1577
.skip_reset:
1578
; 9. Process wait-done notifications, test for new wait requests.
1579
; Note: that must be done after steps 4 and 7 which could create new requests.
1580
; 9a. Call the worker function.
1581
        call    usb_process_wait_lists
1582
; 9b. If it reports that an asynchronous endpoint should be removed,
1583
; doorbell InterruptOnAsyncAdvance and schedule wakeup in 1s
1584
; (sometimes it just does not fire).
1585
        test    al, 1 shl CONTROL_PIPE
1586
        jz      @f
1587
        mov     edx, [esi+usb_controller.WaitPipeListAsync]
1588
        mov     [esi+usb_controller.WaitPipeRequestAsync], edx
1589
        or      dword [edi+EhciCommandReg], 1 shl 6
1590
        dbgstr 'async advance doorbell'
1591
        cmp     dword [esp], 100
1592
        jb      @f
1593
        mov     dword [esp], 100
1594
@@:
1595
; 9c. If it reports that a periodic endpoint should be removed,
1596
; save the current frame and schedule wakeup in 0.01 sec.
1597
        test    al, 1 shl INTERRUPT_PIPE
1598
        jz      @f
1599
        mov     eax, [esi+usb_controller.WaitPipeListPeriodic]
1600
        mov     [esi+usb_controller.WaitPipeRequestPeriodic], eax
1601
        mov     edx, [edi+EhciFrameIndexReg]
1602
        mov     [esi+usb_controller.StartWaitFrame], edx
1603
        mov     dword [esp], 1  ; wakeup in 0.01 sec for next test
1604
@@:
1605
; 10. Pop the return value, restore the stack after step 1 and return.
1606
        pop     eax
1607
        pop     ecx
1608
        pop     edi ebx ; restore used registers to be stdcall
1609
        ret
1610
endp
1611
 
1612
; This procedure is called in the USB thread from ehci_process_deferred
1613
; when EHCI IRQ handler has signalled that new IOC-packet was processed.
1614
; It scans all lists for completed packets and calls ehci_process_finalized_td
1615
; for those packets.
1616
proc ehci_process_updated_schedule
1617
; Important note: we cannot hold the list lock during callbacks,
1618
; because callbacks sometimes open and/or close pipes and thus acquire/release
1619
; the corresponding lock itself.
1620
; Fortunately, pipes can be finally freed only by another step of
1621
; ehci_process_deferred, so all pipes existing at the start of this function
1622
; will be valid while this function is running. Some pipes can be removed
1623
; from the corresponding list, some pipes can be inserted; insert/remove
1624
; functions guarantee that traversing one list yields all pipes that were in
1625
; that list at the beginning of the traversing (possibly with some new pipes,
1626
; possibly without some new pipes, that doesn't matter).
1627
        push    edi
1628
; 1. Process all Periodic lists.
1629
        lea     edi, [esi+ehci_controller.IntEDs-sizeof.ehci_controller+ehci_static_ep.SoftwarePart]
1630
        lea     ebx, [esi+ehci_controller.IntEDs+63*sizeof.ehci_static_ep-sizeof.ehci_controller+ehci_static_ep.SoftwarePart]
1631
@@:
1632
        call    ehci_process_updated_list
1633
        cmp     edi, ebx
1634
        jnz     @b
1635
; 2. Process the Control list.
1636
        add     edi, ehci_controller.ControlDelta
1637
        call    ehci_process_updated_list
1638
; 3. Process the Bulk list.
1639
        call    ehci_process_updated_list
1640
; 4. Return.
1641
        pop     edi
1642
        ret
1643
endp
1644
 
1645
; This procedure is called from ehci_process_updated_schedule, see comments there.
1646
; It processes one list, esi -> usb_controller, edi -> usb_static_ep,
1647
; and advances edi to next head.
1648
proc ehci_process_updated_list
1649
        push    ebx
1650
; 1. Perform the external loop over all pipes.
1651
        mov     ebx, [edi+usb_static_ep.NextVirt]
1652
.loop:
1653
        cmp     ebx, edi
1654
        jz      .done
1655
; store pointer to the next pipe in the stack
1656
        push    [ebx+usb_static_ep.NextVirt]
1657
; 2. For every pipe, perform the internal loop over all descriptors.
1658
; All descriptors are organized in the queue; we process items from the start
1659
; of the queue until a) the last descriptor (not the part of the queue itself)
1660
; or b) an active (not yet processed by the hardware) descriptor is reached.
