Subversion Repositories Kolibri OS

Rev

Rev 4371 | Rev 4560 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2332 Serge 1
/*
2
 * Copyright © 2008-2010 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *    Zou Nan hai 
26
 *    Xiang Hai hao
27
 *
28
 */
29
 
3031 serge 30
#include 
2332 Serge 31
#include "i915_drv.h"
3031 serge 32
#include 
2351 Serge 33
#include "i915_trace.h"
2332 Serge 34
#include "intel_drv.h"
35
 
36
static inline int ring_space(struct intel_ring_buffer *ring)
37
{
3243 Serge 38
	int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
2332 Serge 39
	if (space < 0)
40
		space += ring->size;
41
	return space;
42
}
43
 
3031 serge 44
static int
45
gen2_render_ring_flush(struct intel_ring_buffer *ring,
46
		       u32	invalidate_domains,
47
		       u32	flush_domains)
2332 Serge 48
{
3031 serge 49
	u32 cmd;
50
	int ret;
2332 Serge 51
 
3031 serge 52
	cmd = MI_FLUSH;
53
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
54
		cmd |= MI_NO_WRITE_FLUSH;
2332 Serge 55
 
3031 serge 56
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
57
		cmd |= MI_READ_FLUSH;
2332 Serge 58
 
3031 serge 59
	ret = intel_ring_begin(ring, 2);
60
	if (ret)
61
		return ret;
62
 
63
	intel_ring_emit(ring, cmd);
64
	intel_ring_emit(ring, MI_NOOP);
65
	intel_ring_advance(ring);
66
 
67
	return 0;
2332 Serge 68
}
69
 
70
static int
3031 serge 71
gen4_render_ring_flush(struct intel_ring_buffer *ring,
2332 Serge 72
		  u32	invalidate_domains,
73
		  u32	flush_domains)
74
{
75
	struct drm_device *dev = ring->dev;
76
	u32 cmd;
77
	int ret;
78
 
79
	/*
80
	 * read/write caches:
81
	 *
82
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
83
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
84
	 * also flushed at 2d versus 3d pipeline switches.
85
	 *
86
	 * read-only caches:
87
	 *
88
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
89
	 * MI_READ_FLUSH is set, and is always flushed on 965.
90
	 *
91
	 * I915_GEM_DOMAIN_COMMAND may not exist?
92
	 *
93
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
94
	 * invalidated when MI_EXE_FLUSH is set.
95
	 *
96
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
97
	 * invalidated with every MI_FLUSH.
98
	 *
99
	 * TLBs:
100
	 *
101
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
102
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
103
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
104
	 * are flushed at any MI_FLUSH.
105
	 */
106
 
107
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
3031 serge 108
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
2332 Serge 109
		cmd &= ~MI_NO_WRITE_FLUSH;
110
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
111
		cmd |= MI_EXE_FLUSH;
112
 
113
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
114
	    (IS_G4X(dev) || IS_GEN5(dev)))
115
		cmd |= MI_INVALIDATE_ISP;
116
 
117
	ret = intel_ring_begin(ring, 2);
118
	if (ret)
119
		return ret;
120
 
121
	intel_ring_emit(ring, cmd);
122
	intel_ring_emit(ring, MI_NOOP);
123
	intel_ring_advance(ring);
124
 
125
	return 0;
126
}
127
 
2342 Serge 128
/**
129
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
130
 * implementing two workarounds on gen6.  From section 1.4.7.1
131
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
132
 *
133
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
134
 * produced by non-pipelined state commands), software needs to first
135
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
136
 * 0.
137
 *
138
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
139
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
140
 *
141
 * And the workaround for these two requires this workaround first:
142
 *
143
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
144
 * BEFORE the pipe-control with a post-sync op and no write-cache
145
 * flushes.
146
 *
147
 * And this last workaround is tricky because of the requirements on
148
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
149
 * volume 2 part 1:
150
 *
151
 *     "1 of the following must also be set:
152
 *      - Render Target Cache Flush Enable ([12] of DW1)
153
 *      - Depth Cache Flush Enable ([0] of DW1)
154
 *      - Stall at Pixel Scoreboard ([1] of DW1)
155
 *      - Depth Stall ([13] of DW1)
156
 *      - Post-Sync Operation ([13] of DW1)
157
 *      - Notify Enable ([8] of DW1)"
158
 *
159
 * The cache flushes require the workaround flush that triggered this
160
 * one, so we can't use it.  Depth stall would trigger the same.
161
 * Post-sync nonzero is what triggered this second workaround, so we
162
 * can't use that one either.  Notify enable is IRQs, which aren't
163
 * really our business.  That leaves only stall at scoreboard.
164
 */
165
static int
166
intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
167
{
4104 Serge 168
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
2342 Serge 169
	int ret;
170
 
171
 
172
	ret = intel_ring_begin(ring, 6);
173
	if (ret)
174
		return ret;
175
 
176
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
177
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
178
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
179
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
180
	intel_ring_emit(ring, 0); /* low dword */
181
	intel_ring_emit(ring, 0); /* high dword */
182
	intel_ring_emit(ring, MI_NOOP);
183
	intel_ring_advance(ring);
184
 
185
	ret = intel_ring_begin(ring, 6);
186
	if (ret)
187
		return ret;
188
 
189
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
190
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
191
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
192
	intel_ring_emit(ring, 0);
193
	intel_ring_emit(ring, 0);
194
	intel_ring_emit(ring, MI_NOOP);
195
	intel_ring_advance(ring);
196
 
197
	return 0;
198
}
199
 
200
static int
201
gen6_render_ring_flush(struct intel_ring_buffer *ring,
202
                         u32 invalidate_domains, u32 flush_domains)
203
{
204
	u32 flags = 0;
4104 Serge 205
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
2342 Serge 206
	int ret;
207
 
208
	/* Force SNB workarounds for PIPE_CONTROL flushes */
3031 serge 209
	ret = intel_emit_post_sync_nonzero_flush(ring);
210
	if (ret)
211
		return ret;
2342 Serge 212
 
213
	/* Just flush everything.  Experiments have shown that reducing the
214
	 * number of bits based on the write domains has little performance
215
	 * impact.
216
	 */
3031 serge 217
	if (flush_domains) {
218
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
219
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
220
		/*
221
		 * Ensure that any following seqno writes only happen
222
		 * when the render cache is indeed flushed.
223
		 */
224
		flags |= PIPE_CONTROL_CS_STALL;
225
	}
226
	if (invalidate_domains) {
227
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
228
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
229
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
230
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
231
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
232
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
233
		/*
234
		 * TLB invalidate requires a post-sync write.
235
		 */
3243 Serge 236
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
3031 serge 237
	}
238
 
239
	ret = intel_ring_begin(ring, 4);
240
	if (ret)
241
		return ret;
242
 
243
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
244
	intel_ring_emit(ring, flags);
245
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
246
	intel_ring_emit(ring, 0);
247
	intel_ring_advance(ring);
248
 
249
	return 0;
250
}
251
 
252
static int
253
gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
254
{
255
	int ret;
256
 
257
	ret = intel_ring_begin(ring, 4);
258
	if (ret)
259
		return ret;
260
 
261
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
262
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
263
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
264
	intel_ring_emit(ring, 0);
265
	intel_ring_emit(ring, 0);
266
	intel_ring_advance(ring);
267
 
268
	return 0;
269
}
270
 
4104 Serge 271
static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
272
{
273
	int ret;
274
 
275
	if (!ring->fbc_dirty)
276
		return 0;
277
 
278
	ret = intel_ring_begin(ring, 4);
279
	if (ret)
280
		return ret;
281
	intel_ring_emit(ring, MI_NOOP);
282
	/* WaFbcNukeOn3DBlt:ivb/hsw */
283
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
284
	intel_ring_emit(ring, MSG_FBC_REND_STATE);
285
	intel_ring_emit(ring, value);
286
	intel_ring_advance(ring);
287
 
288
	ring->fbc_dirty = false;
289
	return 0;
290
}
291
 
3031 serge 292
static int
293
gen7_render_ring_flush(struct intel_ring_buffer *ring,
294
		       u32 invalidate_domains, u32 flush_domains)
295
{
296
	u32 flags = 0;
4104 Serge 297
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
3031 serge 298
	int ret;
299
 
300
	/*
301
	 * Ensure that any following seqno writes only happen when the render
302
	 * cache is indeed flushed.
303
	 *
304
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
305
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
306
	 * don't try to be clever and just set it unconditionally.
307
	 */
308
	flags |= PIPE_CONTROL_CS_STALL;
309
 
310
	/* Just flush everything.  Experiments have shown that reducing the
311
	 * number of bits based on the write domains has little performance
312
	 * impact.
313
	 */
314
	if (flush_domains) {
2342 Serge 315
	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
3031 serge 316
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
317
	}
318
	if (invalidate_domains) {
319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
2342 Serge 320
	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
321
	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
322
	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
323
	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
324
	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
3031 serge 325
		/*
326
		 * TLB invalidate requires a post-sync write.
327
		 */
328
		flags |= PIPE_CONTROL_QW_WRITE;
3480 Serge 329
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2342 Serge 330
 
