Subversion Repositories Kolibri OS

Rev

Rev 6084 | Rev 6935 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3031 serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eugeni Dodonov 
25
 *
26
 */
27
 
28
//#include 
29
#include "i915_drv.h"
30
#include "intel_drv.h"
31
//#include "../../../platform/x86/intel_ips.h"
32
#include 
33
 
4560 Serge 34
 
3031 serge 35
#define FORCEWAKE_ACK_TIMEOUT_MS 2
36
 
37
void getrawmonotonic(struct timespec *ts);
38
 
4560 Serge 39
/**
40
 * RC6 is a special power stage which allows the GPU to enter an very
41
 * low-voltage mode when idle, using down to 0V while at this stage.  This
42
 * stage is entered automatically when the GPU is idle when RC6 support is
43
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
44
 *
45
 * There are different RC6 modes available in Intel GPU, which differentiate
46
 * among each other with the latency required to enter and leave RC6 and
47
 * voltage consumed by the GPU in different states.
48
 *
49
 * The combination of the following flags define which states GPU is allowed
50
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
51
 * RC6pp is deepest RC6. Their support by hardware varies according to the
52
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
53
 * which brings the most power savings; deeper states save more power, but
54
 * require higher latency to switch to and wake up.
55
 */
56
#define INTEL_RC6_ENABLE			(1<<0)
57
#define INTEL_RC6p_ENABLE			(1<<1)
58
#define INTEL_RC6pp_ENABLE			(1<<2)
59
 
6084 serge 60
static void bxt_init_clock_gating(struct drm_device *dev)
5354 serge 61
{
62
	struct drm_i915_private *dev_priv = dev->dev_private;
63
 
6084 serge 64
	/* WaDisableSDEUnitClockGating:bxt */
5354 serge 65
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
66
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
67
 
68
	/*
6084 serge 69
	 * FIXME:
70
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
5354 serge 71
	 */
6084 serge 72
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
73
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
5354 serge 74
}
75
 
3031 serge 76
static void i915_pineview_get_mem_freq(struct drm_device *dev)
77
{
5060 serge 78
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 79
	u32 tmp;
80
 
81
	tmp = I915_READ(CLKCFG);
82
 
83
	switch (tmp & CLKCFG_FSB_MASK) {
84
	case CLKCFG_FSB_533:
85
		dev_priv->fsb_freq = 533; /* 133*4 */
86
		break;
87
	case CLKCFG_FSB_800:
88
		dev_priv->fsb_freq = 800; /* 200*4 */
89
		break;
90
	case CLKCFG_FSB_667:
91
		dev_priv->fsb_freq =  667; /* 167*4 */
92
		break;
93
	case CLKCFG_FSB_400:
94
		dev_priv->fsb_freq = 400; /* 100*4 */
95
		break;
96
	}
97
 
98
	switch (tmp & CLKCFG_MEM_MASK) {
99
	case CLKCFG_MEM_533:
100
		dev_priv->mem_freq = 533;
101
		break;
102
	case CLKCFG_MEM_667:
103
		dev_priv->mem_freq = 667;
104
		break;
105
	case CLKCFG_MEM_800:
106
		dev_priv->mem_freq = 800;
107
		break;
108
	}
109
 
110
	/* detect pineview DDR3 setting */
111
	tmp = I915_READ(CSHRDDR3CTL);
112
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
113
}
114
 
115
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
116
{
5060 serge 117
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 118
	u16 ddrpll, csipll;
119
 
120
	ddrpll = I915_READ16(DDRMPLL1);
121
	csipll = I915_READ16(CSIPLL0);
122
 
123
	switch (ddrpll & 0xff) {
124
	case 0xc:
125
		dev_priv->mem_freq = 800;
126
		break;
127
	case 0x10:
128
		dev_priv->mem_freq = 1066;
129
		break;
130
	case 0x14:
131
		dev_priv->mem_freq = 1333;
132
		break;
133
	case 0x18:
134
		dev_priv->mem_freq = 1600;
135
		break;
136
	default:
137
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
138
				 ddrpll & 0xff);
139
		dev_priv->mem_freq = 0;
140
		break;
141
	}
142
 
143
	dev_priv->ips.r_t = dev_priv->mem_freq;
144
 
145
	switch (csipll & 0x3ff) {
146
	case 0x00c:
147
		dev_priv->fsb_freq = 3200;
148
		break;
149
	case 0x00e:
150
		dev_priv->fsb_freq = 3733;
151
		break;
152
	case 0x010:
153
		dev_priv->fsb_freq = 4266;
154
		break;
155
	case 0x012:
156
		dev_priv->fsb_freq = 4800;
157
		break;
158
	case 0x014:
159
		dev_priv->fsb_freq = 5333;
160
		break;
161
	case 0x016:
162
		dev_priv->fsb_freq = 5866;
163
		break;
164
	case 0x018:
165
		dev_priv->fsb_freq = 6400;
166
		break;
167
	default:
168
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
169
				 csipll & 0x3ff);
170
		dev_priv->fsb_freq = 0;
171
		break;
172
	}
173
 
174
	if (dev_priv->fsb_freq == 3200) {
175
		dev_priv->ips.c_m = 0;
176
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
177
		dev_priv->ips.c_m = 1;
178
	} else {
179
		dev_priv->ips.c_m = 2;
180
	}
181
}
182
 
183
static const struct cxsr_latency cxsr_latency_table[] = {
184
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
185
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
186
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
187
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
188
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
189
 
190
	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
191
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
192
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
193
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
194
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
195
 
196
	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
197
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
198
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
199
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
200
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
201
 
202
	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
203
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
204
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
205
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
206
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
207
 
208
	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
209
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
210
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
211
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
212
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
213
 
214
	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
215
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
216
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
217
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
218
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
219
};
220
 
221
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
222
							 int is_ddr3,
223
							 int fsb,
224
							 int mem)
225
{
226
	const struct cxsr_latency *latency;
227
	int i;
228
 
229
	if (fsb == 0 || mem == 0)
230
		return NULL;
231
 
232
	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
233
		latency = &cxsr_latency_table[i];
234
		if (is_desktop == latency->is_desktop &&
235
		    is_ddr3 == latency->is_ddr3 &&
236
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
237
			return latency;
238
	}
239
 
240
	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
241
 
242
	return NULL;
243
}
244
 
6084 serge 245
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
246
{
247
	u32 val;
248
 
249
	mutex_lock(&dev_priv->rps.hw_lock);
250
 
251
	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
252
	if (enable)
253
		val &= ~FORCE_DDR_HIGH_FREQ;
254
	else
255
		val |= FORCE_DDR_HIGH_FREQ;
256
	val &= ~FORCE_DDR_LOW_FREQ;
257
	val |= FORCE_DDR_FREQ_REQ_ACK;
258
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
259
 
260
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
261
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
262
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
263
 
264
	mutex_unlock(&dev_priv->rps.hw_lock);
265
}
266
 
267
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
268
{
269
	u32 val;
270
 
271
	mutex_lock(&dev_priv->rps.hw_lock);
272
 
273
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
274
	if (enable)
275
		val |= DSP_MAXFIFO_PM5_ENABLE;
276
	else
277
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
278
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
279
 
280
	mutex_unlock(&dev_priv->rps.hw_lock);
281
}
282
 
283
#define FW_WM(value, plane) \
284
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
285
 
5060 serge 286
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
3031 serge 287
{
5060 serge 288
	struct drm_device *dev = dev_priv->dev;
289
	u32 val;
3031 serge 290
 
5060 serge 291
	if (IS_VALLEYVIEW(dev)) {
292
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
6084 serge 293
		POSTING_READ(FW_BLC_SELF_VLV);
294
		dev_priv->wm.vlv.cxsr = enable;
5060 serge 295
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
296
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
6084 serge 297
		POSTING_READ(FW_BLC_SELF);
5060 serge 298
	} else if (IS_PINEVIEW(dev)) {
299
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
300
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
301
		I915_WRITE(DSPFW3, val);
6084 serge 302
		POSTING_READ(DSPFW3);
5060 serge 303
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
304
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
305
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
306
		I915_WRITE(FW_BLC_SELF, val);
6084 serge 307
		POSTING_READ(FW_BLC_SELF);
5060 serge 308
	} else if (IS_I915GM(dev)) {
309
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
310
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
311
		I915_WRITE(INSTPM, val);
6084 serge 312
		POSTING_READ(INSTPM);
5060 serge 313
	} else {
314
		return;
315
	}
316
 
317
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
318
		      enable ? "enabled" : "disabled");
3031 serge 319
}
320
 
6084 serge 321
 
3031 serge 322
/*
323
 * Latency for FIFO fetches is dependent on several factors:
324
 *   - memory configuration (speed, channels)
325
 *   - chipset
326
 *   - current MCH state
327
 * It can be fairly high in some situations, so here we assume a fairly
328
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
329
 * set this value too high, the FIFO will fetch frequently to stay full)
330
 * and power consumption (set it too low to save power and we might see
331
 * FIFO underruns and display "flicker").
332
 *
333
 * A value of 5us seems to be a good balance; safe for very low end
334
 * platforms but not overly aggressive on lower latency configs.
335
 */
5354 serge 336
static const int pessimal_latency_ns = 5000;
3031 serge 337
 
6084 serge 338
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
339
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
340
 
341
static int vlv_get_fifo_size(struct drm_device *dev,
342
			      enum pipe pipe, int plane)
343
{
344
	struct drm_i915_private *dev_priv = dev->dev_private;
345
	int sprite0_start, sprite1_start, size;
346
 
347
	switch (pipe) {
348
		uint32_t dsparb, dsparb2, dsparb3;
349
	case PIPE_A:
350
		dsparb = I915_READ(DSPARB);
351
		dsparb2 = I915_READ(DSPARB2);
352
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
353
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
354
		break;
355
	case PIPE_B:
356
		dsparb = I915_READ(DSPARB);
357
		dsparb2 = I915_READ(DSPARB2);
358
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
359
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
360
		break;
361
	case PIPE_C:
362
		dsparb2 = I915_READ(DSPARB2);
363
		dsparb3 = I915_READ(DSPARB3);
364
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
365
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
366
		break;
367
	default:
368
		return 0;
369
	}
370
 
371
	switch (plane) {
372
	case 0:
373
		size = sprite0_start;
374
		break;
375
	case 1:
376
		size = sprite1_start - sprite0_start;
377
		break;
378
	case 2:
379
		size = 512 - 1 - sprite1_start;
380
		break;
381
	default:
382
		return 0;
383
	}
384
 
385
	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
386
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
387
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
388
		      size);
389
 
390
	return size;
391
}
392
 
3031 serge 393
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
394
{
395
	struct drm_i915_private *dev_priv = dev->dev_private;
396
	uint32_t dsparb = I915_READ(DSPARB);
397
	int size;
398
 
399
	size = dsparb & 0x7f;
400
	if (plane)
401
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
402
 
403
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
404
		      plane ? "B" : "A", size);
405
 
406
	return size;
407
}
408
 
4560 Serge 409
static int i830_get_fifo_size(struct drm_device *dev, int plane)
3031 serge 410
{
411
	struct drm_i915_private *dev_priv = dev->dev_private;
412
	uint32_t dsparb = I915_READ(DSPARB);
413
	int size;
414
 
415
	size = dsparb & 0x1ff;
416
	if (plane)
417
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
418
	size >>= 1; /* Convert to cachelines */
419
 
420
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
421
		      plane ? "B" : "A", size);
422
 
423
	return size;
424
}
425
 
426
static int i845_get_fifo_size(struct drm_device *dev, int plane)
427
{
428
	struct drm_i915_private *dev_priv = dev->dev_private;
429
	uint32_t dsparb = I915_READ(DSPARB);
430
	int size;
431
 
432
	size = dsparb & 0x7f;
433
	size >>= 2; /* Convert to cachelines */
434
 
435
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
436
		      plane ? "B" : "A",
437
		      size);
438
 
439
	return size;
440
}
441
 
442
/* Pineview has different values for various configs */
443
static const struct intel_watermark_params pineview_display_wm = {
5060 serge 444
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
445
	.max_wm = PINEVIEW_MAX_WM,
446
	.default_wm = PINEVIEW_DFT_WM,
447
	.guard_size = PINEVIEW_GUARD_WM,
448
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 449
};
450
static const struct intel_watermark_params pineview_display_hplloff_wm = {
5060 serge 451
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
452
	.max_wm = PINEVIEW_MAX_WM,
453
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
454
	.guard_size = PINEVIEW_GUARD_WM,
455
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 456
};
457
static const struct intel_watermark_params pineview_cursor_wm = {
5060 serge 458
	.fifo_size = PINEVIEW_CURSOR_FIFO,
459
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
460
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
461
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
462
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 463
};
464
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
5060 serge 465
	.fifo_size = PINEVIEW_CURSOR_FIFO,
466
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
467
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
468
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
469
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 470
};
471
static const struct intel_watermark_params g4x_wm_info = {
5060 serge 472
	.fifo_size = G4X_FIFO_SIZE,
473
	.max_wm = G4X_MAX_WM,
474
	.default_wm = G4X_MAX_WM,
475
	.guard_size = 2,
476
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 477
};
478
static const struct intel_watermark_params g4x_cursor_wm_info = {
5060 serge 479
	.fifo_size = I965_CURSOR_FIFO,
480
	.max_wm = I965_CURSOR_MAX_WM,
481
	.default_wm = I965_CURSOR_DFT_WM,
482
	.guard_size = 2,
483
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 484
};
485
static const struct intel_watermark_params valleyview_wm_info = {
5060 serge 486
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
487
	.max_wm = VALLEYVIEW_MAX_WM,
488
	.default_wm = VALLEYVIEW_MAX_WM,
489
	.guard_size = 2,
490
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 491
};
492
static const struct intel_watermark_params valleyview_cursor_wm_info = {
5060 serge 493
	.fifo_size = I965_CURSOR_FIFO,
494
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
495
	.default_wm = I965_CURSOR_DFT_WM,
496
	.guard_size = 2,
497
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 498
};
499
static const struct intel_watermark_params i965_cursor_wm_info = {
5060 serge 500
	.fifo_size = I965_CURSOR_FIFO,
501
	.max_wm = I965_CURSOR_MAX_WM,
502
	.default_wm = I965_CURSOR_DFT_WM,
503
	.guard_size = 2,
504
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 505
};
506
static const struct intel_watermark_params i945_wm_info = {
5060 serge 507
	.fifo_size = I945_FIFO_SIZE,
508
	.max_wm = I915_MAX_WM,
509
	.default_wm = 1,
510
	.guard_size = 2,
511
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 512
};
513
static const struct intel_watermark_params i915_wm_info = {
5060 serge 514
	.fifo_size = I915_FIFO_SIZE,
515
	.max_wm = I915_MAX_WM,
516
	.default_wm = 1,
517
	.guard_size = 2,
518
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 519
};
5354 serge 520
static const struct intel_watermark_params i830_a_wm_info = {
5060 serge 521
	.fifo_size = I855GM_FIFO_SIZE,
522
	.max_wm = I915_MAX_WM,
523
	.default_wm = 1,
524
	.guard_size = 2,
525
	.cacheline_size = I830_FIFO_LINE_SIZE,
3031 serge 526
};
5354 serge 527
static const struct intel_watermark_params i830_bc_wm_info = {
528
	.fifo_size = I855GM_FIFO_SIZE,
529
	.max_wm = I915_MAX_WM/2,
530
	.default_wm = 1,
531
	.guard_size = 2,
532
	.cacheline_size = I830_FIFO_LINE_SIZE,
533
};
4560 Serge 534
static const struct intel_watermark_params i845_wm_info = {
5060 serge 535
	.fifo_size = I830_FIFO_SIZE,
536
	.max_wm = I915_MAX_WM,
537
	.default_wm = 1,
538
	.guard_size = 2,
539
	.cacheline_size = I830_FIFO_LINE_SIZE,
3031 serge 540
};
541
 
542
/**
543
 * intel_calculate_wm - calculate watermark level
544
 * @clock_in_khz: pixel clock
545
 * @wm: chip FIFO params
546
 * @pixel_size: display pixel size
547
 * @latency_ns: memory latency for the platform
548
 *
549
 * Calculate the watermark level (the level at which the display plane will
550
 * start fetching from memory again).  Each chip has a different display
551
 * FIFO size and allocation, so the caller needs to figure that out and pass
552
 * in the correct intel_watermark_params structure.
553
 *
554
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
555
 * on the pixel size.  When it reaches the watermark level, it'll start
556
 * fetching FIFO line sized based chunks from memory until the FIFO fills
557
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
558
 * will occur, and a display engine hang could result.
559
 */
560
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
561
					const struct intel_watermark_params *wm,
562
					int fifo_size,
563
					int pixel_size,
564
					unsigned long latency_ns)
565
{
566
	long entries_required, wm_size;
567
 
568
	/*
569
	 * Note: we need to make sure we don't overflow for various clock &
570
	 * latency values.
571
	 * clocks go from a few thousand to several hundred thousand.
572
	 * latency is usually a few thousand
573
	 */
574
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
575
		1000;
576
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
577
 
578
	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
579
 
580
	wm_size = fifo_size - (entries_required + wm->guard_size);
581
 
582
	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
583
 
584
	/* Don't promote wm_size to unsigned... */
585
	if (wm_size > (long)wm->max_wm)
586
		wm_size = wm->max_wm;
587
	if (wm_size <= 0)
588
		wm_size = wm->default_wm;
5354 serge 589
 
590
	/*
591
	 * Bspec seems to indicate that the value shouldn't be lower than
592
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
593
	 * Lets go for 8 which is the burst size since certain platforms
594
	 * already use a hardcoded 8 (which is what the spec says should be
595
	 * done).
596
	 */
597
	if (wm_size <= 8)
598
		wm_size = 8;
599
 
3031 serge 600
	return wm_size;
601
}
602
 
603
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
604
{
605
	struct drm_crtc *crtc, *enabled = NULL;
606
 
5060 serge 607
	for_each_crtc(dev, crtc) {
3243 Serge 608
		if (intel_crtc_active(crtc)) {
3031 serge 609
			if (enabled)
610
				return NULL;
611
			enabled = crtc;
612
		}
613
	}
614
 
615
	return enabled;
616
}
617
 
4560 Serge 618
static void pineview_update_wm(struct drm_crtc *unused_crtc)
3031 serge 619
{
4560 Serge 620
	struct drm_device *dev = unused_crtc->dev;
3031 serge 621
	struct drm_i915_private *dev_priv = dev->dev_private;
622
	struct drm_crtc *crtc;
623
	const struct cxsr_latency *latency;
624
	u32 reg;
625
	unsigned long wm;
626
 
627
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
628
					 dev_priv->fsb_freq, dev_priv->mem_freq);
629
	if (!latency) {
630
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
5060 serge 631
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 632
		return;
633
	}
634
 
635
	crtc = single_enabled_crtc(dev);
636
	if (crtc) {
6084 serge 637
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
638
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
639
		int clock = adjusted_mode->crtc_clock;
3031 serge 640
 
641
		/* Display SR */
642
		wm = intel_calculate_wm(clock, &pineview_display_wm,
643
					pineview_display_wm.fifo_size,
644
					pixel_size, latency->display_sr);
645
		reg = I915_READ(DSPFW1);
646
		reg &= ~DSPFW_SR_MASK;
6084 serge 647
		reg |= FW_WM(wm, SR);
3031 serge 648
		I915_WRITE(DSPFW1, reg);
649
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
650
 
651
		/* cursor SR */
652
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
653
					pineview_display_wm.fifo_size,
654
					pixel_size, latency->cursor_sr);
655
		reg = I915_READ(DSPFW3);
656
		reg &= ~DSPFW_CURSOR_SR_MASK;
6084 serge 657
		reg |= FW_WM(wm, CURSOR_SR);
3031 serge 658
		I915_WRITE(DSPFW3, reg);
659
 
660
		/* Display HPLL off SR */
661
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
662
					pineview_display_hplloff_wm.fifo_size,
663
					pixel_size, latency->display_hpll_disable);
664
		reg = I915_READ(DSPFW3);
665
		reg &= ~DSPFW_HPLL_SR_MASK;
6084 serge 666
		reg |= FW_WM(wm, HPLL_SR);
3031 serge 667
		I915_WRITE(DSPFW3, reg);
668
 
669
		/* cursor HPLL off SR */
670
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
671
					pineview_display_hplloff_wm.fifo_size,
672
					pixel_size, latency->cursor_hpll_disable);
673
		reg = I915_READ(DSPFW3);
674
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
6084 serge 675
		reg |= FW_WM(wm, HPLL_CURSOR);
3031 serge 676
		I915_WRITE(DSPFW3, reg);
677
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
678
 
5060 serge 679
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 680
	} else {
5060 serge 681
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 682
	}
683
}
684
 
685
static bool g4x_compute_wm0(struct drm_device *dev,
686
			    int plane,
687
			    const struct intel_watermark_params *display,
688
			    int display_latency_ns,
689
			    const struct intel_watermark_params *cursor,
690
			    int cursor_latency_ns,
691
			    int *plane_wm,
692
			    int *cursor_wm)
693
{
694
	struct drm_crtc *crtc;
4560 Serge 695
	const struct drm_display_mode *adjusted_mode;
3031 serge 696
	int htotal, hdisplay, clock, pixel_size;
697
	int line_time_us, line_count;
698
	int entries, tlb_miss;
699
 
700
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 701
	if (!intel_crtc_active(crtc)) {
3031 serge 702
		*cursor_wm = cursor->guard_size;
703
		*plane_wm = display->guard_size;
6084 serge 704
		return false;
3031 serge 705
	}
706
 
6084 serge 707
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 708
	clock = adjusted_mode->crtc_clock;
709
	htotal = adjusted_mode->crtc_htotal;
6084 serge 710
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
711
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 712
 
713
	/* Use the small buffer method to calculate plane watermark */
714
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
715
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
716
	if (tlb_miss > 0)
717
		entries += tlb_miss;
718
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
719
	*plane_wm = entries + display->guard_size;
720
	if (*plane_wm > (int)display->max_wm)
721
		*plane_wm = display->max_wm;
722
 
723
	/* Use the large buffer method to calculate cursor watermark */
5060 serge 724
	line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 725
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
6084 serge 726
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
3031 serge 727
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
728
	if (tlb_miss > 0)
729
		entries += tlb_miss;
730
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
731
	*cursor_wm = entries + cursor->guard_size;
732
	if (*cursor_wm > (int)cursor->max_wm)
733
		*cursor_wm = (int)cursor->max_wm;
734
 
735
	return true;
736
}
737
 
738
/*
739
 * Check the wm result.
740
 *
741
 * If any calculated watermark values is larger than the maximum value that
742
 * can be programmed into the associated watermark register, that watermark
743
 * must be disabled.
744
 */
745
static bool g4x_check_srwm(struct drm_device *dev,
746
			   int display_wm, int cursor_wm,
747
			   const struct intel_watermark_params *display,
748
			   const struct intel_watermark_params *cursor)
749
{
750
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
751
		      display_wm, cursor_wm);
752
 
753
	if (display_wm > display->max_wm) {
754
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
755
			      display_wm, display->max_wm);
756
		return false;
757
	}
758
 
759
	if (cursor_wm > cursor->max_wm) {
760
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
761
			      cursor_wm, cursor->max_wm);
762
		return false;
763
	}
764
 
765
	if (!(display_wm || cursor_wm)) {
766
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
767
		return false;
768
	}
769
 
770
	return true;
771
}
772
 
773
static bool g4x_compute_srwm(struct drm_device *dev,
774
			     int plane,
775
			     int latency_ns,
776
			     const struct intel_watermark_params *display,
777
			     const struct intel_watermark_params *cursor,
778
			     int *display_wm, int *cursor_wm)
779
{
780
	struct drm_crtc *crtc;
4560 Serge 781
	const struct drm_display_mode *adjusted_mode;
3031 serge 782
	int hdisplay, htotal, pixel_size, clock;
783
	unsigned long line_time_us;
784
	int line_count, line_size;
785
	int small, large;
786
	int entries;
787
 