1661
        lea     ecx, [ebx+usb_pipe.Lock]
1662
        call    mutex_lock
1663
        mov     ebx, [ebx+usb_pipe.LastTD]
1664
        push    ebx
1665
        mov     ebx, [ebx+usb_gtd.NextVirt]
1666
.tdloop:
1667
; 3. For every descriptor, test active flag and check for end-of-queue;
1668
; if either of conditions holds, exit from the internal loop.
1669
        cmp     ebx, [esp]
1670
        jz      .tddone
1671
        cmp     byte [ebx+ehci_gtd.Token-ehci_gtd.SoftwarePart], 0
1672
        js      .tddone
1673
; Release the queue lock while processing one descriptor:
1674
; callback function could (and often would) schedule another transfer.
1675
        push    ecx
1676
        call    mutex_unlock
1677
        call    ehci_process_updated_td
1678
        pop     ecx
1679
        call    mutex_lock
1680
        jmp     .tdloop
1681
.tddone:
1682
        call    mutex_unlock
1683
        pop     ebx
1684
; End of internal loop, restore pointer to the next pipe
1685
; and continue the external loop.
1686
        pop     ebx
1687
        jmp     .loop
1688
.done:
1689
        pop     ebx
1690
        add     edi, sizeof.ehci_static_ep
1691
        ret
1692
endp
1693
 
1694
; This procedure is called from ehci_process_updated_list, which is itself
1695
; called from ehci_process_updated_schedule, see comments there.
1696
; It processes one completed descriptor.
1697
; in: ebx -> usb_gtd, out: ebx -> next usb_gtd.
1698
proc ehci_process_updated_td
1699
;       mov     eax, [ebx+usb_gtd.Pipe]
1700
;       cmp     [eax+usb_pipe.Type], INTERRUPT_PIPE
1701
;       jnz     @f
1702
;       DEBUGF 1,'K : finalized TD for pipe %x:\n',eax
1703
;       lea     eax, [ebx-ehci_gtd.SoftwarePart]
1704
;       DEBUGF 1,'K : %x %x %x %x\n',[eax],[eax+4],[eax+8],[eax+12]
1705
;       DEBUGF 1,'K : %x %x %x %x\n',[eax+16],[eax+20],[eax+24],[eax+28]
1706
;@@:
1707
; 1. Remove this descriptor from the list of descriptors for this pipe.
1708
        call    usb_unlink_td
1709
; 2. Calculate actual number of bytes transferred.
1710
        mov     eax, [ebx+ehci_gtd.Token-ehci_gtd.SoftwarePart]
1711
        lea     edx, [eax+eax]
1712
        shr     edx, 17
1713
        sub     edx, [ebx+usb_gtd.Length]
1714
        neg     edx
1715
; 3. Check whether we need some special processing beyond notifying the driver.
1716
; Transfer errors require special processing.
1717
; Short packets require special processing if
1718
; a) this is not the last descriptor for transfer stage
1719
; (in this case we need to process subsequent descriptors for the stage too)
1720
; or b) the caller considers short transfers to be an error.
1721
; ehci_alloc_transfer sets bit 0 of ehci_gtd.Flags to 0 if short packet
1722
; in this descriptor requires special processing and to 1 otherwise.
1723
; If special processing is not needed, advance to 4 with ecx = 0.
1724
; Otherwise, go to 6.
1725
        xor     ecx, ecx
1726
        test    al, 40h
1727
        jnz     .error
1728
        test    byte [ebx+ehci_gtd.Flags-ehci_gtd.SoftwarePart], 1
1729
        jnz     .notify
1730
        cmp     edx, [ebx+usb_gtd.Length]
1731
        jnz     .special
1732
.notify:
1733
; 4. Either the descriptor in ebx was processed without errors,
1734
; or all necessary error actions were taken and ebx points to the last
1735
; related descriptor.
1736
; 4a. Test whether it is the last descriptor in the transfer
1737
; <=> it has an associated callback.
1738
        mov     eax, [ebx+usb_gtd.Callback]
1739
        test    eax, eax
1740
        jz      .nocallback
1741
; 4b. It has an associated callback; call it with corresponding parameters.
1742
        stdcall_verify eax, [ebx+usb_gtd.Pipe], ecx, \
1743
                [ebx+usb_gtd.Buffer], edx, [ebx+usb_gtd.UserData]
1744
        jmp     .callback
1745
.nocallback:
1746
; 4c. It is an intermediate descriptor. Add its length to the length
1747
; in the following descriptor.
