Subversion Repositories Kolibri OS

Rev

Rev 5078 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
4075 Serge 1
/**************************************************************************
2
 *
6296 serge 3
 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4075 Serge 4
 * All Rights Reserved.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a
7
 * copy of this software and associated documentation files (the
8
 * "Software"), to deal in the Software without restriction, including
9
 * without limitation the rights to use, copy, modify, merge, publish,
10
 * distribute, sub license, and/or sell copies of the Software, and to
11
 * permit persons to whom the Software is furnished to do so, subject to
12
 * the following conditions:
13
 *
14
 * The above copyright notice and this permission notice (including the
15
 * next paragraph) shall be included in all copies or substantial portions
16
 * of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25
 *
26
 **************************************************************************/
27
 
28
#include "vmwgfx_drv.h"
29
#include 
30
#include 
31
#include 
32
#include 
33
#include "vmwgfx_resource_priv.h"
6296 serge 34
#include "vmwgfx_binding.h"
4075 Serge 35
 
4569 Serge 36
#define VMW_RES_EVICT_ERR_COUNT 10
37
 
4075 Serge 38
struct vmw_user_dma_buffer {
4569 Serge 39
	struct ttm_prime_object prime;
4075 Serge 40
	struct vmw_dma_buffer dma;
41
};
42
 
43
struct vmw_bo_user_rep {
44
	uint32_t handle;
45
	uint64_t map_handle;
46
};
47
 
48
struct vmw_stream {
49
	struct vmw_resource res;
50
	uint32_t stream_id;
51
};
52
 
53
struct vmw_user_stream {
54
	struct ttm_base_object base;
55
	struct vmw_stream stream;
56
};
57
 
58
 
59
static uint64_t vmw_user_stream_size;
60
 
61
static const struct vmw_res_func vmw_stream_func = {
62
	.res_type = vmw_res_stream,
63
	.needs_backup = false,
64
	.may_evict = false,
65
	.type_name = "video streams",
66
	.backup_placement = NULL,
67
	.create = NULL,
68
	.destroy = NULL,
69
	.bind = NULL,
70
	.unbind = NULL
71
};
72
 
73
static inline struct vmw_dma_buffer *
74
vmw_dma_buffer(struct ttm_buffer_object *bo)
75
{
76
	return container_of(bo, struct vmw_dma_buffer, base);
77
}
78
 
79
static inline struct vmw_user_dma_buffer *
80
vmw_user_dma_buffer(struct ttm_buffer_object *bo)
81
{
82
	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
83
	return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
84
}
85
 
86
struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
87
{
88
	kref_get(&res->kref);
89
	return res;
90
}
91
 
6296 serge 92
struct vmw_resource *
93
vmw_resource_reference_unless_doomed(struct vmw_resource *res)
94
{
95
	return kref_get_unless_zero(&res->kref) ? res : NULL;
96
}
4075 Serge 97
 
98
/**
99
 * vmw_resource_release_id - release a resource id to the id manager.
100
 *
101
 * @res: Pointer to the resource.
102
 *
103
 * Release the resource id to the resource id manager and set it to -1
104
 */
105
void vmw_resource_release_id(struct vmw_resource *res)
106
{
107
	struct vmw_private *dev_priv = res->dev_priv;
108
	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
109
 
110
	write_lock(&dev_priv->resource_lock);
111
	if (res->id != -1)
112
		idr_remove(idr, res->id);
113
	res->id = -1;
114
	write_unlock(&dev_priv->resource_lock);
115
}
116
 
117
static void vmw_resource_release(struct kref *kref)
118
{
119
	struct vmw_resource *res =
120
	    container_of(kref, struct vmw_resource, kref);
121
	struct vmw_private *dev_priv = res->dev_priv;
122
	int id;
123
	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
124
 
6296 serge 125
	write_lock(&dev_priv->resource_lock);
4075 Serge 126
	res->avail = false;
127
	list_del_init(&res->lru_head);
128
	write_unlock(&dev_priv->resource_lock);
129
	if (res->backup) {
130
		struct ttm_buffer_object *bo = &res->backup->base;
131
 
5078 serge 132
		ttm_bo_reserve(bo, false, false, false, NULL);
4075 Serge 133
		if (!list_empty(&res->mob_head) &&
134
		    res->func->unbind != NULL) {
135
			struct ttm_validate_buffer val_buf;
136
 
137
			val_buf.bo = bo;
6296 serge 138
			val_buf.shared = false;
4075 Serge 139
			res->func->unbind(res, false, &val_buf);
140
		}
141
		res->backup_dirty = false;
142
		list_del_init(&res->mob_head);
143
		ttm_bo_unreserve(bo);
144
		vmw_dmabuf_unreference(&res->backup);
145
	}
146
 
5078 serge 147
	if (likely(res->hw_destroy != NULL)) {
148
		mutex_lock(&dev_priv->binding_mutex);
6296 serge 149
		vmw_binding_res_list_kill(&res->binding_head);
5078 serge 150
		mutex_unlock(&dev_priv->binding_mutex);
6296 serge 151
		res->hw_destroy(res);
5078 serge 152
	}
4075 Serge 153
 
154
	id = res->id;
155
	if (res->res_free != NULL)
156
		res->res_free(res);
157
	else
158
		kfree(res);
159
 
160
	write_lock(&dev_priv->resource_lock);
161
	if (id != -1)
162
		idr_remove(idr, id);
6296 serge 163
	write_unlock(&dev_priv->resource_lock);
4075 Serge 164
}
165
 
166
void vmw_resource_unreference(struct vmw_resource **p_res)
167
{
168
	struct vmw_resource *res = *p_res;
169
 
170
	*p_res = NULL;
171
	kref_put(&res->kref, vmw_resource_release);
172
}
173
 
174
 
175
/**
176
 * vmw_resource_alloc_id - release a resource id to the id manager.
177
 *
178
 * @res: Pointer to the resource.
179
 *
180
 * Allocate the lowest free resource from the resource manager, and set
181
 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182
 */
183
int vmw_resource_alloc_id(struct vmw_resource *res)
184
{
185
	struct vmw_private *dev_priv = res->dev_priv;
186
	int ret;
187
	struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188
 
189
	BUG_ON(res->id != -1);
190
 
191
	idr_preload(GFP_KERNEL);
192
	write_lock(&dev_priv->resource_lock);
193
 
194
	ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195
	if (ret >= 0)
196
		res->id = ret;
197
 
198
	write_unlock(&dev_priv->resource_lock);
199
	idr_preload_end();
200
	return ret < 0 ? ret : 0;
201
}
202
 
203
/**
204
 * vmw_resource_init - initialize a struct vmw_resource
205
 *
206
 * @dev_priv:       Pointer to a device private struct.
207
 * @res:            The struct vmw_resource to initialize.
208
 * @obj_type:       Resource object type.
209
 * @delay_id:       Boolean whether to defer device id allocation until
210
 *                  the first validation.
211
 * @res_free:       Resource destructor.
212
 * @func:           Resource function table.
213
 */
214
int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
215
		      bool delay_id,
216
		      void (*res_free) (struct vmw_resource *res),
217
		      const struct vmw_res_func *func)
218
{
219
	kref_init(&res->kref);
220
	res->hw_destroy = NULL;
221
	res->res_free = res_free;
222
	res->avail = false;
223
	res->dev_priv = dev_priv;
224
	res->func = func;
225
	INIT_LIST_HEAD(&res->lru_head);
226
	INIT_LIST_HEAD(&res->mob_head);
4569 Serge 227
	INIT_LIST_HEAD(&res->binding_head);
4075 Serge 228
	res->id = -1;
229
	res->backup = NULL;
230
	res->backup_offset = 0;
231
	res->backup_dirty = false;
232
	res->res_dirty = false;
233
	if (delay_id)
234
		return 0;
235
	else
236
		return vmw_resource_alloc_id(res);
237
}
238
 