788
	if (!latency_ns) {
789
		*display_wm = *cursor_wm = 0;
790
		return false;
791
	}
792
 
793
	crtc = intel_get_crtc_for_plane(dev, plane);
6084 serge 794
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 795
	clock = adjusted_mode->crtc_clock;
796
	htotal = adjusted_mode->crtc_htotal;
6084 serge 797
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
798
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 799
 
5060 serge 800
	line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 801
	line_count = (latency_ns / line_time_us + 1000) / 1000;
802
	line_size = hdisplay * pixel_size;
803
 
804
	/* Use the minimum of the small and large buffer method for primary */
805
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
806
	large = line_count * line_size;
807
 
808
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
809
	*display_wm = entries + display->guard_size;
810
 
811
	/* calculate the self-refresh watermark for display cursor */
6084 serge 812
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
3031 serge 813
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
814
	*cursor_wm = entries + cursor->guard_size;
815
 
816
	return g4x_check_srwm(dev,
817
			      *display_wm, *cursor_wm,
818
			      display, cursor);
819
}
820
 
6084 serge 821
#define FW_WM_VLV(value, plane) \
822
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
823
 
824
static void vlv_write_wm_values(struct intel_crtc *crtc,
825
				const struct vlv_wm_values *wm)
3031 serge 826
{
6084 serge 827
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
828
	enum pipe pipe = crtc->pipe;
3031 serge 829
 
6084 serge 830
	I915_WRITE(VLV_DDL(pipe),
831
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
832
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
833
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
834
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
3031 serge 835
 
6084 serge 836
	I915_WRITE(DSPFW1,
837
		   FW_WM(wm->sr.plane, SR) |
838
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
839
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
840
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
841
	I915_WRITE(DSPFW2,
842
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
843
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
844
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
845
	I915_WRITE(DSPFW3,
846
		   FW_WM(wm->sr.cursor, CURSOR_SR));
3031 serge 847
 
6084 serge 848
	if (IS_CHERRYVIEW(dev_priv)) {
849
		I915_WRITE(DSPFW7_CHV,
850
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
851
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
852
		I915_WRITE(DSPFW8_CHV,
853
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
854
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
855
		I915_WRITE(DSPFW9_CHV,
856
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
857
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
858
		I915_WRITE(DSPHOWM,
859
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
860
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
861
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
862
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
863
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
864
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
865
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
866
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
867
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
868
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
869
	} else {
870
		I915_WRITE(DSPFW7,
871
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
872
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
873
		I915_WRITE(DSPHOWM,
874
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
875
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
876
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
877
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
878
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
879
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
880
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
881
	}
3031 serge 882
 
6084 serge 883
	/* zero (unused) WM1 watermarks */
884
	I915_WRITE(DSPFW4, 0);
885
	I915_WRITE(DSPFW5, 0);
886
	I915_WRITE(DSPFW6, 0);
887
	I915_WRITE(DSPHOWM1, 0);
3031 serge 888
 
6084 serge 889
	POSTING_READ(DSPFW1);
3031 serge 890
}
891
 
6084 serge 892
#undef FW_WM_VLV
3031 serge 893
 
6084 serge 894
enum vlv_wm_level {
895
	VLV_WM_LEVEL_PM2,
896
	VLV_WM_LEVEL_PM5,
897
	VLV_WM_LEVEL_DDR_DVFS,
898
};
899
 
900
/* latency must be in 0.1us units. */
901
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
902
				   unsigned int pipe_htotal,
903
				   unsigned int horiz_pixels,
904
				   unsigned int bytes_per_pixel,
905
				   unsigned int latency)
3031 serge 906
{
6084 serge 907
	unsigned int ret;
908
 
909
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
910
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
911
	ret = DIV_ROUND_UP(ret, 64);
912
 
913
	return ret;
914
}
915
 
916
static void vlv_setup_wm_latency(struct drm_device *dev)
917
{
3031 serge 918
	struct drm_i915_private *dev_priv = dev->dev_private;
919
 
6084 serge 920
	/* all latencies in usec */
921
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
3031 serge 922
 
6084 serge 923
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
924
 
925
	if (IS_CHERRYVIEW(dev_priv)) {
926
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
927
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
928
 
929
		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
3031 serge 930
	}
6084 serge 931
}
3031 serge 932
 
6084 serge 933
static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
934
				     struct intel_crtc *crtc,
935
				     const struct intel_plane_state *state,
936
				     int level)
937
{
938
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
939
	int clock, htotal, pixel_size, width, wm;
940
 
941
	if (dev_priv->wm.pri_latency[level] == 0)
942
		return USHRT_MAX;
943
 
944
	if (!state->visible)
945
		return 0;
946
 
947
	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
948
	clock = crtc->config->base.adjusted_mode.crtc_clock;
949
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
950
	width = crtc->config->pipe_src_w;
951
	if (WARN_ON(htotal == 0))
952
		htotal = 1;
953
 
954
	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
955
		/*
956
		 * FIXME the formula gives values that are
957
		 * too big for the cursor FIFO, and hence we
958
		 * would never be able to use cursors. For
959
		 * now just hardcode the watermark.
960
		 */
961
		wm = 63;
962
	} else {
963
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
964
				    dev_priv->wm.pri_latency[level] * 10);
5354 serge 965
	}
3031 serge 966
 
6084 serge 967
	return min_t(int, wm, USHRT_MAX);
968
}
5354 serge 969
 
6084 serge 970
static void vlv_compute_fifo(struct intel_crtc *crtc)
971
{
972
	struct drm_device *dev = crtc->base.dev;
973
	struct vlv_wm_state *wm_state = &crtc->wm_state;
974
	struct intel_plane *plane;
975
	unsigned int total_rate = 0;
976
	const int fifo_size = 512 - 1;
977
	int fifo_extra, fifo_left = fifo_size;
978
 
979
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
980
		struct intel_plane_state *state =
981
			to_intel_plane_state(plane->base.state);
982
 
983
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
984
			continue;
985
 
986
		if (state->visible) {
987
			wm_state->num_active_planes++;
988
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
989
		}
3031 serge 990
	}
5354 serge 991
 
6084 serge 992
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
993
		struct intel_plane_state *state =
994
			to_intel_plane_state(plane->base.state);
995
		unsigned int rate;
996
 
997
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
998
			plane->wm.fifo_size = 63;
999
			continue;
1000
		}
1001
 
1002
		if (!state->visible) {
1003
			plane->wm.fifo_size = 0;
1004
			continue;
1005
		}
1006
 
1007
		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008
		plane->wm.fifo_size = fifo_size * rate / total_rate;
1009
		fifo_left -= plane->wm.fifo_size;
1010
	}
1011
 
1012
	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1013
 
1014
	/* spread the remainder evenly */
1015
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1016
		int plane_extra;
1017
 
1018
		if (fifo_left == 0)
1019
			break;
1020
 
1021
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1022
			continue;
1023
 
1024
		/* give it all to the first plane if none are active */
1025
		if (plane->wm.fifo_size == 0 &&
1026
		    wm_state->num_active_planes)
1027
			continue;
1028
 
1029
		plane_extra = min(fifo_extra, fifo_left);
1030
		plane->wm.fifo_size += plane_extra;
1031
		fifo_left -= plane_extra;
1032
	}
1033
 
1034
	WARN_ON(fifo_left != 0);
3031 serge 1035
}
1036
 
6084 serge 1037
static void vlv_invert_wms(struct intel_crtc *crtc)
1038
{
1039
	struct vlv_wm_state *wm_state = &crtc->wm_state;
1040
	int level;
3031 serge 1041
 
6084 serge 1042
	for (level = 0; level < wm_state->num_levels; level++) {
1043
		struct drm_device *dev = crtc->base.dev;
1044
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1045
		struct intel_plane *plane;
1046
 
1047
		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1048
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1049
 
1050
		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1051
			switch (plane->base.type) {
1052
				int sprite;
1053
			case DRM_PLANE_TYPE_CURSOR:
1054
				wm_state->wm[level].cursor = plane->wm.fifo_size -
1055
					wm_state->wm[level].cursor;
1056
				break;
1057
			case DRM_PLANE_TYPE_PRIMARY:
1058
				wm_state->wm[level].primary = plane->wm.fifo_size -
1059
					wm_state->wm[level].primary;
1060
				break;
1061
			case DRM_PLANE_TYPE_OVERLAY:
1062
				sprite = plane->plane;
1063
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1064
					wm_state->wm[level].sprite[sprite];
1065
				break;
1066
			}
1067
		}
1068
	}
1069
}
1070
 
1071
static void vlv_compute_wm(struct intel_crtc *crtc)
3031 serge 1072
{
6084 serge 1073
	struct drm_device *dev = crtc->base.dev;
1074
	struct vlv_wm_state *wm_state = &crtc->wm_state;
1075
	struct intel_plane *plane;
1076
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1077
	int level;
3031 serge 1078
 
6084 serge 1079
	memset(wm_state, 0, sizeof(*wm_state));
3031 serge 1080
 
6084 serge 1081
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1082
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
3031 serge 1083
 
6084 serge 1084
	wm_state->num_active_planes = 0;
3031 serge 1085
 
6084 serge 1086
	vlv_compute_fifo(crtc);
1087
 
1088
	if (wm_state->num_active_planes != 1)
1089
		wm_state->cxsr = false;
1090
 
1091
	if (wm_state->cxsr) {
1092
		for (level = 0; level < wm_state->num_levels; level++) {
1093
			wm_state->sr[level].plane = sr_fifo_size;
1094
			wm_state->sr[level].cursor = 63;
1095
		}
3243 Serge 1096
	}
3031 serge 1097
 
6084 serge 1098
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1099
		struct intel_plane_state *state =
1100
			to_intel_plane_state(plane->base.state);
3031 serge 1101
 
6084 serge 1102
		if (!state->visible)
1103
			continue;
5060 serge 1104
 
6084 serge 1105
		/* normal watermarks */
1106
		for (level = 0; level < wm_state->num_levels; level++) {
1107
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1108
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1109
 
1110
			/* hack */
1111
			if (WARN_ON(level == 0 && wm > max_wm))
1112
				wm = max_wm;
1113
 
1114
			if (wm > plane->wm.fifo_size)
1115
				break;
1116
 
1117
			switch (plane->base.type) {
1118
				int sprite;
1119
			case DRM_PLANE_TYPE_CURSOR:
1120
				wm_state->wm[level].cursor = wm;
1121
				break;
1122
			case DRM_PLANE_TYPE_PRIMARY:
1123
				wm_state->wm[level].primary = wm;
1124
				break;
1125
			case DRM_PLANE_TYPE_OVERLAY:
1126
				sprite = plane->plane;
1127
				wm_state->wm[level].sprite[sprite] = wm;
1128
				break;
1129
			}
1130
		}
1131
 
1132
		wm_state->num_levels = level;
1133
 
1134
		if (!wm_state->cxsr)
1135
			continue;
1136
 
1137
		/* maxfifo watermarks */
1138
		switch (plane->base.type) {
1139
			int sprite, level;
1140
		case DRM_PLANE_TYPE_CURSOR:
1141
			for (level = 0; level < wm_state->num_levels; level++)
1142
				wm_state->sr[level].cursor =
1143
					wm_state->wm[level].cursor;
1144
			break;
1145
		case DRM_PLANE_TYPE_PRIMARY:
1146
			for (level = 0; level < wm_state->num_levels; level++)
1147
				wm_state->sr[level].plane =
1148
					min(wm_state->sr[level].plane,
1149
					    wm_state->wm[level].primary);
1150
			break;
1151
		case DRM_PLANE_TYPE_OVERLAY:
1152
			sprite = plane->plane;
1153
			for (level = 0; level < wm_state->num_levels; level++)
1154
				wm_state->sr[level].plane =
1155
					min(wm_state->sr[level].plane,
1156
					    wm_state->wm[level].sprite[sprite]);
1157
			break;
1158
		}
1159
	}
1160
 
1161
	/* clear any (partially) filled invalid levels */
1162
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1163
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1164
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1165
	}
1166
 
1167
	vlv_invert_wms(crtc);
3031 serge 1168
}
1169
 
6084 serge 1170
#define VLV_FIFO(plane, value) \
1171
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1172
 
1173
static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
5354 serge 1174
{
6084 serge 1175
	struct drm_device *dev = crtc->base.dev;
1176
	struct drm_i915_private *dev_priv = to_i915(dev);
1177
	struct intel_plane *plane;
1178
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
5354 serge 1179
 
6084 serge 1180
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1181
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1182
			WARN_ON(plane->wm.fifo_size != 63);
1183
			continue;
1184
		}
5354 serge 1185
 
6084 serge 1186
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1187
			sprite0_start = plane->wm.fifo_size;
1188
		else if (plane->plane == 0)
1189
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1190
		else
1191
			fifo_size = sprite1_start + plane->wm.fifo_size;
1192
	}
5354 serge 1193
 
6084 serge 1194
	WARN_ON(fifo_size != 512 - 1);
5354 serge 1195
 
6084 serge 1196
	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1197
		      pipe_name(crtc->pipe), sprite0_start,
1198
		      sprite1_start, fifo_size);
5354 serge 1199
 
6084 serge 1200
	switch (crtc->pipe) {
1201
		uint32_t dsparb, dsparb2, dsparb3;
1202
	case PIPE_A:
1203
		dsparb = I915_READ(DSPARB);
1204
		dsparb2 = I915_READ(DSPARB2);
1205
 
1206
		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1207
			    VLV_FIFO(SPRITEB, 0xff));
1208
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1209
			   VLV_FIFO(SPRITEB, sprite1_start));
1210
 
1211
		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1212
			     VLV_FIFO(SPRITEB_HI, 0x1));
1213
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1214
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1215
 
1216
		I915_WRITE(DSPARB, dsparb);
1217
		I915_WRITE(DSPARB2, dsparb2);
1218
		break;
1219
	case PIPE_B:
1220
		dsparb = I915_READ(DSPARB);
1221
		dsparb2 = I915_READ(DSPARB2);
1222
 
1223
		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1224
			    VLV_FIFO(SPRITED, 0xff));
1225
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1226
			   VLV_FIFO(SPRITED, sprite1_start));
1227
 
1228
		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1229
			     VLV_FIFO(SPRITED_HI, 0xff));
1230
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1231
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1232
 
1233
		I915_WRITE(DSPARB, dsparb);
1234
		I915_WRITE(DSPARB2, dsparb2);
1235
		break;
1236
	case PIPE_C:
1237
		dsparb3 = I915_READ(DSPARB3);
1238
		dsparb2 = I915_READ(DSPARB2);
1239
 
1240
		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1241
			     VLV_FIFO(SPRITEF, 0xff));
1242
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1243
			    VLV_FIFO(SPRITEF, sprite1_start));
1244
 
1245
		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1246
			     VLV_FIFO(SPRITEF_HI, 0xff));
1247
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1248
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1249
 
1250
		I915_WRITE(DSPARB3, dsparb3);
1251
		I915_WRITE(DSPARB2, dsparb2);
1252
		break;
1253
	default:
1254
		break;
5354 serge 1255
	}
6084 serge 1256
}
5354 serge 1257
 
6084 serge 1258
#undef VLV_FIFO
5354 serge 1259
 
6084 serge 1260
static void vlv_merge_wm(struct drm_device *dev,
1261
			 struct vlv_wm_values *wm)
1262
{
1263
	struct intel_crtc *crtc;
1264
	int num_active_crtcs = 0;
5354 serge 1265
 
6084 serge 1266
	wm->level = to_i915(dev)->wm.max_level;
1267
	wm->cxsr = true;
1268
 
1269
	for_each_intel_crtc(dev, crtc) {
1270
		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1271
 
1272
		if (!crtc->active)
1273
			continue;
1274
 
1275
		if (!wm_state->cxsr)
1276
			wm->cxsr = false;
1277
 
1278
		num_active_crtcs++;
1279
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1280
	}
1281
 
1282
	if (num_active_crtcs != 1)
1283
		wm->cxsr = false;
1284
 
1285
	if (num_active_crtcs > 1)
1286
		wm->level = VLV_WM_LEVEL_PM2;
1287
 
1288
	for_each_intel_crtc(dev, crtc) {
1289
		struct vlv_wm_state *wm_state = &crtc->wm_state;
1290
		enum pipe pipe = crtc->pipe;
1291
 
1292
		if (!crtc->active)
1293
			continue;
1294
 
1295
		wm->pipe[pipe] = wm_state->wm[wm->level];
1296
		if (wm->cxsr)
1297
			wm->sr = wm_state->sr[wm->level];
1298
 
1299
		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1300
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1301
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1302
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1303
	}
5354 serge 1304
}
1305
 
6084 serge 1306
static void vlv_update_wm(struct drm_crtc *crtc)
5354 serge 1307
{
1308
	struct drm_device *dev = crtc->dev;
1309
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 1310
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1311
	enum pipe pipe = intel_crtc->pipe;
1312
	struct vlv_wm_values wm = {};
5354 serge 1313
 
6084 serge 1314
	vlv_compute_wm(intel_crtc);
1315
	vlv_merge_wm(dev, &wm);
5354 serge 1316
 
6084 serge 1317
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1318
		/* FIXME should be part of crtc atomic commit */
1319
		vlv_pipe_set_fifo_size(intel_crtc);
1320
		return;
5354 serge 1321
	}
1322
 
6084 serge 1323
	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1324
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1325
		chv_set_memory_dvfs(dev_priv, false);
1326
 
1327
	if (wm.level < VLV_WM_LEVEL_PM5 &&
1328
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1329
		chv_set_memory_pm5(dev_priv, false);
1330
 
1331
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1332
		intel_set_memory_cxsr(dev_priv, false);
1333
 
1334
	/* FIXME should be part of crtc atomic commit */
1335
	vlv_pipe_set_fifo_size(intel_crtc);
1336
 
1337
	vlv_write_wm_values(intel_crtc, &wm);
1338
 
1339
	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1340
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1341
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1342
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1343
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1344
 
1345
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1346
		intel_set_memory_cxsr(dev_priv, true);
1347
 
1348
	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1349
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1350
		chv_set_memory_pm5(dev_priv, true);
1351
 
1352
	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1353
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1354
		chv_set_memory_dvfs(dev_priv, true);
1355
 
1356
	dev_priv->wm.vlv = wm;
5354 serge 1357
}
1358
 
6084 serge 1359
#define single_plane_enabled(mask) is_power_of_2(mask)
1360
 
4560 Serge 1361
static void g4x_update_wm(struct drm_crtc *crtc)
3031 serge 1362
{
4560 Serge 1363
	struct drm_device *dev = crtc->dev;
3031 serge 1364
	static const int sr_latency_ns = 12000;
1365
	struct drm_i915_private *dev_priv = dev->dev_private;
1366
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1367
	int plane_sr, cursor_sr;
1368
	unsigned int enabled = 0;
5060 serge 1369
	bool cxsr_enabled;
3031 serge 1370
 
3746 Serge 1371
	if (g4x_compute_wm0(dev, PIPE_A,
5354 serge 1372
			    &g4x_wm_info, pessimal_latency_ns,
1373
			    &g4x_cursor_wm_info, pessimal_latency_ns,
3031 serge 1374
			    &planea_wm, &cursora_wm))
3746 Serge 1375
		enabled |= 1 << PIPE_A;
3031 serge 1376
 
3746 Serge 1377
	if (g4x_compute_wm0(dev, PIPE_B,
5354 serge 1378
			    &g4x_wm_info, pessimal_latency_ns,
1379
			    &g4x_cursor_wm_info, pessimal_latency_ns,
3031 serge 1380
			    &planeb_wm, &cursorb_wm))
3746 Serge 1381
		enabled |= 1 << PIPE_B;
3031 serge 1382
 
1383
	if (single_plane_enabled(enabled) &&
1384
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1385
			     sr_latency_ns,
1386
			     &g4x_wm_info,
1387
			     &g4x_cursor_wm_info,
3243 Serge 1388
			     &plane_sr, &cursor_sr)) {
5060 serge 1389
		cxsr_enabled = true;
3243 Serge 1390
	} else {
5060 serge 1391
		cxsr_enabled = false;
1392
		intel_set_memory_cxsr(dev_priv, false);
3243 Serge 1393
		plane_sr = cursor_sr = 0;
1394
	}
3031 serge 1395
 
5354 serge 1396
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1397
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3031 serge 1398
		      planea_wm, cursora_wm,
1399
		      planeb_wm, cursorb_wm,
1400
		      plane_sr, cursor_sr);
1401
 
1402
	I915_WRITE(DSPFW1,
6084 serge 1403
		   FW_WM(plane_sr, SR) |
1404
		   FW_WM(cursorb_wm, CURSORB) |
1405
		   FW_WM(planeb_wm, PLANEB) |
1406
		   FW_WM(planea_wm, PLANEA));
3031 serge 1407
	I915_WRITE(DSPFW2,
3243 Serge 1408
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
6084 serge 1409
		   FW_WM(cursora_wm, CURSORA));
3031 serge 1410
	/* HPLL off in SR has some issues on G4x... disable it */
1411
	I915_WRITE(DSPFW3,
3243 Serge 1412
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
6084 serge 1413
		   FW_WM(cursor_sr, CURSOR_SR));
5060 serge 1414
 
1415
	if (cxsr_enabled)
1416
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1417
}
1418
 
4560 Serge 1419
static void i965_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1420
{
4560 Serge 1421
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1422
	struct drm_i915_private *dev_priv = dev->dev_private;
1423
	struct drm_crtc *crtc;
1424
	int srwm = 1;
1425
	int cursor_sr = 16;
5060 serge 1426
	bool cxsr_enabled;
3031 serge 1427
 
1428
	/* Calc sr entries for one plane configs */
1429
	crtc = single_enabled_crtc(dev);
1430
	if (crtc) {
1431
		/* self-refresh has much higher latency */
1432
		static const int sr_latency_ns = 12000;
6084 serge 1433
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1434
		int clock = adjusted_mode->crtc_clock;
1435
		int htotal = adjusted_mode->crtc_htotal;
6084 serge 1436
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1437
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 1438
		unsigned long line_time_us;
1439
		int entries;
1440
 
5060 serge 1441
		line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 1442
 
1443
		/* Use ns/us then divide to preserve precision */
1444
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1445
			pixel_size * hdisplay;
1446
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1447
		srwm = I965_FIFO_SIZE - entries;
1448
		if (srwm < 0)
1449
			srwm = 1;
1450
		srwm &= 0x1ff;
1451
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1452
			      entries, srwm);
1453
 
1454
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
6084 serge 1455
			pixel_size * crtc->cursor->state->crtc_w;
3031 serge 1456
		entries = DIV_ROUND_UP(entries,
1457
					  i965_cursor_wm_info.cacheline_size);
1458
		cursor_sr = i965_cursor_wm_info.fifo_size -
1459
			(entries + i965_cursor_wm_info.guard_size);
1460
 
1461
		if (cursor_sr > i965_cursor_wm_info.max_wm)
1462
			cursor_sr = i965_cursor_wm_info.max_wm;
1463
 
1464
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1465
			      "cursor %d\n", srwm, cursor_sr);
1466
 
5060 serge 1467
		cxsr_enabled = true;
3031 serge 1468
	} else {
5060 serge 1469
		cxsr_enabled = false;
3031 serge 1470
		/* Turn off self refresh if both pipes are enabled */
5060 serge 1471
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 1472
	}
1473
 
1474
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1475
		      srwm);
1476
 