1748
        mov     eax, [ebx+usb_gtd.NextVirt]
1749
        add     [eax+usb_gtd.Length], edx
1750
.callback:
1751
; 5. Free the current descriptor and return the next one.
1752
        push    [ebx+usb_gtd.NextVirt]
1753
        stdcall ehci_free_td, ebx
1754
        pop     ebx
1755
        ret
1756
.error:
1757
        push    ebx
1758
        sub     ebx, ehci_gtd.SoftwarePart
1759
        DEBUGF 1,'K : TD failed:\n'
1760
        DEBUGF 1,'K : %x %x %x %x\n',[ebx],[ebx+4],[ebx+8],[ebx+12]
1761
        DEBUGF 1,'K : %x %x %x %x\n',[ebx+16],[ebx+20],[ebx+24],[ebx+28]
1762
        pop     ebx
1763
        DEBUGF 1,'K : pipe now:\n'
1764
        mov     ecx, [ebx+usb_gtd.Pipe]
1765
        sub     ecx, ehci_pipe.SoftwarePart
1766
        DEBUGF 1,'K : %x %x %x %x\n',[ecx],[ecx+4],[ecx+8],[ecx+12]
1767
        DEBUGF 1,'K : %x %x %x %x\n',[ecx+16],[ecx+20],[ecx+24],[ecx+28]
1768
        DEBUGF 1,'K : %x %x %x %x\n',[ecx+32],[ecx+36],[ecx+40],[ecx+44]
1769
.special:
1770
; 6. Special processing is needed.
1771
; 6a. Save the status and length.
1772
        push    edx
1773
        push    eax
1774
; 6b. Traverse the list of descriptors looking for the final descriptor
1775
; for this transfer. Free and unlink non-final descriptors.
1776
; Final descriptor will be freed in step 5.
1777
.look_final:
1778
        call    usb_is_final_packet
1779
        jnc     .found_final
1780
        push    [ebx+usb_gtd.NextVirt]
1781
        stdcall ehci_free_td, ebx
1782
        pop     ebx
1783
        call    usb_unlink_td
1784
        jmp     .look_final
1785
.found_final:
1786
; 6c. Restore the status saved in 6a and transform it to the error code.
1787
; Notes:
1788
; * any USB transaction error results in Halted bit; if it is not set,
1789
;   but we are here, it must be due to short packet;
1790
; * babble is considered a fatal USB transaction error,
1791
;   other errors just lead to retrying the transaction;
1792
;   if babble is detected, return the corresponding error;
1793
; * if several non-fatal errors have occured during transaction retries,
1794
;   all corresponding bits are set. In this case, return some error code,
1795
;   the order is quite arbitrary.
1796
        pop     eax     ; status
1797
        push    USB_STATUS_UNDERRUN
1798
        pop     ecx
1799
        test    al, 40h         ; not Halted?
1800
        jz      .know_error
1801
        mov     cl, USB_STATUS_OVERRUN
1802
        test    al, 10h         ; Babble detected?
1803
        jnz     .know_error
1804
        mov     cl, USB_STATUS_BUFOVERRUN
1805
        test    al, 20h         ; Data Buffer error?
1806
        jnz     .know_error
1807
        mov     cl, USB_STATUS_NORESPONSE
1808
        test    al, 8           ; Transaction Error?
1809
        jnz     .know_error
1810
        mov     cl, USB_STATUS_STALL
1811
.know_error:
1812
; 6d. If error code is USB_STATUS_UNDERRUN and the last TD allows short packets,
1813
; it is not an error; in this case, go to 4 with ecx = 0.
1814
        cmp     ecx, USB_STATUS_UNDERRUN
1815
        jnz     @f
1816
        test    byte [ebx+ehci_gtd.Flags-ehci_gtd.SoftwarePart], 1
1817
        jz      @f
1818
        xor     ecx, ecx
1819
        pop     edx     ; length
1820
        jmp     .notify
1821
@@:
1822
; 6e. Abort the entire transfer.
1823
; There are two cases: either there is only one transfer stage
1824
; (everything except control transfers), then ebx points to the last TD and
1825
; all previous TD were unlinked and dismissed (if possible),
1826
; or there are several stages (a control transfer) and ebx points to the last
1827
; TD of Data or Status stage (usb_is_final_packet does not stop in Setup stage,
1828
; because Setup stage can not produce short packets); for Data stage, we need
1829
; to unlink and free (if possible) one more TD and advance ebx to the next one.