239
/**
240
 * vmw_resource_activate
241
 *
242
 * @res:        Pointer to the newly created resource
243
 * @hw_destroy: Destroy function. NULL if none.
244
 *
245
 * Activate a resource after the hardware has been made aware of it.
246
 * Set tye destroy function to @destroy. Typically this frees the
247
 * resource and destroys the hardware resources associated with it.
248
 * Activate basically means that the function vmw_resource_lookup will
249
 * find it.
250
 */
251
void vmw_resource_activate(struct vmw_resource *res,
252
			   void (*hw_destroy) (struct vmw_resource *))
253
{
254
	struct vmw_private *dev_priv = res->dev_priv;
255
 
256
	write_lock(&dev_priv->resource_lock);
257
	res->avail = true;
258
	res->hw_destroy = hw_destroy;
259
	write_unlock(&dev_priv->resource_lock);
260
}
261
 
6296 serge 262
static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
263
						struct idr *idr, int id)
4075 Serge 264
{
265
	struct vmw_resource *res;
266
 
267
	read_lock(&dev_priv->resource_lock);
268
	res = idr_find(idr, id);
6296 serge 269
	if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
4075 Serge 270
		res = NULL;
6296 serge 271
 
4075 Serge 272
	read_unlock(&dev_priv->resource_lock);
273
 
274
	if (unlikely(res == NULL))
275
		return NULL;
276
 
277
	return res;
278
}
279
 
280
/**
281
 * vmw_user_resource_lookup_handle - lookup a struct resource from a
282
 * TTM user-space handle and perform basic type checks
283
 *
284
 * @dev_priv:     Pointer to a device private struct
285
 * @tfile:        Pointer to a struct ttm_object_file identifying the caller
286
 * @handle:       The TTM user-space handle
287
 * @converter:    Pointer to an object describing the resource type
288
 * @p_res:        On successful return the location pointed to will contain
289
 *                a pointer to a refcounted struct vmw_resource.
290
 *
291
 * If the handle can't be found or is associated with an incorrect resource
292
 * type, -EINVAL will be returned.
293
 */
294
int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
295
				    struct ttm_object_file *tfile,
296
				    uint32_t handle,
297
				    const struct vmw_user_resource_conv
298
				    *converter,
299
				    struct vmw_resource **p_res)
300
{
301
	struct ttm_base_object *base;
302
	struct vmw_resource *res;
303
	int ret = -EINVAL;
304
 
305
	base = ttm_base_object_lookup(tfile, handle);
306
	if (unlikely(base == NULL))
307
		return -EINVAL;
308
 
4569 Serge 309
	if (unlikely(ttm_base_object_type(base) != converter->object_type))
4075 Serge 310
		goto out_bad_resource;
311
 
312
	res = converter->base_obj_to_res(base);
313
 
314
	read_lock(&dev_priv->resource_lock);
315
	if (!res->avail || res->res_free != converter->res_free) {
316
		read_unlock(&dev_priv->resource_lock);
317
		goto out_bad_resource;
318
	}
319
 
320
	kref_get(&res->kref);
321
	read_unlock(&dev_priv->resource_lock);
322
 
323
	*p_res = res;
324
	ret = 0;
325
 
326
out_bad_resource:
327
	ttm_base_object_unref(&base);
328
 
329
	return ret;
330
}
331
 
332
/**
333
 * Helper function that looks either a surface or dmabuf.
334
 *
335
 * The pointer this pointed at by out_surf and out_buf needs to be null.
336
 */
337
int vmw_user_lookup_handle(struct vmw_private *dev_priv,
338
			   struct ttm_object_file *tfile,
339
			   uint32_t handle,
340
			   struct vmw_surface **out_surf,
341
			   struct vmw_dma_buffer **out_buf)
342
{
343
	struct vmw_resource *res;
344
	int ret;
345
 
346
	BUG_ON(*out_surf || *out_buf);
347
 
348
	ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
349
					      user_surface_converter,
350
					      &res);
351
	if (!ret) {
352
		*out_surf = vmw_res_to_srf(res);
353
		return 0;
354
	}
355
 
356
	*out_surf = NULL;
6296 serge 357
	ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
4075 Serge 358
	return ret;
359
}
360
 
361
/**
362
 * Buffer management.
363
 */
4569 Serge 364
 
365
/**
366
 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
367
 *
368
 * @dev_priv: Pointer to a struct vmw_private identifying the device.
369
 * @size: The requested buffer size.
370
 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
371
 */
372
static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
373
				  bool user)
374
{
375
	static size_t struct_size, user_struct_size;
376
	size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
377
	size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
378
 
379
	if (unlikely(struct_size == 0)) {
380
		size_t backend_size = ttm_round_pot(vmw_tt_size);
381
 
382
		struct_size = backend_size +
383
			ttm_round_pot(sizeof(struct vmw_dma_buffer));
384
		user_struct_size = backend_size +
385
			ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
386
	}
387
 
388
	if (dev_priv->map_mode == vmw_dma_alloc_coherent)
389
		page_array_size +=
390
			ttm_round_pot(num_pages * sizeof(dma_addr_t));
391
 
392
	return ((user) ? user_struct_size : struct_size) +
393
		page_array_size;
394
}
395
 
4075 Serge 396
void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
397
{
398
	struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
399
 
400
	kfree(vmw_bo);
401
}
402
 
4569 Serge 403
static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
404
{
405
	struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
406
 
6296 serge 407
	ttm_prime_object_kfree(vmw_user_bo, prime);
4569 Serge 408
}
409
 
4075 Serge 410
int vmw_dmabuf_init(struct vmw_private *dev_priv,
411
		    struct vmw_dma_buffer *vmw_bo,
412
		    size_t size, struct ttm_placement *placement,
413
		    bool interruptible,
414
		    void (*bo_free) (struct ttm_buffer_object *bo))
415
{
416
	struct ttm_bo_device *bdev = &dev_priv->bdev;
417
	size_t acc_size;
418
	int ret;
4569 Serge 419
	bool user = (bo_free == &vmw_user_dmabuf_destroy);
4075 Serge 420
 
4569 Serge 421
	BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
4075 Serge 422
 
4569 Serge 423
	acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
4075 Serge 424
	memset(vmw_bo, 0, sizeof(*vmw_bo));
425
 
426
	INIT_LIST_HEAD(&vmw_bo->res_list);
427
 
428
	ret = ttm_bo_init(bdev, &vmw_bo->base, size,
5078 serge 429
			  ttm_bo_type_device, placement,
4075 Serge 430
			  0, interruptible,
6296 serge 431
			  NULL, acc_size, NULL, NULL, bo_free);
4075 Serge 432
	return ret;
433
}
434
 
435
static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
436
{
437
	struct vmw_user_dma_buffer *vmw_user_bo;
438
	struct ttm_base_object *base = *p_base;
439
	struct ttm_buffer_object *bo;
440
 
441
	*p_base = NULL;
442
 
443
	if (unlikely(base == NULL))
444
		return;
445
 
4569 Serge 446
	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
447
				   prime.base);
4075 Serge 448
	bo = &vmw_user_bo->dma.base;
449
	ttm_bo_unref(&bo);
450
}
451
 
4569 Serge 452
static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
453
					    enum ttm_ref_type ref_type)
454
{
455
	struct vmw_user_dma_buffer *user_bo;
456
	user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
457
 