1477
	/* 965 has limitations... */
6084 serge 1478
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1479
		   FW_WM(8, CURSORB) |
1480
		   FW_WM(8, PLANEB) |
1481
		   FW_WM(8, PLANEA));
1482
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1483
		   FW_WM(8, PLANEC_OLD));
3031 serge 1484
	/* update cursor SR watermark */
6084 serge 1485
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
5060 serge 1486
 
1487
	if (cxsr_enabled)
1488
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1489
}
1490
 
6084 serge 1491
#undef FW_WM
1492
 
4560 Serge 1493
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1494
{
4560 Serge 1495
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1496
	struct drm_i915_private *dev_priv = dev->dev_private;
1497
	const struct intel_watermark_params *wm_info;
1498
	uint32_t fwater_lo;
1499
	uint32_t fwater_hi;
1500
	int cwm, srwm = 1;
1501
	int fifo_size;
1502
	int planea_wm, planeb_wm;
1503
	struct drm_crtc *crtc, *enabled = NULL;
1504
 
1505
	if (IS_I945GM(dev))
1506
		wm_info = &i945_wm_info;
1507
	else if (!IS_GEN2(dev))
1508
		wm_info = &i915_wm_info;
1509
	else
5354 serge 1510
		wm_info = &i830_a_wm_info;
3031 serge 1511
 
1512
	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1513
	crtc = intel_get_crtc_for_plane(dev, 0);
3243 Serge 1514
	if (intel_crtc_active(crtc)) {
4560 Serge 1515
		const struct drm_display_mode *adjusted_mode;
6084 serge 1516
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
3243 Serge 1517
		if (IS_GEN2(dev))
1518
			cpp = 4;
1519
 
6084 serge 1520
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1521
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1522
					       wm_info, fifo_size, cpp,
5354 serge 1523
					       pessimal_latency_ns);
3031 serge 1524
		enabled = crtc;
5354 serge 1525
	} else {
3031 serge 1526
		planea_wm = fifo_size - wm_info->guard_size;
5354 serge 1527
		if (planea_wm > (long)wm_info->max_wm)
1528
			planea_wm = wm_info->max_wm;
1529
	}
3031 serge 1530
 
5354 serge 1531
	if (IS_GEN2(dev))
1532
		wm_info = &i830_bc_wm_info;
1533
 
3031 serge 1534
	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1535
	crtc = intel_get_crtc_for_plane(dev, 1);
3243 Serge 1536
	if (intel_crtc_active(crtc)) {
4560 Serge 1537
		const struct drm_display_mode *adjusted_mode;
6084 serge 1538
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
3243 Serge 1539
		if (IS_GEN2(dev))
1540
			cpp = 4;
1541
 
6084 serge 1542
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1543
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1544
					       wm_info, fifo_size, cpp,
5354 serge 1545
					       pessimal_latency_ns);
3031 serge 1546
		if (enabled == NULL)
1547
			enabled = crtc;
1548
		else
1549
			enabled = NULL;
5354 serge 1550
	} else {
3031 serge 1551
		planeb_wm = fifo_size - wm_info->guard_size;
5354 serge 1552
		if (planeb_wm > (long)wm_info->max_wm)
1553
			planeb_wm = wm_info->max_wm;
1554
	}
3031 serge 1555
 
1556
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1557
 
5060 serge 1558
	if (IS_I915GM(dev) && enabled) {
1559
		struct drm_i915_gem_object *obj;
1560
 
6084 serge 1561
		obj = intel_fb_obj(enabled->primary->state->fb);
5060 serge 1562
 
1563
		/* self-refresh seems busted with untiled */
1564
		if (obj->tiling_mode == I915_TILING_NONE)
1565
			enabled = NULL;
1566
	}
1567
 
3031 serge 1568
	/*
1569
	 * Overlay gets an aggressive default since video jitter is bad.
1570
	 */
1571
	cwm = 2;
1572
 
1573
	/* Play safe and disable self-refresh before adjusting watermarks. */
5060 serge 1574
	intel_set_memory_cxsr(dev_priv, false);
3031 serge 1575
 
1576
	/* Calc sr entries for one plane configs */
1577
	if (HAS_FW_BLC(dev) && enabled) {
1578
		/* self-refresh has much higher latency */
1579
		static const int sr_latency_ns = 6000;
6084 serge 1580
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
4560 Serge 1581
		int clock = adjusted_mode->crtc_clock;
1582
		int htotal = adjusted_mode->crtc_htotal;
6084 serge 1583
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1584
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
3031 serge 1585
		unsigned long line_time_us;
1586
		int entries;
1587
 
5060 serge 1588
		line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 1589
 
1590
		/* Use ns/us then divide to preserve precision */
1591
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1592
			pixel_size * hdisplay;
1593
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1594
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1595
		srwm = wm_info->fifo_size - entries;
1596
		if (srwm < 0)
1597
			srwm = 1;
1598
 
1599
		if (IS_I945G(dev) || IS_I945GM(dev))
1600
			I915_WRITE(FW_BLC_SELF,
1601
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1602
		else if (IS_I915GM(dev))
1603
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1604
	}
1605
 
1606
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1607
		      planea_wm, planeb_wm, cwm, srwm);
1608
 
1609
	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1610
	fwater_hi = (cwm & 0x1f);
1611
 
1612
	/* Set request length to 8 cachelines per fetch */
1613
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1614
	fwater_hi = fwater_hi | (1 << 8);
1615
 
1616
	I915_WRITE(FW_BLC, fwater_lo);
1617
	I915_WRITE(FW_BLC2, fwater_hi);
1618
 
5060 serge 1619
	if (enabled)
1620
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1621
}
1622
 
4560 Serge 1623
static void i845_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1624
{
4560 Serge 1625
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1626
	struct drm_i915_private *dev_priv = dev->dev_private;
1627
	struct drm_crtc *crtc;
4560 Serge 1628
	const struct drm_display_mode *adjusted_mode;
3031 serge 1629
	uint32_t fwater_lo;
1630
	int planea_wm;
1631
 
1632
	crtc = single_enabled_crtc(dev);
1633
	if (crtc == NULL)
1634
		return;
1635
 
6084 serge 1636
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1637
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1638
				       &i845_wm_info,
3031 serge 1639
				       dev_priv->display.get_fifo_size(dev, 0),
5354 serge 1640
				       4, pessimal_latency_ns);
3031 serge 1641
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1642
	fwater_lo |= (3<<8) | planea_wm;
1643
 
1644
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1645
 
1646
	I915_WRITE(FW_BLC, fwater_lo);
1647
}
1648
 
6084 serge 1649
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
3031 serge 1650
{
4104 Serge 1651
	uint32_t pixel_rate;
1652
 
6084 serge 1653
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
4104 Serge 1654
 
1655
	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1656
	 * adjust the pixel_rate here. */
1657
 
6084 serge 1658
	if (pipe_config->pch_pfit.enabled) {
4104 Serge 1659
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6084 serge 1660
		uint32_t pfit_size = pipe_config->pch_pfit.size;
4104 Serge 1661
 
6084 serge 1662
		pipe_w = pipe_config->pipe_src_w;
1663
		pipe_h = pipe_config->pipe_src_h;
1664
 
4104 Serge 1665
		pfit_w = (pfit_size >> 16) & 0xFFFF;
1666
		pfit_h = pfit_size & 0xFFFF;
1667
		if (pipe_w < pfit_w)
1668
			pipe_w = pfit_w;
1669
		if (pipe_h < pfit_h)
1670
			pipe_h = pfit_h;
1671
 
1672
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1673
				     pfit_w * pfit_h);
1674
	}
1675
 
1676
	return pixel_rate;
1677
}
1678
 
1679
/* latency must be in 0.1us units. */
1680
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1681
			       uint32_t latency)
1682
{
1683
	uint64_t ret;
1684
 
1685
	if (WARN(latency == 0, "Latency value missing\n"))
1686
		return UINT_MAX;
1687
 
1688
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1689
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1690
 
1691
	return ret;
1692
}
1693
 
1694
/* latency must be in 0.1us units. */
1695
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1696
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1697
			       uint32_t latency)
1698
{
1699
	uint32_t ret;
1700
 
1701
	if (WARN(latency == 0, "Latency value missing\n"))
1702
		return UINT_MAX;
1703
 
1704
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1705
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1706
	ret = DIV_ROUND_UP(ret, 64) + 2;
1707
	return ret;
1708
}
1709
 
1710
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1711
			   uint8_t bytes_per_pixel)
1712
{
1713
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1714
}
1715
 
5354 serge 1716
struct skl_pipe_wm_parameters {
1717
	bool active;
1718
	uint32_t pipe_htotal;
1719
	uint32_t pixel_rate; /* in KHz */
1720
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1721
};
1722
 
4560 Serge 1723
struct ilk_wm_maximums {
4104 Serge 1724
	uint16_t pri;
1725
	uint16_t spr;
1726
	uint16_t cur;
1727
	uint16_t fbc;
1728
};
1729
 
1730
/* used in computing the new watermarks state */
1731
struct intel_wm_config {
1732
	unsigned int num_pipes_active;
1733
	bool sprites_enabled;
1734
	bool sprites_scaled;
1735
};
1736
 
1737
/*
1738
 * For both WM_PIPE and WM_LP.
1739
 * mem_value must be in 0.1us units.
1740
 */
6084 serge 1741
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1742
				   const struct intel_plane_state *pstate,
4104 Serge 1743
				   uint32_t mem_value,
1744
				   bool is_lp)
1745
{
6084 serge 1746
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
4104 Serge 1747
	uint32_t method1, method2;
1748
 
6084 serge 1749
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1750
		return 0;
1751
 
6084 serge 1752
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
4104 Serge 1753
 
1754
	if (!is_lp)
1755
		return method1;
1756
 
6084 serge 1757
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1758
				 cstate->base.adjusted_mode.crtc_htotal,
1759
				 drm_rect_width(&pstate->dst),
1760
				 bpp,
4104 Serge 1761
				 mem_value);
1762
 
1763
	return min(method1, method2);
1764
}
1765
 
1766
/*
1767
 * For both WM_PIPE and WM_LP.
1768
 * mem_value must be in 0.1us units.
1769
 */
6084 serge 1770
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1771
				   const struct intel_plane_state *pstate,
4104 Serge 1772
				   uint32_t mem_value)
1773
{
6084 serge 1774
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
4104 Serge 1775
	uint32_t method1, method2;
1776
 
6084 serge 1777
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1778
		return 0;
1779
 
6084 serge 1780
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1781
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1782
				 cstate->base.adjusted_mode.crtc_htotal,
1783
				 drm_rect_width(&pstate->dst),
1784
				 bpp,
4104 Serge 1785
				 mem_value);
1786
	return min(method1, method2);
1787
}
1788
 
1789
/*
1790
 * For both WM_PIPE and WM_LP.
1791
 * mem_value must be in 0.1us units.
1792
 */
6084 serge 1793
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1794
				   const struct intel_plane_state *pstate,
4104 Serge 1795
				   uint32_t mem_value)
1796
{
6660 serge 1797
	/*
1798
	 * We treat the cursor plane as always-on for the purposes of watermark
1799
	 * calculation.  Until we have two-stage watermark programming merged,
1800
	 * this is necessary to avoid flickering.
1801
	 */
1802
	int cpp = 4;
1803
	int width = pstate->visible ? pstate->base.crtc_w : 64;
6084 serge 1804
 
6660 serge 1805
	if (!cstate->base.active)
4104 Serge 1806
		return 0;
1807
 
6084 serge 1808
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1809
			      cstate->base.adjusted_mode.crtc_htotal,
6660 serge 1810
			      width, cpp, mem_value);
4104 Serge 1811
}
1812
 
1813
/* Only for WM_LP. */
6084 serge 1814
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1815
				   const struct intel_plane_state *pstate,
4104 Serge 1816
				   uint32_t pri_val)
1817
{
6084 serge 1818
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1819
 
1820
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1821
		return 0;
1822
 
6084 serge 1823
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
4104 Serge 1824
}
1825
 
1826
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1827
{
4560 Serge 1828
	if (INTEL_INFO(dev)->gen >= 8)
1829
		return 3072;
1830
	else if (INTEL_INFO(dev)->gen >= 7)
4104 Serge 1831
		return 768;
1832
	else
1833
		return 512;
1834
}
1835
 
5060 serge 1836
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1837
					 int level, bool is_sprite)
1838
{
1839
	if (INTEL_INFO(dev)->gen >= 8)
1840
		/* BDW primary/sprite plane watermarks */
1841
		return level == 0 ? 255 : 2047;
1842
	else if (INTEL_INFO(dev)->gen >= 7)
1843
		/* IVB/HSW primary/sprite plane watermarks */
1844
		return level == 0 ? 127 : 1023;
1845
	else if (!is_sprite)
1846
		/* ILK/SNB primary plane watermarks */
1847
		return level == 0 ? 127 : 511;
1848
	else
1849
		/* ILK/SNB sprite plane watermarks */
1850
		return level == 0 ? 63 : 255;
1851
}
1852
 
1853
static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1854
					  int level)
1855
{
1856
	if (INTEL_INFO(dev)->gen >= 7)
1857
		return level == 0 ? 63 : 255;
1858
	else
1859
		return level == 0 ? 31 : 63;
1860
}
1861
 
1862
static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1863
{
1864
	if (INTEL_INFO(dev)->gen >= 8)
1865
		return 31;
1866
	else
1867
		return 15;
1868
}
1869
 
4104 Serge 1870
/* Calculate the maximum primary/sprite plane watermark */
1871
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1872
				     int level,
1873
				     const struct intel_wm_config *config,
1874
				     enum intel_ddb_partitioning ddb_partitioning,
1875
				     bool is_sprite)
1876
{
1877
	unsigned int fifo_size = ilk_display_fifo_size(dev);
1878
 
1879
	/* if sprites aren't enabled, sprites get nothing */
1880
	if (is_sprite && !config->sprites_enabled)
1881
		return 0;
1882
 
1883
	/* HSW allows LP1+ watermarks even with multiple pipes */
1884
	if (level == 0 || config->num_pipes_active > 1) {
1885
		fifo_size /= INTEL_INFO(dev)->num_pipes;
1886
 
1887
		/*
1888
		 * For some reason the non self refresh
1889
		 * FIFO size is only half of the self
1890
		 * refresh FIFO size on ILK/SNB.
1891
		 */
1892
		if (INTEL_INFO(dev)->gen <= 6)
1893
			fifo_size /= 2;
1894
	}
1895
 
1896
	if (config->sprites_enabled) {
1897
		/* level 0 is always calculated with 1:1 split */
1898
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1899
			if (is_sprite)
1900
				fifo_size *= 5;
1901
			fifo_size /= 6;
1902
		} else {
1903
			fifo_size /= 2;
1904
		}
1905
	}
1906
 
1907
	/* clamp to max that the registers can hold */
5060 serge 1908
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
4104 Serge 1909
}
1910
 
1911
/* Calculate the maximum cursor plane watermark */
1912
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1913
				      int level,
1914
				      const struct intel_wm_config *config)
1915
{
1916
	/* HSW LP1+ watermarks w/ multiple pipes */
1917
	if (level > 0 && config->num_pipes_active > 1)
1918
		return 64;
1919
 
1920
	/* otherwise just report max that registers can hold */
5060 serge 1921
	return ilk_cursor_wm_reg_max(dev, level);
4539 Serge 1922
}
4104 Serge 1923
 
5060 serge 1924
static void ilk_compute_wm_maximums(const struct drm_device *dev,
6084 serge 1925
				    int level,
1926
				    const struct intel_wm_config *config,
1927
				    enum intel_ddb_partitioning ddb_partitioning,
4560 Serge 1928
				    struct ilk_wm_maximums *max)
4104 Serge 1929
{
1930
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1931
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1932
	max->cur = ilk_cursor_wm_max(dev, level, config);
5060 serge 1933
	max->fbc = ilk_fbc_wm_reg_max(dev);
4539 Serge 1934
}
4104 Serge 1935
 
5060 serge 1936
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1937
					int level,
1938
					struct ilk_wm_maximums *max)
1939
{
1940
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1941
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1942
	max->cur = ilk_cursor_wm_reg_max(dev, level);
1943
	max->fbc = ilk_fbc_wm_reg_max(dev);
1944
}
1945
 
4560 Serge 1946
static bool ilk_validate_wm_level(int level,
1947
				  const struct ilk_wm_maximums *max,
6084 serge 1948
				  struct intel_wm_level *result)
4104 Serge 1949
{
1950
	bool ret;
1951
 
1952
	/* already determined to be invalid? */
1953
	if (!result->enable)
1954
		return false;
1955
 
1956
	result->enable = result->pri_val <= max->pri &&
1957
			 result->spr_val <= max->spr &&
1958
			 result->cur_val <= max->cur;
1959
 
1960
	ret = result->enable;
1961
 
1962
	/*
1963
	 * HACK until we can pre-compute everything,
1964
	 * and thus fail gracefully if LP0 watermarks
1965
	 * are exceeded...
1966
	 */
1967
	if (level == 0 && !result->enable) {
1968
		if (result->pri_val > max->pri)
1969
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1970
				      level, result->pri_val, max->pri);
1971
		if (result->spr_val > max->spr)
1972
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1973
				      level, result->spr_val, max->spr);
1974
		if (result->cur_val > max->cur)
1975
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1976
				      level, result->cur_val, max->cur);
1977
 
1978
		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1979
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1980
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1981
		result->enable = true;
1982
	}
1983
 
1984
	return ret;
1985
}
1986
 
5060 serge 1987
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
6084 serge 1988
				 const struct intel_crtc *intel_crtc,
4104 Serge 1989
				 int level,
6084 serge 1990
				 struct intel_crtc_state *cstate,
4104 Serge 1991
				 struct intel_wm_level *result)
1992
{
6084 serge 1993
	struct intel_plane *intel_plane;
4104 Serge 1994
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1995
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1996
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1997
 
1998
	/* WM1+ latency values stored in 0.5us units */
1999
	if (level > 0) {
2000
		pri_latency *= 5;
2001
		spr_latency *= 5;
2002
		cur_latency *= 5;
2003
	}
2004
 
6084 serge 2005
	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
2006
		struct intel_plane_state *pstate =
2007
			to_intel_plane_state(intel_plane->base.state);
2008
 
2009
		switch (intel_plane->base.type) {
2010
		case DRM_PLANE_TYPE_PRIMARY:
2011
			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
2012
							     pri_latency,
2013
							     level);
2014
			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
2015
							     result->pri_val);
2016
			break;
2017
		case DRM_PLANE_TYPE_OVERLAY:
2018
			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
2019
							     spr_latency);
2020
			break;
2021
		case DRM_PLANE_TYPE_CURSOR:
2022
			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
2023
							     cur_latency);
2024
			break;
2025
		}
2026
	}
2027
 
4104 Serge 2028
	result->enable = true;
2029
}
2030
 
2031
static uint32_t
2032
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2033
{
3031 serge 2034
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 2035
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 2036
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
4104 Serge 2037
	u32 linetime, ips_linetime;
3031 serge 2038
 
6084 serge 2039
	if (!intel_crtc->active)
4104 Serge 2040
		return 0;
3031 serge 2041
 
2042
	/* The WM are computed with base on how long it takes to fill a single
2043
	 * row at the given clock rate, multiplied by 8.
2044
	 * */
6084 serge 2045
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2046
				     adjusted_mode->crtc_clock);
2047
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2048
					 dev_priv->cdclk_freq);
3031 serge 2049
 
4104 Serge 2050
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2051
	       PIPE_WM_LINETIME_TIME(linetime);
2052
}
2053
 
5354 serge 2054
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
4104 Serge 2055
{
2056
	struct drm_i915_private *dev_priv = dev->dev_private;
2057
 
5354 serge 2058
	if (IS_GEN9(dev)) {
2059
		uint32_t val;
2060
		int ret, i;
2061
		int level, max_level = ilk_wm_max_level(dev);
2062
 
2063
		/* read the first set of memory latencies[0:3] */
2064
		val = 0; /* data0 to be programmed to 0 for first set */
2065
		mutex_lock(&dev_priv->rps.hw_lock);
2066
		ret = sandybridge_pcode_read(dev_priv,
2067
					     GEN9_PCODE_READ_MEM_LATENCY,
2068
					     &val);
2069
		mutex_unlock(&dev_priv->rps.hw_lock);
2070
 
2071
		if (ret) {
2072
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2073
			return;
2074
		}
2075
 
2076
		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2077
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2078
				GEN9_MEM_LATENCY_LEVEL_MASK;
2079
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2080
				GEN9_MEM_LATENCY_LEVEL_MASK;
2081
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2082
				GEN9_MEM_LATENCY_LEVEL_MASK;
2083
 
2084
		/* read the second set of memory latencies[4:7] */
2085
		val = 1; /* data0 to be programmed to 1 for second set */
2086
		mutex_lock(&dev_priv->rps.hw_lock);
2087
		ret = sandybridge_pcode_read(dev_priv,
2088
					     GEN9_PCODE_READ_MEM_LATENCY,
2089
					     &val);
2090
		mutex_unlock(&dev_priv->rps.hw_lock);
2091
		if (ret) {
2092
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2093
			return;
2094
		}
2095
 
2096
		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2097
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2098
				GEN9_MEM_LATENCY_LEVEL_MASK;
2099
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2100
				GEN9_MEM_LATENCY_LEVEL_MASK;
2101
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2102
				GEN9_MEM_LATENCY_LEVEL_MASK;
2103
 
2104
		/*
6084 serge 2105
		 * WaWmMemoryReadLatency:skl
2106
		 *
5354 serge 2107
		 * punit doesn't take into account the read latency so we need
2108
		 * to add 2us to the various latency levels we retrieve from
2109
		 * the punit.
2110
		 *   - W0 is a bit special in that it's the only level that
2111
		 *   can't be disabled if we want to have display working, so
2112
		 *   we always add 2us there.
2113
		 *   - For levels >=1, punit returns 0us latency when they are
2114
		 *   disabled, so we respect that and don't add 2us then
2115
		 *
2116
		 * Additionally, if a level n (n > 1) has a 0us latency, all
2117
		 * levels m (m >= n) need to be disabled. We make sure to
2118
		 * sanitize the values out of the punit to satisfy this
2119
		 * requirement.
2120
		 */
2121
		wm[0] += 2;
2122
		for (level = 1; level <= max_level; level++)
2123
			if (wm[level] != 0)
2124
				wm[level] += 2;
2125
			else {
2126
				for (i = level + 1; i <= max_level; i++)
2127
					wm[i] = 0;
2128
 
2129
				break;
2130
			}
2131
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4104 Serge 2132
		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2133
 
2134
		wm[0] = (sskpd >> 56) & 0xFF;
2135
		if (wm[0] == 0)
2136
			wm[0] = sskpd & 0xF;
2137
		wm[1] = (sskpd >> 4) & 0xFF;
2138
		wm[2] = (sskpd >> 12) & 0xFF;
2139
		wm[3] = (sskpd >> 20) & 0x1FF;
2140
		wm[4] = (sskpd >> 32) & 0x1FF;
2141
	} else if (INTEL_INFO(dev)->gen >= 6) {
2142
		uint32_t sskpd = I915_READ(MCH_SSKPD);
2143
 
2144
		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2145
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2146
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2147
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2148
	} else if (INTEL_INFO(dev)->gen >= 5) {
2149
		uint32_t mltr = I915_READ(MLTR_ILK);
2150
 
2151
		/* ILK primary LP0 latency is 700 ns */
2152
		wm[0] = 7;
2153
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2154
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2155
	}
2156
}
2157
 
2158
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2159
{
2160
	/* ILK sprite LP0 latency is 1300 ns */
2161
	if (INTEL_INFO(dev)->gen == 5)
2162
		wm[0] = 13;
2163
}
2164
 