3031 serge 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
332
		 * set before a pipe_control command that has the state cache
333
		 * invalidate bit set. */
334
		gen7_render_ring_cs_stall_wa(ring);
335
	}
336
 
337
	ret = intel_ring_begin(ring, 4);
2342 Serge 338
	if (ret)
339
		return ret;
340
 
3031 serge 341
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
2342 Serge 342
	intel_ring_emit(ring, flags);
3480 Serge 343
	intel_ring_emit(ring, scratch_addr);
3031 serge 344
	intel_ring_emit(ring, 0);
2342 Serge 345
	intel_ring_advance(ring);
346
 
4104 Serge 347
	if (flush_domains)
348
		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
349
 
2342 Serge 350
	return 0;
351
}
352
 
2332 Serge 353
static void ring_write_tail(struct intel_ring_buffer *ring,
354
			    u32 value)
355
{
356
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
357
	I915_WRITE_TAIL(ring, value);
358
}
359
 
360
u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
361
{
362
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
363
	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
364
			RING_ACTHD(ring->mmio_base) : ACTHD;
365
 
366
	return I915_READ(acthd_reg);
367
}
368
 
4104 Serge 369
static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
370
{
371
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
372
	u32 addr;
373
 
374
	addr = dev_priv->status_page_dmah->busaddr;
375
	if (INTEL_INFO(ring->dev)->gen >= 4)
376
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
377
	I915_WRITE(HWS_PGA, addr);
378
}
379
 
2332 Serge 380
static int init_ring_common(struct intel_ring_buffer *ring)
381
{
3031 serge 382
	struct drm_device *dev = ring->dev;
383
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 384
	struct drm_i915_gem_object *obj = ring->obj;
3031 serge 385
	int ret = 0;
2332 Serge 386
	u32 head;
387
 
3031 serge 388
	if (HAS_FORCE_WAKE(dev))
389
		gen6_gt_force_wake_get(dev_priv);
390
 
4104 Serge 391
	if (I915_NEED_GFX_HWS(dev))
392
		intel_ring_setup_status_page(ring);
393
	else
394
		ring_setup_phys_status_page(ring);
395
 
2332 Serge 396
	/* Stop the ring if it's running. */
397
	I915_WRITE_CTL(ring, 0);
398
	I915_WRITE_HEAD(ring, 0);
399
	ring->write_tail(ring, 0);
400
 
401
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
402
 
403
	/* G45 ring initialization fails to reset head to zero */
404
	if (head != 0) {
405
		DRM_DEBUG_KMS("%s head not reset to zero "
406
			      "ctl %08x head %08x tail %08x start %08x\n",
407
			      ring->name,
408
			      I915_READ_CTL(ring),
409
			      I915_READ_HEAD(ring),
410
			      I915_READ_TAIL(ring),
411
			      I915_READ_START(ring));
412
 
413
		I915_WRITE_HEAD(ring, 0);
414
 
415
		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
416
			DRM_ERROR("failed to set %s head to zero "
417
				  "ctl %08x head %08x tail %08x start %08x\n",
418
				  ring->name,
419
				  I915_READ_CTL(ring),
420
				  I915_READ_HEAD(ring),
421
				  I915_READ_TAIL(ring),
422
				  I915_READ_START(ring));
423
		}
424
	}
425
 
3031 serge 426
	/* Initialize the ring. This must happen _after_ we've cleared the ring
427
	 * registers with the above sequence (the readback of the HEAD registers
428
	 * also enforces ordering), otherwise the hw might lose the new ring
429
	 * register values. */
4104 Serge 430
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
2332 Serge 431
	I915_WRITE_CTL(ring,
432
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
3031 serge 433
			| RING_VALID);
2332 Serge 434
 
435
	/* If the head is still not zero, the ring is dead */
3031 serge 436
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
4104 Serge 437
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
3031 serge 438
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
2332 Serge 439
		DRM_ERROR("%s initialization failed "
440
				"ctl %08x head %08x tail %08x start %08x\n",
441
				ring->name,
442
				I915_READ_CTL(ring),
443
				I915_READ_HEAD(ring),
444
				I915_READ_TAIL(ring),
445
				I915_READ_START(ring));
3031 serge 446
		ret = -EIO;
447
		goto out;
2332 Serge 448
	}
449
 
3031 serge 450
		ring->head = I915_READ_HEAD(ring);
451
		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
452
		ring->space = ring_space(ring);
453
		ring->last_retired_head = -1;
2332 Serge 454
 
4104 Serge 455
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
456
 
3031 serge 457
out:
458
	if (HAS_FORCE_WAKE(dev))
459
		gen6_gt_force_wake_put(dev_priv);
2332 Serge 460
 
3031 serge 461
	return ret;
2332 Serge 462
}
463
 
464
static int
465
init_pipe_control(struct intel_ring_buffer *ring)
466
{
467
	int ret;
468
 
4104 Serge 469
	if (ring->scratch.obj)
2332 Serge 470
		return 0;
471
 
4104 Serge 472
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
473
	if (ring->scratch.obj == NULL) {
2332 Serge 474
		DRM_ERROR("Failed to allocate seqno page\n");
475
		ret = -ENOMEM;
476
		goto err;
477
	}
478
 
4104 Serge 479
	i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
2332 Serge 480
 
4104 Serge 481
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, true, false);
2332 Serge 482
	if (ret)
483
		goto err_unref;
484
 
4104 Serge 485
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
4539 Serge 486
    ring->scratch.cpu_page = (void*)MapIoMem((addr_t)sg_page(ring->scratch.obj->pages->sgl),4096, PG_SW|0x100);
4104 Serge 487
	if (ring->scratch.cpu_page == NULL) {
488
		ret = -ENOMEM;
2332 Serge 489
		goto err_unpin;
4104 Serge 490
	}
2332 Serge 491
 
3480 Serge 492
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
4104 Serge 493
			 ring->name, ring->scratch.gtt_offset);
2332 Serge 494
	return 0;
495
 
496
err_unpin:
4104 Serge 497
	i915_gem_object_unpin(ring->scratch.obj);
2332 Serge 498
err_unref:
4104 Serge 499
	drm_gem_object_unreference(&ring->scratch.obj->base);
2332 Serge 500
err:
501
	return ret;
502
}
503
 
504
static int init_render_ring(struct intel_ring_buffer *ring)
505
{
506
	struct drm_device *dev = ring->dev;
507
	struct drm_i915_private *dev_priv = dev->dev_private;
508
	int ret = init_ring_common(ring);
509
 
3243 Serge 510
	if (INTEL_INFO(dev)->gen > 3)
3031 serge 511
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
3243 Serge 512
 
513
	/* We need to disable the AsyncFlip performance optimisations in order
514
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
515
	 * programmed to '1' on all products.
4104 Serge 516
	 *
517
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
3243 Serge 518
	 */
519
	if (INTEL_INFO(dev)->gen >= 6)
520
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
521
 
522
	/* Required for the hardware to program scanline values for waiting */
523
	if (INTEL_INFO(dev)->gen == 6)
524
		I915_WRITE(GFX_MODE,
525
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
526
 
2332 Serge 527
		if (IS_GEN7(dev))
528
			I915_WRITE(GFX_MODE_GEN7,
3031 serge 529
				   _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
530
				   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
2332 Serge 531
 
2342 Serge 532
	if (INTEL_INFO(dev)->gen >= 5) {
2339 Serge 533
		ret = init_pipe_control(ring);
2332 Serge 534
		if (ret)
535
			return ret;
536
	}
537
 
3031 serge 538
	if (IS_GEN6(dev)) {
539
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
540
		 * "If this bit is set, STCunit will have LRA as replacement
541
		 *  policy. [...] This bit must be reset.  LRA replacement
542
		 *  policy is not supported."
543
		 */
544
		I915_WRITE(CACHE_MODE_0,
545
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
546
 
547
		/* This is not explicitly set for GEN6, so read the register.
548
		 * see intel_ring_mi_set_context() for why we care.
549
		 * TODO: consider explicitly setting the bit for GEN5
550
		 */
551
		ring->itlb_before_ctx_switch =
552
			!!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
2342 Serge 553
	}
554
 
3031 serge 555
	if (INTEL_INFO(dev)->gen >= 6)
556
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
557
 
558
	if (HAS_L3_GPU_CACHE(dev))
4104 Serge 559
		I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
3031 serge 560
 
2332 Serge 561
	return ret;
562
}
563
 
564
static void render_ring_cleanup(struct intel_ring_buffer *ring)
565
{
3480 Serge 566
	struct drm_device *dev = ring->dev;
567
 
