Subversion Repositories Kolibri OS

Rev

Rev 4075 | Rev 4569 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
4075 Serge 1
/**************************************************************************
2
 *
3
 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
4
 * All Rights Reserved.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a
7
 * copy of this software and associated documentation files (the
8
 * "Software"), to deal in the Software without restriction, including
9
 * without limitation the rights to use, copy, modify, merge, publish,
10
 * distribute, sub license, and/or sell copies of the Software, and to
11
 * permit persons to whom the Software is furnished to do so, subject to
12
 * the following conditions:
13
 *
14
 * The above copyright notice and this permission notice (including the
15
 * next paragraph) shall be included in all copies or substantial portions
16
 * of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21
 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25
 *
26
 **************************************************************************/
27
/*
28
 * Authors: Thomas Hellstrom 
29
 */
30
 
31
#include 
32
#include 
4112 Serge 33
#include 
4075 Serge 34
#include 
35
#include 
36
#include 
37
#include 
38
#include 
39
#include 
40
 
41
void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
42
{
43
	ttm_bo_mem_put(bo, &bo->mem);
44
}
45
 
46
int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
47
		    bool evict,
48
		    bool no_wait_gpu, struct ttm_mem_reg *new_mem)
49
{
50
	struct ttm_tt *ttm = bo->ttm;
51
	struct ttm_mem_reg *old_mem = &bo->mem;
52
	int ret;
53
 
54
	if (old_mem->mem_type != TTM_PL_SYSTEM) {
55
		ttm_tt_unbind(ttm);
56
		ttm_bo_free_old_node(bo);
57
		ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
58
				TTM_PL_MASK_MEM);
59
		old_mem->mem_type = TTM_PL_SYSTEM;
60
	}
61
 
62
	ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
63
	if (unlikely(ret != 0))
64
		return ret;
65
 
66
	if (new_mem->mem_type != TTM_PL_SYSTEM) {
67
		ret = ttm_tt_bind(ttm, new_mem);
68
		if (unlikely(ret != 0))
69
			return ret;
70
	}
71
 
72
	*old_mem = *new_mem;
73
	new_mem->mm_node = NULL;
74
 
75
	return 0;
76
}
77
EXPORT_SYMBOL(ttm_bo_move_ttm);
78
 
79
int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
80
{
81
	if (likely(man->io_reserve_fastpath))
82
		return 0;
83
 
84
	if (interruptible)
85
		return mutex_lock_interruptible(&man->io_reserve_mutex);
86
 
87
	mutex_lock(&man->io_reserve_mutex);
88
	return 0;
89
}
90
EXPORT_SYMBOL(ttm_mem_io_lock);
91
 
92
void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
93
{
94
	if (likely(man->io_reserve_fastpath))
95
		return;
96
 
97
	mutex_unlock(&man->io_reserve_mutex);
98
}
99
EXPORT_SYMBOL(ttm_mem_io_unlock);
100
 
101
static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
102
{
103
	struct ttm_buffer_object *bo;
104
 
105
	if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
106
		return -EAGAIN;
107
 
108
	bo = list_first_entry(&man->io_reserve_lru,
109
			      struct ttm_buffer_object,
110
			      io_reserve_lru);
111
	list_del_init(&bo->io_reserve_lru);
112
	ttm_bo_unmap_virtual_locked(bo);
113
 
114
	return 0;
115
}
116
 
117
 
118
int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
119
		       struct ttm_mem_reg *mem)
120
{
121
	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
122
	int ret = 0;
123
 
124
	if (!bdev->driver->io_mem_reserve)
125
		return 0;
126
	if (likely(man->io_reserve_fastpath))
127
		return bdev->driver->io_mem_reserve(bdev, mem);
128
 
129
	if (bdev->driver->io_mem_reserve &&
130
	    mem->bus.io_reserved_count++ == 0) {
131
retry:
132
		ret = bdev->driver->io_mem_reserve(bdev, mem);
133
		if (ret == -EAGAIN) {
134
			ret = ttm_mem_io_evict(man);
135
			if (ret == 0)
136
				goto retry;
137
		}
138
	}
139
	return ret;
140
}
141
EXPORT_SYMBOL(ttm_mem_io_reserve);
142
 
143
void ttm_mem_io_free(struct ttm_bo_device *bdev,
144
		     struct ttm_mem_reg *mem)
145
{
146
	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
147
 
148
	if (likely(man->io_reserve_fastpath))
149
		return;
150
 
151
	if (bdev->driver->io_mem_reserve &&
152
	    --mem->bus.io_reserved_count == 0 &&
153
	    bdev->driver->io_mem_free)
154
		bdev->driver->io_mem_free(bdev, mem);
155
 