2165
static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2166
{
2167
	/* ILK cursor LP0 latency is 1300 ns */
2168
	if (INTEL_INFO(dev)->gen == 5)
2169
		wm[0] = 13;
2170
 
2171
	/* WaDoubleCursorLP3Latency:ivb */
2172
	if (IS_IVYBRIDGE(dev))
2173
		wm[3] *= 2;
2174
}
2175
 
5060 serge 2176
int ilk_wm_max_level(const struct drm_device *dev)
4560 Serge 2177
{
2178
	/* how many WM levels are we expecting */
6084 serge 2179
	if (INTEL_INFO(dev)->gen >= 9)
5354 serge 2180
		return 7;
2181
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4560 Serge 2182
		return 4;
2183
	else if (INTEL_INFO(dev)->gen >= 6)
2184
		return 3;
2185
	else
2186
		return 2;
2187
}
2188
 
4104 Serge 2189
static void intel_print_wm_latency(struct drm_device *dev,
2190
				   const char *name,
5354 serge 2191
				   const uint16_t wm[8])
4104 Serge 2192
{
4560 Serge 2193
	int level, max_level = ilk_wm_max_level(dev);
4104 Serge 2194
 
2195
	for (level = 0; level <= max_level; level++) {
2196
		unsigned int latency = wm[level];
2197
 
2198
		if (latency == 0) {
2199
			DRM_ERROR("%s WM%d latency not provided\n",
2200
				  name, level);
2201
			continue;
2202
		}
2203
 
5354 serge 2204
		/*
2205
		 * - latencies are in us on gen9.
2206
		 * - before then, WM1+ latency values are in 0.5us units
2207
		 */
2208
		if (IS_GEN9(dev))
2209
			latency *= 10;
2210
		else if (level > 0)
4104 Serge 2211
			latency *= 5;
2212
 
2213
		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2214
			      name, level, wm[level],
2215
			      latency / 10, latency % 10);
2216
	}
2217
}
2218
 
5060 serge 2219
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2220
				    uint16_t wm[5], uint16_t min)
4104 Serge 2221
{
5060 serge 2222
	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2223
 
2224
	if (wm[0] >= min)
2225
		return false;
2226
 
2227
	wm[0] = max(wm[0], min);
2228
	for (level = 1; level <= max_level; level++)
2229
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2230
 
2231
	return true;
2232
}
2233
 
2234
static void snb_wm_latency_quirk(struct drm_device *dev)
2235
{
4104 Serge 2236
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2237
	bool changed;
4104 Serge 2238
 
5060 serge 2239
	/*
2240
	 * The BIOS provided WM memory latency values are often
2241
	 * inadequate for high resolution displays. Adjust them.
2242
	 */
2243
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2244
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2245
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2246
 
2247
	if (!changed)
2248
		return;
2249
 
2250
	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2251
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2252
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2253
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2254
}
2255
 
2256
static void ilk_setup_wm_latency(struct drm_device *dev)
2257
{
2258
	struct drm_i915_private *dev_priv = dev->dev_private;
2259
 
4104 Serge 2260
	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2261
 
2262
	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2263
	       sizeof(dev_priv->wm.pri_latency));
2264
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2265
	       sizeof(dev_priv->wm.pri_latency));
2266
 
2267
	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2268
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2269
 
2270
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2271
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2272
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
5060 serge 2273
 
2274
	if (IS_GEN6(dev))
2275
		snb_wm_latency_quirk(dev);
4104 Serge 2276
}
2277
 
5354 serge 2278
static void skl_setup_wm_latency(struct drm_device *dev)
2279
{
2280
	struct drm_i915_private *dev_priv = dev->dev_private;
2281
 
2282
	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2283
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2284
}
2285
 
5060 serge 2286
static void ilk_compute_wm_config(struct drm_device *dev,
2287
				  struct intel_wm_config *config)
2288
{
2289
	struct intel_crtc *intel_crtc;
2290
 
2291
	/* Compute the currently _active_ config */
2292
	for_each_intel_crtc(dev, intel_crtc) {
2293
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2294
 
2295
		if (!wm->pipe_enabled)
2296
			continue;
2297
 
2298
		config->sprites_enabled |= wm->sprites_enabled;
2299
		config->sprites_scaled |= wm->sprites_scaled;
2300
		config->num_pipes_active++;
4104 Serge 2301
	}
4560 Serge 2302
}
4104 Serge 2303
 
4560 Serge 2304
/* Compute new watermarks for the pipe */
6084 serge 2305
static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
4560 Serge 2306
				  struct intel_pipe_wm *pipe_wm)
2307
{
6084 serge 2308
	struct drm_crtc *crtc = cstate->base.crtc;
4560 Serge 2309
	struct drm_device *dev = crtc->dev;
5060 serge 2310
	const struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 2311
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2312
	struct intel_plane *intel_plane;
2313
	struct intel_plane_state *sprstate = NULL;
4560 Serge 2314
	int level, max_level = ilk_wm_max_level(dev);
2315
	/* LP0 watermark maximums depend on this pipe alone */
2316
	struct intel_wm_config config = {
2317
		.num_pipes_active = 1,
2318
	};
2319
	struct ilk_wm_maximums max;
4104 Serge 2320
 
6084 serge 2321
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2322
		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2323
			sprstate = to_intel_plane_state(intel_plane->base.state);
2324
			break;
2325
		}
2326
	}
4560 Serge 2327
 
6084 serge 2328
	config.sprites_enabled = sprstate->visible;
2329
	config.sprites_scaled = sprstate->visible &&
2330
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2331
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2332
 
2333
	pipe_wm->pipe_enabled = cstate->base.active;
2334
	pipe_wm->sprites_enabled = sprstate->visible;
2335
	pipe_wm->sprites_scaled = config.sprites_scaled;
2336
 
4560 Serge 2337
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
6084 serge 2338
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
4560 Serge 2339
		max_level = 1;
2340
 
2341
	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
6084 serge 2342
	if (config.sprites_scaled)
4560 Serge 2343
		max_level = 0;
2344
 
6084 serge 2345
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
4560 Serge 2346
 
2347
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2348
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2349
 
5060 serge 2350
	/* LP0 watermarks always use 1/2 DDB partitioning */
2351
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2352
 
4560 Serge 2353
	/* At least LP0 must be valid */
5060 serge 2354
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2355
		return false;
2356
 
2357
	ilk_compute_wm_reg_maximums(dev, 1, &max);
2358
 
2359
	for (level = 1; level <= max_level; level++) {
2360
		struct intel_wm_level wm = {};
2361
 
6084 serge 2362
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
5060 serge 2363
 
2364
		/*
2365
		 * Disable any watermark level that exceeds the
2366
		 * register maximums since such watermarks are
2367
		 * always invalid.
2368
		 */
2369
		if (!ilk_validate_wm_level(level, &max, &wm))
2370
			break;
2371
 
2372
		pipe_wm->wm[level] = wm;
2373
	}
2374
 
2375
	return true;
4104 Serge 2376
}
2377
 
4560 Serge 2378
/*
2379
 * Merge the watermarks from all active pipes for a specific level.
2380
 */
2381
static void ilk_merge_wm_level(struct drm_device *dev,
2382
			       int level,
2383
			       struct intel_wm_level *ret_wm)
4104 Serge 2384
{
4560 Serge 2385
	const struct intel_crtc *intel_crtc;
4104 Serge 2386
 
5060 serge 2387
	ret_wm->enable = true;
4104 Serge 2388
 
5060 serge 2389
	for_each_intel_crtc(dev, intel_crtc) {
2390
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2391
		const struct intel_wm_level *wm = &active->wm[level];
2392
 
2393
		if (!active->pipe_enabled)
2394
			continue;
2395
 
2396
		/*
2397
		 * The watermark values may have been used in the past,
2398
		 * so we must maintain them in the registers for some
2399
		 * time even if the level is now disabled.
2400
		 */
4560 Serge 2401
		if (!wm->enable)
5060 serge 2402
			ret_wm->enable = false;
4104 Serge 2403
 
4560 Serge 2404
		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2405
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2406
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2407
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2408
	}
2409
}
2410
 
2411
/*
2412
 * Merge all low power watermarks for all active pipes.
2413
 */
2414
static void ilk_wm_merge(struct drm_device *dev,
2415
			 const struct intel_wm_config *config,
2416
			 const struct ilk_wm_maximums *max,
2417
			 struct intel_pipe_wm *merged)
2418
{
6084 serge 2419
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2420
	int level, max_level = ilk_wm_max_level(dev);
5060 serge 2421
	int last_enabled_level = max_level;
4560 Serge 2422
 
2423
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2424
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2425
	    config->num_pipes_active > 1)
2426
		return;
2427
 
2428
	/* ILK: FBC WM must be disabled always */
2429
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2430
 
2431
	/* merge each WM1+ level */
4104 Serge 2432
	for (level = 1; level <= max_level; level++) {
4560 Serge 2433
		struct intel_wm_level *wm = &merged->wm[level];
2434
 
2435
		ilk_merge_wm_level(dev, level, wm);
2436
 
5060 serge 2437
		if (level > last_enabled_level)
2438
			wm->enable = false;
2439
		else if (!ilk_validate_wm_level(level, max, wm))
2440
			/* make sure all following levels get disabled */
2441
			last_enabled_level = level - 1;
4560 Serge 2442
 
2443
		/*
2444
		 * The spec says it is preferred to disable
2445
		 * FBC WMs instead of disabling a WM level.
2446
		 */
2447
		if (wm->fbc_val > max->fbc) {
5060 serge 2448
			if (wm->enable)
6084 serge 2449
				merged->fbc_wm_enabled = false;
4560 Serge 2450
			wm->fbc_val = 0;
4104 Serge 2451
		}
2452
	}
2453
 
4560 Serge 2454
	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2455
	/*
2456
	 * FIXME this is racy. FBC might get enabled later.
2457
	 * What we should check here is whether FBC can be
2458
	 * enabled sometime later.
2459
	 */
6084 serge 2460
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2461
	    intel_fbc_enabled(dev_priv)) {
4560 Serge 2462
		for (level = 2; level <= max_level; level++) {
2463
			struct intel_wm_level *wm = &merged->wm[level];
2464
 
2465
			wm->enable = false;
2466
		}
2467
	}
2468
}
2469
 
2470
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2471
{
2472
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2473
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2474
}
2475
 
2476
/* The value we need to program into the WM_LPx latency field */
2477
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2478
{
2479
	struct drm_i915_private *dev_priv = dev->dev_private;
2480
 
2481
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2482
		return 2 * level;
2483
	else
2484
		return dev_priv->wm.pri_latency[level];
2485
}
2486
 
2487
static void ilk_compute_wm_results(struct drm_device *dev,
2488
				   const struct intel_pipe_wm *merged,
2489
				   enum intel_ddb_partitioning partitioning,
2490
				   struct ilk_wm_values *results)
2491
{
2492
	struct intel_crtc *intel_crtc;
2493
	int level, wm_lp;
2494
 
2495
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2496
	results->partitioning = partitioning;
2497
 
2498
	/* LP1+ register values */
4104 Serge 2499
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2500
		const struct intel_wm_level *r;
2501
 
4560 Serge 2502
		level = ilk_wm_lp_to_level(wm_lp, merged);
2503
 
2504
		r = &merged->wm[level];
4104 Serge 2505
 
5060 serge 2506
		/*
2507
		 * Maintain the watermark values even if the level is
2508
		 * disabled. Doing otherwise could cause underruns.
2509
		 */
2510
		results->wm_lp[wm_lp - 1] =
4560 Serge 2511
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2512
			(r->pri_val << WM1_LP_SR_SHIFT) |
2513
			r->cur_val;
2514
 
5060 serge 2515
		if (r->enable)
2516
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2517
 
4560 Serge 2518
		if (INTEL_INFO(dev)->gen >= 8)
2519
			results->wm_lp[wm_lp - 1] |=
2520
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2521
		else
2522
			results->wm_lp[wm_lp - 1] |=
2523
				r->fbc_val << WM1_LP_FBC_SHIFT;
2524
 
5060 serge 2525
		/*
2526
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2527
		 * level is disabled. Doing otherwise could cause underruns.
2528
		 */
4560 Serge 2529
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2530
			WARN_ON(wm_lp != 1);
2531
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2532
		} else
6084 serge 2533
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
4104 Serge 2534
	}
2535
 
4560 Serge 2536
	/* LP0 register values */
5060 serge 2537
	for_each_intel_crtc(dev, intel_crtc) {
4560 Serge 2538
		enum pipe pipe = intel_crtc->pipe;
2539
		const struct intel_wm_level *r =
2540
			&intel_crtc->wm.active.wm[0];
4104 Serge 2541
 
4560 Serge 2542
		if (WARN_ON(!r->enable))
2543
			continue;
2544
 
2545
		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2546
 
2547
		results->wm_pipe[pipe] =
2548
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2549
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2550
			r->cur_val;
4104 Serge 2551
	}
2552
}
2553
 
2554
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2555
 * case both are at the same level. Prefer r1 in case they're the same. */
4560 Serge 2556
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2557
						  struct intel_pipe_wm *r1,
2558
						  struct intel_pipe_wm *r2)
4104 Serge 2559
{
4560 Serge 2560
	int level, max_level = ilk_wm_max_level(dev);
2561
	int level1 = 0, level2 = 0;
4104 Serge 2562
 
4560 Serge 2563
	for (level = 1; level <= max_level; level++) {
2564
		if (r1->wm[level].enable)
2565
			level1 = level;
2566
		if (r2->wm[level].enable)
2567
			level2 = level;
4104 Serge 2568
	}
2569
 
4560 Serge 2570
	if (level1 == level2) {
2571
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
4104 Serge 2572
			return r2;
2573
		else
2574
			return r1;
4560 Serge 2575
	} else if (level1 > level2) {
4104 Serge 2576
		return r1;
2577
	} else {
2578
		return r2;
2579
	}
2580
}
2581
 
4560 Serge 2582
/* dirty bits used to track which watermarks need changes */
2583
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2584
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2585
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2586
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2587
#define WM_DIRTY_FBC (1 << 24)
2588
#define WM_DIRTY_DDB (1 << 25)
2589
 
5354 serge 2590
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
4560 Serge 2591
					 const struct ilk_wm_values *old,
2592
					 const struct ilk_wm_values *new)
2593
{
2594
	unsigned int dirty = 0;
2595
	enum pipe pipe;
2596
	int wm_lp;
2597
 
5354 serge 2598
	for_each_pipe(dev_priv, pipe) {
4560 Serge 2599
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2600
			dirty |= WM_DIRTY_LINETIME(pipe);
2601
			/* Must disable LP1+ watermarks too */
2602
			dirty |= WM_DIRTY_LP_ALL;
2603
		}
2604
 
2605
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2606
			dirty |= WM_DIRTY_PIPE(pipe);
2607
			/* Must disable LP1+ watermarks too */
2608
			dirty |= WM_DIRTY_LP_ALL;
2609
		}
2610
	}
2611
 
2612
	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2613
		dirty |= WM_DIRTY_FBC;
2614
		/* Must disable LP1+ watermarks too */
2615
		dirty |= WM_DIRTY_LP_ALL;
2616
	}
2617
 
2618
	if (old->partitioning != new->partitioning) {
2619
		dirty |= WM_DIRTY_DDB;
2620
		/* Must disable LP1+ watermarks too */
2621
		dirty |= WM_DIRTY_LP_ALL;
2622
	}
2623
 
2624
	/* LP1+ watermarks already deemed dirty, no need to continue */
2625
	if (dirty & WM_DIRTY_LP_ALL)
2626
		return dirty;
2627
 
2628
	/* Find the lowest numbered LP1+ watermark in need of an update... */
2629
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2630
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2631
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2632
			break;
2633
	}
2634
 
2635
	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2636
	for (; wm_lp <= 3; wm_lp++)
2637
		dirty |= WM_DIRTY_LP(wm_lp);
2638
 
2639
	return dirty;
2640
}
2641
 
2642
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2643
			       unsigned int dirty)
2644
{
2645
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2646
	bool changed = false;
2647
 
2648
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2649
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2650
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2651
		changed = true;
2652
	}
2653
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2654
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2655
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2656
		changed = true;
2657
	}
2658
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2659
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2660
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2661
		changed = true;
2662
	}
2663
 
2664
	/*
2665
	 * Don't touch WM1S_LP_EN here.
2666
	 * Doing so could cause underruns.
2667
	 */
2668
 
2669
	return changed;
2670
}
2671
 
4104 Serge 2672
/*
2673
 * The spec says we shouldn't write when we don't need, because every write
2674
 * causes WMs to be re-evaluated, expending some power.
6084 serge 2675
 */
4560 Serge 2676
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2677
				struct ilk_wm_values *results)
4104 Serge 2678
{
4560 Serge 2679
	struct drm_device *dev = dev_priv->dev;
2680
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2681
	unsigned int dirty;
4104 Serge 2682
	uint32_t val;
3031 serge 2683
 
5354 serge 2684
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
4560 Serge 2685
	if (!dirty)
4104 Serge 2686
		return;
2687
 
4560 Serge 2688
	_ilk_disable_lp_wm(dev_priv, dirty);
4104 Serge 2689
 
4560 Serge 2690
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
4104 Serge 2691
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
4560 Serge 2692
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
4104 Serge 2693
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
4560 Serge 2694
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
4104 Serge 2695
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2696
 
4560 Serge 2697
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
4104 Serge 2698
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
4560 Serge 2699
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
4104 Serge 2700
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
4560 Serge 2701
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
4104 Serge 2702
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2703
 
4560 Serge 2704
	if (dirty & WM_DIRTY_DDB) {
2705
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6084 serge 2706
			val = I915_READ(WM_MISC);
4560 Serge 2707
			if (results->partitioning == INTEL_DDB_PART_1_2)
6084 serge 2708
				val &= ~WM_MISC_DATA_PARTITION_5_6;
2709
			else
2710
				val |= WM_MISC_DATA_PARTITION_5_6;
2711
			I915_WRITE(WM_MISC, val);
4560 Serge 2712
		} else {
2713
			val = I915_READ(DISP_ARB_CTL2);
2714
			if (results->partitioning == INTEL_DDB_PART_1_2)
2715
				val &= ~DISP_DATA_PARTITION_5_6;
2716
			else
2717
				val |= DISP_DATA_PARTITION_5_6;
2718
			I915_WRITE(DISP_ARB_CTL2, val);
2719
		}
4104 Serge 2720
	}
2721
 
4560 Serge 2722
	if (dirty & WM_DIRTY_FBC) {
4104 Serge 2723
		val = I915_READ(DISP_ARB_CTL);
2724
		if (results->enable_fbc_wm)
2725
			val &= ~DISP_FBC_WM_DIS;
2726
		else
2727
			val |= DISP_FBC_WM_DIS;
2728
		I915_WRITE(DISP_ARB_CTL, val);
2729
	}
2730
 
4560 Serge 2731
	if (dirty & WM_DIRTY_LP(1) &&
2732
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
4104 Serge 2733
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
4560 Serge 2734
 
2735
	if (INTEL_INFO(dev)->gen >= 7) {
2736
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
6084 serge 2737
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
4560 Serge 2738
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
6084 serge 2739
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
4560 Serge 2740
	}
4104 Serge 2741
 
4560 Serge 2742
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
4104 Serge 2743
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
4560 Serge 2744
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
4104 Serge 2745
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
4560 Serge 2746
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
4104 Serge 2747
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
4560 Serge 2748
 
2749
	dev_priv->wm.hw = *results;
3031 serge 2750
}
2751
 
4560 Serge 2752
static bool ilk_disable_lp_wm(struct drm_device *dev)
4104 Serge 2753
{
2754
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2755
 
2756
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2757
}
2758
 
5354 serge 2759
/*
2760
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2761
 * different active planes.
2762
 */
2763
 
2764
#define SKL_DDB_SIZE		896	/* in blocks */
6084 serge 2765
#define BXT_DDB_SIZE		512
5354 serge 2766
 
2767
static void
2768
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2769
				   struct drm_crtc *for_crtc,
2770
				   const struct intel_wm_config *config,
2771
				   const struct skl_pipe_wm_parameters *params,
2772
				   struct skl_ddb_entry *alloc /* out */)
2773
{
2774
	struct drm_crtc *crtc;
2775
	unsigned int pipe_size, ddb_size;
2776
	int nth_active_pipe;
2777
 
2778
	if (!params->active) {
2779
		alloc->start = 0;
2780
		alloc->end = 0;
2781
		return;
2782
	}
2783
 
6084 serge 2784
	if (IS_BROXTON(dev))
2785
		ddb_size = BXT_DDB_SIZE;
2786
	else
2787
		ddb_size = SKL_DDB_SIZE;
5354 serge 2788
 
2789
	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2790
 
2791
	nth_active_pipe = 0;
2792
	for_each_crtc(dev, crtc) {
6084 serge 2793
		if (!to_intel_crtc(crtc)->active)
5354 serge 2794
			continue;
2795
 
2796
		if (crtc == for_crtc)
2797
			break;
2798
 
2799
		nth_active_pipe++;
2800
	}
2801
 
2802
	pipe_size = ddb_size / config->num_pipes_active;
2803
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2804
	alloc->end = alloc->start + pipe_size;
2805
}
2806
 
2807
static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2808
{
2809
	if (config->num_pipes_active == 1)
2810
		return 32;
2811
 
2812
	return 8;
2813
}
2814
 
2815
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2816
{
2817
	entry->start = reg & 0x3ff;
2818
	entry->end = (reg >> 16) & 0x3ff;
2819
	if (entry->end)
2820
		entry->end += 1;
2821
}
2822
 
2823
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2824
			  struct skl_ddb_allocation *ddb /* out */)
2825
{
2826
	enum pipe pipe;
2827
	int plane;
2828
	u32 val;
2829
 
6084 serge 2830
	memset(ddb, 0, sizeof(*ddb));
2831
 
5354 serge 2832
	for_each_pipe(dev_priv, pipe) {
6084 serge 2833
		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2834
			continue;
2835
 
2836
		for_each_plane(dev_priv, pipe, plane) {
5354 serge 2837
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2838
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2839
						   val);
2840
		}
2841
 
2842
		val = I915_READ(CUR_BUF_CFG(pipe));
6084 serge 2843
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2844
					   val);
5354 serge 2845
	}
2846
}
2847
 
2848
static unsigned int
6084 serge 2849
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
5354 serge 2850
{
6084 serge 2851
 
2852
	/* for planar format */
2853
	if (p->y_bytes_per_pixel) {
2854
		if (y)  /* y-plane data rate */
2855
			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2856
		else    /* uv-plane data rate */
2857
			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2858
	}
2859
 
2860
	/* for packed formats */
5354 serge 2861
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2862
}
2863
 
2864
/*
2865
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2866
 * a 8192x4096@32bpp framebuffer:
2867
 *   3 * 4096 * 8192  * 4 < 2^32
2868
 */
2869
static unsigned int
2870
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2871
				 const struct skl_pipe_wm_parameters *params)
2872
{
2873
	unsigned int total_data_rate = 0;
2874
	int plane;
2875
 
2876
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2877
		const struct intel_plane_wm_parameters *p;
2878
 
2879
		p = ¶ms->plane[plane];
2880
		if (!p->enabled)
2881
			continue;
2882
 
6084 serge 2883
		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2884
		if (p->y_bytes_per_pixel) {
2885
			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2886
		}
5354 serge 2887
	}
2888
 
2889
	return total_data_rate;
2890
}
2891
 
2892
static void
2893
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2894
		      const struct intel_wm_config *config,
2895
		      const struct skl_pipe_wm_parameters *params,
2896
		      struct skl_ddb_allocation *ddb /* out */)
2897
{
2898
	struct drm_device *dev = crtc->dev;
6084 serge 2899
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 2900
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2901
	enum pipe pipe = intel_crtc->pipe;
2902
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2903
	uint16_t alloc_size, start, cursor_blocks;
6084 serge 2904
	uint16_t minimum[I915_MAX_PLANES];
2905
	uint16_t y_minimum[I915_MAX_PLANES];
5354 serge 2906
	unsigned int total_data_rate;
2907
	int plane;
2908
 