4104 Serge 568
	if (ring->scratch.obj == NULL)
2332 Serge 569
		return;
570
 
4104 Serge 571
	if (INTEL_INFO(dev)->gen >= 5) {
572
//       kunmap(sg_page(ring->scratch.obj->pages->sgl));
573
		i915_gem_object_unpin(ring->scratch.obj);
574
	}
575
 
576
	drm_gem_object_unreference(&ring->scratch.obj->base);
577
	ring->scratch.obj = NULL;
2332 Serge 578
}
579
 
580
static void
2342 Serge 581
update_mboxes(struct intel_ring_buffer *ring,
582
	    u32 mmio_offset)
2332 Serge 583
{
4104 Serge 584
/* NB: In order to be able to do semaphore MBOX updates for varying number
585
 * of rings, it's easiest if we round up each individual update to a
586
 * multiple of 2 (since ring updates must always be a multiple of 2)
587
 * even though the actual update only requires 3 dwords.
588
 */
589
#define MBOX_UPDATE_DWORDS 4
3243 Serge 590
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
2342 Serge 591
	intel_ring_emit(ring, mmio_offset);
3243 Serge 592
	intel_ring_emit(ring, ring->outstanding_lazy_request);
4104 Serge 593
	intel_ring_emit(ring, MI_NOOP);
2332 Serge 594
}
595
 
2342 Serge 596
/**
597
 * gen6_add_request - Update the semaphore mailbox registers
598
 *
599
 * @ring - ring that is adding a request
600
 * @seqno - return seqno stuck into the ring
601
 *
602
 * Update the mailbox registers in the *other* rings with the current seqno.
603
 * This acts like a signal in the canonical semaphore.
604
 */
2332 Serge 605
static int
3243 Serge 606
gen6_add_request(struct intel_ring_buffer *ring)
2332 Serge 607
{
4104 Serge 608
	struct drm_device *dev = ring->dev;
609
	struct drm_i915_private *dev_priv = dev->dev_private;
610
	struct intel_ring_buffer *useless;
611
	int i, ret;
2332 Serge 612
 
4104 Serge 613
	ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
614
				      MBOX_UPDATE_DWORDS) +
615
				      4);
2332 Serge 616
	if (ret)
617
		return ret;
4104 Serge 618
#undef MBOX_UPDATE_DWORDS
2332 Serge 619
 
4104 Serge 620
	for_each_ring(useless, dev_priv, i) {
621
		u32 mbox_reg = ring->signal_mbox[i];
622
		if (mbox_reg != GEN6_NOSYNC)
623
			update_mboxes(ring, mbox_reg);
624
	}
2332 Serge 625
 
626
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
627
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
3243 Serge 628
	intel_ring_emit(ring, ring->outstanding_lazy_request);
2332 Serge 629
	intel_ring_emit(ring, MI_USER_INTERRUPT);
630
	intel_ring_advance(ring);
631
 
632
	return 0;
633
}
634
 
3480 Serge 635
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
636
					      u32 seqno)
637
{
638
	struct drm_i915_private *dev_priv = dev->dev_private;
639
	return dev_priv->last_seqno < seqno;
640
}
641
 
2342 Serge 642
/**
643
 * intel_ring_sync - sync the waiter to the signaller on seqno
644
 *
645
 * @waiter - ring that is waiting
646
 * @signaller - ring which has, or will signal
647
 * @seqno - seqno which the waiter will block on
648
 */
649
static int
3031 serge 650
gen6_ring_sync(struct intel_ring_buffer *waiter,
2342 Serge 651
		struct intel_ring_buffer *signaller,
2332 Serge 652
		u32 seqno)
653
{
654
	int ret;
2342 Serge 655
	u32 dw1 = MI_SEMAPHORE_MBOX |
656
		  MI_SEMAPHORE_COMPARE |
657
		  MI_SEMAPHORE_REGISTER;
2332 Serge 658
 
3031 serge 659
	/* Throughout all of the GEM code, seqno passed implies our current
660
	 * seqno is >= the last seqno executed. However for hardware the
661
	 * comparison is strictly greater than.
662
	 */
663
	seqno -= 1;
664
 
665
	WARN_ON(signaller->semaphore_register[waiter->id] ==
666
		MI_SEMAPHORE_SYNC_INVALID);
667
 
2342 Serge 668
	ret = intel_ring_begin(waiter, 4);
2332 Serge 669
	if (ret)
670
		return ret;
671
 
3480 Serge 672
	/* If seqno wrap happened, omit the wait with no-ops */
673
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
3031 serge 674
	intel_ring_emit(waiter,
3480 Serge 675
				dw1 |
676
				signaller->semaphore_register[waiter->id]);
2342 Serge 677
	intel_ring_emit(waiter, seqno);
678
	intel_ring_emit(waiter, 0);
679
	intel_ring_emit(waiter, MI_NOOP);
3480 Serge 680
	} else {
681
		intel_ring_emit(waiter, MI_NOOP);
682
		intel_ring_emit(waiter, MI_NOOP);
683
		intel_ring_emit(waiter, MI_NOOP);
684
		intel_ring_emit(waiter, MI_NOOP);
685
	}
2342 Serge 686
	intel_ring_advance(waiter);
2332 Serge 687
 
688
	return 0;
689
}
690
 
691
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
692
do {									\
2342 Serge 693
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
694
		 PIPE_CONTROL_DEPTH_STALL);				\
2332 Serge 695
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
696
	intel_ring_emit(ring__, 0);							\
697
	intel_ring_emit(ring__, 0);							\
698
} while (0)
699
 
700
static int
3243 Serge 701
pc_render_add_request(struct intel_ring_buffer *ring)
2332 Serge 702
{
4104 Serge 703
	u32 scratch_addr = ring->scratch.gtt_offset + 128;
2332 Serge 704
	int ret;
705
 
706
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
707
	 * incoherent with writes to memory, i.e. completely fubar,
708
	 * so we need to use PIPE_NOTIFY instead.
709
	 *
710
	 * However, we also need to workaround the qword write
711
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
712
	 * memory before requesting an interrupt.
713
	 */
714
	ret = intel_ring_begin(ring, 32);
715
	if (ret)
716
		return ret;
717
 
2342 Serge 718
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
719
			PIPE_CONTROL_WRITE_FLUSH |
720
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
4104 Serge 721
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
3243 Serge 722
	intel_ring_emit(ring, ring->outstanding_lazy_request);
2332 Serge 723
	intel_ring_emit(ring, 0);
724
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
725
	scratch_addr += 128; /* write to separate cachelines */
726
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
727
	scratch_addr += 128;
728
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
729
	scratch_addr += 128;
730
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
731
	scratch_addr += 128;
732
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
733
	scratch_addr += 128;
734
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
3031 serge 735
 
2342 Serge 736
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
737
			PIPE_CONTROL_WRITE_FLUSH |
738
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
2332 Serge 739
			PIPE_CONTROL_NOTIFY);
4104 Serge 740
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
3243 Serge 741
	intel_ring_emit(ring, ring->outstanding_lazy_request);
2332 Serge 742
	intel_ring_emit(ring, 0);
743
	intel_ring_advance(ring);
744
 
745
	return 0;
746
}
747
 
748
static u32
3031 serge 749
gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
2342 Serge 750
{
751
	/* Workaround to force correct ordering between irq and seqno writes on
752
	 * ivb (and maybe also on snb) by reading from a CS register (like
753
	 * ACTHD) before reading the status page. */
3031 serge 754
	if (!lazy_coherency)
2342 Serge 755
		intel_ring_get_active_head(ring);
756
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
757
}
758
 
759
static u32
3031 serge 760
ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
2332 Serge 761
{
762
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
763
}
764
 
3480 Serge 765
static void
766
ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
767
{
768
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
769
}
770
 
2332 Serge 771
static u32
3031 serge 772
pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
2332 Serge 773
{
4104 Serge 774
	return ring->scratch.cpu_page[0];
2332 Serge 775
}
776
 
3480 Serge 777
static void
778
pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
779
{
4104 Serge 780
	ring->scratch.cpu_page[0] = seqno;
3480 Serge 781
}
782
 
3031 serge 783
static bool
784
gen5_ring_get_irq(struct intel_ring_buffer *ring)
2332 Serge 785
{
3031 serge 786
	struct drm_device *dev = ring->dev;
787
	drm_i915_private_t *dev_priv = dev->dev_private;
788
	unsigned long flags;
789
 
790
	if (!dev->irq_enabled)
791
		return false;
792
 
793
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 794
	if (ring->irq_refcount++ == 0)
795
		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 796
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
797
 
798
	return true;
2332 Serge 799
}
800
 
801
static void
3031 serge 802
gen5_ring_put_irq(struct intel_ring_buffer *ring)
2332 Serge 803
{
3031 serge 804
	struct drm_device *dev = ring->dev;
805
	drm_i915_private_t *dev_priv = dev->dev_private;
806
	unsigned long flags;
807
 