458
	switch (ref_type) {
459
	case TTM_REF_SYNCCPU_WRITE:
460
		ttm_bo_synccpu_write_release(&user_bo->dma.base);
461
		break;
462
	default:
463
		BUG();
464
	}
465
}
466
 
4075 Serge 467
/**
468
 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
469
 *
470
 * @dev_priv: Pointer to a struct device private.
471
 * @tfile: Pointer to a struct ttm_object_file on which to register the user
472
 * object.
473
 * @size: Size of the dma buffer.
474
 * @shareable: Boolean whether the buffer is shareable with other open files.
475
 * @handle: Pointer to where the handle value should be assigned.
476
 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
477
 * should be assigned.
478
 */
479
int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
480
			  struct ttm_object_file *tfile,
481
			  uint32_t size,
482
			  bool shareable,
483
			  uint32_t *handle,
6296 serge 484
			  struct vmw_dma_buffer **p_dma_buf,
485
			  struct ttm_base_object **p_base)
4075 Serge 486
{
487
	struct vmw_user_dma_buffer *user_bo;
488
	struct ttm_buffer_object *tmp;
489
	int ret;
490
 
491
	user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
492
	if (unlikely(user_bo == NULL)) {
493
		DRM_ERROR("Failed to allocate a buffer.\n");
494
		return -ENOMEM;
495
	}
496
 
497
	ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
4569 Serge 498
			      (dev_priv->has_mob) ?
499
			      &vmw_sys_placement :
4075 Serge 500
			      &vmw_vram_sys_placement, true,
501
			      &vmw_user_dmabuf_destroy);
502
	if (unlikely(ret != 0))
503
		return ret;
504
 
505
	tmp = ttm_bo_reference(&user_bo->dma.base);
6296 serge 506
	ret = ttm_prime_object_init(tfile,
4569 Serge 507
				    size,
508
				    &user_bo->prime,
6296 serge 509
				    shareable,
510
				    ttm_buffer_type,
4569 Serge 511
				    &vmw_user_dmabuf_release,
512
				    &vmw_user_dmabuf_ref_obj_release);
4075 Serge 513
	if (unlikely(ret != 0)) {
514
		ttm_bo_unref(&tmp);
515
		goto out_no_base_object;
516
	}
517
 
518
	*p_dma_buf = &user_bo->dma;
6296 serge 519
	if (p_base) {
520
		*p_base = &user_bo->prime.base;
521
		kref_get(&(*p_base)->refcount);
522
	}
4569 Serge 523
	*handle = user_bo->prime.base.hash.key;
4075 Serge 524
 
525
out_no_base_object:
526
	return ret;
527
}
528
 
529
/**
530
 * vmw_user_dmabuf_verify_access - verify access permissions on this
531
 * buffer object.
532
 *
533
 * @bo: Pointer to the buffer object being accessed
534
 * @tfile: Identifying the caller.
535
 */
536
int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
537
				  struct ttm_object_file *tfile)
538
{
539
	struct vmw_user_dma_buffer *vmw_user_bo;
540
 
541
	if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
542
		return -EPERM;
543
 
544
	vmw_user_bo = vmw_user_dma_buffer(bo);
5078 serge 545
 
546
	/* Check that the caller has opened the object. */
547
	if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
548
		return 0;
549
 
550
	DRM_ERROR("Could not grant buffer access.\n");
551
	return -EPERM;
4075 Serge 552
}
553
 
4569 Serge 554
/**
555
 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
556
 * access, idling previous GPU operations on the buffer and optionally
557
 * blocking it for further command submissions.
558
 *
559
 * @user_bo: Pointer to the buffer object being grabbed for CPU access
560
 * @tfile: Identifying the caller.
561
 * @flags: Flags indicating how the grab should be performed.
562
 *
563
 * A blocking grab will be automatically released when @tfile is closed.
564
 */
565
static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
566
					struct ttm_object_file *tfile,
567
					uint32_t flags)
568
{
569
	struct ttm_buffer_object *bo = &user_bo->dma.base;
570
	bool existed;
5078 serge 571
	int ret;
4569 Serge 572
 
573
	if (flags & drm_vmw_synccpu_allow_cs) {
6296 serge 574
		bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
575
		long lret;
4569 Serge 576
 
6296 serge 577
		if (nonblock)
578
			return reservation_object_test_signaled_rcu(bo->resv, true) ? 0 : -EBUSY;
579
 
4569 Serge 580
//       spin_lock(&bdev->fence_lock);
581
//       ret = ttm_bo_wait(bo, false, true,
582
//                 !!(flags & drm_vmw_synccpu_dontblock));
583
//       spin_unlock(&bdev->fence_lock);
584
		return ret;
585
	}
586
 
6296 serge 587
	ret = ttm_bo_synccpu_write_grab
588
		(bo, !!(flags & drm_vmw_synccpu_dontblock));
589
	if (unlikely(ret != 0))
590
		return ret;
4569 Serge 591
 
592
	ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
593
				 TTM_REF_SYNCCPU_WRITE, &existed);
594
//   if (ret != 0 || existed)
595
//       ttm_bo_synccpu_write_release(&user_bo->dma.base);
596
 
597
	return ret;
598
}
599
 
600
/**
601
 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
602
 * and unblock command submission on the buffer if blocked.
603
 *
604
 * @handle: Handle identifying the buffer object.
605
 * @tfile: Identifying the caller.
606
 * @flags: Flags indicating the type of release.
607
 */
608
static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
609
					   struct ttm_object_file *tfile,
610
					   uint32_t flags)
611
{
612
	if (!(flags & drm_vmw_synccpu_allow_cs))
613
		return ttm_ref_object_base_unref(tfile, handle,
614
						 TTM_REF_SYNCCPU_WRITE);
615
 
616
	return 0;
617
}
618
 
619
/**
620
 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
621
 * functionality.
622
 *
623
 * @dev: Identifies the drm device.
624
 * @data: Pointer to the ioctl argument.
625
 * @file_priv: Identifies the caller.
626
 *
627
 * This function checks the ioctl arguments for validity and calls the
628
 * relevant synccpu functions.
629
 */
630
int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
631
				  struct drm_file *file_priv)
632
{
633
	struct drm_vmw_synccpu_arg *arg =
634
		(struct drm_vmw_synccpu_arg *) data;
635
	struct vmw_dma_buffer *dma_buf;
636
	struct vmw_user_dma_buffer *user_bo;
637
	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
6296 serge 638
	struct ttm_base_object *buffer_base;
4569 Serge 639
	int ret;
640
 
641
	if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
642
	    || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
643
			       drm_vmw_synccpu_dontblock |
644
			       drm_vmw_synccpu_allow_cs)) != 0) {
645
		DRM_ERROR("Illegal synccpu flags.\n");
646
		return -EINVAL;
647
	}
648
 
649
	switch (arg->op) {
650
	case drm_vmw_synccpu_grab:
6296 serge 651
		ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
652
					     &buffer_base);
4569 Serge 653
		if (unlikely(ret != 0))
654
			return ret;
655
 
656
		user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
657
				       dma);
658
		ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
659
		vmw_dmabuf_unreference(&dma_buf);
6296 serge 660
		ttm_base_object_unref(&buffer_base);
4569 Serge 661
		if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
662
			     ret != -EBUSY)) {
663
			DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
664
				  (unsigned int) arg->handle);
665
			return ret;
666
		}
667
		break;
668
	case drm_vmw_synccpu_release:
669
		ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
670
						      arg->flags);
671
		if (unlikely(ret != 0)) {
672
			DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
673
				  (unsigned int) arg->handle);
674
			return ret;
675
		}
676
		break;
677
	default:
678
		DRM_ERROR("Invalid synccpu operation.\n");
679
		return -EINVAL;
680
	}
681
 