2909
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2910
	alloc_size = skl_ddb_entry_size(alloc);
2911
	if (alloc_size == 0) {
2912
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
6084 serge 2913
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2914
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
5354 serge 2915
		return;
2916
	}
2917
 
2918
	cursor_blocks = skl_cursor_allocation(config);
6084 serge 2919
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2920
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
5354 serge 2921
 
2922
	alloc_size -= cursor_blocks;
2923
	alloc->end -= cursor_blocks;
2924
 
6084 serge 2925
	/* 1. Allocate the mininum required blocks for each active plane */
2926
	for_each_plane(dev_priv, pipe, plane) {
2927
		const struct intel_plane_wm_parameters *p;
2928
 
2929
		p = ¶ms->plane[plane];
2930
		if (!p->enabled)
2931
			continue;
2932
 
2933
		minimum[plane] = 8;
2934
		alloc_size -= minimum[plane];
2935
		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2936
		alloc_size -= y_minimum[plane];
2937
	}
2938
 
2939
	/*
2940
	 * 2. Distribute the remaining space in proportion to the amount of
2941
	 * data each plane needs to fetch from memory.
5354 serge 2942
	 *
2943
	 * FIXME: we may not allocate every single block here.
6084 serge 2944
	 */
5354 serge 2945
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2946
 
2947
	start = alloc->start;
2948
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2949
		const struct intel_plane_wm_parameters *p;
6084 serge 2950
		unsigned int data_rate, y_data_rate;
2951
		uint16_t plane_blocks, y_plane_blocks = 0;
5354 serge 2952
 
2953
		p = ¶ms->plane[plane];
2954
		if (!p->enabled)
2955
			continue;
2956
 
6084 serge 2957
		data_rate = skl_plane_relative_data_rate(p, 0);
5354 serge 2958
 
2959
		/*
6084 serge 2960
		 * allocation for (packed formats) or (uv-plane part of planar format):
5354 serge 2961
		 * promote the expression to 64 bits to avoid overflowing, the
2962
		 * result is < available as data_rate / total_data_rate < 1
2963
		 */
6084 serge 2964
		plane_blocks = minimum[plane];
2965
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2966
					total_data_rate);
5354 serge 2967
 
2968
		ddb->plane[pipe][plane].start = start;
2969
		ddb->plane[pipe][plane].end = start + plane_blocks;
2970
 
2971
		start += plane_blocks;
6084 serge 2972
 
2973
		/*
2974
		 * allocation for y_plane part of planar format:
2975
		 */
2976
		if (p->y_bytes_per_pixel) {
2977
			y_data_rate = skl_plane_relative_data_rate(p, 1);
2978
			y_plane_blocks = y_minimum[plane];
2979
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2980
						total_data_rate);
2981
 
2982
			ddb->y_plane[pipe][plane].start = start;
2983
			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2984
 
2985
			start += y_plane_blocks;
2986
		}
2987
 
5354 serge 2988
	}
2989
 
2990
}
2991
 
6084 serge 2992
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
5354 serge 2993
{
2994
	/* TODO: Take into account the scalers once we support them */
6084 serge 2995
	return config->base.adjusted_mode.crtc_clock;
5354 serge 2996
}
2997
 
2998
/*
2999
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3000
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3001
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3002
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3003
*/
3004
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3005
			       uint32_t latency)
3006
{
3007
	uint32_t wm_intermediate_val, ret;
3008
 
3009
	if (latency == 0)
3010
		return UINT_MAX;
3011
 
6084 serge 3012
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
5354 serge 3013
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3014
 
3015
	return ret;
3016
}
3017
 
3018
static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3019
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
6084 serge 3020
			       uint64_t tiling, uint32_t latency)
5354 serge 3021
{
6084 serge 3022
	uint32_t ret;
3023
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3024
	uint32_t wm_intermediate_val;
5354 serge 3025
 
3026
	if (latency == 0)
3027
		return UINT_MAX;
3028
 
3029
	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
6084 serge 3030
 
3031
	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3032
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3033
		plane_bytes_per_line *= 4;
3034
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3035
		plane_blocks_per_line /= 4;
3036
	} else {
3037
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3038
	}
3039
 
5354 serge 3040
	wm_intermediate_val = latency * pixel_rate;
3041
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
6084 serge 3042
				plane_blocks_per_line;
5354 serge 3043
 
3044
	return ret;
3045
}
3046
 
3047
static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3048
				       const struct intel_crtc *intel_crtc)
3049
{
3050
	struct drm_device *dev = intel_crtc->base.dev;
3051
	struct drm_i915_private *dev_priv = dev->dev_private;
3052
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3053
	enum pipe pipe = intel_crtc->pipe;
3054
 
3055
	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3056
		   sizeof(new_ddb->plane[pipe])))
3057
		return true;
3058
 
6084 serge 3059
	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3060
		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
5354 serge 3061
		return true;
3062
 
3063
	return false;
3064
}
3065
 
3066
static void skl_compute_wm_global_parameters(struct drm_device *dev,
3067
					     struct intel_wm_config *config)
3068
{
3069
	struct drm_crtc *crtc;
3070
	struct drm_plane *plane;
3071
 
3072
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
6084 serge 3073
		config->num_pipes_active += to_intel_crtc(crtc)->active;
5354 serge 3074
 
3075
	/* FIXME: I don't think we need those two global parameters on SKL */
3076
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3077
		struct intel_plane *intel_plane = to_intel_plane(plane);
3078
 
3079
		config->sprites_enabled |= intel_plane->wm.enabled;
3080
		config->sprites_scaled |= intel_plane->wm.scaled;
3081
	}
3082
}
3083
 
3084
static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3085
					   struct skl_pipe_wm_parameters *p)
3086
{
3087
	struct drm_device *dev = crtc->dev;
3088
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3089
	enum pipe pipe = intel_crtc->pipe;
3090
	struct drm_plane *plane;
6084 serge 3091
	struct drm_framebuffer *fb;
5354 serge 3092
	int i = 1; /* Index for sprite planes start */
3093
 
6084 serge 3094
	p->active = intel_crtc->active;
5354 serge 3095
	if (p->active) {
6084 serge 3096
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3097
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
5354 serge 3098
 
6084 serge 3099
		fb = crtc->primary->state->fb;
3100
		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3101
		if (fb) {
3102
			p->plane[0].enabled = true;
3103
			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3104
				drm_format_plane_cpp(fb->pixel_format, 1) :
3105
				drm_format_plane_cpp(fb->pixel_format, 0);
3106
			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3107
				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3108
			p->plane[0].tiling = fb->modifier[0];
3109
		} else {
3110
			p->plane[0].enabled = false;
3111
			p->plane[0].bytes_per_pixel = 0;
3112
			p->plane[0].y_bytes_per_pixel = 0;
3113
			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3114
		}
3115
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3116
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3117
		p->plane[0].rotation = crtc->primary->state->rotation;
5354 serge 3118
 
6084 serge 3119
		fb = crtc->cursor->state->fb;
3120
		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
3121
		if (fb) {
3122
			p->plane[PLANE_CURSOR].enabled = true;
3123
			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
3124
			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
3125
			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
3126
		} else {
3127
			p->plane[PLANE_CURSOR].enabled = false;
3128
			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
3129
			p->plane[PLANE_CURSOR].horiz_pixels = 64;
3130
			p->plane[PLANE_CURSOR].vert_pixels = 64;
3131
		}
5354 serge 3132
	}
3133
 
3134
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3135
		struct intel_plane *intel_plane = to_intel_plane(plane);
3136
 
6084 serge 3137
		if (intel_plane->pipe == pipe &&
3138
			plane->type == DRM_PLANE_TYPE_OVERLAY)
5354 serge 3139
			p->plane[i++] = intel_plane->wm;
3140
	}
3141
}
3142
 
6084 serge 3143
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3144
				 struct skl_pipe_wm_parameters *p,
5354 serge 3145
				 struct intel_plane_wm_parameters *p_params,
3146
				 uint16_t ddb_allocation,
6084 serge 3147
				 int level,
5354 serge 3148
				 uint16_t *out_blocks, /* out */
3149
				 uint8_t *out_lines /* out */)
3150
{
6084 serge 3151
	uint32_t latency = dev_priv->wm.skl_latency[level];
3152
	uint32_t method1, method2;
3153
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3154
	uint32_t res_blocks, res_lines;
3155
	uint32_t selected_result;
3156
	uint8_t bytes_per_pixel;
5354 serge 3157
 
6084 serge 3158
	if (latency == 0 || !p->active || !p_params->enabled)
5354 serge 3159
		return false;
3160
 
6084 serge 3161
	bytes_per_pixel = p_params->y_bytes_per_pixel ?
3162
		p_params->y_bytes_per_pixel :
3163
		p_params->bytes_per_pixel;
5354 serge 3164
	method1 = skl_wm_method1(p->pixel_rate,
6084 serge 3165
				 bytes_per_pixel,
3166
				 latency);
5354 serge 3167
	method2 = skl_wm_method2(p->pixel_rate,
3168
				 p->pipe_htotal,
3169
				 p_params->horiz_pixels,
6084 serge 3170
				 bytes_per_pixel,
3171
				 p_params->tiling,
3172
				 latency);
5354 serge 3173
 
6084 serge 3174
	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3175
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
5354 serge 3176
 
6084 serge 3177
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3178
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3179
		uint32_t min_scanlines = 4;
3180
		uint32_t y_tile_minimum;
3181
		if (intel_rotation_90_or_270(p_params->rotation)) {
3182
			switch (p_params->bytes_per_pixel) {
3183
			case 1:
3184
				min_scanlines = 16;
3185
				break;
3186
			case 2:
3187
				min_scanlines = 8;
3188
				break;
3189
			case 8:
3190
				WARN(1, "Unsupported pixel depth for rotation");
3191
			}
3192
		}
3193
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3194
		selected_result = max(method2, y_tile_minimum);
3195
	} else {
3196
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3197
			selected_result = min(method1, method2);
3198
		else
3199
			selected_result = method1;
3200
	}
5354 serge 3201
 
6084 serge 3202
	res_blocks = selected_result + 1;
3203
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
5354 serge 3204
 
6084 serge 3205
	if (level >= 1 && level <= 7) {
3206
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3207
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3208
			res_lines += 4;
3209
		else
3210
			res_blocks++;
3211
	}
3212
 
3213
	if (res_blocks >= ddb_allocation || res_lines > 31)
5354 serge 3214
		return false;
3215
 
3216
	*out_blocks = res_blocks;
3217
	*out_lines = res_lines;
3218
 
3219
	return true;
3220
}
3221
 
3222
static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3223
				 struct skl_ddb_allocation *ddb,
3224
				 struct skl_pipe_wm_parameters *p,
3225
				 enum pipe pipe,
3226
				 int level,
3227
				 int num_planes,
3228
				 struct skl_wm_level *result)
3229
{
3230
	uint16_t ddb_blocks;
3231
	int i;
3232
 
3233
	for (i = 0; i < num_planes; i++) {
3234
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3235
 
6084 serge 3236
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3237
						p, &p->plane[i],
5354 serge 3238
						ddb_blocks,
6084 serge 3239
						level,
5354 serge 3240
						&result->plane_res_b[i],
3241
						&result->plane_res_l[i]);
3242
	}
3243
 
6084 serge 3244
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
3245
	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
3246
						 &p->plane[PLANE_CURSOR],
3247
						 ddb_blocks, level,
3248
						 &result->plane_res_b[PLANE_CURSOR],
3249
						 &result->plane_res_l[PLANE_CURSOR]);
5354 serge 3250
}
3251
 
3252
static uint32_t
3253
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3254
{
6084 serge 3255
	if (!to_intel_crtc(crtc)->active)
5354 serge 3256
		return 0;
3257
 
6084 serge 3258
	if (WARN_ON(p->pixel_rate == 0))
3259
		return 0;
3260
 
5354 serge 3261
	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3262
}
3263
 
3264
static void skl_compute_transition_wm(struct drm_crtc *crtc,
3265
				      struct skl_pipe_wm_parameters *params,
3266
				      struct skl_wm_level *trans_wm /* out */)
3267
{
3268
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3269
	int i;
3270
 
3271
	if (!params->active)
3272
		return;
3273
 
3274
	/* Until we know more, just disable transition WMs */
3275
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3276
		trans_wm->plane_en[i] = false;
6084 serge 3277
	trans_wm->plane_en[PLANE_CURSOR] = false;
5354 serge 3278
}
3279
 
3280
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3281
				struct skl_ddb_allocation *ddb,
3282
				struct skl_pipe_wm_parameters *params,
3283
				struct skl_pipe_wm *pipe_wm)
3284
{
3285
	struct drm_device *dev = crtc->dev;
3286
	const struct drm_i915_private *dev_priv = dev->dev_private;
3287
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3288
	int level, max_level = ilk_wm_max_level(dev);
3289
 
3290
	for (level = 0; level <= max_level; level++) {
3291
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3292
				     level, intel_num_planes(intel_crtc),
3293
				     &pipe_wm->wm[level]);
3294
	}
3295
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3296
 
3297
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3298
}
3299
 
3300
static void skl_compute_wm_results(struct drm_device *dev,
3301
				   struct skl_pipe_wm_parameters *p,
3302
				   struct skl_pipe_wm *p_wm,
3303
				   struct skl_wm_values *r,
3304
				   struct intel_crtc *intel_crtc)
3305
{
3306
	int level, max_level = ilk_wm_max_level(dev);
3307
	enum pipe pipe = intel_crtc->pipe;
3308
	uint32_t temp;
3309
	int i;
3310
 
3311
	for (level = 0; level <= max_level; level++) {
3312
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3313
			temp = 0;
3314
 
3315
			temp |= p_wm->wm[level].plane_res_l[i] <<
3316
					PLANE_WM_LINES_SHIFT;
3317
			temp |= p_wm->wm[level].plane_res_b[i];
3318
			if (p_wm->wm[level].plane_en[i])
3319
				temp |= PLANE_WM_EN;
3320
 
3321
			r->plane[pipe][i][level] = temp;
3322
		}
3323
 
3324
		temp = 0;
3325
 
6084 serge 3326
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3327
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
5354 serge 3328
 
6084 serge 3329
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
5354 serge 3330
			temp |= PLANE_WM_EN;
3331
 
6084 serge 3332
		r->plane[pipe][PLANE_CURSOR][level] = temp;
5354 serge 3333
 
3334
	}
3335
 
3336
	/* transition WMs */
3337
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3338
		temp = 0;
3339
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3340
		temp |= p_wm->trans_wm.plane_res_b[i];
3341
		if (p_wm->trans_wm.plane_en[i])
3342
			temp |= PLANE_WM_EN;
3343
 
3344
		r->plane_trans[pipe][i] = temp;
3345
	}
3346
 
3347
	temp = 0;
6084 serge 3348
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3349
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3350
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
5354 serge 3351
		temp |= PLANE_WM_EN;
3352
 
6084 serge 3353
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
5354 serge 3354
 
3355
	r->wm_linetime[pipe] = p_wm->linetime;
3356
}
3357
 
3358
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3359
				const struct skl_ddb_entry *entry)
3360
{
3361
	if (entry->end)
3362
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3363
	else
3364
		I915_WRITE(reg, 0);
3365
}
3366
 
3367
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3368
				const struct skl_wm_values *new)
3369
{
3370
	struct drm_device *dev = dev_priv->dev;
3371
	struct intel_crtc *crtc;
3372
 
3373
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3374
		int i, level, max_level = ilk_wm_max_level(dev);
3375
		enum pipe pipe = crtc->pipe;
3376
 
3377
		if (!new->dirty[pipe])
3378
			continue;
3379
 
3380
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3381
 
3382
		for (level = 0; level <= max_level; level++) {
3383
			for (i = 0; i < intel_num_planes(crtc); i++)
3384
				I915_WRITE(PLANE_WM(pipe, i, level),
3385
					   new->plane[pipe][i][level]);
3386
			I915_WRITE(CUR_WM(pipe, level),
6084 serge 3387
				   new->plane[pipe][PLANE_CURSOR][level]);
5354 serge 3388
		}
3389
		for (i = 0; i < intel_num_planes(crtc); i++)
3390
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3391
				   new->plane_trans[pipe][i]);
6084 serge 3392
		I915_WRITE(CUR_WM_TRANS(pipe),
3393
			   new->plane_trans[pipe][PLANE_CURSOR]);
5354 serge 3394
 
6084 serge 3395
		for (i = 0; i < intel_num_planes(crtc); i++) {
5354 serge 3396
			skl_ddb_entry_write(dev_priv,
3397
					    PLANE_BUF_CFG(pipe, i),
3398
					    &new->ddb.plane[pipe][i]);
6084 serge 3399
			skl_ddb_entry_write(dev_priv,
3400
					    PLANE_NV12_BUF_CFG(pipe, i),
3401
					    &new->ddb.y_plane[pipe][i]);
3402
		}
5354 serge 3403
 
3404
		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
6084 serge 3405
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
5354 serge 3406
	}
3407
}
3408
 
3409
/*
3410
 * When setting up a new DDB allocation arrangement, we need to correctly
3411
 * sequence the times at which the new allocations for the pipes are taken into
3412
 * account or we'll have pipes fetching from space previously allocated to
3413
 * another pipe.
3414
 *
3415
 * Roughly the sequence looks like:
3416
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
3417
 *     overlapping with a previous light-up pipe (another way to put it is:
3418
 *     pipes with their new allocation strickly included into their old ones).
3419
 *  2. re-allocate the other pipes that get their allocation reduced
3420
 *  3. allocate the pipes having their allocation increased
3421
 *
3422
 * Steps 1. and 2. are here to take care of the following case:
3423
 * - Initially DDB looks like this:
3424
 *     |   B    |   C    |
3425
 * - enable pipe A.
3426
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3427
 *   allocation
3428
 *     |  A  |  B  |  C  |
3429
 *
3430
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3431
 */
3432
 
3433
static void
3434
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3435
{
3436
	int plane;
3437
 
3438
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3439
 
6084 serge 3440
	for_each_plane(dev_priv, pipe, plane) {
5354 serge 3441
		I915_WRITE(PLANE_SURF(pipe, plane),
3442
			   I915_READ(PLANE_SURF(pipe, plane)));
3443
	}
3444
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3445
}
3446
 
3447
static bool
3448
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3449
			    const struct skl_ddb_allocation *new,
3450
			    enum pipe pipe)
3451
{
3452
	uint16_t old_size, new_size;
3453
 
3454
	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3455
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3456
 
3457
	return old_size != new_size &&
3458
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3459
	       new->pipe[pipe].end <= old->pipe[pipe].end;
3460
}
3461
 
3462
static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3463
				struct skl_wm_values *new_values)
3464
{
3465
	struct drm_device *dev = dev_priv->dev;
3466
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
6084 serge 3467
	bool reallocated[I915_MAX_PIPES] = {};
5354 serge 3468
	struct intel_crtc *crtc;
3469
	enum pipe pipe;
3470
 
3471
	new_ddb = &new_values->ddb;
3472
	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3473
 
3474
	/*
3475
	 * First pass: flush the pipes with the new allocation contained into
3476
	 * the old space.
3477
	 *
3478
	 * We'll wait for the vblank on those pipes to ensure we can safely
3479
	 * re-allocate the freed space without this pipe fetching from it.
3480
	 */
3481
	for_each_intel_crtc(dev, crtc) {
3482
		if (!crtc->active)
3483
			continue;
3484
 
3485
		pipe = crtc->pipe;
3486
 
3487
		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3488
			continue;
3489
 
3490
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3491
		intel_wait_for_vblank(dev, pipe);
3492
 
3493
		reallocated[pipe] = true;
3494
	}
3495
 
3496
 
3497
	/*
3498
	 * Second pass: flush the pipes that are having their allocation
3499
	 * reduced, but overlapping with a previous allocation.
3500
	 *
3501
	 * Here as well we need to wait for the vblank to make sure the freed
3502
	 * space is not used anymore.
3503
	 */
3504
	for_each_intel_crtc(dev, crtc) {
3505
		if (!crtc->active)
3506
			continue;
3507
 
3508
		pipe = crtc->pipe;
3509
 
3510
		if (reallocated[pipe])
3511
			continue;
3512
 
3513
		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3514
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3515
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3516
			intel_wait_for_vblank(dev, pipe);
6084 serge 3517
			reallocated[pipe] = true;
5354 serge 3518
		}
3519
	}
3520
 
3521
	/*
3522
	 * Third pass: flush the pipes that got more space allocated.
3523
	 *
3524
	 * We don't need to actively wait for the update here, next vblank
3525
	 * will just get more DDB space with the correct WM values.
3526
	 */
3527
	for_each_intel_crtc(dev, crtc) {
3528
		if (!crtc->active)
3529
			continue;
3530
 
3531
		pipe = crtc->pipe;
3532
 
3533
		/*
3534
		 * At this point, only the pipes more space than before are
3535
		 * left to re-allocate.
3536
		 */
3537
		if (reallocated[pipe])
3538
			continue;
3539
 
3540
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3541
	}
3542
}
3543
 
3544
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3545
			       struct skl_pipe_wm_parameters *params,
3546
			       struct intel_wm_config *config,
3547
			       struct skl_ddb_allocation *ddb, /* out */
3548
			       struct skl_pipe_wm *pipe_wm /* out */)
3549
{
3550
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3551
 
3552
	skl_compute_wm_pipe_parameters(crtc, params);
3553
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3554
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3555
 
3556
	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3557
		return false;
3558
 
3559
	intel_crtc->wm.skl_active = *pipe_wm;
6084 serge 3560
 
5354 serge 3561
	return true;
3562
}
3563
 
3564
static void skl_update_other_pipe_wm(struct drm_device *dev,
3565
				     struct drm_crtc *crtc,
3566
				     struct intel_wm_config *config,
3567
				     struct skl_wm_values *r)
3568
{
3569
	struct intel_crtc *intel_crtc;
3570
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3571
 
3572
	/*
3573
	 * If the WM update hasn't changed the allocation for this_crtc (the
3574
	 * crtc we are currently computing the new WM values for), other
3575
	 * enabled crtcs will keep the same allocation and we don't need to
3576
	 * recompute anything for them.
3577
	 */
3578
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3579
		return;
3580
 
3581
	/*
3582
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3583
	 * other active pipes need new DDB allocation and WM values.
3584
	 */
3585
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3586
				base.head) {
3587
		struct skl_pipe_wm_parameters params = {};
3588
		struct skl_pipe_wm pipe_wm = {};
3589
		bool wm_changed;
3590
 
3591
		if (this_crtc->pipe == intel_crtc->pipe)
3592
			continue;
3593
 
3594
		if (!intel_crtc->active)
3595
			continue;
3596
 
3597
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3598
						¶ms, config,
3599
						&r->ddb, &pipe_wm);
3600
 
3601
		/*
3602
		 * If we end up re-computing the other pipe WM values, it's
3603
		 * because it was really needed, so we expect the WM values to
3604
		 * be different.
6084 serge 3605
		 */
5354 serge 3606
		WARN_ON(!wm_changed);
3607
 
3608
		skl_compute_wm_results(dev, ¶ms, &pipe_wm, r, intel_crtc);
3609
		r->dirty[intel_crtc->pipe] = true;
3610
	}
3611
}
3612
 
6084 serge 3613
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3614
{
3615
	watermarks->wm_linetime[pipe] = 0;
3616
	memset(watermarks->plane[pipe], 0,
3617
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3618
	memset(watermarks->plane_trans[pipe],
3619
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3620
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3621
 