808
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
4104 Serge 809
	if (--ring->irq_refcount == 0)
810
		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
3031 serge 811
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 812
}
813
 
3031 serge 814
static bool
815
i9xx_ring_get_irq(struct intel_ring_buffer *ring)
2332 Serge 816
{
3031 serge 817
	struct drm_device *dev = ring->dev;
818
	drm_i915_private_t *dev_priv = dev->dev_private;
819
	unsigned long flags;
820
 
821
	if (!dev->irq_enabled)
822
		return false;
823
 
824
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
825
	if (ring->irq_refcount++ == 0) {
826
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
2332 Serge 827
	I915_WRITE(IMR, dev_priv->irq_mask);
828
	POSTING_READ(IMR);
3031 serge 829
	}
830
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
831
 
832
	return true;
2332 Serge 833
}
834
 
835
static void
3031 serge 836
i9xx_ring_put_irq(struct intel_ring_buffer *ring)
2332 Serge 837
{
3031 serge 838
	struct drm_device *dev = ring->dev;
839
	drm_i915_private_t *dev_priv = dev->dev_private;
840
	unsigned long flags;
841
 
842
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
843
	if (--ring->irq_refcount == 0) {
844
		dev_priv->irq_mask |= ring->irq_enable_mask;
2332 Serge 845
	I915_WRITE(IMR, dev_priv->irq_mask);
846
	POSTING_READ(IMR);
3031 serge 847
	}
848
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 849
}
850
 
851
static bool
3031 serge 852
i8xx_ring_get_irq(struct intel_ring_buffer *ring)
2332 Serge 853
{
854
	struct drm_device *dev = ring->dev;
855
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 856
	unsigned long flags;
2332 Serge 857
 
858
	if (!dev->irq_enabled)
859
		return false;
860
 
3031 serge 861
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 862
	if (ring->irq_refcount++ == 0) {
3031 serge 863
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
864
		I915_WRITE16(IMR, dev_priv->irq_mask);
865
		POSTING_READ16(IMR);
2332 Serge 866
	}
3031 serge 867
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 868
 
869
	return true;
870
}
871
 
872
static void
3031 serge 873
i8xx_ring_put_irq(struct intel_ring_buffer *ring)
2332 Serge 874
{
875
	struct drm_device *dev = ring->dev;
876
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 877
	unsigned long flags;
2332 Serge 878
 
3031 serge 879
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 880
	if (--ring->irq_refcount == 0) {
3031 serge 881
		dev_priv->irq_mask |= ring->irq_enable_mask;
882
		I915_WRITE16(IMR, dev_priv->irq_mask);
883
		POSTING_READ16(IMR);
2332 Serge 884
	}
3031 serge 885
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 886
}
887
 
888
void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
889
{
890
	struct drm_device *dev = ring->dev;
891
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
892
	u32 mmio = 0;
893
 
894
	/* The ring status page addresses are no longer next to the rest of
895
	 * the ring registers as of gen7.
896
	 */
897
	if (IS_GEN7(dev)) {
898
		switch (ring->id) {
3031 serge 899
		case RCS:
2332 Serge 900
			mmio = RENDER_HWS_PGA_GEN7;
901
			break;
3031 serge 902
		case BCS:
2332 Serge 903
			mmio = BLT_HWS_PGA_GEN7;
904
			break;
3031 serge 905
		case VCS:
2332 Serge 906
			mmio = BSD_HWS_PGA_GEN7;
907
			break;
4104 Serge 908
		case VECS:
909
			mmio = VEBOX_HWS_PGA_GEN7;
910
			break;
2332 Serge 911
		}
912
	} else if (IS_GEN6(ring->dev)) {
913
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
914
	} else {
915
		mmio = RING_HWS_PGA(ring->mmio_base);
916
	}
917
 
918
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
919
	POSTING_READ(mmio);
3746 Serge 920
 
4104 Serge 921
	/* Flush the TLB for this page */
922
	if (INTEL_INFO(dev)->gen >= 6) {
923
		u32 reg = RING_INSTPM(ring->mmio_base);
924
		I915_WRITE(reg,
925
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
926
					      INSTPM_SYNC_FLUSH));
927
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
928
			     1000))
929
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
930
				  ring->name);
931
	}
2332 Serge 932
}
933
 
934
static int
935
bsd_ring_flush(struct intel_ring_buffer *ring,
936
	       u32     invalidate_domains,
937
	       u32     flush_domains)
938
{
939
	int ret;
940
 
941
	ret = intel_ring_begin(ring, 2);
942
	if (ret)
943
		return ret;
944
 
945
	intel_ring_emit(ring, MI_FLUSH);
946
	intel_ring_emit(ring, MI_NOOP);
947
	intel_ring_advance(ring);
948
	return 0;
949
}
950
 
951
static int
3243 Serge 952
i9xx_add_request(struct intel_ring_buffer *ring)
2332 Serge 953
{
954
	int ret;
955
 
956
	ret = intel_ring_begin(ring, 4);
957
	if (ret)
958
		return ret;
959
 
960
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
961
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
3243 Serge 962
	intel_ring_emit(ring, ring->outstanding_lazy_request);
2332 Serge 963
	intel_ring_emit(ring, MI_USER_INTERRUPT);
964
	intel_ring_advance(ring);
965
 
966
	return 0;
967
}
968
 
969
static bool
3031 serge 970
gen6_ring_get_irq(struct intel_ring_buffer *ring)
2332 Serge 971
{
972
	struct drm_device *dev = ring->dev;
973
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 974
	unsigned long flags;
2332 Serge 975
 
976
	if (!dev->irq_enabled)
977
	       return false;
978
 
2342 Serge 979
	/* It looks like we need to prevent the gt from suspending while waiting
980
	 * for an notifiy irq, otherwise irqs seem to get lost on at least the
981
	 * blt/bsd rings on ivb. */
982
		gen6_gt_force_wake_get(dev_priv);
983
 
3031 serge 984
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 985
	if (ring->irq_refcount++ == 0) {
3031 serge 986
		if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
4104 Serge 987
			I915_WRITE_IMR(ring,
988
				       ~(ring->irq_enable_mask |
989
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
3031 serge 990
		else
991
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
4104 Serge 992
		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 993
	}
3031 serge 994
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2332 Serge 995
 
2351 Serge 996
    return true;
2332 Serge 997
}
998
 
999
static void
3031 serge 1000
gen6_ring_put_irq(struct intel_ring_buffer *ring)
2332 Serge 1001
{
1002
	struct drm_device *dev = ring->dev;
1003
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 1004
	unsigned long flags;
2332 Serge 1005
 
3031 serge 1006
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
2332 Serge 1007
	if (--ring->irq_refcount == 0) {
3031 serge 1008
		if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
4104 Serge 1009
			I915_WRITE_IMR(ring,
1010
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
3031 serge 1011
		else
1012
			I915_WRITE_IMR(ring, ~0);
4104 Serge 1013
		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
2332 Serge 1014
	}
3031 serge 1015
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
2342 Serge 1016
 
1017
		gen6_gt_force_wake_put(dev_priv);
2332 Serge 1018
}
1019
 
4104 Serge 1020
static bool
1021
hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1022
{
1023
	struct drm_device *dev = ring->dev;
1024
	struct drm_i915_private *dev_priv = dev->dev_private;
1025
	unsigned long flags;
1026
 
1027
	if (!dev->irq_enabled)
1028
		return false;
1029
 
1030
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1031
	if (ring->irq_refcount++ == 0) {
1032
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1033
		snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1034
	}
1035
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1036
 
1037
	return true;
1038
}
1039
 
1040
static void
1041
hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1042
{
1043
	struct drm_device *dev = ring->dev;
1044
	struct drm_i915_private *dev_priv = dev->dev_private;
1045
	unsigned long flags;
1046
 
1047
	if (!dev->irq_enabled)
1048
		return;
1049
 
1050
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1051
	if (--ring->irq_refcount == 0) {
1052
		I915_WRITE_IMR(ring, ~0);
1053
		snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1054
	}
1055
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1056
}
1057
 
2332 Serge 1058
static int
3243 Serge 1059
i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1060
			 u32 offset, u32 length,
1061
			 unsigned flags)
2332 Serge 1062
{
1063
	int ret;
1064
 
1065
	ret = intel_ring_begin(ring, 2);
1066
	if (ret)
1067
		return ret;
1068
 
1069
	intel_ring_emit(ring,
3031 serge 1070
			MI_BATCH_BUFFER_START |
1071
			MI_BATCH_GTT |
3243 Serge 1072
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2332 Serge 1073
	intel_ring_emit(ring, offset);
1074
	intel_ring_advance(ring);
1075
 
1076
	return 0;
1077
}
1078
 
3243 Serge 1079
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1080
#define I830_BATCH_LIMIT (256*1024)
2332 Serge 1081
static int
3031 serge 1082
i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
3243 Serge 1083
				u32 offset, u32 len,
1084
				unsigned flags)
2332 Serge 1085
{
1086
	int ret;
1087
 