682
	return 0;
683
}
684
 
4075 Serge 685
#if 0
686
int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
687
			   struct drm_file *file_priv)
688
{
689
	struct vmw_private *dev_priv = vmw_priv(dev);
690
	union drm_vmw_alloc_dmabuf_arg *arg =
691
	    (union drm_vmw_alloc_dmabuf_arg *)data;
692
	struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
693
	struct drm_vmw_dmabuf_rep *rep = &arg->rep;
694
	struct vmw_dma_buffer *dma_buf;
695
	uint32_t handle;
696
	int ret;
697
 
5078 serge 698
	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
4075 Serge 699
	if (unlikely(ret != 0))
700
		return ret;
701
 
702
	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
6296 serge 703
				    req->size, false, &handle, &dma_buf,
704
				    NULL);
4075 Serge 705
	if (unlikely(ret != 0))
706
		goto out_no_dmabuf;
707
 
708
	rep->handle = handle;
4111 Serge 709
	rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
4075 Serge 710
	rep->cur_gmr_id = handle;
711
	rep->cur_gmr_offset = 0;
712
 
713
	vmw_dmabuf_unreference(&dma_buf);
714
 
715
out_no_dmabuf:
5078 serge 716
	ttm_read_unlock(&dev_priv->reservation_sem);
4075 Serge 717
 
718
	return ret;
719
}
720
 
721
int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
722
			   struct drm_file *file_priv)
723
{
724
	struct drm_vmw_unref_dmabuf_arg *arg =
725
	    (struct drm_vmw_unref_dmabuf_arg *)data;
726
 
727
	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
728
					 arg->handle,
729
					 TTM_REF_USAGE);
730
}
731
#endif
732
 
733
int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
6296 serge 734
			   uint32_t handle, struct vmw_dma_buffer **out,
735
			   struct ttm_base_object **p_base)
4075 Serge 736
{
737
	struct vmw_user_dma_buffer *vmw_user_bo;
738
	struct ttm_base_object *base;
739
 
740
	base = ttm_base_object_lookup(tfile, handle);
741
	if (unlikely(base == NULL)) {
742
		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
743
		       (unsigned long)handle);
744
		return -ESRCH;
745
	}
746
 
4569 Serge 747
	if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
4075 Serge 748
		ttm_base_object_unref(&base);
749
		printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
750
		       (unsigned long)handle);
751
		return -EINVAL;
752
	}
753
 
4569 Serge 754
	vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
755
				   prime.base);
4075 Serge 756
	(void)ttm_bo_reference(&vmw_user_bo->dma.base);
6296 serge 757
	if (p_base)
758
		*p_base = base;
759
	else
760
		ttm_base_object_unref(&base);
4075 Serge 761
	*out = &vmw_user_bo->dma;
762
 
763
	return 0;
764
}
765
 
766
int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
4569 Serge 767
			      struct vmw_dma_buffer *dma_buf,
768
			      uint32_t *handle)
4075 Serge 769
{
770
	struct vmw_user_dma_buffer *user_bo;
771
 
772
	if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
773
		return -EINVAL;
774
 
775
	user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
4569 Serge 776
 
777
	*handle = user_bo->prime.base.hash.key;
778
	return ttm_ref_object_add(tfile, &user_bo->prime.base,
779
				  TTM_REF_USAGE, NULL);
4075 Serge 780
}
781
 
782
/*
783
 * Stream management
784
 */
785
 
786
static void vmw_stream_destroy(struct vmw_resource *res)
787
{
788
	struct vmw_private *dev_priv = res->dev_priv;
789
	struct vmw_stream *stream;
790
	int ret;
791
 
792
	DRM_INFO("%s: unref\n", __func__);
793
	stream = container_of(res, struct vmw_stream, res);
794
 
795
	ret = vmw_overlay_unref(dev_priv, stream->stream_id);
796
	WARN_ON(ret != 0);
797
}
798
 
799
static int vmw_stream_init(struct vmw_private *dev_priv,
800
			   struct vmw_stream *stream,
801
			   void (*res_free) (struct vmw_resource *res))
802
{
803
	struct vmw_resource *res = &stream->res;
804
	int ret;
805
 
806
	ret = vmw_resource_init(dev_priv, res, false, res_free,
807
				&vmw_stream_func);
808
 
809
	if (unlikely(ret != 0)) {
810
		if (res_free == NULL)
811
			kfree(stream);
812
		else
813
			res_free(&stream->res);
814
		return ret;
815
	}
816
 
817
	ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
818
	if (ret) {
819
		vmw_resource_unreference(&res);
820
		return ret;
821
	}
822
 
823
	DRM_INFO("%s: claimed\n", __func__);
824
 
825
	vmw_resource_activate(&stream->res, vmw_stream_destroy);
826
	return 0;
827
}
828
 
829
static void vmw_user_stream_free(struct vmw_resource *res)
830
{
831
	struct vmw_user_stream *stream =
832
	    container_of(res, struct vmw_user_stream, stream.res);
833
	struct vmw_private *dev_priv = res->dev_priv;
834
 
5078 serge 835
	ttm_base_object_kfree(stream, base);
4075 Serge 836
	ttm_mem_global_free(vmw_mem_glob(dev_priv),
837
			    vmw_user_stream_size);
838
}
839
 
840
/**
841
 * This function is called when user space has no more references on the
842
 * base object. It releases the base-object's reference on the resource object.
843
 */
844
 
845
static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
846
{
847
	struct ttm_base_object *base = *p_base;
848
	struct vmw_user_stream *stream =
849
	    container_of(base, struct vmw_user_stream, base);
850
	struct vmw_resource *res = &stream->stream.res;
851
 
852
	*p_base = NULL;
853
	vmw_resource_unreference(&res);
854
}
855
 
856
#if 0
857
int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
858
			   struct drm_file *file_priv)
859
{
860
	struct vmw_private *dev_priv = vmw_priv(dev);
861
	struct vmw_resource *res;
862
	struct vmw_user_stream *stream;
863
	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
864
	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
865
	struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
866
	int ret = 0;
867
 
868
 
869
	res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
870
	if (unlikely(res == NULL))
871
		return -EINVAL;
872
 
873
	if (res->res_free != &vmw_user_stream_free) {
874
		ret = -EINVAL;
875
		goto out;
876
	}
877
 
878
	stream = container_of(res, struct vmw_user_stream, stream.res);
879
	if (stream->base.tfile != tfile) {
880
		ret = -EINVAL;
881
		goto out;
882
	}
883
 
884
	ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
885
out:
886
	vmw_resource_unreference(&res);
887
	return ret;
888
}
889
 
890
int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
891
			   struct drm_file *file_priv)
892
{
893
	struct vmw_private *dev_priv = vmw_priv(dev);
894
	struct vmw_user_stream *stream;
895
	struct vmw_resource *res;
896
	struct vmw_resource *tmp;
897
	struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
898
	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
899
	int ret;
900
 
901
	/*
902
	 * Approximate idr memory usage with 128 bytes. It will be limited
903
	 * by maximum number_of streams anyway?
904
	 */
905
 
906
	if (unlikely(vmw_user_stream_size == 0))
907
		vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
908
 
5078 serge 909
	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
4075 Serge 910
	if (unlikely(ret != 0))
911
		return ret;
912
 