3622
	/* Clear ddb entries for pipe */
3623
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3624
	memset(&watermarks->ddb.plane[pipe], 0,
3625
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3626
	memset(&watermarks->ddb.y_plane[pipe], 0,
3627
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3628
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3629
	       sizeof(struct skl_ddb_entry));
3630
 
3631
}
3632
 
5354 serge 3633
static void skl_update_wm(struct drm_crtc *crtc)
3634
{
3635
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3636
	struct drm_device *dev = crtc->dev;
3637
	struct drm_i915_private *dev_priv = dev->dev_private;
3638
	struct skl_pipe_wm_parameters params = {};
3639
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3640
	struct skl_pipe_wm pipe_wm = {};
3641
	struct intel_wm_config config = {};
3642
 
3643
 
6084 serge 3644
	/* Clear all dirty flags */
3645
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3646
 
3647
	skl_clear_wm(results, intel_crtc->pipe);
3648
 
5354 serge 3649
	skl_compute_wm_global_parameters(dev, &config);
3650
 
3651
	if (!skl_update_pipe_wm(crtc, ¶ms, &config,
3652
				&results->ddb, &pipe_wm))
3653
		return;
3654
 
3655
	skl_compute_wm_results(dev, ¶ms, &pipe_wm, results, intel_crtc);
3656
	results->dirty[intel_crtc->pipe] = true;
3657
 
3658
	skl_update_other_pipe_wm(dev, crtc, &config, results);
3659
	skl_write_wm_values(dev_priv, results);
3660
	skl_flush_wm_values(dev_priv, results);
3661
 
3662
	/* store the new configuration */
3663
	dev_priv->wm.skl_hw = *results;
3664
}
3665
 
3666
static void
3667
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3668
		     uint32_t sprite_width, uint32_t sprite_height,
3669
		     int pixel_size, bool enabled, bool scaled)
3670
{
3671
	struct intel_plane *intel_plane = to_intel_plane(plane);
6084 serge 3672
	struct drm_framebuffer *fb = plane->state->fb;
5354 serge 3673
 
3674
	intel_plane->wm.enabled = enabled;
3675
	intel_plane->wm.scaled = scaled;
3676
	intel_plane->wm.horiz_pixels = sprite_width;
3677
	intel_plane->wm.vert_pixels = sprite_height;
6084 serge 3678
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
5354 serge 3679
 
6084 serge 3680
	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3681
	intel_plane->wm.bytes_per_pixel =
3682
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3683
		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3684
	intel_plane->wm.y_bytes_per_pixel =
3685
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3686
		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3687
 
3688
	/*
3689
	 * Framebuffer can be NULL on plane disable, but it does not
3690
	 * matter for watermarks if we assume no tiling in that case.
3691
	 */
3692
	if (fb)
3693
		intel_plane->wm.tiling = fb->modifier[0];
3694
	intel_plane->wm.rotation = plane->state->rotation;
3695
 
5354 serge 3696
	skl_update_wm(crtc);
3697
}
3698
 
4560 Serge 3699
static void ilk_update_wm(struct drm_crtc *crtc)
3700
{
3701
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 3702
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4560 Serge 3703
	struct drm_device *dev = crtc->dev;
3704
	struct drm_i915_private *dev_priv = dev->dev_private;
3705
	struct ilk_wm_maximums max;
3706
	struct ilk_wm_values results = {};
4104 Serge 3707
	enum intel_ddb_partitioning partitioning;
4560 Serge 3708
	struct intel_pipe_wm pipe_wm = {};
3709
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3710
	struct intel_wm_config config = {};
4104 Serge 3711
 
6084 serge 3712
	WARN_ON(cstate->base.active != intel_crtc->active);
4104 Serge 3713
 
6084 serge 3714
	intel_compute_pipe_wm(cstate, &pipe_wm);
4560 Serge 3715
 
3716
	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3717
		return;
3718
 
3719
	intel_crtc->wm.active = pipe_wm;
3720
 
5060 serge 3721
	ilk_compute_wm_config(dev, &config);
3722
 
4560 Serge 3723
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3724
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3725
 
3726
	/* 5/6 split only in single pipe config on IVB+ */
3727
	if (INTEL_INFO(dev)->gen >= 7 &&
3728
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3729
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3730
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3731
 
3732
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4104 Serge 3733
	} else {
4560 Serge 3734
		best_lp_wm = &lp_wm_1_2;
4104 Serge 3735
	}
3736
 
4560 Serge 3737
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4104 Serge 3738
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3739
 
4560 Serge 3740
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3741
 
3742
	ilk_write_wm_values(dev_priv, &results);
4104 Serge 3743
}
3744
 
5060 serge 3745
static void
3746
ilk_update_sprite_wm(struct drm_plane *plane,
5354 serge 3747
		     struct drm_crtc *crtc,
5060 serge 3748
		     uint32_t sprite_width, uint32_t sprite_height,
3749
		     int pixel_size, bool enabled, bool scaled)
4104 Serge 3750
{
4560 Serge 3751
	struct drm_device *dev = plane->dev;
5354 serge 3752
	struct intel_plane *intel_plane = to_intel_plane(plane);
4104 Serge 3753
 
4560 Serge 3754
	/*
3755
	 * IVB workaround: must disable low power watermarks for at least
3756
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3757
	 * when scaling is disabled.
3758
	 *
3759
	 * WaCxSRDisabledForSpriteScaling:ivb
3760
	 */
3761
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3762
		intel_wait_for_vblank(dev, intel_plane->pipe);
3763
 
3764
	ilk_update_wm(crtc);
4104 Serge 3765
}
3766
 
5354 serge 3767
static void skl_pipe_wm_active_state(uint32_t val,
3768
				     struct skl_pipe_wm *active,
3769
				     bool is_transwm,
3770
				     bool is_cursor,
3771
				     int i,
3772
				     int level)
3773
{
3774
	bool is_enabled = (val & PLANE_WM_EN) != 0;
3775
 
3776
	if (!is_transwm) {
3777
		if (!is_cursor) {
3778
			active->wm[level].plane_en[i] = is_enabled;
3779
			active->wm[level].plane_res_b[i] =
3780
					val & PLANE_WM_BLOCKS_MASK;
3781
			active->wm[level].plane_res_l[i] =
3782
					(val >> PLANE_WM_LINES_SHIFT) &
3783
						PLANE_WM_LINES_MASK;
3784
		} else {
6084 serge 3785
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3786
			active->wm[level].plane_res_b[PLANE_CURSOR] =
5354 serge 3787
					val & PLANE_WM_BLOCKS_MASK;
6084 serge 3788
			active->wm[level].plane_res_l[PLANE_CURSOR] =
5354 serge 3789
					(val >> PLANE_WM_LINES_SHIFT) &
3790
						PLANE_WM_LINES_MASK;
3791
		}
3792
	} else {
3793
		if (!is_cursor) {
3794
			active->trans_wm.plane_en[i] = is_enabled;
3795
			active->trans_wm.plane_res_b[i] =
3796
					val & PLANE_WM_BLOCKS_MASK;
3797
			active->trans_wm.plane_res_l[i] =
3798
					(val >> PLANE_WM_LINES_SHIFT) &
3799
						PLANE_WM_LINES_MASK;
3800
		} else {
6084 serge 3801
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3802
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
5354 serge 3803
					val & PLANE_WM_BLOCKS_MASK;
6084 serge 3804
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
5354 serge 3805
					(val >> PLANE_WM_LINES_SHIFT) &
3806
						PLANE_WM_LINES_MASK;
3807
		}
3808
	}
3809
}
3810
 
3811
static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3812
{
3813
	struct drm_device *dev = crtc->dev;
3814
	struct drm_i915_private *dev_priv = dev->dev_private;
3815
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3816
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3817
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3818
	enum pipe pipe = intel_crtc->pipe;
3819
	int level, i, max_level;
3820
	uint32_t temp;
3821
 
3822
	max_level = ilk_wm_max_level(dev);
3823
 
3824
	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3825
 
3826
	for (level = 0; level <= max_level; level++) {
3827
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3828
			hw->plane[pipe][i][level] =
3829
					I915_READ(PLANE_WM(pipe, i, level));
6084 serge 3830
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
5354 serge 3831
	}
3832
 
3833
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3834
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
6084 serge 3835
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
5354 serge 3836
 
6084 serge 3837
	if (!intel_crtc->active)
5354 serge 3838
		return;
3839
 
3840
	hw->dirty[pipe] = true;
3841
 
3842
	active->linetime = hw->wm_linetime[pipe];
3843
 
3844
	for (level = 0; level <= max_level; level++) {
3845
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3846
			temp = hw->plane[pipe][i][level];
3847
			skl_pipe_wm_active_state(temp, active, false,
3848
						false, i, level);
3849
		}
6084 serge 3850
		temp = hw->plane[pipe][PLANE_CURSOR][level];
5354 serge 3851
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3852
	}
3853
 
3854
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3855
		temp = hw->plane_trans[pipe][i];
3856
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3857
	}
3858
 
6084 serge 3859
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
5354 serge 3860
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3861
}
3862
 
3863
void skl_wm_get_hw_state(struct drm_device *dev)
3864
{
3865
	struct drm_i915_private *dev_priv = dev->dev_private;
3866
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3867
	struct drm_crtc *crtc;
3868
 
3869
	skl_ddb_get_hw_state(dev_priv, ddb);
3870
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3871
		skl_pipe_wm_get_hw_state(crtc);
3872
}
3873
 
4560 Serge 3874
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3031 serge 3875
{
4560 Serge 3876
	struct drm_device *dev = crtc->dev;
3877
	struct drm_i915_private *dev_priv = dev->dev_private;
3878
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3879
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3880
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3881
	enum pipe pipe = intel_crtc->pipe;
3882
	static const unsigned int wm0_pipe_reg[] = {
3883
		[PIPE_A] = WM0_PIPEA_ILK,
3884
		[PIPE_B] = WM0_PIPEB_ILK,
3885
		[PIPE_C] = WM0_PIPEC_IVB,
3886
	};
3031 serge 3887
 
4560 Serge 3888
	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3889
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3890
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3031 serge 3891
 
6660 serge 3892
	memset(active, 0, sizeof(*active));
3893
 
6084 serge 3894
	active->pipe_enabled = intel_crtc->active;
5060 serge 3895
 
3896
	if (active->pipe_enabled) {
4560 Serge 3897
		u32 tmp = hw->wm_pipe[pipe];
3031 serge 3898
 
4560 Serge 3899
		/*
3900
		 * For active pipes LP0 watermark is marked as
3901
		 * enabled, and LP1+ watermaks as disabled since
3902
		 * we can't really reverse compute them in case
3903
		 * multiple pipes are active.
3904
		 */
3905
		active->wm[0].enable = true;
3906
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3907
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3908
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3909
		active->linetime = hw->wm_linetime[pipe];
3910
	} else {
3911
		int level, max_level = ilk_wm_max_level(dev);
3031 serge 3912
 
4560 Serge 3913
		/*
3914
		 * For inactive pipes, all watermark levels
3915
		 * should be marked as enabled but zeroed,
3916
		 * which is what we'd compute them to.
3917
		 */
3918
		for (level = 0; level <= max_level; level++)
3919
			active->wm[level].enable = true;
3031 serge 3920
	}
3921
}
3922
 
6084 serge 3923
#define _FW_WM(value, plane) \
3924
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3925
#define _FW_WM_VLV(value, plane) \
3926
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3927
 
3928
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3929
			       struct vlv_wm_values *wm)
3930
{
3931
	enum pipe pipe;
3932
	uint32_t tmp;
3933
 
3934
	for_each_pipe(dev_priv, pipe) {
3935
		tmp = I915_READ(VLV_DDL(pipe));
3936
 
3937
		wm->ddl[pipe].primary =
3938
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3939
		wm->ddl[pipe].cursor =
3940
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3941
		wm->ddl[pipe].sprite[0] =
3942
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3943
		wm->ddl[pipe].sprite[1] =
3944
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3945
	}
3946
 
3947
	tmp = I915_READ(DSPFW1);
3948
	wm->sr.plane = _FW_WM(tmp, SR);
3949
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3950
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3951
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3952
 
3953
	tmp = I915_READ(DSPFW2);
3954
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3955
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3956
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3957
 
3958
	tmp = I915_READ(DSPFW3);
3959
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3960
 
3961
	if (IS_CHERRYVIEW(dev_priv)) {
3962
		tmp = I915_READ(DSPFW7_CHV);
3963
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3964
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3965
 
3966
		tmp = I915_READ(DSPFW8_CHV);
3967
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3968
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3969
 
3970
		tmp = I915_READ(DSPFW9_CHV);
3971
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3972
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3973
 
3974
		tmp = I915_READ(DSPHOWM);
3975
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3976
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3977
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3978
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3979
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3980
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3981
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3982
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3983
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3984
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3985
	} else {
3986
		tmp = I915_READ(DSPFW7);
3987
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3988
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3989
 
3990
		tmp = I915_READ(DSPHOWM);
3991
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3992
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3993
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3994
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3995
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3996
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3997
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3998
	}
3999
}
4000
 
4001
#undef _FW_WM
4002
#undef _FW_WM_VLV
4003
 
4004
void vlv_wm_get_hw_state(struct drm_device *dev)
4005
{
4006
	struct drm_i915_private *dev_priv = to_i915(dev);
4007
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4008
	struct intel_plane *plane;
4009
	enum pipe pipe;
4010
	u32 val;
4011
 
4012
	vlv_read_wm_values(dev_priv, wm);
4013
 
4014
	for_each_intel_plane(dev, plane) {
4015
		switch (plane->base.type) {
4016
			int sprite;
4017
		case DRM_PLANE_TYPE_CURSOR:
4018
			plane->wm.fifo_size = 63;
4019
			break;
4020
		case DRM_PLANE_TYPE_PRIMARY:
4021
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4022
			break;
4023
		case DRM_PLANE_TYPE_OVERLAY:
4024
			sprite = plane->plane;
4025
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4026
			break;
4027
		}
4028
	}
4029
 
4030
	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4031
	wm->level = VLV_WM_LEVEL_PM2;
4032
 
4033
	if (IS_CHERRYVIEW(dev_priv)) {
4034
		mutex_lock(&dev_priv->rps.hw_lock);
4035
 
4036
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4037
		if (val & DSP_MAXFIFO_PM5_ENABLE)
4038
			wm->level = VLV_WM_LEVEL_PM5;
4039
 
4040
		/*
4041
		 * If DDR DVFS is disabled in the BIOS, Punit
4042
		 * will never ack the request. So if that happens
4043
		 * assume we don't have to enable/disable DDR DVFS
4044
		 * dynamically. To test that just set the REQ_ACK
4045
		 * bit to poke the Punit, but don't change the
4046
		 * HIGH/LOW bits so that we don't actually change
4047
		 * the current state.
4048
		 */
4049
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4050
		val |= FORCE_DDR_FREQ_REQ_ACK;
4051
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4052
 
4053
		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4054
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4055
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4056
				      "assuming DDR DVFS is disabled\n");
4057
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4058
		} else {
4059
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4060
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4061
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4062
		}
4063
 
4064
		mutex_unlock(&dev_priv->rps.hw_lock);
4065
	}
4066
 
4067
	for_each_pipe(dev_priv, pipe)
4068
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4069
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4070
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4071
 
4072
	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4073
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4074
}
4075
 
4560 Serge 4076
void ilk_wm_get_hw_state(struct drm_device *dev)
3031 serge 4077
{
4078
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4079
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4080
	struct drm_crtc *crtc;
3031 serge 4081
 
5060 serge 4082
	for_each_crtc(dev, crtc)
4560 Serge 4083
		ilk_pipe_wm_get_hw_state(crtc);
4104 Serge 4084
 
4560 Serge 4085
	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4086
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4087
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3031 serge 4088
 
4560 Serge 4089
	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5060 serge 4090
	if (INTEL_INFO(dev)->gen >= 7) {
5354 serge 4091
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4092
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5060 serge 4093
	}
3031 serge 4094
 
4560 Serge 4095
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4096
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4097
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4098
	else if (IS_IVYBRIDGE(dev))
4099
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4100
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3031 serge 4101
 
4560 Serge 4102
	hw->enable_fbc_wm =
4103
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3031 serge 4104
}
4105
 
4106
/**
4107
 * intel_update_watermarks - update FIFO watermark values based on current modes
4108
 *
4109
 * Calculate watermark values for the various WM regs based on current mode
4110
 * and plane configuration.
4111
 *
4112
 * There are several cases to deal with here:
4113
 *   - normal (i.e. non-self-refresh)
4114
 *   - self-refresh (SR) mode
4115
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4116
 *   - lines are small relative to FIFO size (buffer can hold more than 2
4117
 *     lines), so need to account for TLB latency
4118
 *
4119
 *   The normal calculation is:
4120
 *     watermark = dotclock * bytes per pixel * latency
4121
 *   where latency is platform & configuration dependent (we assume pessimal
4122
 *   values here).
4123
 *
4124
 *   The SR calculation is:
4125
 *     watermark = (trunc(latency/line time)+1) * surface width *
4126
 *       bytes per pixel
4127
 *   where
4128
 *     line time = htotal / dotclock
4129
 *     surface width = hdisplay for normal plane and 64 for cursor
4130
 *   and latency is assumed to be high, as above.
4131
 *
4132
 * The final value programmed to the register should always be rounded up,
4133
 * and include an extra 2 entries to account for clock crossings.
4134
 *
4135
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4136
 * to set the non-SR watermarks to 8.
4137
 */
4560 Serge 4138
void intel_update_watermarks(struct drm_crtc *crtc)
3031 serge 4139
{
4560 Serge 4140
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3031 serge 4141
 
4142
	if (dev_priv->display.update_wm)
4560 Serge 4143
		dev_priv->display.update_wm(crtc);
3031 serge 4144
}
4145
 
4104 Serge 4146
void intel_update_sprite_watermarks(struct drm_plane *plane,
4147
				    struct drm_crtc *crtc,
5060 serge 4148
				    uint32_t sprite_width,
4149
				    uint32_t sprite_height,
4150
				    int pixel_size,
4104 Serge 4151
				    bool enabled, bool scaled)
3031 serge 4152
{
4104 Serge 4153
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3031 serge 4154
 
4155
	if (dev_priv->display.update_sprite_wm)
5060 serge 4156
		dev_priv->display.update_sprite_wm(plane, crtc,
4157
						   sprite_width, sprite_height,
4104 Serge 4158
						   pixel_size, enabled, scaled);
3031 serge 4159
}
4160
 
4161
/**
4162
 * Lock protecting IPS related data structures
4163
 */
4164
DEFINE_SPINLOCK(mchdev_lock);
4165
 
4166
/* Global for IPS driver to get at the current i915 device. Protected by
4167
 * mchdev_lock. */
4168
static struct drm_i915_private *i915_mch_dev;
4169
 
4170
bool ironlake_set_drps(struct drm_device *dev, u8 val)
4171
{
4172
	struct drm_i915_private *dev_priv = dev->dev_private;
4173
	u16 rgvswctl;
4174
 
4175
	assert_spin_locked(&mchdev_lock);
4176
 
4177
	rgvswctl = I915_READ16(MEMSWCTL);
4178
	if (rgvswctl & MEMCTL_CMD_STS) {
4179
		DRM_DEBUG("gpu busy, RCS change rejected\n");
4180
		return false; /* still busy with another command */
4181
	}
4182
 
4183
	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4184
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4185
	I915_WRITE16(MEMSWCTL, rgvswctl);
4186
	POSTING_READ16(MEMSWCTL);
4187
 
4188
	rgvswctl |= MEMCTL_CMD_STS;
4189
	I915_WRITE16(MEMSWCTL, rgvswctl);
4190
 
4191
	return true;
4192
}
4193
 
4194
static void ironlake_enable_drps(struct drm_device *dev)
4195
{
4196
	struct drm_i915_private *dev_priv = dev->dev_private;
4197
	u32 rgvmodectl = I915_READ(MEMMODECTL);
4198
	u8 fmax, fmin, fstart, vstart;
4199
 
4200
	spin_lock_irq(&mchdev_lock);
4201
 
4202
	/* Enable temp reporting */
4203
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4204
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4205
 
4206
	/* 100ms RC evaluation intervals */
4207
	I915_WRITE(RCUPEI, 100000);
4208
	I915_WRITE(RCDNEI, 100000);
4209
 
4210
	/* Set max/min thresholds to 90ms and 80ms respectively */
4211
	I915_WRITE(RCBMAXAVG, 90000);
4212
	I915_WRITE(RCBMINAVG, 80000);
4213
 
4214
	I915_WRITE(MEMIHYST, 1);
4215
 
4216
	/* Set up min, max, and cur for interrupt handling */
4217
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4218
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4219
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4220
		MEMMODE_FSTART_SHIFT;
4221
 
6084 serge 4222
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
3031 serge 4223
		PXVFREQ_PX_SHIFT;
4224
 
4225
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4226
	dev_priv->ips.fstart = fstart;
4227
 
4228
	dev_priv->ips.max_delay = fstart;
4229
	dev_priv->ips.min_delay = fmin;
4230
	dev_priv->ips.cur_delay = fstart;
4231
 
4232
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4233
			 fmax, fmin, fstart);
4234
 
4235
	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4236
 
4237
	/*
4238
	 * Interrupts will be enabled in ironlake_irq_postinstall
4239
	 */
4240
 
4241
	I915_WRITE(VIDSTART, vstart);
4242
	POSTING_READ(VIDSTART);
4243
 
4244
	rgvmodectl |= MEMMODE_SWMODE_EN;
4245
	I915_WRITE(MEMMODECTL, rgvmodectl);
4246
 
4247
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4248
		DRM_ERROR("stuck trying to change perf mode\n");
4249
	mdelay(1);
4250
 
4251
	ironlake_set_drps(dev, fstart);
4252
 
6084 serge 4253
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4254
		I915_READ(DDREC) + I915_READ(CSIEC);
5060 serge 4255
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6084 serge 4256
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5060 serge 4257
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3031 serge 4258
 
4259
	spin_unlock_irq(&mchdev_lock);
4260
}
4261
 
4262
static void ironlake_disable_drps(struct drm_device *dev)
4263
{
4264
	struct drm_i915_private *dev_priv = dev->dev_private;
4265
	u16 rgvswctl;
4266
 
4267
	spin_lock_irq(&mchdev_lock);
4268
 
4269
	rgvswctl = I915_READ16(MEMSWCTL);
4270
 
4271
	/* Ack interrupts, disable EFC interrupt */
4272
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4273
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4274
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4275
	I915_WRITE(DEIIR, DE_PCU_EVENT);
4276
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4277
 
4278
	/* Go back to the starting frequency */
4279
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4280
	mdelay(1);
4281
	rgvswctl |= MEMCTL_CMD_STS;
4282
	I915_WRITE(MEMSWCTL, rgvswctl);
4283
	mdelay(1);
4284
 
4285
	spin_unlock_irq(&mchdev_lock);
4286
}
4287
 
4288
/* There's a funny hw issue where the hw returns all 0 when reading from
4289
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4290
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4291
 * all limits and the gpu stuck at whatever frequency it is at atm).
4292
 */
6084 serge 4293
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3031 serge 4294
{
4295
	u32 limits;
4296
 
4297
	/* Only set the down limit when we've reached the lowest level to avoid
4298
	 * getting more interrupts, otherwise leave this clear. This prevents a
4299
	 * race in the hw when coming out of rc6: There's a tiny window where
4300
	 * the hw runs at the minimal clock before selecting the desired
4301
	 * frequency, if the down threshold expires in that window we will not
4302
	 * receive a down interrupt. */
6084 serge 4303
	if (IS_GEN9(dev_priv->dev)) {
4304
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4305
		if (val <= dev_priv->rps.min_freq_softlimit)
4306
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4307
	} else {
4308
		limits = dev_priv->rps.max_freq_softlimit << 24;
4309
		if (val <= dev_priv->rps.min_freq_softlimit)
4310
			limits |= dev_priv->rps.min_freq_softlimit << 16;
4311
	}
3031 serge 4312
 