3243 Serge 1088
	if (flags & I915_DISPATCH_PINNED) {
2332 Serge 1089
		ret = intel_ring_begin(ring, 4);
1090
		if (ret)
1091
			return ret;
1092
 
1093
		intel_ring_emit(ring, MI_BATCH_BUFFER);
3243 Serge 1094
		intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
2332 Serge 1095
		intel_ring_emit(ring, offset + len - 8);
3243 Serge 1096
		intel_ring_emit(ring, MI_NOOP);
1097
		intel_ring_advance(ring);
1098
	} else {
4104 Serge 1099
		u32 cs_offset = ring->scratch.gtt_offset;
3243 Serge 1100
 
1101
		if (len > I830_BATCH_LIMIT)
1102
			return -ENOSPC;
1103
 
1104
		ret = intel_ring_begin(ring, 9+3);
1105
		if (ret)
1106
			return ret;
1107
		/* Blit the batch (which has now all relocs applied) to the stable batch
1108
		 * scratch bo area (so that the CS never stumbles over its tlb
1109
		 * invalidation bug) ... */
1110
		intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1111
				XY_SRC_COPY_BLT_WRITE_ALPHA |
1112
				XY_SRC_COPY_BLT_WRITE_RGB);
1113
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
2332 Serge 1114
		intel_ring_emit(ring, 0);
3243 Serge 1115
		intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1116
		intel_ring_emit(ring, cs_offset);
1117
		intel_ring_emit(ring, 0);
1118
		intel_ring_emit(ring, 4096);
1119
		intel_ring_emit(ring, offset);
1120
		intel_ring_emit(ring, MI_FLUSH);
1121
 
1122
		/* ... and execute it. */
1123
		intel_ring_emit(ring, MI_BATCH_BUFFER);
1124
		intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1125
		intel_ring_emit(ring, cs_offset + len - 8);
3031 serge 1126
	intel_ring_advance(ring);
3243 Serge 1127
	}
3031 serge 1128
 
1129
	return 0;
1130
}
1131
 
1132
static int
1133
i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
3243 Serge 1134
			 u32 offset, u32 len,
1135
			 unsigned flags)
3031 serge 1136
{
1137
	int ret;
1138
 
2332 Serge 1139
		ret = intel_ring_begin(ring, 2);
1140
		if (ret)
1141
			return ret;
1142
 
3031 serge 1143
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
3243 Serge 1144
	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
2332 Serge 1145
	intel_ring_advance(ring);
1146
 
1147
	return 0;
1148
}
1149
 
1150
static void cleanup_status_page(struct intel_ring_buffer *ring)
1151
{
1152
	struct drm_i915_gem_object *obj;
1153
 
1154
	obj = ring->status_page.obj;
1155
	if (obj == NULL)
1156
		return;
1157
 
3031 serge 1158
//   kunmap(sg_page(obj->pages->sgl));
2344 Serge 1159
    i915_gem_object_unpin(obj);
1160
	drm_gem_object_unreference(&obj->base);
2332 Serge 1161
	ring->status_page.obj = NULL;
1162
}
1163
 
1164
static int init_status_page(struct intel_ring_buffer *ring)
1165
{
1166
	struct drm_device *dev = ring->dev;
1167
	struct drm_i915_gem_object *obj;
1168
	int ret;
1169
 
1170
	obj = i915_gem_alloc_object(dev, 4096);
1171
	if (obj == NULL) {
1172
		DRM_ERROR("Failed to allocate status page\n");
1173
		ret = -ENOMEM;
1174
		goto err;
1175
	}
1176
 
2352 Serge 1177
	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2332 Serge 1178
 
4104 Serge 1179
	ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
2332 Serge 1180
	if (ret != 0) {
1181
		goto err_unref;
1182
	}
1183
 
4104 Serge 1184
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
4539 Serge 1185
    ring->status_page.page_addr = (void*)MapIoMem((addr_t)sg_page(obj->pages->sgl),4096,PG_SW|0x100);
2332 Serge 1186
	if (ring->status_page.page_addr == NULL) {
3031 serge 1187
		ret = -ENOMEM;
2332 Serge 1188
		goto err_unpin;
1189
	}
1190
	ring->status_page.obj = obj;
1191
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1192
 
1193
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1194
			ring->name, ring->status_page.gfx_addr);
1195
 
1196
	return 0;
1197
 
1198
err_unpin:
2344 Serge 1199
	i915_gem_object_unpin(obj);
2332 Serge 1200
err_unref:
2344 Serge 1201
	drm_gem_object_unreference(&obj->base);
2332 Serge 1202
err:
1203
	return ret;
1204
}
1205
 
4104 Serge 1206
static int init_phys_status_page(struct intel_ring_buffer *ring)
3243 Serge 1207
{
1208
    struct drm_i915_private *dev_priv = ring->dev->dev_private;
1209
 
1210
    if (!dev_priv->status_page_dmah) {
1211
        dev_priv->status_page_dmah =
1212
            drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1213
        if (!dev_priv->status_page_dmah)
1214
            return -ENOMEM;
1215
    }
1216
 
1217
    ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1218
    memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1219
 
1220
    return 0;
1221
}
1222
 
3031 serge 1223
static int intel_init_ring_buffer(struct drm_device *dev,
2332 Serge 1224
			   struct intel_ring_buffer *ring)
1225
{
2340 Serge 1226
	struct drm_i915_gem_object *obj;
3031 serge 1227
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 1228
	int ret;
2340 Serge 1229
 
2332 Serge 1230
	ring->dev = dev;
1231
	INIT_LIST_HEAD(&ring->active_list);
1232
	INIT_LIST_HEAD(&ring->request_list);
3031 serge 1233
	ring->size = 32 * PAGE_SIZE;
3243 Serge 1234
	memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
2332 Serge 1235
 
2352 Serge 1236
	init_waitqueue_head(&ring->irq_queue);
2332 Serge 1237
 
1238
	if (I915_NEED_GFX_HWS(dev)) {
2340 Serge 1239
       ret = init_status_page(ring);
1240
       if (ret)
1241
           return ret;
3243 Serge 1242
	} else {
1243
		BUG_ON(ring->id != RCS);
4104 Serge 1244
		ret = init_phys_status_page(ring);
3243 Serge 1245
		if (ret)
1246
			return ret;
2332 Serge 1247
	}
1248
 
3480 Serge 1249
	obj = NULL;
4371 Serge 1250
	if (!HAS_LLC(dev))
1251
		obj = i915_gem_object_create_stolen(dev, ring->size);
3480 Serge 1252
	if (obj == NULL)
2332 Serge 1253
    obj = i915_gem_alloc_object(dev, ring->size);
1254
	if (obj == NULL) {
1255
		DRM_ERROR("Failed to allocate ringbuffer\n");
1256
		ret = -ENOMEM;
1257
		goto err_hws;
1258
	}
1259
 
1260
	ring->obj = obj;
1261
 
4104 Serge 1262
	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false);
2332 Serge 1263
	if (ret)
1264
		goto err_unref;
1265
 
3031 serge 1266
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1267
	if (ret)
1268
		goto err_unpin;
2332 Serge 1269
 
3031 serge 1270
	ring->virtual_start =
4104 Serge 1271
		ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
3031 serge 1272
			   ring->size);
1273
	if (ring->virtual_start == NULL) {
2332 Serge 1274
		DRM_ERROR("Failed to map ringbuffer.\n");
1275
		ret = -EINVAL;
1276
		goto err_unpin;
1277
	}
1278
 
1279
	ret = ring->init(ring);
1280
	if (ret)
1281
		goto err_unmap;
1282
 
1283
	/* Workaround an erratum on the i830 which causes a hang if
1284
	 * the TAIL pointer points to within the last 2 cachelines
1285
	 * of the buffer.
1286
	 */
1287
	ring->effective_size = ring->size;
3031 serge 1288
	if (IS_I830(ring->dev) || IS_845G(ring->dev))
2332 Serge 1289
		ring->effective_size -= 128;
2340 Serge 1290
 
2332 Serge 1291
	return 0;
1292
 
1293
err_unmap:
3480 Serge 1294
	iounmap(ring->virtual_start);
2332 Serge 1295
err_unpin:
2344 Serge 1296
	i915_gem_object_unpin(obj);
2332 Serge 1297
err_unref:
2344 Serge 1298
	drm_gem_object_unreference(&obj->base);
2332 Serge 1299
	ring->obj = NULL;
1300
err_hws:
1301
//   cleanup_status_page(ring);
1302
	return ret;
1303
}
1304
 
1305
void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1306
{
1307
	struct drm_i915_private *dev_priv;
1308
	int ret;
1309
 