913
	ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
914
				   vmw_user_stream_size,
915
				   false, true);
6296 serge 916
	ttm_read_unlock(&dev_priv->reservation_sem);
4075 Serge 917
	if (unlikely(ret != 0)) {
918
		if (ret != -ERESTARTSYS)
919
			DRM_ERROR("Out of graphics memory for stream"
920
				  " creation.\n");
6296 serge 921
 
922
		goto out_ret;
4075 Serge 923
	}
924
 
925
	stream = kmalloc(sizeof(*stream), GFP_KERNEL);
926
	if (unlikely(stream == NULL)) {
927
		ttm_mem_global_free(vmw_mem_glob(dev_priv),
928
				    vmw_user_stream_size);
929
		ret = -ENOMEM;
6296 serge 930
		goto out_ret;
4075 Serge 931
	}
932
 
933
	res = &stream->stream.res;
934
	stream->base.shareable = false;
935
	stream->base.tfile = NULL;
936
 
937
	/*
938
	 * From here on, the destructor takes over resource freeing.
939
	 */
940
 
941
	ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
942
	if (unlikely(ret != 0))
6296 serge 943
		goto out_ret;
4075 Serge 944
 
945
	tmp = vmw_resource_reference(res);
946
	ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
947
				   &vmw_user_stream_base_release, NULL);
948
 
949
	if (unlikely(ret != 0)) {
950
		vmw_resource_unreference(&tmp);
951
		goto out_err;
952
	}
953
 
954
	arg->stream_id = res->id;
955
out_err:
956
	vmw_resource_unreference(&res);
6296 serge 957
out_ret:
4075 Serge 958
	return ret;
959
}
960
#endif
961
 
962
int vmw_user_stream_lookup(struct vmw_private *dev_priv,
963
			   struct ttm_object_file *tfile,
964
			   uint32_t *inout_id, struct vmw_resource **out)
965
{
966
	struct vmw_user_stream *stream;
967
	struct vmw_resource *res;
968
	int ret;
969
 
970
	res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
971
				  *inout_id);
972
	if (unlikely(res == NULL))
973
		return -EINVAL;
974
 
975
	if (res->res_free != &vmw_user_stream_free) {
976
		ret = -EINVAL;
977
		goto err_ref;
978
	}
979
 
980
	stream = container_of(res, struct vmw_user_stream, stream.res);
981
	if (stream->base.tfile != tfile) {
982
		ret = -EPERM;
983
		goto err_ref;
984
	}
985
 
986
	*inout_id = stream->stream.stream_id;
987
	*out = res;
988
	return 0;
989
err_ref:
990
	vmw_resource_unreference(&res);
991
	return ret;
992
}
993
 
6296 serge 994
 
995
/**
996
 * vmw_dumb_create - Create a dumb kms buffer
997
 *
998
 * @file_priv: Pointer to a struct drm_file identifying the caller.
999
 * @dev: Pointer to the drm device.
1000
 * @args: Pointer to a struct drm_mode_create_dumb structure
1001
 *
1002
 * This is a driver callback for the core drm create_dumb functionality.
1003
 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
1004
 * that the arguments have a different format.
1005
 */
4075 Serge 1006
int vmw_dumb_create(struct drm_file *file_priv,
1007
		    struct drm_device *dev,
1008
		    struct drm_mode_create_dumb *args)
1009
{
1010
	struct vmw_private *dev_priv = vmw_priv(dev);
4569 Serge 1011
	struct vmw_dma_buffer *dma_buf;
4075 Serge 1012
	int ret;
1013
 
1014
	args->pitch = args->width * ((args->bpp + 7) / 8);
1015
	args->size = args->pitch * args->height;
1016
 
5078 serge 1017
	ret = ttm_read_lock(&dev_priv->reservation_sem, true);
4569 Serge 1018
	if (unlikely(ret != 0))
4075 Serge 1019
		return ret;
1020
 
4569 Serge 1021
	ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1022
				    args->size, false, &args->handle,
6296 serge 1023
				    &dma_buf, NULL);
4569 Serge 1024
	if (unlikely(ret != 0))
4075 Serge 1025
		goto out_no_dmabuf;
1026
 
4569 Serge 1027
	vmw_dmabuf_unreference(&dma_buf);
4075 Serge 1028
out_no_dmabuf:
5078 serge 1029
	ttm_read_unlock(&dev_priv->reservation_sem);
4075 Serge 1030
	return ret;
1031
}
1032
 
4569 Serge 1033
/**
1034
 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1035
 *
1036
 * @file_priv: Pointer to a struct drm_file identifying the caller.
1037
 * @dev: Pointer to the drm device.
1038
 * @handle: Handle identifying the dumb buffer.
1039
 * @offset: The address space offset returned.
1040
 *
1041
 * This is a driver callback for the core drm dumb_map_offset functionality.
1042
 */
4075 Serge 1043
int vmw_dumb_map_offset(struct drm_file *file_priv,
1044
			struct drm_device *dev, uint32_t handle,
1045
			uint64_t *offset)
1046
{
1047
	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1048
	struct vmw_dma_buffer *out_buf;
1049
	int ret;
1050
 
6296 serge 1051
	ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
4075 Serge 1052
	if (ret != 0)
1053
		return -EINVAL;
1054
 
4111 Serge 1055
	*offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
4075 Serge 1056
	vmw_dmabuf_unreference(&out_buf);
1057
	return 0;
1058
}
1059
 
4569 Serge 1060
/**
1061
 * vmw_dumb_destroy - Destroy a dumb boffer
1062
 *
1063
 * @file_priv: Pointer to a struct drm_file identifying the caller.
1064
 * @dev: Pointer to the drm device.
1065
 * @handle: Handle identifying the dumb buffer.
1066
 *
1067
 * This is a driver callback for the core drm dumb_destroy functionality.
1068
 */
4075 Serge 1069
int vmw_dumb_destroy(struct drm_file *file_priv,
1070
		     struct drm_device *dev,
1071
		     uint32_t handle)
1072
{
1073
	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1074
					 handle, TTM_REF_USAGE);
1075
}
1076
 
1077
/**
1078
 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1079
 *
1080
 * @res:            The resource for which to allocate a backup buffer.
1081
 * @interruptible:  Whether any sleeps during allocation should be
1082
 *                  performed while interruptible.
1083
 */
1084
static int vmw_resource_buf_alloc(struct vmw_resource *res,
1085
				  bool interruptible)
1086
{
1087
	unsigned long size =
1088
		(res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1089
	struct vmw_dma_buffer *backup;
1090
	int ret;
1091
 
1092
	if (likely(res->backup)) {
1093
		BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1094
		return 0;
1095
	}
1096
 
1097
	backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1098
	if (unlikely(backup == NULL))
1099
		return -ENOMEM;
1100
 
1101
	ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1102
			      res->func->backup_placement,
1103
			      interruptible,
1104
			      &vmw_dmabuf_bo_free);
1105
	if (unlikely(ret != 0))
1106
		goto out_no_dmabuf;
1107
 
1108
	res->backup = backup;
1109
 
1110
out_no_dmabuf:
1111
	return ret;
1112
}
1113
 
1114
/**
1115
 * vmw_resource_do_validate - Make a resource up-to-date and visible
1116
 *                            to the device.
1117
 *
1118
 * @res:            The resource to make visible to the device.
1119
 * @val_buf:        Information about a buffer possibly
1120
 *                  containing backup data if a bind operation is needed.
1121
 *
1122
 * On hardware resource shortage, this function returns -EBUSY and
1123
 * should be retried once resources have been freed up.
1124
 */
1125
static int vmw_resource_do_validate(struct vmw_resource *res,
1126
				    struct ttm_validate_buffer *val_buf)
1127
{
1128
	int ret = 0;
1129
	const struct vmw_res_func *func = res->func;
1130
 