156
}
157
EXPORT_SYMBOL(ttm_mem_io_free);
158
 
159
int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
160
{
161
	struct ttm_mem_reg *mem = &bo->mem;
162
	int ret;
163
 
164
	if (!mem->bus.io_reserved_vm) {
165
		struct ttm_mem_type_manager *man =
166
			&bo->bdev->man[mem->mem_type];
167
 
168
		ret = ttm_mem_io_reserve(bo->bdev, mem);
169
		if (unlikely(ret != 0))
170
			return ret;
171
		mem->bus.io_reserved_vm = true;
172
		if (man->use_io_reserve_lru)
173
			list_add_tail(&bo->io_reserve_lru,
174
				      &man->io_reserve_lru);
175
	}
176
	return 0;
177
}
178
 
179
void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
180
{
181
	struct ttm_mem_reg *mem = &bo->mem;
182
 
183
	if (mem->bus.io_reserved_vm) {
184
		mem->bus.io_reserved_vm = false;
185
		list_del_init(&bo->io_reserve_lru);
186
		ttm_mem_io_free(bo->bdev, mem);
187
	}
188
}
189
 
190
int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
191
			void **virtual)
192
{
193
	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
194
	int ret;
195
	void *addr;
196
 
197
	*virtual = NULL;
198
	(void) ttm_mem_io_lock(man, false);
199
	ret = ttm_mem_io_reserve(bdev, mem);
200
	ttm_mem_io_unlock(man);
201
	if (ret || !mem->bus.is_iomem)
202
		return ret;
203
 
204
	if (mem->bus.addr) {
205
		addr = mem->bus.addr;
206
	} else {
207
		if (mem->placement & TTM_PL_FLAG_WC)
208
			addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
209
		else
210
			addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
211
		if (!addr) {
212
			(void) ttm_mem_io_lock(man, false);
213
			ttm_mem_io_free(bdev, mem);
214
			ttm_mem_io_unlock(man);
215
			return -ENOMEM;
216
		}
217
	}
218
	*virtual = addr;
219
	return 0;
220
}
221
 
222
void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
223
			 void *virtual)
224
{
225
	struct ttm_mem_type_manager *man;
226
 
227
	man = &bdev->man[mem->mem_type];
228
 
229
	if (virtual && mem->bus.addr == NULL)
230
		iounmap(virtual);
231
	(void) ttm_mem_io_lock(man, false);
232
	ttm_mem_io_free(bdev, mem);
233
	ttm_mem_io_unlock(man);
234
}
235
 
236
static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
237
{
238
	uint32_t *dstP =
239
	    (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
240
	uint32_t *srcP =
241
	    (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
242
 
243
	int i;
244
	for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
245
		iowrite32(ioread32(srcP++), dstP++);
246
	return 0;
247
}
248
 
249
static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
250
				unsigned long page,
251
				pgprot_t prot)
252
{
253
	struct page *d = ttm->pages[page];
254
	void *dst;
255
 
256
	if (!d)
257
		return -ENOMEM;
258
 
259
	src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
260
 
261
#ifdef CONFIG_X86
262
	dst = kmap_atomic_prot(d, prot);
263
#else
264
	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
265
		dst = vmap(&d, 1, 0, prot);
266
	else
267
		dst = kmap(d);
268
#endif
269
	if (!dst)
270
		return -ENOMEM;
271
 
272
	memcpy_fromio(dst, src, PAGE_SIZE);
273
 
274
#ifdef CONFIG_X86
275
	kunmap_atomic(dst);
276
#else
277
	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
278
		vunmap(dst);
279
	else
280
		kunmap(d);
281
#endif
282
 
283
	return 0;
284
}
285
 
286
static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
287
				unsigned long page,
288
				pgprot_t prot)
289
{
290
	struct page *s = ttm->pages[page];
291
	void *src;
292
 
293
	if (!s)
294
		return -ENOMEM;
295
 
296
	dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
297
#ifdef CONFIG_X86
298
	src = kmap_atomic_prot(s, prot);
299
#else
300
	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
301
		src = vmap(&s, 1, 0, prot);
302
	else
303
		src = kmap(s);
304
#endif
305
	if (!src)
306
		return -ENOMEM;
307
 
308
	memcpy_toio(dst, src, PAGE_SIZE);
309
 
310
#ifdef CONFIG_X86
311
	kunmap_atomic(src);
312
#else
313
	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
314
		vunmap(src);
315
	else
316
		kunmap(s);
317
#endif
318
 