1310
	if (ring->obj == NULL)
1311
		return;
1312
 
1313
	/* Disable the ring buffer. The ring must be idle at this point */
1314
	dev_priv = ring->dev->dev_private;
3243 Serge 1315
	ret = intel_ring_idle(ring);
2332 Serge 1316
	if (ret)
1317
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1318
			  ring->name, ret);
1319
 
1320
	I915_WRITE_CTL(ring, 0);
1321
 
3480 Serge 1322
	iounmap(ring->virtual_start);
2332 Serge 1323
 
2344 Serge 1324
    i915_gem_object_unpin(ring->obj);
1325
	drm_gem_object_unreference(&ring->obj->base);
2332 Serge 1326
	ring->obj = NULL;
1327
 
1328
	if (ring->cleanup)
1329
		ring->cleanup(ring);
1330
 
1331
//   cleanup_status_page(ring);
1332
}
1333
 
3031 serge 1334
static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
2332 Serge 1335
{
3031 serge 1336
	int ret;
2332 Serge 1337
 
3031 serge 1338
	ret = i915_wait_seqno(ring, seqno);
1339
	if (!ret)
1340
		i915_gem_retire_requests_ring(ring);
1341
 
1342
	return ret;
1343
}
1344
 
1345
static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1346
{
1347
	struct drm_i915_gem_request *request;
1348
	u32 seqno = 0;
1349
	int ret;
1350
 
1351
	i915_gem_retire_requests_ring(ring);
1352
 
1353
	if (ring->last_retired_head != -1) {
1354
		ring->head = ring->last_retired_head;
1355
		ring->last_retired_head = -1;
2332 Serge 1356
		ring->space = ring_space(ring);
1357
		if (ring->space >= n)
1358
			return 0;
1359
	}
1360
 
3031 serge 1361
	list_for_each_entry(request, &ring->request_list, list) {
1362
		int space;
2344 Serge 1363
 
3031 serge 1364
		if (request->tail == -1)
1365
			continue;
1366
 
3243 Serge 1367
		space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
3031 serge 1368
		if (space < 0)
1369
			space += ring->size;
1370
		if (space >= n) {
1371
			seqno = request->seqno;
1372
			break;
1373
		}
1374
 
1375
		/* Consume this request in case we need more space than
1376
		 * is available and so need to prevent a race between
1377
		 * updating last_retired_head and direct reads of
1378
		 * I915_RING_HEAD. It also provides a nice sanity check.
1379
		 */
1380
		request->tail = -1;
1381
	}
1382
 
1383
	if (seqno == 0)
1384
		return -ENOSPC;
1385
 
1386
	ret = intel_ring_wait_seqno(ring, seqno);
1387
	if (ret)
1388
		return ret;
1389
 
1390
	if (WARN_ON(ring->last_retired_head == -1))
1391
		return -ENOSPC;
1392
 
1393
	ring->head = ring->last_retired_head;
1394
	ring->last_retired_head = -1;
1395
	ring->space = ring_space(ring);
1396
	if (WARN_ON(ring->space < n))
1397
		return -ENOSPC;
1398
 
1399
	return 0;
1400
}
1401
 
3243 Serge 1402
static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
3031 serge 1403
{
1404
	struct drm_device *dev = ring->dev;
1405
	struct drm_i915_private *dev_priv = dev->dev_private;
1406
	unsigned long end;
1407
	int ret;
1408
 
1409
	ret = intel_ring_wait_request(ring, n);
1410
	if (ret != -ENOSPC)
1411
		return ret;
1412
 
3243 Serge 1413
	trace_i915_ring_wait_begin(ring);
3031 serge 1414
	/* With GEM the hangcheck timer should kick us out of the loop,
1415
	 * leaving it early runs the risk of corrupting GEM state (due
1416
	 * to running on almost untested codepaths). But on resume
1417
	 * timers don't work yet, so prevent a complete hang in that
1418
	 * case by choosing an insanely large timeout. */
1419
	end = GetTimerTicks() + 60 * HZ;
1420
 
2332 Serge 1421
	do {
1422
		ring->head = I915_READ_HEAD(ring);
1423
		ring->space = ring_space(ring);
1424
		if (ring->space >= n) {
2351 Serge 1425
			trace_i915_ring_wait_end(ring);
2332 Serge 1426
			return 0;
1427
		}
1428
 
1429
		msleep(1);
3031 serge 1430
 
3480 Serge 1431
		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1432
					   dev_priv->mm.interruptible);
3031 serge 1433
		if (ret)
1434
			return ret;
1435
    } while (!time_after(GetTimerTicks(), end));
2351 Serge 1436
	trace_i915_ring_wait_end(ring);
2332 Serge 1437
	return -EBUSY;
1438
}
1439
 
3243 Serge 1440
static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1441
{
1442
	uint32_t __iomem *virt;
1443
	int rem = ring->size - ring->tail;
1444
 
1445
	if (ring->space < rem) {
1446
		int ret = ring_wait_for_space(ring, rem);
1447
		if (ret)
1448
			return ret;
1449
	}
1450
 
1451
	virt = ring->virtual_start + ring->tail;
1452
	rem /= 4;
1453
	while (rem--)
1454
		iowrite32(MI_NOOP, virt++);
1455
 
1456
	ring->tail = 0;
1457
	ring->space = ring_space(ring);
1458
 
1459
	return 0;
1460
}
1461
 
1462
int intel_ring_idle(struct intel_ring_buffer *ring)
1463
{
1464
	u32 seqno;
1465
	int ret;
1466
 
1467
	/* We need to add any requests required to flush the objects and ring */
1468
	if (ring->outstanding_lazy_request) {
4104 Serge 1469
		ret = i915_add_request(ring, NULL);
3243 Serge 1470
		if (ret)
1471
			return ret;
1472
	}
1473
 
1474
	/* Wait upon the last request to be completed */
1475
	if (list_empty(&ring->request_list))
1476
		return 0;
1477
 
1478
	seqno = list_entry(ring->request_list.prev,
1479
			   struct drm_i915_gem_request,
1480
			   list)->seqno;
1481
 
1482
	return i915_wait_seqno(ring, seqno);
1483
}
1484
 
1485
static int
1486
intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1487
{
1488
	if (ring->outstanding_lazy_request)
1489
		return 0;
1490
 
1491
	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1492
}
1493
 
3480 Serge 1494
static int __intel_ring_begin(struct intel_ring_buffer *ring,
1495
			      int bytes)
1496
{
1497
	int ret;
1498
 
1499
	if (unlikely(ring->tail + bytes > ring->effective_size)) {
1500
		ret = intel_wrap_ring_buffer(ring);
1501
		if (unlikely(ret))
1502
			return ret;
1503
	}
1504
 
1505
	if (unlikely(ring->space < bytes)) {
1506
		ret = ring_wait_for_space(ring, bytes);
1507
		if (unlikely(ret))
1508
			return ret;
1509
	}
1510
 
1511
	ring->space -= bytes;
1512
	return 0;
1513
}
1514
 
2332 Serge 1515
int intel_ring_begin(struct intel_ring_buffer *ring,
1516
		     int num_dwords)
1517
{
3031 serge 1518
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
2332 Serge 1519
	int ret;
1520
 
3480 Serge 1521
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1522
				   dev_priv->mm.interruptible);
3031 serge 1523
	if (ret)
1524
		return ret;
2332 Serge 1525
 
3243 Serge 1526
	/* Preallocate the olr before touching the ring */
1527
	ret = intel_ring_alloc_seqno(ring);
1528
	if (ret)
1529
		return ret;
1530
 
3480 Serge 1531
	return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1532
}
2332 Serge 1533
 
3480 Serge 1534
void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1535
{
1536
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1537
 
1538
	BUG_ON(ring->outstanding_lazy_request);
1539
 
1540
	if (INTEL_INFO(ring->dev)->gen >= 6) {
1541
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1542
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
4104 Serge 1543
		if (HAS_VEBOX(ring->dev))
1544
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2332 Serge 1545
	}
1546
 
3480 Serge 1547
	ring->set_seqno(ring, seqno);
4104 Serge 1548
	ring->hangcheck.seqno = seqno;
2332 Serge 1549
}
1550
 
1551
void intel_ring_advance(struct intel_ring_buffer *ring)
1552
{
3031 serge 1553
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1554
 
2332 Serge 1555
	ring->tail &= ring->size - 1;
3480 Serge 1556
	if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
3031 serge 1557
		return;
2332 Serge 1558
	ring->write_tail(ring, ring->tail);
1559
}
1560
 
1561
 
1562
static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1563
				     u32 value)
1564
{
1565
       drm_i915_private_t *dev_priv = ring->dev->dev_private;
1566
 
1567
       /* Every tail move must follow the sequence below */
3031 serge 1568
 
1569
	/* Disable notification that the ring is IDLE. The GT
1570
	 * will then assume that it is busy and bring it out of rc6.
1571
	 */
2332 Serge 1572
       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 1573
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 1574
 
3031 serge 1575
	/* Clear the context id. Here be magic! */
1576
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1577
 