1131
	if (unlikely(res->id == -1)) {
1132
		ret = func->create(res);
1133
		if (unlikely(ret != 0))
1134
			return ret;
1135
	}
1136
 
1137
	if (func->bind &&
1138
	    ((func->needs_backup && list_empty(&res->mob_head) &&
1139
	      val_buf->bo != NULL) ||
1140
	     (!func->needs_backup && val_buf->bo != NULL))) {
1141
		ret = func->bind(res, val_buf);
1142
		if (unlikely(ret != 0))
1143
			goto out_bind_failed;
1144
		if (func->needs_backup)
1145
			list_add_tail(&res->mob_head, &res->backup->res_list);
1146
	}
1147
 
1148
	/*
1149
	 * Only do this on write operations, and move to
1150
	 * vmw_resource_unreserve if it can be called after
1151
	 * backup buffers have been unreserved. Otherwise
1152
	 * sort out locking.
1153
	 */
1154
	res->res_dirty = true;
1155
 
1156
	return 0;
1157
 
1158
out_bind_failed:
1159
	func->destroy(res);
1160
 
1161
	return ret;
1162
}
1163
 
1164
/**
1165
 * vmw_resource_unreserve - Unreserve a resource previously reserved for
1166
 * command submission.
1167
 *
1168
 * @res:               Pointer to the struct vmw_resource to unreserve.
6296 serge 1169
 * @switch_backup:     Backup buffer has been switched.
4075 Serge 1170
 * @new_backup:        Pointer to new backup buffer if command submission
6296 serge 1171
 *                     switched. May be NULL.
1172
 * @new_backup_offset: New backup offset if @switch_backup is true.
4075 Serge 1173
 *
1174
 * Currently unreserving a resource means putting it back on the device's
1175
 * resource lru list, so that it can be evicted if necessary.
1176
 */
1177
void vmw_resource_unreserve(struct vmw_resource *res,
6296 serge 1178
			    bool switch_backup,
4075 Serge 1179
			    struct vmw_dma_buffer *new_backup,
1180
			    unsigned long new_backup_offset)
1181
{
1182
	struct vmw_private *dev_priv = res->dev_priv;
1183
 
1184
	if (!list_empty(&res->lru_head))
1185
		return;
1186
 
6296 serge 1187
	if (switch_backup && new_backup != res->backup) {
4075 Serge 1188
		if (res->backup) {
1189
			lockdep_assert_held(&res->backup->base.resv->lock.base);
1190
			list_del_init(&res->mob_head);
1191
			vmw_dmabuf_unreference(&res->backup);
1192
		}
1193
 
6296 serge 1194
		if (new_backup) {
1195
			res->backup = vmw_dmabuf_reference(new_backup);
1196
			lockdep_assert_held(&new_backup->base.resv->lock.base);
1197
			list_add_tail(&res->mob_head, &new_backup->res_list);
1198
		} else {
1199
			res->backup = NULL;
1200
		}
4075 Serge 1201
	}
6296 serge 1202
	if (switch_backup)
4075 Serge 1203
		res->backup_offset = new_backup_offset;
1204
 
6296 serge 1205
	if (!res->func->may_evict || res->id == -1 || res->pin_count)
4075 Serge 1206
		return;
1207
 
1208
	write_lock(&dev_priv->resource_lock);
1209
	list_add_tail(&res->lru_head,
1210
		      &res->dev_priv->res_lru[res->func->res_type]);
1211
	write_unlock(&dev_priv->resource_lock);
1212
}
1213
 
1214
/**
1215
 * vmw_resource_check_buffer - Check whether a backup buffer is needed
1216
 *                             for a resource and in that case, allocate
1217
 *                             one, reserve and validate it.
1218
 *
1219
 * @res:            The resource for which to allocate a backup buffer.
1220
 * @interruptible:  Whether any sleeps during allocation should be
1221
 *                  performed while interruptible.
1222
 * @val_buf:        On successful return contains data about the
1223
 *                  reserved and validated backup buffer.
1224
 */
1225
static int
1226
vmw_resource_check_buffer(struct vmw_resource *res,
1227
			  bool interruptible,
1228
			  struct ttm_validate_buffer *val_buf)
1229
{
1230
	struct list_head val_list;
1231
	bool backup_dirty = false;
1232
	int ret;
1233
 
1234
	if (unlikely(res->backup == NULL)) {
1235
		ret = vmw_resource_buf_alloc(res, interruptible);
1236
		if (unlikely(ret != 0))
1237
			return ret;
1238
	}
1239
 
1240
	INIT_LIST_HEAD(&val_list);
1241
	val_buf->bo = ttm_bo_reference(&res->backup->base);
6296 serge 1242
	val_buf->shared = false;
4075 Serge 1243
	list_add_tail(&val_buf->head, &val_list);
6296 serge 1244
	ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
4075 Serge 1245
	if (unlikely(ret != 0))
1246
		goto out_no_reserve;
1247
 
1248
	if (res->func->needs_backup && list_empty(&res->mob_head))
1249
		return 0;
1250
 
1251
	backup_dirty = res->backup_dirty;
1252
	ret = ttm_bo_validate(&res->backup->base,
1253
			      res->func->backup_placement,
1254
			      true, false);
1255
 
1256
	if (unlikely(ret != 0))
1257
		goto out_no_validate;
1258
 
1259
	return 0;
1260
 
1261
out_no_validate:
4569 Serge 1262
	ttm_eu_backoff_reservation(NULL, &val_list);
4075 Serge 1263
out_no_reserve:
1264
	ttm_bo_unref(&val_buf->bo);
1265
	if (backup_dirty)
1266
		vmw_dmabuf_unreference(&res->backup);
1267
 
1268
	return ret;
1269
}
1270
 
1271
/**
1272
 * vmw_resource_reserve - Reserve a resource for command submission
1273
 *
1274
 * @res:            The resource to reserve.
1275
 *
1276
 * This function takes the resource off the LRU list and make sure
1277
 * a backup buffer is present for guest-backed resources. However,
1278
 * the buffer may not be bound to the resource at this point.
1279
 *
1280
 */
6296 serge 1281
int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1282
			 bool no_backup)
4075 Serge 1283
{
1284
	struct vmw_private *dev_priv = res->dev_priv;
1285
	int ret;
1286
 
1287
	write_lock(&dev_priv->resource_lock);
1288
	list_del_init(&res->lru_head);
1289
	write_unlock(&dev_priv->resource_lock);
1290
 
1291
	if (res->func->needs_backup && res->backup == NULL &&
1292
	    !no_backup) {
6296 serge 1293
		ret = vmw_resource_buf_alloc(res, interruptible);
1294
		if (unlikely(ret != 0)) {
1295
			DRM_ERROR("Failed to allocate a backup buffer "
1296
				  "of size %lu. bytes\n",
1297
				  (unsigned long) res->backup_size);
4075 Serge 1298
			return ret;
6296 serge 1299
		}
4075 Serge 1300
	}
1301
 
1302
	return 0;
1303
}
1304
 
1305
/**
1306
 * vmw_resource_backoff_reservation - Unreserve and unreference a
1307
 *                                    backup buffer
1308
 *.
1309
 * @val_buf:        Backup buffer information.
1310
 */
1311
static void
4569 Serge 1312
vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
4075 Serge 1313
{
1314
	struct list_head val_list;
1315
 
1316
	if (likely(val_buf->bo == NULL))
1317
		return;
1318
 
1319
	INIT_LIST_HEAD(&val_list);
1320
	list_add_tail(&val_buf->head, &val_list);
4569 Serge 1321
	ttm_eu_backoff_reservation(NULL, &val_list);
4075 Serge 1322
	ttm_bo_unref(&val_buf->bo);
1323
}
1324
 