319
	return 0;
320
}
321
 
322
int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
323
		       bool evict, bool no_wait_gpu,
324
		       struct ttm_mem_reg *new_mem)
325
{
326
	struct ttm_bo_device *bdev = bo->bdev;
327
	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
328
	struct ttm_tt *ttm = bo->ttm;
329
	struct ttm_mem_reg *old_mem = &bo->mem;
330
	struct ttm_mem_reg old_copy = *old_mem;
331
	void *old_iomap;
332
	void *new_iomap;
333
	int ret;
334
	unsigned long i;
335
	unsigned long page;
336
	unsigned long add = 0;
337
	int dir;
338
 
339
	ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
340
	if (ret)
341
		return ret;
342
	ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
343
	if (ret)
344
		goto out;
345
 
346
	if (old_iomap == NULL && new_iomap == NULL)
347
		goto out2;
348
	if (old_iomap == NULL && ttm == NULL)
349
		goto out2;
350
 
351
	if (ttm->state == tt_unpopulated) {
352
		ret = ttm->bdev->driver->ttm_tt_populate(ttm);
353
		if (ret) {
354
			/* if we fail here don't nuke the mm node
355
			 * as the bo still owns it */
356
			old_copy.mm_node = NULL;
357
			goto out1;
358
		}
359
	}
360
 
361
	add = 0;
362
	dir = 1;
363
 
364
	if ((old_mem->mem_type == new_mem->mem_type) &&
365
	    (new_mem->start < old_mem->start + old_mem->size)) {
366
		dir = -1;
367
		add = new_mem->num_pages - 1;
368
	}
369
 
370
	for (i = 0; i < new_mem->num_pages; ++i) {
371
		page = i * dir + add;
372
		if (old_iomap == NULL) {
373
			pgprot_t prot = ttm_io_prot(old_mem->placement,
374
						    PAGE_KERNEL);
375
			ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
376
						   prot);
377
		} else if (new_iomap == NULL) {
378
			pgprot_t prot = ttm_io_prot(new_mem->placement,
379
						    PAGE_KERNEL);
380
			ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
381
						   prot);
382
		} else
383
			ret = ttm_copy_io_page(new_iomap, old_iomap, page);
384
		if (ret) {
385
			/* failing here, means keep old copy as-is */
386
			old_copy.mm_node = NULL;
387
			goto out1;
388
		}
389
	}
390
	mb();
391
out2:
392
	old_copy = *old_mem;
393
	*old_mem = *new_mem;
394
	new_mem->mm_node = NULL;
395
 
396
	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) {
397
		ttm_tt_unbind(ttm);
398
		ttm_tt_destroy(ttm);
399
		bo->ttm = NULL;
400
	}
401
 
402
out1:
403
	ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
404
out:
405
	ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
406
	ttm_bo_mem_put(bo, &old_copy);
407
	return ret;
408
}
409
EXPORT_SYMBOL(ttm_bo_move_memcpy);
410
 
411
static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
412
{
413
	kfree(bo);
414
}
415
 
416
/**
417
 * ttm_buffer_object_transfer
418
 *
419
 * @bo: A pointer to a struct ttm_buffer_object.
420
 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
421
 * holding the data of @bo with the old placement.
422
 *
423
 * This is a utility function that may be called after an accelerated move
424
 * has been scheduled. A new buffer object is created as a placeholder for
425
 * the old data while it's being copied. When that buffer object is idle,
426
 * it can be destroyed, releasing the space of the old placement.
427
 * Returns:
428
 * !0: Failure.
429
 */
430
 
431
static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
432
				      struct ttm_buffer_object **new_obj)
433
{
434
	struct ttm_buffer_object *fbo;
435
	struct ttm_bo_device *bdev = bo->bdev;
436
	struct ttm_bo_driver *driver = bdev->driver;
437
	int ret;
438
 
439
	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
440
	if (!fbo)
441
		return -ENOMEM;
442
 
443
	*fbo = *bo;
444
 
445
	/**
446
	 * Fix up members that we shouldn't copy directly:
447
	 * TODO: Explicit member copy would probably be better here.
448
	 */
449
 
450
	INIT_LIST_HEAD(&fbo->ddestroy);
451
	INIT_LIST_HEAD(&fbo->lru);
452
	INIT_LIST_HEAD(&fbo->swap);
453
	INIT_LIST_HEAD(&fbo->io_reserve_lru);
4112 Serge 454
	drm_vma_node_reset(&fbo->vma_node);
4075 Serge 455
	atomic_set(&fbo->cpu_writers, 0);
456
 