1578
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2332 Serge 1579
       if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
3031 serge 1580
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2332 Serge 1581
                       50))
3031 serge 1582
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2332 Serge 1583
 
3031 serge 1584
	/* Now that the ring is fully powered up, update the tail */
2332 Serge 1585
       I915_WRITE_TAIL(ring, value);
3031 serge 1586
	POSTING_READ(RING_TAIL(ring->mmio_base));
1587
 
1588
	/* Let the ring send IDLE messages to the GT again,
1589
	 * and so let it sleep to conserve power when idle.
1590
	 */
2332 Serge 1591
       I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
3031 serge 1592
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2332 Serge 1593
}
1594
 
4104 Serge 1595
static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
2332 Serge 1596
			   u32 invalidate, u32 flush)
1597
{
1598
	uint32_t cmd;
1599
	int ret;
1600
 
1601
	ret = intel_ring_begin(ring, 4);
1602
	if (ret)
1603
		return ret;
1604
 
1605
	cmd = MI_FLUSH_DW;
3243 Serge 1606
	/*
1607
	 * Bspec vol 1c.5 - video engine command streamer:
1608
	 * "If ENABLED, all TLBs will be invalidated once the flush
1609
	 * operation is complete. This bit is only valid when the
1610
	 * Post-Sync Operation field is a value of 1h or 3h."
1611
	 */
2332 Serge 1612
	if (invalidate & I915_GEM_GPU_DOMAINS)
3243 Serge 1613
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1614
			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2332 Serge 1615
	intel_ring_emit(ring, cmd);
3243 Serge 1616
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2332 Serge 1617
	intel_ring_emit(ring, 0);
1618
	intel_ring_emit(ring, MI_NOOP);
1619
	intel_ring_advance(ring);
1620
	return 0;
1621
}
1622
 
1623
static int
3243 Serge 1624
hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1625
			      u32 offset, u32 len,
1626
			      unsigned flags)
1627
{
1628
	int ret;
1629
 
1630
	ret = intel_ring_begin(ring, 2);
1631
	if (ret)
1632
		return ret;
1633
 
1634
	intel_ring_emit(ring,
1635
			MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1636
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1637
	/* bit0-7 is the length on GEN6+ */
1638
	intel_ring_emit(ring, offset);
1639
	intel_ring_advance(ring);
1640
 
1641
	return 0;
1642
}
1643
 
1644
static int
2332 Serge 1645
gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
3243 Serge 1646
			      u32 offset, u32 len,
1647
			      unsigned flags)
2332 Serge 1648
{
1649
       int ret;
1650
 
1651
       ret = intel_ring_begin(ring, 2);
1652
       if (ret)
1653
	       return ret;
1654
 
3243 Serge 1655
	intel_ring_emit(ring,
1656
			MI_BATCH_BUFFER_START |
1657
			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2332 Serge 1658
       /* bit0-7 is the length on GEN6+ */
1659
       intel_ring_emit(ring, offset);
1660
       intel_ring_advance(ring);
1661
 
1662
       return 0;
1663
}
1664
 
1665
/* Blitter support (SandyBridge+) */
1666
 
4104 Serge 1667
static int gen6_ring_flush(struct intel_ring_buffer *ring,
2332 Serge 1668
			  u32 invalidate, u32 flush)
1669
{
4104 Serge 1670
	struct drm_device *dev = ring->dev;
2332 Serge 1671
	uint32_t cmd;
1672
	int ret;
1673
 
3031 serge 1674
	ret = intel_ring_begin(ring, 4);
2332 Serge 1675
	if (ret)
1676
		return ret;
1677
 
1678
	cmd = MI_FLUSH_DW;
3243 Serge 1679
	/*
1680
	 * Bspec vol 1c.3 - blitter engine command streamer:
1681
	 * "If ENABLED, all TLBs will be invalidated once the flush
1682
	 * operation is complete. This bit is only valid when the
1683
	 * Post-Sync Operation field is a value of 1h or 3h."
1684
	 */
2332 Serge 1685
	if (invalidate & I915_GEM_DOMAIN_RENDER)
3243 Serge 1686
		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1687
			MI_FLUSH_DW_OP_STOREDW;
2332 Serge 1688
	intel_ring_emit(ring, cmd);
3243 Serge 1689
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2332 Serge 1690
	intel_ring_emit(ring, 0);
1691
	intel_ring_emit(ring, MI_NOOP);
1692
	intel_ring_advance(ring);
4104 Serge 1693
 
1694
	if (IS_GEN7(dev) && flush)
1695
		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1696
 
2332 Serge 1697
	return 0;
1698
}
1699
 
1700
int intel_init_render_ring_buffer(struct drm_device *dev)
1701
{
1702
	drm_i915_private_t *dev_priv = dev->dev_private;
1703
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2340 Serge 1704
 
3031 serge 1705
	ring->name = "render ring";
1706
	ring->id = RCS;
1707
	ring->mmio_base = RENDER_RING_BASE;
1708
 
2332 Serge 1709
	if (INTEL_INFO(dev)->gen >= 6) {
2339 Serge 1710
       ring->add_request = gen6_add_request;
3031 serge 1711
		ring->flush = gen7_render_ring_flush;
1712
		if (INTEL_INFO(dev)->gen == 6)
2342 Serge 1713
		ring->flush = gen6_render_ring_flush;
3031 serge 1714
		ring->irq_get = gen6_ring_get_irq;
1715
		ring->irq_put = gen6_ring_put_irq;
4104 Serge 1716
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2342 Serge 1717
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 1718
		ring->set_seqno = ring_set_seqno;
3031 serge 1719
		ring->sync_to = gen6_ring_sync;
4104 Serge 1720
		ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1721
		ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1722
		ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1723
		ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1724
		ring->signal_mbox[RCS] = GEN6_NOSYNC;
1725
		ring->signal_mbox[VCS] = GEN6_VRSYNC;
1726
		ring->signal_mbox[BCS] = GEN6_BRSYNC;
1727
		ring->signal_mbox[VECS] = GEN6_VERSYNC;
2332 Serge 1728
	} else if (IS_GEN5(dev)) {
2339 Serge 1729
       ring->add_request = pc_render_add_request;
3031 serge 1730
		ring->flush = gen4_render_ring_flush;
2342 Serge 1731
		ring->get_seqno = pc_render_get_seqno;
3480 Serge 1732
		ring->set_seqno = pc_render_set_seqno;
3031 serge 1733
		ring->irq_get = gen5_ring_get_irq;
1734
		ring->irq_put = gen5_ring_put_irq;
4104 Serge 1735
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1736
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
3031 serge 1737
	} else {
1738
		ring->add_request = i9xx_add_request;
1739
		if (INTEL_INFO(dev)->gen < 4)
1740
			ring->flush = gen2_render_ring_flush;
1741
		else
1742
			ring->flush = gen4_render_ring_flush;
1743
		ring->get_seqno = ring_get_seqno;
3480 Serge 1744
		ring->set_seqno = ring_set_seqno;
3031 serge 1745
		if (IS_GEN2(dev)) {
1746
			ring->irq_get = i8xx_ring_get_irq;
1747
			ring->irq_put = i8xx_ring_put_irq;
1748
		} else {
1749
			ring->irq_get = i9xx_ring_get_irq;
1750
			ring->irq_put = i9xx_ring_put_irq;
1751
		}
1752
		ring->irq_enable_mask = I915_USER_INTERRUPT;
2332 Serge 1753
	}
3031 serge 1754
	ring->write_tail = ring_write_tail;
3243 Serge 1755
	if (IS_HASWELL(dev))
1756
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1757
	else if (INTEL_INFO(dev)->gen >= 6)
3031 serge 1758
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1759
	else if (INTEL_INFO(dev)->gen >= 4)
1760
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1761
	else if (IS_I830(dev) || IS_845G(dev))
1762
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1763
	else
1764
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1765
	ring->init = init_render_ring;
1766
	ring->cleanup = render_ring_cleanup;
2332 Serge 1767
 
3243 Serge 1768
	/* Workaround batchbuffer to combat CS tlb bug. */
1769
	if (HAS_BROKEN_CS_TLB(dev)) {
1770
		struct drm_i915_gem_object *obj;
1771
		int ret;
3031 serge 1772
 
3243 Serge 1773
		obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1774
		if (obj == NULL) {
1775
			DRM_ERROR("Failed to allocate batch bo\n");
1776
			return -ENOMEM;
1777
		}
1778
 
4104 Serge 1779
		ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
3243 Serge 1780
		if (ret != 0) {
1781
			drm_gem_object_unreference(&obj->base);
1782
			DRM_ERROR("Failed to ping batch bo\n");
1783
			return ret;
1784
		}
1785
 
4104 Serge 1786
		ring->scratch.obj = obj;
1787
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2332 Serge 1788
	}
2340 Serge 1789
 