1325
/**
1326
 * vmw_resource_do_evict - Evict a resource, and transfer its data
1327
 *                         to a backup buffer.
1328
 *
1329
 * @res:            The resource to evict.
4569 Serge 1330
 * @interruptible:  Whether to wait interruptible.
4075 Serge 1331
 */
6296 serge 1332
static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
4075 Serge 1333
{
1334
	struct ttm_validate_buffer val_buf;
1335
	const struct vmw_res_func *func = res->func;
1336
	int ret;
1337
 
1338
	BUG_ON(!func->may_evict);
1339
 
1340
	val_buf.bo = NULL;
6296 serge 1341
	val_buf.shared = false;
4569 Serge 1342
	ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
4075 Serge 1343
	if (unlikely(ret != 0))
1344
		return ret;
1345
 
1346
	if (unlikely(func->unbind != NULL &&
1347
		     (!func->needs_backup || !list_empty(&res->mob_head)))) {
1348
		ret = func->unbind(res, res->res_dirty, &val_buf);
1349
		if (unlikely(ret != 0))
1350
			goto out_no_unbind;
1351
		list_del_init(&res->mob_head);
1352
	}
1353
	ret = func->destroy(res);
1354
	res->backup_dirty = true;
1355
	res->res_dirty = false;
1356
out_no_unbind:
4569 Serge 1357
	vmw_resource_backoff_reservation(&val_buf);
4075 Serge 1358
 
1359
	return ret;
1360
}
1361
 
1362
 
1363
/**
1364
 * vmw_resource_validate - Make a resource up-to-date and visible
1365
 *                         to the device.
1366
 *
1367
 * @res:            The resource to make visible to the device.
1368
 *
1369
 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1370
 * be reserved and validated.
1371
 * On hardware resource shortage, this function will repeatedly evict
1372
 * resources of the same type until the validation succeeds.
1373
 */
1374
int vmw_resource_validate(struct vmw_resource *res)
1375
{
1376
	int ret;
1377
	struct vmw_resource *evict_res;
1378
	struct vmw_private *dev_priv = res->dev_priv;
1379
	struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1380
	struct ttm_validate_buffer val_buf;
4569 Serge 1381
	unsigned err_count = 0;
4075 Serge 1382
 
6296 serge 1383
	if (!res->func->create)
4075 Serge 1384
		return 0;
1385
 
1386
	val_buf.bo = NULL;
6296 serge 1387
	val_buf.shared = false;
4075 Serge 1388
	if (res->backup)
1389
		val_buf.bo = &res->backup->base;
1390
	do {
1391
		ret = vmw_resource_do_validate(res, &val_buf);
1392
		if (likely(ret != -EBUSY))
1393
			break;
1394
 
1395
		write_lock(&dev_priv->resource_lock);
1396
		if (list_empty(lru_list) || !res->func->may_evict) {
4569 Serge 1397
			DRM_ERROR("Out of device device resources "
4075 Serge 1398
				  "for %s.\n", res->func->type_name);
1399
			ret = -EBUSY;
1400
			write_unlock(&dev_priv->resource_lock);
1401
			break;
1402
		}
1403
 
1404
		evict_res = vmw_resource_reference
1405
			(list_first_entry(lru_list, struct vmw_resource,
1406
					  lru_head));
1407
		list_del_init(&evict_res->lru_head);
1408
 
1409
		write_unlock(&dev_priv->resource_lock);
4569 Serge 1410
 
1411
		ret = vmw_resource_do_evict(evict_res, true);
1412
		if (unlikely(ret != 0)) {
1413
			write_lock(&dev_priv->resource_lock);
1414
			list_add_tail(&evict_res->lru_head, lru_list);
1415
			write_unlock(&dev_priv->resource_lock);
1416
			if (ret == -ERESTARTSYS ||
1417
			    ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1418
				vmw_resource_unreference(&evict_res);
1419
				goto out_no_validate;
1420
			}
1421
		}
1422
 
4075 Serge 1423
		vmw_resource_unreference(&evict_res);
1424
	} while (1);
1425
 
1426
	if (unlikely(ret != 0))
1427
		goto out_no_validate;
1428
	else if (!res->func->needs_backup && res->backup) {
1429
		list_del_init(&res->mob_head);
1430
		vmw_dmabuf_unreference(&res->backup);
1431
	}
1432
 
1433
	return 0;
1434
 
1435
out_no_validate:
1436
	return ret;
1437
}
1438
 
1439
/**
1440
 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1441
 *                       object without unreserving it.
1442
 *
1443
 * @bo:             Pointer to the struct ttm_buffer_object to fence.
1444
 * @fence:          Pointer to the fence. If NULL, this function will
1445
 *                  insert a fence into the command stream..
1446
 *
1447
 * Contrary to the ttm_eu version of this function, it takes only
1448
 * a single buffer object instead of a list, and it also doesn't
1449
 * unreserve the buffer object, which needs to be done separately.
1450
 */
1451
void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1452
			 struct vmw_fence_obj *fence)
1453
{
1454
	struct ttm_bo_device *bdev = bo->bdev;
6296 serge 1455
 
4075 Serge 1456
	struct vmw_private *dev_priv =
1457
		container_of(bdev, struct vmw_private, bdev);
1458
 
6296 serge 1459
	if (fence == NULL) {
4075 Serge 1460
		vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
6296 serge 1461
		reservation_object_add_excl_fence(bo->resv, &fence->base);
1462
		fence_put(&fence->base);
1463
	} else
1464
		reservation_object_add_excl_fence(bo->resv, &fence->base);
4075 Serge 1465
}
1466
 
1467
/**
1468
 * vmw_resource_move_notify - TTM move_notify_callback
1469
 *
6296 serge 1470
 * @bo: The TTM buffer object about to move.
1471
 * @mem: The struct ttm_mem_reg indicating to what memory
1472
 *       region the move is taking place.
4075 Serge 1473
 *
4569 Serge 1474
 * Evicts the Guest Backed hardware resource if the backup
1475
 * buffer is being moved out of MOB memory.
1476
 * Note that this function should not race with the resource
1477
 * validation code as long as it accesses only members of struct
1478
 * resource that remain static while bo::res is !NULL and
1479
 * while we have @bo reserved. struct resource::backup is *not* a
1480
 * static member. The resource validation code will take care
1481
 * to set @bo::res to NULL, while having @bo reserved when the
1482
 * buffer is no longer bound to the resource, so @bo:res can be
1483
 * used to determine whether there is a need to unbind and whether
1484
 * it is safe to unbind.
4075 Serge 1485
 */
1486
void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1487
			      struct ttm_mem_reg *mem)
1488
{
6296 serge 1489
/**
1490
 * vmw_query_readback_all - Read back cached query states
1491
 *
1492
 * @dx_query_mob: Buffer containing the DX query MOB
1493
 *
1494
 * Read back cached states from the device if they exist.  This function
1495
 * assumings binding_mutex is held.
1496
 */
1497
int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1498
{
1499
	struct vmw_resource *dx_query_ctx;
1500
	struct vmw_private *dev_priv;
1501
	struct {
1502
		SVGA3dCmdHeader header;
1503
		SVGA3dCmdDXReadbackAllQuery body;
1504
	} *cmd;
1505
 
1506
 
1507
	/* No query bound, so do nothing */
1508
	if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1509
		return 0;
1510
 
1511
	dx_query_ctx = dx_query_mob->dx_query_ctx;
1512
	dev_priv     = dx_query_ctx->dev_priv;
1513
 