457
	spin_lock(&bdev->fence_lock);
458
	if (bo->sync_obj)
459
		fbo->sync_obj = driver->sync_obj_ref(bo->sync_obj);
460
	else
461
		fbo->sync_obj = NULL;
462
	spin_unlock(&bdev->fence_lock);
463
	kref_init(&fbo->list_kref);
464
	kref_init(&fbo->kref);
465
	fbo->destroy = &ttm_transfered_destroy;
466
	fbo->acc_size = 0;
467
	fbo->resv = &fbo->ttm_resv;
468
	reservation_object_init(fbo->resv);
469
	ret = ww_mutex_trylock(&fbo->resv->lock);
470
	WARN_ON(!ret);
471
 
472
	*new_obj = fbo;
473
	return 0;
474
}
475
 
476
pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
477
{
478
#if defined(__i386__) || defined(__x86_64__)
479
	if (caching_flags & TTM_PL_FLAG_WC)
480
		tmp = pgprot_writecombine(tmp);
481
	else if (boot_cpu_data.x86 > 3)
482
		tmp = pgprot_noncached(tmp);
483
 
484
#elif defined(__powerpc__)
485
	if (!(caching_flags & TTM_PL_FLAG_CACHED)) {
486
		pgprot_val(tmp) |= _PAGE_NO_CACHE;
487
		if (caching_flags & TTM_PL_FLAG_UNCACHED)
488
			pgprot_val(tmp) |= _PAGE_GUARDED;
489
	}
490
#endif
491
#if defined(__ia64__)
492
	if (caching_flags & TTM_PL_FLAG_WC)
493
		tmp = pgprot_writecombine(tmp);
494
	else
495
		tmp = pgprot_noncached(tmp);
496
#endif
497
#if defined(__sparc__) || defined(__mips__)
498
	if (!(caching_flags & TTM_PL_FLAG_CACHED))
499
		tmp = pgprot_noncached(tmp);
500
#endif
501
	return tmp;
502
}
503
EXPORT_SYMBOL(ttm_io_prot);
504
 
505
static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
506
			  unsigned long offset,
507
			  unsigned long size,
508
			  struct ttm_bo_kmap_obj *map)
509
{
510
	struct ttm_mem_reg *mem = &bo->mem;
511
 
512
	if (bo->mem.bus.addr) {
513
		map->bo_kmap_type = ttm_bo_map_premapped;
514
		map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
515
	} else {
516
		map->bo_kmap_type = ttm_bo_map_iomap;
517
		if (mem->placement & TTM_PL_FLAG_WC)
518
			map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
519
						  size);
520
		else
521
			map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
522
						       size);
523
	}
524
	return (!map->virtual) ? -ENOMEM : 0;
525
}
526
 
527
static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
528
			   unsigned long start_page,
529
			   unsigned long num_pages,
530
			   struct ttm_bo_kmap_obj *map)
531
{
532
	struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot;
533
	struct ttm_tt *ttm = bo->ttm;
534
	int ret;
535
 
536
	BUG_ON(!ttm);
537
 
538
	if (ttm->state == tt_unpopulated) {
539
		ret = ttm->bdev->driver->ttm_tt_populate(ttm);
540
		if (ret)
541
			return ret;
542
	}
543
 
544
	if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
545
		/*
546
		 * We're mapping a single page, and the desired
547
		 * page protection is consistent with the bo.
548
		 */
549
 
550
		map->bo_kmap_type = ttm_bo_map_kmap;
551
		map->page = ttm->pages[start_page];
552
		map->virtual = kmap(map->page);
553
	} else {
554
		/*
555
		 * We need to use vmap to get the desired page protection
556
		 * or to make the buffer object look contiguous.
557
		 */
558
		prot = (mem->placement & TTM_PL_FLAG_CACHED) ?
559
			PAGE_KERNEL :
560
			ttm_io_prot(mem->placement, PAGE_KERNEL);
561
		map->bo_kmap_type = ttm_bo_map_vmap;
562
		map->virtual = vmap(ttm->pages + start_page, num_pages,
563
				    0, prot);
564
	}
565
	return (!map->virtual) ? -ENOMEM : 0;
566
}
567
 
568
int ttm_bo_kmap(struct ttm_buffer_object *bo,
569
		unsigned long start_page, unsigned long num_pages,
570
		struct ttm_bo_kmap_obj *map)
571
{
572
	struct ttm_mem_type_manager *man =
573
		&bo->bdev->man[bo->mem.mem_type];
574
	unsigned long offset, size;
575
	int ret;
576
 