1830
        cmp     [ebx+usb_gtd.Callback], 0
1831
        jnz     .normal
1832
        push    ecx
1833
        push    [ebx+usb_gtd.NextVirt]
1834
        stdcall ehci_free_td, ebx
1835
        pop     ebx
1836
        call    usb_unlink_td
1837
        pop     ecx
1838
.normal:
1839
; 6f. For bulk/interrupt transfers we have no choice but halt the queue,
1840
; the driver should intercede (through some API which is not written yet).
1841
; Control pipes normally recover at the next SETUP transaction (first stage
1842
; of any control transfer), so we hope on the best and just advance the queue
1843
; to the next transfer. (According to the standard, "A control pipe may also
1844
; support functional stall as well, but this is not recommended.").
1845
        mov     edx, [ebx+usb_gtd.Pipe]
1846
        mov     eax, [ebx+ehci_gtd.NextTD-ehci_gtd.SoftwarePart]
1847
        or      al, 1
1848
        mov     [edx+ehci_pipe.Overlay.NextTD-ehci_pipe.SoftwarePart], eax
1849
        mov     [edx+ehci_pipe.Overlay.AlternateNextTD-ehci_pipe.SoftwarePart], eax
1850
        cmp     [edx+usb_pipe.Type], CONTROL_PIPE
1851
        jz      .control
1852
; Bulk/interrupt transfer; halt the queue.
1853
        mov     [edx+ehci_pipe.Overlay.Token-ehci_pipe.SoftwarePart], 40h
1854
        pop     edx
1855
        jmp     .notify
1856
; Control transfer.
1857
.control:
1858
        and     [edx+ehci_pipe.Overlay.Token-ehci_pipe.SoftwarePart], 0
1859
        dec     [edx+ehci_pipe.Overlay.NextTD-ehci_pipe.SoftwarePart]
1860
        pop     edx
1861
        jmp     .notify
1862
endp
1863
 
1864
; This procedure unlinks the pipe from the corresponding pipe list.
1865
; esi -> usb_controller, ebx -> usb_pipe
1866
proc ehci_unlink_pipe
1867
        cmp     [ebx+usb_pipe.Type], INTERRUPT_PIPE
1868
        jnz     @f
1869
        test    word [ebx+ehci_pipe.Flags-ehci_pipe.SoftwarePart+2], 3FFFh
1870
        jnz     .interrupt_fs
1871
        call    ehci_hs_interrupt_list_unlink
1872
        jmp     .interrupt_common
1873
.interrupt_fs:
1874
        call    ehci_fs_interrupt_list_unlink
1875
.interrupt_common:
1876
@@:
1877
        mov     edx, [ebx+usb_pipe.NextVirt]
1878
        mov     eax, [ebx+usb_pipe.PrevVirt]
1879
        mov     [edx+usb_pipe.PrevVirt], eax
1880
        mov     [eax+usb_pipe.NextVirt], edx
1881
        mov     edx, esi
1882
        sub     edx, eax
1883
        cmp     edx, sizeof.ehci_controller
1884
        mov     edx, [ebx+ehci_pipe.NextQH-ehci_pipe.SoftwarePart]
1885
        jb      .prev_is_static
1886
        mov     [eax+ehci_pipe.NextQH-ehci_pipe.SoftwarePart], edx
1887
        ret
1888
.prev_is_static:
1889
        mov     [eax+ehci_static_ep.NextQH-ehci_static_ep.SoftwarePart], edx
1890
        ret
1891
endp
1892
 
1893
proc ehci_alloc_td
1894
        push    ebx
1895
        mov     ebx, ehci_gtd_mutex
1896
        stdcall usb_allocate_common, sizeof.ehci_gtd
1897
        test    eax, eax
1898
        jz      @f
1899
        add     eax, ehci_gtd.SoftwarePart
1900
@@:
1901
        pop     ebx
1902
        ret
1903
endp
1904
 
1905
; This procedure is called from several places from main USB code and
1906
; frees all additional data associated with the transfer descriptor.
1907
; EHCI has no additional data, so just free ehci_gtd structure.
1908
proc ehci_free_td
1909
        sub     dword [esp+4], ehci_gtd.SoftwarePart
1910
        jmp     usb_free_common
1911
endp