1514
	cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1515
	if (unlikely(cmd == NULL)) {
1516
		DRM_ERROR("Failed reserving FIFO space for "
1517
			  "query MOB read back.\n");
1518
		return -ENOMEM;
1519
	}
1520
 
1521
	cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1522
	cmd->header.size = sizeof(cmd->body);
1523
	cmd->body.cid    = dx_query_ctx->id;
1524
 
1525
	vmw_fifo_commit(dev_priv, sizeof(*cmd));
1526
 
1527
	/* Triggers a rebind the next time affected context is bound */
1528
	dx_query_mob->dx_query_ctx = NULL;
1529
 
1530
	return 0;
4075 Serge 1531
}
6296 serge 1532
}
4075 Serge 1533
 
1534
/**
1535
 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1536
 *
1537
 * @res:            The resource being queried.
1538
 */
1539
bool vmw_resource_needs_backup(const struct vmw_resource *res)
1540
{
1541
	return res->func->needs_backup;
1542
}
1543
 
1544
/**
1545
 * vmw_resource_evict_type - Evict all resources of a specific type
1546
 *
1547
 * @dev_priv:       Pointer to a device private struct
1548
 * @type:           The resource type to evict
1549
 *
1550
 * To avoid thrashing starvation or as part of the hibernation sequence,
4569 Serge 1551
 * try to evict all evictable resources of a specific type.
4075 Serge 1552
 */
1553
static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1554
				    enum vmw_res_type type)
1555
{
1556
	struct list_head *lru_list = &dev_priv->res_lru[type];
1557
	struct vmw_resource *evict_res;
4569 Serge 1558
	unsigned err_count = 0;
1559
	int ret;
4075 Serge 1560
 
1561
	do {
1562
		write_lock(&dev_priv->resource_lock);
1563
 
1564
		if (list_empty(lru_list))
1565
			goto out_unlock;
1566
 
1567
		evict_res = vmw_resource_reference(
1568
			list_first_entry(lru_list, struct vmw_resource,
1569
					 lru_head));
1570
		list_del_init(&evict_res->lru_head);
1571
		write_unlock(&dev_priv->resource_lock);
4569 Serge 1572
 
1573
		ret = vmw_resource_do_evict(evict_res, false);
1574
		if (unlikely(ret != 0)) {
1575
			write_lock(&dev_priv->resource_lock);
1576
			list_add_tail(&evict_res->lru_head, lru_list);
1577
			write_unlock(&dev_priv->resource_lock);
1578
			if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1579
				vmw_resource_unreference(&evict_res);
1580
				return;
1581
			}
1582
		}
1583
 
4075 Serge 1584
		vmw_resource_unreference(&evict_res);
1585
	} while (1);
1586
 
1587
out_unlock:
1588
	write_unlock(&dev_priv->resource_lock);
1589
}
1590
 
1591
/**
1592
 * vmw_resource_evict_all - Evict all evictable resources
1593
 *
1594
 * @dev_priv:       Pointer to a device private struct
1595
 *
1596
 * To avoid thrashing starvation or as part of the hibernation sequence,
1597
 * evict all evictable resources. In particular this means that all
1598
 * guest-backed resources that are registered with the device are
1599
 * evicted and the OTable becomes clean.
1600
 */
1601
void vmw_resource_evict_all(struct vmw_private *dev_priv)
1602
{
1603
	enum vmw_res_type type;
1604
 
1605
	mutex_lock(&dev_priv->cmdbuf_mutex);
1606
 
1607
	for (type = 0; type < vmw_res_max; ++type)
1608
		vmw_resource_evict_type(dev_priv, type);
1609
 
1610
	mutex_unlock(&dev_priv->cmdbuf_mutex);
1611
}
6296 serge 1612
 
1613
/**
1614
 * vmw_resource_pin - Add a pin reference on a resource
1615
 *
1616
 * @res: The resource to add a pin reference on
1617
 *
1618
 * This function adds a pin reference, and if needed validates the resource.
1619
 * Having a pin reference means that the resource can never be evicted, and
1620
 * its id will never change as long as there is a pin reference.
1621
 * This function returns 0 on success and a negative error code on failure.
1622
 */
1623
int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1624
{
1625
	struct vmw_private *dev_priv = res->dev_priv;
1626
	int ret;
1627
 
1628
	ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1629
	mutex_lock(&dev_priv->cmdbuf_mutex);
1630
	ret = vmw_resource_reserve(res, interruptible, false);
1631
	if (ret)
1632
		goto out_no_reserve;
1633
 
1634
	if (res->pin_count == 0) {
1635
		struct vmw_dma_buffer *vbo = NULL;
1636
 
1637
		if (res->backup) {
1638
			vbo = res->backup;
1639
 
1640
			ttm_bo_reserve(&vbo->base, interruptible, false, false,
1641
				       NULL);
1642
			if (!vbo->pin_count) {
1643
				ret = ttm_bo_validate
1644
					(&vbo->base,
1645
					 res->func->backup_placement,
1646
					 interruptible, false);
1647
				if (ret) {
1648
					ttm_bo_unreserve(&vbo->base);
1649
					goto out_no_validate;
1650
				}
1651
			}
1652
 
1653
			/* Do we really need to pin the MOB as well? */
1654
			vmw_bo_pin_reserved(vbo, true);
1655
		}
1656
		ret = vmw_resource_validate(res);
1657
		if (vbo)
1658
			ttm_bo_unreserve(&vbo->base);
1659
		if (ret)
1660
			goto out_no_validate;
1661
	}
1662
	res->pin_count++;
1663
 
1664
out_no_validate:
1665
	vmw_resource_unreserve(res, false, NULL, 0UL);
1666
out_no_reserve:
1667
	mutex_unlock(&dev_priv->cmdbuf_mutex);
1668
	ttm_write_unlock(&dev_priv->reservation_sem);
1669
 
1670
	return ret;
1671
}
1672
 
1673
/**
1674
 * vmw_resource_unpin - Remove a pin reference from a resource
1675
 *
1676
 * @res: The resource to remove a pin reference from
1677
 *
1678
 * Having a pin reference means that the resource can never be evicted, and
1679
 * its id will never change as long as there is a pin reference.
1680
 */
1681
void vmw_resource_unpin(struct vmw_resource *res)
1682
{
1683
	struct vmw_private *dev_priv = res->dev_priv;
1684
	int ret;
1685
 
1686
	ttm_read_lock(&dev_priv->reservation_sem, false);
1687
	mutex_lock(&dev_priv->cmdbuf_mutex);
1688
 
1689
	ret = vmw_resource_reserve(res, false, true);
1690
	WARN_ON(ret);
1691
 
1692
	WARN_ON(res->pin_count == 0);
1693
	if (--res->pin_count == 0 && res->backup) {
1694
		struct vmw_dma_buffer *vbo = res->backup;
1695
 
1696
		ttm_bo_reserve(&vbo->base, false, false, false, NULL);
1697
		vmw_bo_pin_reserved(vbo, false);
1698
		ttm_bo_unreserve(&vbo->base);
1699
	}
1700
 
1701
	vmw_resource_unreserve(res, false, NULL, 0UL);
1702
 
1703
	mutex_unlock(&dev_priv->cmdbuf_mutex);
1704
	ttm_read_unlock(&dev_priv->reservation_sem);
1705
}
1706
 
1707
/**
1708
 * vmw_res_type - Return the resource type
1709
 *
1710
 * @res: Pointer to the resource
1711
 */
1712
enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1713
{
1714
	return res->func->res_type;
1715
}