4313
	return limits;
4314
}
4315
 
4560 Serge 4316
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4317
{
4318
	int new_power;
6084 serge 4319
	u32 threshold_up = 0, threshold_down = 0; /* in % */
4320
	u32 ei_up = 0, ei_down = 0;
4560 Serge 4321
 
4322
	new_power = dev_priv->rps.power;
4323
	switch (dev_priv->rps.power) {
4324
	case LOW_POWER:
5060 serge 4325
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4560 Serge 4326
			new_power = BETWEEN;
4327
		break;
4328
 
4329
	case BETWEEN:
5060 serge 4330
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4560 Serge 4331
			new_power = LOW_POWER;
5060 serge 4332
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4560 Serge 4333
			new_power = HIGH_POWER;
4334
		break;
4335
 
4336
	case HIGH_POWER:
5060 serge 4337
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4560 Serge 4338
			new_power = BETWEEN;
4339
		break;
4340
	}
4341
	/* Max/min bins are special */
6084 serge 4342
	if (val <= dev_priv->rps.min_freq_softlimit)
4560 Serge 4343
		new_power = LOW_POWER;
6084 serge 4344
	if (val >= dev_priv->rps.max_freq_softlimit)
4560 Serge 4345
		new_power = HIGH_POWER;
4346
	if (new_power == dev_priv->rps.power)
4347
		return;
4348
 
4349
	/* Note the units here are not exactly 1us, but 1280ns. */
4350
	switch (new_power) {
4351
	case LOW_POWER:
4352
		/* Upclock if more than 95% busy over 16ms */
6084 serge 4353
		ei_up = 16000;
4354
		threshold_up = 95;
4560 Serge 4355
 
4356
		/* Downclock if less than 85% busy over 32ms */
6084 serge 4357
		ei_down = 32000;
4358
		threshold_down = 85;
4560 Serge 4359
		break;
4360
 
4361
	case BETWEEN:
4362
		/* Upclock if more than 90% busy over 13ms */
6084 serge 4363
		ei_up = 13000;
4364
		threshold_up = 90;
4560 Serge 4365
 
4366
		/* Downclock if less than 75% busy over 32ms */
6084 serge 4367
		ei_down = 32000;
4368
		threshold_down = 75;
4560 Serge 4369
		break;
4370
 
4371
	case HIGH_POWER:
4372
		/* Upclock if more than 85% busy over 10ms */
6084 serge 4373
		ei_up = 10000;
4374
		threshold_up = 85;
4560 Serge 4375
 
4376
		/* Downclock if less than 60% busy over 32ms */
6084 serge 4377
		ei_down = 32000;
4378
		threshold_down = 60;
4560 Serge 4379
		break;
4380
	}
4381
 
6084 serge 4382
	I915_WRITE(GEN6_RP_UP_EI,
4383
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4384
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4385
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4386
 
4387
	I915_WRITE(GEN6_RP_DOWN_EI,
4388
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4389
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4390
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4391
 
4392
	 I915_WRITE(GEN6_RP_CONTROL,
4393
		    GEN6_RP_MEDIA_TURBO |
4394
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4395
		    GEN6_RP_MEDIA_IS_GFX |
4396
		    GEN6_RP_ENABLE |
4397
		    GEN6_RP_UP_BUSY_AVG |
4398
		    GEN6_RP_DOWN_IDLE_AVG);
4399
 
4560 Serge 4400
	dev_priv->rps.power = new_power;
6084 serge 4401
	dev_priv->rps.up_threshold = threshold_up;
4402
	dev_priv->rps.down_threshold = threshold_down;
4560 Serge 4403
	dev_priv->rps.last_adj = 0;
4404
}
4405
 
5060 serge 4406
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4407
{
4408
	u32 mask = 0;
4409
 
4410
	if (val > dev_priv->rps.min_freq_softlimit)
6084 serge 4411
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5060 serge 4412
	if (val < dev_priv->rps.max_freq_softlimit)
6084 serge 4413
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5060 serge 4414
 
4415
	mask &= dev_priv->pm_rps_events;
4416
 
6084 serge 4417
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5060 serge 4418
}
4419
 
4420
/* gen6_set_rps is called to update the frequency request, but should also be
4421
 * called when the range (min_delay and max_delay) is modified so that we can
4422
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6084 serge 4423
static void gen6_set_rps(struct drm_device *dev, u8 val)
3031 serge 4424
{
4425
	struct drm_i915_private *dev_priv = dev->dev_private;
4426
 
6084 serge 4427
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4428
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4429
		return;
4430
 
3243 Serge 4431
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6084 serge 4432
	WARN_ON(val > dev_priv->rps.max_freq);
4433
	WARN_ON(val < dev_priv->rps.min_freq);
3031 serge 4434
 
5060 serge 4435
	/* min/max delay may still have been modified so be sure to
4436
	 * write the limits value.
4437
	 */
4438
	if (val != dev_priv->rps.cur_freq) {
5354 serge 4439
		gen6_set_rps_thresholds(dev_priv, val);
4560 Serge 4440
 
6084 serge 4441
		if (IS_GEN9(dev))
5354 serge 4442
			I915_WRITE(GEN6_RPNSWREQ,
6084 serge 4443
				   GEN9_FREQUENCY(val));
4444
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4445
			I915_WRITE(GEN6_RPNSWREQ,
5354 serge 4446
				   HSW_FREQUENCY(val));
4447
		else
4448
			I915_WRITE(GEN6_RPNSWREQ,
4449
				   GEN6_FREQUENCY(val) |
4450
				   GEN6_OFFSET(0) |
4451
				   GEN6_AGGRESSIVE_TURBO);
5060 serge 4452
	}
3031 serge 4453
 
4454
	/* Make sure we continue to get interrupts
4455
	 * until we hit the minimum or maximum frequencies.
4456
	 */
6084 serge 4457
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5060 serge 4458
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3031 serge 4459
 
4460
	POSTING_READ(GEN6_RPNSWREQ);
4461
 
5060 serge 4462
	dev_priv->rps.cur_freq = val;
6084 serge 4463
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
3031 serge 4464
}
4465
 
6084 serge 4466
static void valleyview_set_rps(struct drm_device *dev, u8 val)
5060 serge 4467
{
6084 serge 4468
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4469
 
6084 serge 4470
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4471
	WARN_ON(val > dev_priv->rps.max_freq);
4472
	WARN_ON(val < dev_priv->rps.min_freq);
5060 serge 4473
 
6084 serge 4474
	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4475
		      "Odd GPU freq value\n"))
4476
		val &= ~1;
5060 serge 4477
 
6084 serge 4478
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5060 serge 4479
 
6084 serge 4480
	if (val != dev_priv->rps.cur_freq) {
4481
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4482
		if (!IS_CHERRYVIEW(dev_priv))
4483
			gen6_set_rps_thresholds(dev_priv, val);
4484
	}
5060 serge 4485
 
6084 serge 4486
	dev_priv->rps.cur_freq = val;
4487
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4488
}
5060 serge 4489
 
6084 serge 4490
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4491
 *
4492
 * * If Gfx is Idle, then
4493
 * 1. Forcewake Media well.
4494
 * 2. Request idle freq.
4495
 * 3. Release Forcewake of Media well.
4496
*/
4497
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4498
{
4499
	u32 val = dev_priv->rps.idle_freq;
5060 serge 4500
 
6084 serge 4501
	if (dev_priv->rps.cur_freq <= val)
4502
		return;
5060 serge 4503
 
6084 serge 4504
	/* Wake up the media well, as that takes a lot less
4505
	 * power than the Render well. */
4506
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4507
	valleyview_set_rps(dev_priv->dev, val);
4508
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5060 serge 4509
}
4510
 
6084 serge 4511
void gen6_rps_busy(struct drm_i915_private *dev_priv)
3031 serge 4512
{
4560 Serge 4513
	mutex_lock(&dev_priv->rps.hw_lock);
4514
	if (dev_priv->rps.enabled) {
6084 serge 4515
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4516
			gen6_rps_reset_ei(dev_priv);
4517
		I915_WRITE(GEN6_PMINTRMSK,
4518
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4560 Serge 4519
	}
4520
	mutex_unlock(&dev_priv->rps.hw_lock);
4521
}
4104 Serge 4522
 
6084 serge 4523
void gen6_rps_idle(struct drm_i915_private *dev_priv)
4560 Serge 4524
{
4525
	struct drm_device *dev = dev_priv->dev;
4104 Serge 4526
 
4560 Serge 4527
	mutex_lock(&dev_priv->rps.hw_lock);
4528
	if (dev_priv->rps.enabled) {
4529
		if (IS_VALLEYVIEW(dev))
6084 serge 4530
			vlv_set_rps_idle(dev_priv);
4560 Serge 4531
		else
6084 serge 4532
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4560 Serge 4533
		dev_priv->rps.last_adj = 0;
6660 serge 4534
		I915_WRITE(GEN6_PMINTRMSK,
4535
			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4560 Serge 4536
	}
4537
	mutex_unlock(&dev_priv->rps.hw_lock);
6084 serge 4538
 
4539
	spin_lock(&dev_priv->rps.client_lock);
4540
	while (!list_empty(&dev_priv->rps.clients))
4541
		list_del_init(dev_priv->rps.clients.next);
4542
	spin_unlock(&dev_priv->rps.client_lock);
4104 Serge 4543
}
4544
 
6084 serge 4545
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4546
		    struct intel_rps_client *rps,
4547
		    unsigned long submitted)
4104 Serge 4548
{
6084 serge 4549
	/* This is intentionally racy! We peek at the state here, then
4550
	 * validate inside the RPS worker.
4551
	 */
4552
	if (!(dev_priv->mm.busy &&
4553
	      dev_priv->rps.enabled &&
4554
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4555
		return;
3031 serge 4556
 
6084 serge 4557
	/* Force a RPS boost (and don't count it against the client) if
4558
	 * the GPU is severely congested.
4559
	 */
4560
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4561
		rps = NULL;
4104 Serge 4562
 
6084 serge 4563
	spin_lock(&dev_priv->rps.client_lock);
4564
	if (rps == NULL || list_empty(&rps->link)) {
4565
		spin_lock_irq(&dev_priv->irq_lock);
4566
		if (dev_priv->rps.interrupts_enabled) {
4567
			dev_priv->rps.client_boost = true;
4568
			queue_work(dev_priv->wq, &dev_priv->rps.work);
4569
		}
4570
		spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 4571
 
6084 serge 4572
		if (rps != NULL) {
4573
			list_add(&rps->link, &dev_priv->rps.clients);
4574
			rps->boosts++;
4575
		} else
4576
			dev_priv->rps.boosts++;
4577
	}
4578
	spin_unlock(&dev_priv->rps.client_lock);
4579
}
4104 Serge 4580
 
6084 serge 4581
void intel_set_rps(struct drm_device *dev, u8 val)
4582
{
4583
	if (IS_VALLEYVIEW(dev))
4584
		valleyview_set_rps(dev, val);
4585
	else
4586
		gen6_set_rps(dev, val);
4104 Serge 4587
}
4588
 
5354 serge 4589
static void gen9_disable_rps(struct drm_device *dev)
5060 serge 4590
{
4591
	struct drm_i915_private *dev_priv = dev->dev_private;
4592
 
5354 serge 4593
	I915_WRITE(GEN6_RC_CONTROL, 0);
6084 serge 4594
	I915_WRITE(GEN9_PG_ENABLE, 0);
5060 serge 4595
}
4596
 
4104 Serge 4597
static void gen6_disable_rps(struct drm_device *dev)
4598
{
4599
	struct drm_i915_private *dev_priv = dev->dev_private;
4600
 
4601
	I915_WRITE(GEN6_RC_CONTROL, 0);
4602
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4603
}
4604
 
5060 serge 4605
static void cherryview_disable_rps(struct drm_device *dev)
4606
{
4607
	struct drm_i915_private *dev_priv = dev->dev_private;
4608
 
4609
	I915_WRITE(GEN6_RC_CONTROL, 0);
4610
}
4611
 
4104 Serge 4612
static void valleyview_disable_rps(struct drm_device *dev)
4613
{
4614
	struct drm_i915_private *dev_priv = dev->dev_private;
4615
 
5354 serge 4616
	/* we're doing forcewake before Disabling RC6,
4617
	 * This what the BIOS expects when going into suspend */
6084 serge 4618
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5354 serge 4619
 
4104 Serge 4620
	I915_WRITE(GEN6_RC_CONTROL, 0);
4621
 
6084 serge 4622
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4104 Serge 4623
}
4624
 
4560 Serge 4625
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4626
{
5060 serge 4627
	if (IS_VALLEYVIEW(dev)) {
4628
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4629
			mode = GEN6_RC_CTL_RC6_ENABLE;
4630
		else
4631
			mode = 0;
4632
	}
5354 serge 4633
	if (HAS_RC6p(dev))
4634
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
6084 serge 4635
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4636
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4637
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
5354 serge 4638
 
4639
	else
4640
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4641
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4560 Serge 4642
}
4643
 
5060 serge 4644
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3031 serge 4645
{
6084 serge 4646
	/* No RC6 before Ironlake and code is gone for ilk. */
4647
	if (INTEL_INFO(dev)->gen < 6)
4104 Serge 4648
		return 0;
4649
 
3031 serge 4650
	/* Respect the kernel parameter if it is set */
5060 serge 4651
	if (enable_rc6 >= 0) {
4652
		int mask;
3031 serge 4653
 
5354 serge 4654
		if (HAS_RC6p(dev))
5060 serge 4655
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4656
			       INTEL_RC6pp_ENABLE;
4657
		else
4658
			mask = INTEL_RC6_ENABLE;
4659
 
4660
		if ((enable_rc6 & mask) != enable_rc6)
4661
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
6084 serge 4662
				      enable_rc6 & mask, enable_rc6, mask);
5060 serge 4663
 
4664
		return enable_rc6 & mask;
4665
	}
4666
 
4667
	if (IS_IVYBRIDGE(dev))
4668
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3031 serge 4669
 
6084 serge 4670
	return INTEL_RC6_ENABLE;
5060 serge 4671
}
3031 serge 4672
 
5060 serge 4673
int intel_enable_rc6(const struct drm_device *dev)
4674
{
4675
	return i915.enable_rc6;
3031 serge 4676
}
4677
 
5354 serge 4678
static void gen6_init_rps_frequencies(struct drm_device *dev)
5060 serge 4679
{
4680
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4681
	uint32_t rp_state_cap;
4682
	u32 ddcc_status = 0;
4683
	int ret;
5060 serge 4684
 
4685
	/* All of these values are in units of 50MHz */
4686
	dev_priv->rps.cur_freq		= 0;
5354 serge 4687
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6084 serge 4688
	if (IS_BROXTON(dev)) {
4689
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4690
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4691
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4692
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4693
	} else {
4694
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4695
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4696
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4697
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4698
	}
4699
 
5060 serge 4700
	/* hw_max = RP0 until we check for overclocking */
4701
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4104 Serge 4702
 
5354 serge 4703
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6084 serge 4704
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
5354 serge 4705
		ret = sandybridge_pcode_read(dev_priv,
4706
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4707
					&ddcc_status);
4708
		if (0 == ret)
4709
			dev_priv->rps.efficient_freq =
6084 serge 4710
				clamp_t(u8,
4711
					((ddcc_status >> 8) & 0xff),
4712
					dev_priv->rps.min_freq,
4713
					dev_priv->rps.max_freq);
5354 serge 4714
	}
4715
 
6084 serge 4716
	if (IS_SKYLAKE(dev)) {
4717
		/* Store the frequency values in 16.66 MHZ units, which is
4718
		   the natural hardware unit for SKL */
4719
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4720
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4721
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4722
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4723
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4724
	}
4725
 
4726
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4727
 
5060 serge 4728
	/* Preserve min/max settings in case of re-init */
4729
	if (dev_priv->rps.max_freq_softlimit == 0)
4730
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4104 Serge 4731
 
5354 serge 4732
	if (dev_priv->rps.min_freq_softlimit == 0) {
4733
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4734
			dev_priv->rps.min_freq_softlimit =
6084 serge 4735
				max_t(int, dev_priv->rps.efficient_freq,
4736
				      intel_freq_opcode(dev_priv, 450));
5354 serge 4737
		else
4738
			dev_priv->rps.min_freq_softlimit =
4739
				dev_priv->rps.min_freq;
4740
	}
4104 Serge 4741
}
4742
 
6084 serge 4743
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5354 serge 4744
static void gen9_enable_rps(struct drm_device *dev)
4745
{
4746
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 4747
 
4748
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4749
 
4750
	gen6_init_rps_frequencies(dev);
4751
 
4752
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4753
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4754
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4755
		return;
4756
	}
4757
 
4758
	/* Program defaults and thresholds for RPS*/
4759
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4760
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4761
 
4762
	/* 1 second timeout*/
4763
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4764
		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4765
 
4766
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4767
 
4768
	/* Leaning on the below call to gen6_set_rps to program/setup the
4769
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4770
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4771
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4772
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4773
 
4774
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4775
}
4776
 
4777
static void gen9_enable_rc6(struct drm_device *dev)
4778
{
4779
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4780
	struct intel_engine_cs *ring;
4781
	uint32_t rc6_mask = 0;
4782
	int unused;
4783
 
4784
	/* 1a: Software RC state - RC0 */
4785
	I915_WRITE(GEN6_RC_STATE, 0);
4786
 
4787
	/* 1b: Get forcewake during program sequence. Although the driver
4788
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 4789
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5354 serge 4790
 
4791
	/* 2a: Disable RC states. */
4792
	I915_WRITE(GEN6_RC_CONTROL, 0);
4793
 
4794
	/* 2b: Program RC6 thresholds.*/
6084 serge 4795
 
4796
	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4797
	if (IS_SKYLAKE(dev))
4798
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4799
	else
4800
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5354 serge 4801
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4802
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4803
	for_each_ring(ring, dev_priv, unused)
4804
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
6084 serge 4805
 
4806
	if (HAS_GUC_UCODE(dev))
4807
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4808
 
5354 serge 4809
	I915_WRITE(GEN6_RC_SLEEP, 0);
4810
 
6084 serge 4811
	/* 2c: Program Coarse Power Gating Policies. */
4812
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4813
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4814
 
5354 serge 4815
	/* 3a: Enable RC6 */
4816
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4817
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4818
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4819
			"on" : "off");
6084 serge 4820
	/* WaRsUseTimeoutMode */
4821
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4822
	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
4823
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4824
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4825
			   GEN7_RC_CTL_TO_MODE |
4826
			   rc6_mask);
4827
	} else {
4828
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4829
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4830
			   GEN6_RC_CTL_EI_MODE(1) |
4831
			   rc6_mask);
4832
	}
5354 serge 4833
 
6084 serge 4834
	/*
4835
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4836
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4837
	 */
4838
	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4839
	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4840
		I915_WRITE(GEN9_PG_ENABLE, 0);
4841
	else
4842
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4843
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5354 serge 4844
 
6084 serge 4845
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4846
 
5354 serge 4847
}
4848
 
4560 Serge 4849
static void gen8_enable_rps(struct drm_device *dev)
4850
{
4851
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4852
	struct intel_engine_cs *ring;
5354 serge 4853
	uint32_t rc6_mask = 0;
4560 Serge 4854
	int unused;
4855
 
4856
	/* 1a: Software RC state - RC0 */
4857
	I915_WRITE(GEN6_RC_STATE, 0);
4858
 
4859
	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4860
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 4861
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4560 Serge 4862
 
4863
	/* 2a: Disable RC states. */
4864
	I915_WRITE(GEN6_RC_CONTROL, 0);
4865
 
5354 serge 4866
	/* Initialize rps frequencies */
4867
	gen6_init_rps_frequencies(dev);
4560 Serge 4868
 
4869
	/* 2b: Program RC6 thresholds.*/
4870
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4871
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4872
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4873
	for_each_ring(ring, dev_priv, unused)
4874
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4875
	I915_WRITE(GEN6_RC_SLEEP, 0);
5060 serge 4876
	if (IS_BROADWELL(dev))
4877
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4878
	else
6084 serge 4879
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4560 Serge 4880
 
4881
	/* 3: Enable RC6 */
4882
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4883
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5060 serge 4884
	intel_print_rc6_info(dev, rc6_mask);
4885
	if (IS_BROADWELL(dev))
4886
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4887
				GEN7_RC_CTL_TO_MODE |
4888
				rc6_mask);
4889
	else
6084 serge 4890
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4891
				GEN6_RC_CTL_EI_MODE(1) |
4892
				rc6_mask);
4560 Serge 4893
 
4894
	/* 4 Program defaults and thresholds for RPS*/
5060 serge 4895
	I915_WRITE(GEN6_RPNSWREQ,
4896
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4897
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4898
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4560 Serge 4899
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4900
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4901
 
4902
	/* Docs recommend 900MHz, and 300 MHz respectively */
4903
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5060 serge 4904
		   dev_priv->rps.max_freq_softlimit << 24 |
4905
		   dev_priv->rps.min_freq_softlimit << 16);
4560 Serge 4906
 
4907
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4908
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4909
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4910
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4911
 
4912
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4913
 
4914
	/* 5: Enable RPS */
4915
	I915_WRITE(GEN6_RP_CONTROL,
4916
		   GEN6_RP_MEDIA_TURBO |
4917
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4918
		   GEN6_RP_MEDIA_IS_GFX |
4919
		   GEN6_RP_ENABLE |
4920
		   GEN6_RP_UP_BUSY_AVG |
4921
		   GEN6_RP_DOWN_IDLE_AVG);
4922
 
4923
	/* 6: Ring frequency + overclocking (our driver does this later */
4924
 
5354 serge 4925
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
6084 serge 4926
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4560 Serge 4927
 
6084 serge 4928
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4560 Serge 4929
}
4930
 
3031 serge 4931
static void gen6_enable_rps(struct drm_device *dev)
4932
{
4933
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4934
	struct intel_engine_cs *ring;
4935
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3031 serge 4936
	u32 gtfifodbg;
4937
	int rc6_mode;
3243 Serge 4938
	int i, ret;
3031 serge 4939
 
3243 Serge 4940
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 4941
 
4942
	/* Here begins a magic sequence of register writes to enable
4943
	 * auto-downclocking.
4944
	 *
4945
	 * Perhaps there might be some value in exposing these to
4946
	 * userspace...
4947
	 */
4948
	I915_WRITE(GEN6_RC_STATE, 0);
4949
 
4950
	/* Clear the DBG now so we don't confuse earlier errors */
4951
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4952
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4953
		I915_WRITE(GTFIFODBG, gtfifodbg);
4954
	}
4955
 
6084 serge 4956
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
3031 serge 4957
 
5354 serge 4958
	/* Initialize rps frequencies */
4959
	gen6_init_rps_frequencies(dev);
3031 serge 4960
 
4961
	/* disable the counters and set deterministic thresholds */
4962
	I915_WRITE(GEN6_RC_CONTROL, 0);
4963
 
4964
	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4965
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4966
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4967
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4968
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4969
 
4970
	for_each_ring(ring, dev_priv, i)
4971
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4972
 
4973
	I915_WRITE(GEN6_RC_SLEEP, 0);
4974
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4560 Serge 4975
	if (IS_IVYBRIDGE(dev))
4104 Serge 4976
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4977
	else
6084 serge 4978
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3480 Serge 4979
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3031 serge 4980
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4981
 
4982
	/* Check if we are enabling RC6 */
4983
	rc6_mode = intel_enable_rc6(dev_priv->dev);
4984
	if (rc6_mode & INTEL_RC6_ENABLE)
4985
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4986
 