2332 Serge 1790
	return intel_init_ring_buffer(dev, ring);
1791
}
1792
 
3243 Serge 1793
#if 0
1794
int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1795
{
1796
	drm_i915_private_t *dev_priv = dev->dev_private;
1797
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1798
	int ret;
2332 Serge 1799
 
3243 Serge 1800
	ring->name = "render ring";
1801
	ring->id = RCS;
1802
	ring->mmio_base = RENDER_RING_BASE;
1803
 
1804
	if (INTEL_INFO(dev)->gen >= 6) {
1805
		/* non-kms not supported on gen6+ */
1806
		return -ENODEV;
1807
	}
1808
 
1809
	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
1810
	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1811
	 * the special gen5 functions. */
1812
	ring->add_request = i9xx_add_request;
1813
	if (INTEL_INFO(dev)->gen < 4)
1814
		ring->flush = gen2_render_ring_flush;
1815
	else
1816
		ring->flush = gen4_render_ring_flush;
1817
	ring->get_seqno = ring_get_seqno;
3480 Serge 1818
	ring->set_seqno = ring_set_seqno;
3243 Serge 1819
	if (IS_GEN2(dev)) {
1820
		ring->irq_get = i8xx_ring_get_irq;
1821
		ring->irq_put = i8xx_ring_put_irq;
1822
	} else {
1823
		ring->irq_get = i9xx_ring_get_irq;
1824
		ring->irq_put = i9xx_ring_put_irq;
1825
	}
1826
	ring->irq_enable_mask = I915_USER_INTERRUPT;
1827
	ring->write_tail = ring_write_tail;
1828
	if (INTEL_INFO(dev)->gen >= 4)
1829
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1830
	else if (IS_I830(dev) || IS_845G(dev))
1831
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1832
	else
1833
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1834
	ring->init = init_render_ring;
1835
	ring->cleanup = render_ring_cleanup;
1836
 
1837
	ring->dev = dev;
1838
	INIT_LIST_HEAD(&ring->active_list);
1839
	INIT_LIST_HEAD(&ring->request_list);
1840
 
1841
	ring->size = size;
1842
	ring->effective_size = ring->size;
1843
	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1844
		ring->effective_size -= 128;
1845
 
1846
	ring->virtual_start = ioremap_wc(start, size);
1847
	if (ring->virtual_start == NULL) {
1848
		DRM_ERROR("can not ioremap virtual address for"
1849
			  " ring buffer\n");
1850
		return -ENOMEM;
1851
	}
1852
 
1853
	if (!I915_NEED_GFX_HWS(dev)) {
4104 Serge 1854
		ret = init_phys_status_page(ring);
3243 Serge 1855
		if (ret)
1856
			return ret;
1857
	}
1858
 
1859
	return 0;
1860
}
1861
#endif
1862
 
2332 Serge 1863
int intel_init_bsd_ring_buffer(struct drm_device *dev)
1864
{
1865
	drm_i915_private_t *dev_priv = dev->dev_private;
1866
	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1867
 
3031 serge 1868
	ring->name = "bsd ring";
1869
	ring->id = VCS;
2332 Serge 1870
 
3031 serge 1871
	ring->write_tail = ring_write_tail;
1872
	if (IS_GEN6(dev) || IS_GEN7(dev)) {
1873
		ring->mmio_base = GEN6_BSD_RING_BASE;
1874
		/* gen6 bsd needs a special wa for tail updates */
1875
		if (IS_GEN6(dev))
1876
			ring->write_tail = gen6_bsd_ring_write_tail;
4104 Serge 1877
		ring->flush = gen6_bsd_ring_flush;
3031 serge 1878
		ring->add_request = gen6_add_request;
1879
		ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 1880
		ring->set_seqno = ring_set_seqno;
4104 Serge 1881
		ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
3031 serge 1882
		ring->irq_get = gen6_ring_get_irq;
1883
		ring->irq_put = gen6_ring_put_irq;
1884
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1885
		ring->sync_to = gen6_ring_sync;
4104 Serge 1886
		ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1887
		ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1888
		ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1889
		ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1890
		ring->signal_mbox[RCS] = GEN6_RVSYNC;
1891
		ring->signal_mbox[VCS] = GEN6_NOSYNC;
1892
		ring->signal_mbox[BCS] = GEN6_BVSYNC;
1893
		ring->signal_mbox[VECS] = GEN6_VEVSYNC;
3031 serge 1894
	} else {
1895
		ring->mmio_base = BSD_RING_BASE;
1896
		ring->flush = bsd_ring_flush;
1897
		ring->add_request = i9xx_add_request;
1898
		ring->get_seqno = ring_get_seqno;
3480 Serge 1899
		ring->set_seqno = ring_set_seqno;
3031 serge 1900
		if (IS_GEN5(dev)) {
4104 Serge 1901
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
3031 serge 1902
			ring->irq_get = gen5_ring_get_irq;
1903
			ring->irq_put = gen5_ring_put_irq;
1904
		} else {
1905
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1906
			ring->irq_get = i9xx_ring_get_irq;
1907
			ring->irq_put = i9xx_ring_put_irq;
1908
		}
1909
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1910
	}
1911
	ring->init = init_ring_common;
1912
 
2332 Serge 1913
	return intel_init_ring_buffer(dev, ring);
1914
}
1915
 
1916
int intel_init_blt_ring_buffer(struct drm_device *dev)
1917
{
1918
	drm_i915_private_t *dev_priv = dev->dev_private;
1919
	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1920
 
3031 serge 1921
	ring->name = "blitter ring";
1922
	ring->id = BCS;
2332 Serge 1923
 
3031 serge 1924
	ring->mmio_base = BLT_RING_BASE;
1925
	ring->write_tail = ring_write_tail;
4104 Serge 1926
	ring->flush = gen6_ring_flush;
3031 serge 1927
	ring->add_request = gen6_add_request;
1928
	ring->get_seqno = gen6_ring_get_seqno;
3480 Serge 1929
	ring->set_seqno = ring_set_seqno;
4104 Serge 1930
	ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3031 serge 1931
	ring->irq_get = gen6_ring_get_irq;
1932
	ring->irq_put = gen6_ring_put_irq;
1933
	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1934
	ring->sync_to = gen6_ring_sync;
4104 Serge 1935
	ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1936
	ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1937
	ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1938
	ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
1939
	ring->signal_mbox[RCS] = GEN6_RBSYNC;
1940
	ring->signal_mbox[VCS] = GEN6_VBSYNC;
1941
	ring->signal_mbox[BCS] = GEN6_NOSYNC;
1942
	ring->signal_mbox[VECS] = GEN6_VEBSYNC;
3031 serge 1943
	ring->init = init_ring_common;
1944
 
2332 Serge 1945
	return intel_init_ring_buffer(dev, ring);
1946
}
3031 serge 1947
 
4104 Serge 1948
int intel_init_vebox_ring_buffer(struct drm_device *dev)
1949
{
1950
	drm_i915_private_t *dev_priv = dev->dev_private;
1951
	struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
1952
 
1953
	ring->name = "video enhancement ring";
1954
	ring->id = VECS;
1955
 
1956
	ring->mmio_base = VEBOX_RING_BASE;
1957
	ring->write_tail = ring_write_tail;
1958
	ring->flush = gen6_ring_flush;
1959
	ring->add_request = gen6_add_request;
1960
	ring->get_seqno = gen6_ring_get_seqno;
1961
	ring->set_seqno = ring_set_seqno;
1962
	ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
1963
	ring->irq_get = hsw_vebox_get_irq;
1964
	ring->irq_put = hsw_vebox_put_irq;
1965
	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1966
	ring->sync_to = gen6_ring_sync;
1967
	ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
1968
	ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
1969
	ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
1970
	ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
1971
	ring->signal_mbox[RCS] = GEN6_RVESYNC;
1972
	ring->signal_mbox[VCS] = GEN6_VVESYNC;
1973
	ring->signal_mbox[BCS] = GEN6_BVESYNC;
1974
	ring->signal_mbox[VECS] = GEN6_NOSYNC;
1975
	ring->init = init_ring_common;
1976
 
1977
	return intel_init_ring_buffer(dev, ring);
1978
}
1979
 
3031 serge 1980
int
1981
intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1982
{
1983
	int ret;
1984
 
1985
	if (!ring->gpu_caches_dirty)
1986
		return 0;
1987
 
1988
	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1989
	if (ret)
1990
		return ret;
1991
 
1992
	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
1993
 
1994
	ring->gpu_caches_dirty = false;
1995
	return 0;
1996
}
1997
 
1998
int
1999
intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2000
{
2001
	uint32_t flush_domains;
2002
	int ret;
2003
 
2004
	flush_domains = 0;
2005
	if (ring->gpu_caches_dirty)
2006
		flush_domains = I915_GEM_GPU_DOMAINS;
2007
 
2008
	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2009
	if (ret)
2010
		return ret;
2011
 
2012
	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2013
 
2014
	ring->gpu_caches_dirty = false;
2015
	return 0;
2016
}