577
	BUG_ON(!list_empty(&bo->swap));
578
	map->virtual = NULL;
579
	map->bo = bo;
580
	if (num_pages > bo->num_pages)
581
		return -EINVAL;
582
	if (start_page > bo->num_pages)
583
		return -EINVAL;
584
#if 0
585
	if (num_pages > 1 && !DRM_SUSER(DRM_CURPROC))
586
		return -EPERM;
587
#endif
588
	(void) ttm_mem_io_lock(man, false);
589
	ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
590
	ttm_mem_io_unlock(man);
591
	if (ret)
592
		return ret;
593
	if (!bo->mem.bus.is_iomem) {
594
		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
595
	} else {
596
		offset = start_page << PAGE_SHIFT;
597
		size = num_pages << PAGE_SHIFT;
598
		return ttm_bo_ioremap(bo, offset, size, map);
599
	}
600
}
601
EXPORT_SYMBOL(ttm_bo_kmap);
602
 
603
void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
604
{
605
	struct ttm_buffer_object *bo = map->bo;
606
	struct ttm_mem_type_manager *man =
607
		&bo->bdev->man[bo->mem.mem_type];
608
 
609
	if (!map->virtual)
610
		return;
611
	switch (map->bo_kmap_type) {
612
	case ttm_bo_map_iomap:
613
		iounmap(map->virtual);
614
		break;
615
	case ttm_bo_map_vmap:
616
		vunmap(map->virtual);
617
		break;
618
	case ttm_bo_map_kmap:
619
		kunmap(map->page);
620
		break;
621
	case ttm_bo_map_premapped:
622
		break;
623
	default:
624
		BUG();
625
	}
626
	(void) ttm_mem_io_lock(man, false);
627
	ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
628
	ttm_mem_io_unlock(man);
629
	map->virtual = NULL;
630
	map->page = NULL;
631
}
632
EXPORT_SYMBOL(ttm_bo_kunmap);
633
 
634
int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
635
			      void *sync_obj,
636
			      bool evict,
637
			      bool no_wait_gpu,
638
			      struct ttm_mem_reg *new_mem)
639
{
640
	struct ttm_bo_device *bdev = bo->bdev;
641
	struct ttm_bo_driver *driver = bdev->driver;
642
	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
643
	struct ttm_mem_reg *old_mem = &bo->mem;
644
	int ret;
645
	struct ttm_buffer_object *ghost_obj;
646
	void *tmp_obj = NULL;
647
 
648
	spin_lock(&bdev->fence_lock);
649
	if (bo->sync_obj) {
650
		tmp_obj = bo->sync_obj;
651
		bo->sync_obj = NULL;
652
	}
653
	bo->sync_obj = driver->sync_obj_ref(sync_obj);
654
	if (evict) {
655
		ret = ttm_bo_wait(bo, false, false, false);
656
		spin_unlock(&bdev->fence_lock);
657
		if (tmp_obj)
658
			driver->sync_obj_unref(&tmp_obj);
659
		if (ret)
660
			return ret;
661
 
662
		if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
663
		    (bo->ttm != NULL)) {
664
			ttm_tt_unbind(bo->ttm);
665
			ttm_tt_destroy(bo->ttm);
666
			bo->ttm = NULL;
667
		}
668
		ttm_bo_free_old_node(bo);
669
	} else {
670
		/**
671
		 * This should help pipeline ordinary buffer moves.
672
		 *
673
		 * Hang old buffer memory on a new buffer object,
674
		 * and leave it to be released when the GPU
675
		 * operation has completed.
676
		 */
677
 
678
		set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
679
		spin_unlock(&bdev->fence_lock);
680
		if (tmp_obj)
681
			driver->sync_obj_unref(&tmp_obj);
682
 
683
		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
684
		if (ret)
685
			return ret;
686
 
687
		/**
688
		 * If we're not moving to fixed memory, the TTM object
689
		 * needs to stay alive. Otherwhise hang it on the ghost
690
		 * bo to be unbound and destroyed.
691
		 */
692
 
693
		if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
694
			ghost_obj->ttm = NULL;
695
		else
696
			bo->ttm = NULL;
697
 
698
		ttm_bo_unreserve(ghost_obj);
699
		ttm_bo_unref(&ghost_obj);
700
	}
701
 
702
	*old_mem = *new_mem;
703
	new_mem->mm_node = NULL;
704
 
705
	return 0;
706
}
707
EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);