4987
	/* We don't use those on Haswell */
4988
	if (!IS_HASWELL(dev)) {
4989
		if (rc6_mode & INTEL_RC6p_ENABLE)
4990
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4991
 
4992
		if (rc6_mode & INTEL_RC6pp_ENABLE)
4993
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4994
	}
4995
 
4560 Serge 4996
	intel_print_rc6_info(dev, rc6_mask);
3031 serge 4997
 
4998
	I915_WRITE(GEN6_RC_CONTROL,
4999
		   rc6_mask |
5000
		   GEN6_RC_CTL_EI_MODE(1) |
5001
		   GEN6_RC_CTL_HW_ENABLE);
5002
 
4560 Serge 5003
	/* Power down if completely idle for over 50ms */
5004
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3031 serge 5005
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5006
 
3243 Serge 5007
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5060 serge 5008
	if (ret)
5009
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5010
 
6084 serge 5011
	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5012
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5013
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5060 serge 5014
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
6084 serge 5015
				 (pcu_mbox & 0xff) * 50);
5060 serge 5016
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3031 serge 5017
	}
5018
 
4560 Serge 5019
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
6084 serge 5020
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
3031 serge 5021
 
3243 Serge 5022
	rc6vids = 0;
5023
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5024
	if (IS_GEN6(dev) && ret) {
5025
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5026
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5027
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5028
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5029
		rc6vids &= 0xffff00;
5030
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5031
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5032
		if (ret)
5033
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5034
	}
5035
 
6084 serge 5036
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3031 serge 5037
}
5038
 
5060 serge 5039
static void __gen6_update_ring_freq(struct drm_device *dev)
3031 serge 5040
{
5041
	struct drm_i915_private *dev_priv = dev->dev_private;
5042
	int min_freq = 15;
3746 Serge 5043
	unsigned int gpu_freq;
5044
	unsigned int max_ia_freq, min_ring_freq;
6084 serge 5045
	unsigned int max_gpu_freq, min_gpu_freq;
3031 serge 5046
	int scaling_factor = 180;
4560 Serge 5047
	struct cpufreq_policy *policy;
3031 serge 5048
 
3243 Serge 5049
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 5050
 
5051
	max_ia_freq = cpufreq_quick_get_max(0);
5052
	/*
5060 serge 5053
		 * Default to measured freq if none found, PCU will ensure we
5054
		 * don't go over
3031 serge 5055
	 */
5056
		max_ia_freq = tsc_khz;
5057
 
5058
	/* Convert from kHz to MHz */
5059
	max_ia_freq /= 1000;
5060
 
4560 Serge 5061
	min_ring_freq = I915_READ(DCLK) & 0xf;
5062
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5063
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3746 Serge 5064
 
6084 serge 5065
	if (IS_SKYLAKE(dev)) {
5066
		/* Convert GT frequency to 50 HZ units */
5067
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5068
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5069
	} else {
5070
		min_gpu_freq = dev_priv->rps.min_freq;
5071
		max_gpu_freq = dev_priv->rps.max_freq;
5072
	}
5073
 
3031 serge 5074
	/*
5075
	 * For each potential GPU frequency, load a ring frequency we'd like
5076
	 * to use for memory access.  We do this by specifying the IA frequency
5077
	 * the PCU should use as a reference to determine the ring frequency.
5078
	 */
6084 serge 5079
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5080
		int diff = max_gpu_freq - gpu_freq;
3746 Serge 5081
		unsigned int ia_freq = 0, ring_freq = 0;
3031 serge 5082
 
6084 serge 5083
		if (IS_SKYLAKE(dev)) {
5084
			/*
5085
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5086
			 * No floor required for ring frequency on SKL.
5087
			 */
5088
			ring_freq = gpu_freq;
5089
		} else if (INTEL_INFO(dev)->gen >= 8) {
4560 Serge 5090
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5091
			ring_freq = max(min_ring_freq, gpu_freq);
5092
		} else if (IS_HASWELL(dev)) {
5093
			ring_freq = mult_frac(gpu_freq, 5, 4);
3746 Serge 5094
			ring_freq = max(min_ring_freq, ring_freq);
5095
			/* leave ia_freq as the default, chosen by cpufreq */
5096
		} else {
5097
			/* On older processors, there is no separate ring
5098
			 * clock domain, so in order to boost the bandwidth
5099
			 * of the ring, we need to upclock the CPU (ia_freq).
5100
			 *
5101
			 * For GPU frequencies less than 750MHz,
5102
			 * just use the lowest ring freq.
6084 serge 5103
			 */
5104
			if (gpu_freq < min_freq)
5105
				ia_freq = 800;
5106
			else
5107
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5108
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3746 Serge 5109
		}
3031 serge 5110
 
3243 Serge 5111
		sandybridge_pcode_write(dev_priv,
5112
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3746 Serge 5113
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5114
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5115
					gpu_freq);
3031 serge 5116
	}
5117
}
5118
 
5060 serge 5119
void gen6_update_ring_freq(struct drm_device *dev)
4104 Serge 5120
{
5060 serge 5121
	struct drm_i915_private *dev_priv = dev->dev_private;
5122
 
6084 serge 5123
	if (!HAS_CORE_RING_FREQ(dev))
5060 serge 5124
		return;
5125
 
5126
	mutex_lock(&dev_priv->rps.hw_lock);
5127
	__gen6_update_ring_freq(dev);
5128
	mutex_unlock(&dev_priv->rps.hw_lock);
5129
}
5130
 
5131
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5132
{
6084 serge 5133
	struct drm_device *dev = dev_priv->dev;
4104 Serge 5134
	u32 val, rp0;
5135
 
6084 serge 5136
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5060 serge 5137
 
6084 serge 5138
	switch (INTEL_INFO(dev)->eu_total) {
5139
	case 8:
5140
		/* (2 * 4) config */
5141
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5142
		break;
5143
	case 12:
5144
		/* (2 * 6) config */
5145
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5146
		break;
5147
	case 16:
5148
		/* (2 * 8) config */
5149
	default:
5150
		/* Setting (2 * 8) Min RP0 for any other combination */
5151
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5152
		break;
5153
	}
5154
 
5155
	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5156
 
5060 serge 5157
	return rp0;
5158
}
5159
 
5160
static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5161
{
5162
	u32 val, rpe;
5163
 
5164
	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5165
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5166
 
5167
	return rpe;
5168
}
5169
 
5170
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5171
{
5172
	u32 val, rp1;
5173
 
6084 serge 5174
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5175
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5060 serge 5176
 
5177
	return rp1;
5178
}
5179
 
5180
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5181
{
5182
	u32 val, rp1;
5183
 
4104 Serge 5184
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5185
 
5060 serge 5186
	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5187
 
5188
	return rp1;
5189
}
5190
 
5191
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5192
{
5193
	u32 val, rp0;
5194
 
5195
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5196
 
4104 Serge 5197
	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5198
	/* Clamp to max */
5199
	rp0 = min_t(u32, rp0, 0xea);
5200
 
5201
	return rp0;
5202
}
5203
 
5204
static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5205
{
5206
	u32 val, rpe;
5207
 
5208
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5209
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5210
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5211
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5212
 
5213
	return rpe;
5214
}
5215
 
5060 serge 5216
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4104 Serge 5217
{
5218
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5219
}
5220
 
5060 serge 5221
/* Check that the pctx buffer wasn't move under us. */
5222
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5223
{
5224
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5225
 
5226
	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5227
			     dev_priv->vlv_pctx->stolen->start);
5228
}
5229
 
5230
 
5231
/* Check that the pcbr address is not empty. */
5232
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5233
{
5234
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5235
 
5236
	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5237
}
5238
 
5239
static void cherryview_setup_pctx(struct drm_device *dev)
5240
{
5241
	struct drm_i915_private *dev_priv = dev->dev_private;
5242
	unsigned long pctx_paddr, paddr;
5243
	struct i915_gtt *gtt = &dev_priv->gtt;
5244
	u32 pcbr;
5245
	int pctx_size = 32*1024;
5246
 
5247
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5248
 
5249
	pcbr = I915_READ(VLV_PCBR);
5250
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5354 serge 5251
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5060 serge 5252
		paddr = (dev_priv->mm.stolen_base +
5253
			 (gtt->stolen_size - pctx_size));
5254
 
5255
		pctx_paddr = (paddr & (~4095));
5256
		I915_WRITE(VLV_PCBR, pctx_paddr);
5257
	}
5354 serge 5258
 
5259
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5060 serge 5260
}
5261
 
4104 Serge 5262
static void valleyview_setup_pctx(struct drm_device *dev)
5263
{
5264
	struct drm_i915_private *dev_priv = dev->dev_private;
5265
	struct drm_i915_gem_object *pctx;
5266
	unsigned long pctx_paddr;
5267
	u32 pcbr;
5268
	int pctx_size = 24*1024;
5269
 
5060 serge 5270
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5271
 
4104 Serge 5272
	pcbr = I915_READ(VLV_PCBR);
5273
	if (pcbr) {
5274
		/* BIOS set it up already, grab the pre-alloc'd space */
5275
		int pcbr_offset;
5276
 
5277
		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5278
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5279
								      pcbr_offset,
5280
								      I915_GTT_OFFSET_NONE,
5281
								      pctx_size);
5282
		goto out;
5283
	}
5284
 
5354 serge 5285
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5286
 
4104 Serge 5287
	/*
5288
	 * From the Gunit register HAS:
5289
	 * The Gfx driver is expected to program this register and ensure
5290
	 * proper allocation within Gfx stolen memory.  For example, this
5291
	 * register should be programmed such than the PCBR range does not
5292
	 * overlap with other ranges, such as the frame buffer, protected
5293
	 * memory, or any other relevant ranges.
5294
	 */
5295
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5296
	if (!pctx) {
5297
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5298
		return;
5299
	}
5300
 
5301
	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5302
	I915_WRITE(VLV_PCBR, pctx_paddr);
5303
 
5304
out:
5354 serge 5305
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4104 Serge 5306
	dev_priv->vlv_pctx = pctx;
5307
}
5308
 
5060 serge 5309
static void valleyview_cleanup_pctx(struct drm_device *dev)
5310
{
5311
	struct drm_i915_private *dev_priv = dev->dev_private;
5312
 
5313
	if (WARN_ON(!dev_priv->vlv_pctx))
5314
		return;
5315
 
5316
	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5317
	dev_priv->vlv_pctx = NULL;
5318
}
5319
 
5320
static void valleyview_init_gt_powersave(struct drm_device *dev)
5321
{
5322
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 5323
	u32 val;
5060 serge 5324
 
5325
	valleyview_setup_pctx(dev);
5326
 
5327
	mutex_lock(&dev_priv->rps.hw_lock);
5328
 
5354 serge 5329
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5330
	switch ((val >> 6) & 3) {
5331
	case 0:
5332
	case 1:
5333
		dev_priv->mem_freq = 800;
5334
		break;
5335
	case 2:
5336
		dev_priv->mem_freq = 1066;
5337
		break;
5338
	case 3:
5339
		dev_priv->mem_freq = 1333;
5340
		break;
5341
	}
5342
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5343
 
5060 serge 5344
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5345
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5346
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6084 serge 5347
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5060 serge 5348
			 dev_priv->rps.max_freq);
5349
 
5350
	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5351
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6084 serge 5352
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5353
			 dev_priv->rps.efficient_freq);
5354
 
5355
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5356
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6084 serge 5357
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5060 serge 5358
			 dev_priv->rps.rp1_freq);
5359
 
5360
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5361
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6084 serge 5362
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5060 serge 5363
			 dev_priv->rps.min_freq);
5364
 
6084 serge 5365
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5366
 
5060 serge 5367
	/* Preserve min/max settings in case of re-init */
5368
	if (dev_priv->rps.max_freq_softlimit == 0)
5369
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5370
 
5371
	if (dev_priv->rps.min_freq_softlimit == 0)
5372
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5373
 
5374
	mutex_unlock(&dev_priv->rps.hw_lock);
5375
}
5376
 
5377
static void cherryview_init_gt_powersave(struct drm_device *dev)
5378
{
5379
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 5380
	u32 val;
5060 serge 5381
 
5382
	cherryview_setup_pctx(dev);
5383
 
5384
	mutex_lock(&dev_priv->rps.hw_lock);
5385
 
6084 serge 5386
	mutex_lock(&dev_priv->sb_lock);
5354 serge 5387
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
6084 serge 5388
	mutex_unlock(&dev_priv->sb_lock);
5354 serge 5389
 
5390
	switch ((val >> 2) & 0x7) {
5391
	case 3:
5392
		dev_priv->mem_freq = 2000;
5393
		break;
6084 serge 5394
	default:
5354 serge 5395
		dev_priv->mem_freq = 1600;
5396
		break;
5397
	}
5398
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5399
 
5060 serge 5400
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5401
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5402
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6084 serge 5403
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5060 serge 5404
			 dev_priv->rps.max_freq);
5405
 
5406
	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5407
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6084 serge 5408
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5409
			 dev_priv->rps.efficient_freq);
5410
 
5411
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5412
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6084 serge 5413
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5060 serge 5414
			 dev_priv->rps.rp1_freq);
5415
 
6084 serge 5416
	/* PUnit validated range is only [RPe, RP0] */
5417
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5060 serge 5418
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6084 serge 5419
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5060 serge 5420
			 dev_priv->rps.min_freq);
5421
 
5354 serge 5422
	WARN_ONCE((dev_priv->rps.max_freq |
5423
		   dev_priv->rps.efficient_freq |
5424
		   dev_priv->rps.rp1_freq |
5425
		   dev_priv->rps.min_freq) & 1,
5426
		  "Odd GPU freq values\n");
5427
 
6084 serge 5428
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5429
 
5060 serge 5430
	/* Preserve min/max settings in case of re-init */
5431
	if (dev_priv->rps.max_freq_softlimit == 0)
5432
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5433
 
5434
	if (dev_priv->rps.min_freq_softlimit == 0)
5435
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5436
 
5437
	mutex_unlock(&dev_priv->rps.hw_lock);
5438
}
5439
 
5440
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5441
{
5442
	valleyview_cleanup_pctx(dev);
5443
}
5444
 
5445
static void cherryview_enable_rps(struct drm_device *dev)
5446
{
5447
	struct drm_i915_private *dev_priv = dev->dev_private;
5448
	struct intel_engine_cs *ring;
5449
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5450
	int i;
5451
 
5452
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5453
 
5454
	gtfifodbg = I915_READ(GTFIFODBG);
5455
	if (gtfifodbg) {
5456
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5457
				 gtfifodbg);
5458
		I915_WRITE(GTFIFODBG, gtfifodbg);
5459
	}
5460
 
5461
	cherryview_check_pctx(dev_priv);
5462
 
5463
	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5464
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 5465
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5060 serge 5466
 
6084 serge 5467
	/*  Disable RC states. */
5468
	I915_WRITE(GEN6_RC_CONTROL, 0);
5469
 
5060 serge 5470
	/* 2a: Program RC6 thresholds.*/
5471
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5472
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5473
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5474
 
5475
	for_each_ring(ring, dev_priv, i)
5476
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5477
	I915_WRITE(GEN6_RC_SLEEP, 0);
5478
 
6084 serge 5479
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5480
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5060 serge 5481
 
5482
	/* allows RC6 residency counter to work */
5483
	I915_WRITE(VLV_COUNTER_CONTROL,
5484
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5485
				      VLV_MEDIA_RC6_COUNT_EN |
5486
				      VLV_RENDER_RC6_COUNT_EN));
5487
 
5488
	/* For now we assume BIOS is allocating and populating the PCBR  */
5489
	pcbr = I915_READ(VLV_PCBR);
5490
 
5491
	/* 3: Enable RC6 */
5492
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5493
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
6084 serge 5494
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5060 serge 5495
 
5496
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5497
 
5498
	/* 4 Program defaults and thresholds for RPS*/
6084 serge 5499
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5060 serge 5500
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5501
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5502
	I915_WRITE(GEN6_RP_UP_EI, 66000);
5503
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5504
 
5505
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5506
 
5507
	/* 5: Enable RPS */
5508
	I915_WRITE(GEN6_RP_CONTROL,
5509
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6084 serge 5510
		   GEN6_RP_MEDIA_IS_GFX |
5060 serge 5511
		   GEN6_RP_ENABLE |
5512
		   GEN6_RP_UP_BUSY_AVG |
5513
		   GEN6_RP_DOWN_IDLE_AVG);
5514
 
6084 serge 5515
	/* Setting Fixed Bias */
5516
	val = VLV_OVERRIDE_EN |
5517
		  VLV_SOC_TDP_EN |
5518
		  CHV_BIAS_CPU_50_SOC_50;
5519
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5520
 
5060 serge 5521
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5522
 
5354 serge 5523
	/* RPS code assumes GPLL is used */
5524
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5525
 
6084 serge 5526
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5060 serge 5527
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5528
 
5529
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5530
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6084 serge 5531
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5060 serge 5532
			 dev_priv->rps.cur_freq);
5533
 
5534
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6084 serge 5535
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5536
			 dev_priv->rps.efficient_freq);
5537
 
5538
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5539
 
6084 serge 5540
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5060 serge 5541
}
5542
 
4104 Serge 5543
static void valleyview_enable_rps(struct drm_device *dev)
5544
{
5545
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 5546
	struct intel_engine_cs *ring;
4560 Serge 5547
	u32 gtfifodbg, val, rc6_mode = 0;
4104 Serge 5548
	int i;
5549
 
5550
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5551
 
5060 serge 5552
	valleyview_check_pctx(dev_priv);
5553
 
4104 Serge 5554
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4560 Serge 5555
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5556
				 gtfifodbg);
4104 Serge 5557
		I915_WRITE(GTFIFODBG, gtfifodbg);
5558
	}
5559
 
4560 Serge 5560
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6084 serge 5561
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4104 Serge 5562
 
6084 serge 5563
	/*  Disable RC states. */
5564
	I915_WRITE(GEN6_RC_CONTROL, 0);
5565
 
5566
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4104 Serge 5567
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5568
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5569
	I915_WRITE(GEN6_RP_UP_EI, 66000);
5570
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5571
 
5572
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5573
 
5574
	I915_WRITE(GEN6_RP_CONTROL,
5575
		   GEN6_RP_MEDIA_TURBO |
5576
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5577
		   GEN6_RP_MEDIA_IS_GFX |
5578
		   GEN6_RP_ENABLE |
5579
		   GEN6_RP_UP_BUSY_AVG |
5580
		   GEN6_RP_DOWN_IDLE_CONT);
5581
 
5582
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5583
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5584
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5585
 
5586
	for_each_ring(ring, dev_priv, i)
5587
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5588
 
4560 Serge 5589
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4104 Serge 5590
 
5591
	/* allows RC6 residency counter to work */
4560 Serge 5592
	I915_WRITE(VLV_COUNTER_CONTROL,
5060 serge 5593
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5594
				      VLV_RENDER_RC0_COUNT_EN |
4560 Serge 5595
				      VLV_MEDIA_RC6_COUNT_EN |
5596
				      VLV_RENDER_RC6_COUNT_EN));
5060 serge 5597
 
4560 Serge 5598
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5599
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4104 Serge 5600
 
4560 Serge 5601
	intel_print_rc6_info(dev, rc6_mode);
5602
 
5603
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5604
 
6084 serge 5605
	/* Setting Fixed Bias */
5606
	val = VLV_OVERRIDE_EN |
5607
		  VLV_SOC_TDP_EN |
5608
		  VLV_BIAS_CPU_125_SOC_875;
5609
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5610
 
4104 Serge 5611
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5612
 
5354 serge 5613
	/* RPS code assumes GPLL is used */
5614
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5615
 
6084 serge 5616
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
4104 Serge 5617
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5618
 
5060 serge 5619
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4104 Serge 5620
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6084 serge 5621
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5060 serge 5622
			 dev_priv->rps.cur_freq);
4104 Serge 5623
 
5624
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6084 serge 5625
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5626
			 dev_priv->rps.efficient_freq);
4104 Serge 5627
 
5060 serge 5628
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4104 Serge 5629
 
6084 serge 5630
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4104 Serge 5631
}
5632
 
3031 serge 5633
static unsigned long intel_pxfreq(u32 vidfreq)
5634
{
5635
	unsigned long freq;
5636
	int div = (vidfreq & 0x3f0000) >> 16;
5637
	int post = (vidfreq & 0x3000) >> 12;
5638
	int pre = (vidfreq & 0x7);
5639
 
5640
	if (!pre)
5641
		return 0;
5642
 
5643
	freq = ((div * 133333) / ((1<
5644
 
5645
	return freq;
5646
}
5647
 
5648
static const struct cparams {
5649
	u16 i;
5650
	u16 t;
5651
	u16 m;
5652
	u16 c;
5653
} cparams[] = {
5654
	{ 1, 1333, 301, 28664 },
5655
	{ 1, 1066, 294, 24460 },
5656
	{ 1, 800, 294, 25192 },
5657
	{ 0, 1333, 276, 27605 },
5658
	{ 0, 1066, 276, 27605 },
5659
	{ 0, 800, 231, 23784 },
5660
};
5661
 
5662
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5663
{
5664
	u64 total_count, diff, ret;
5665
	u32 count1, count2, count3, m = 0, c = 0;
5060 serge 5666
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
3031 serge 5667
	int i;
5668
 
5669
	assert_spin_locked(&mchdev_lock);
5670
 
5671
	diff1 = now - dev_priv->ips.last_time1;
5672
 
5673
	/* Prevent division-by-zero if we are asking too fast.
5674
	 * Also, we don't get interesting results if we are polling
5675
	 * faster than once in 10ms, so just return the saved value
5676
	 * in such cases.
5677
	 */
5678
	if (diff1 <= 10)
5679
		return dev_priv->ips.chipset_power;
5680
 
5681
	count1 = I915_READ(DMIEC);
5682
	count2 = I915_READ(DDREC);
5683
	count3 = I915_READ(CSIEC);
5684
 
5685
	total_count = count1 + count2 + count3;
5686
 
5687
	/* FIXME: handle per-counter overflow */
5688
	if (total_count < dev_priv->ips.last_count1) {
5689
		diff = ~0UL - dev_priv->ips.last_count1;
5690
		diff += total_count;
5691
	} else {
5692
		diff = total_count - dev_priv->ips.last_count1;
5693
	}
5694
 
5695
	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5696
		if (cparams[i].i == dev_priv->ips.c_m &&
5697
		    cparams[i].t == dev_priv->ips.r_t) {
5698
			m = cparams[i].m;
5699
			c = cparams[i].c;
5700
			break;
5701
		}
5702
	}
5703
 
5704
	diff = div_u64(diff, diff1);
5705
	ret = ((m * diff) + c);
5706
	ret = div_u64(ret, 10);
5707
 
5708
	dev_priv->ips.last_count1 = total_count;
5709
	dev_priv->ips.last_time1 = now;
5710
 
5711
	dev_priv->ips.chipset_power = ret;
5712
 
5713
	return ret;
5714
}
5715
 
5716
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5717
{
5060 serge 5718
	struct drm_device *dev = dev_priv->dev;
3031 serge 5719
	unsigned long val;
5720
 
5060 serge 5721
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5722
		return 0;
5723
 
5724
	spin_lock_irq(&mchdev_lock);
5725
 
5726
	val = __i915_chipset_val(dev_priv);
5727
 
5728
	spin_unlock_irq(&mchdev_lock);
5729
 
5730
	return val;
5731
}
5732
 
5733
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5734
{
5735
	unsigned long m, x, b;
5736
	u32 tsfs;
5737
 
5738
	tsfs = I915_READ(TSFS);
5739
 
5740
	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5741
	x = I915_READ8(TR1);
5742
 
5743
	b = tsfs & TSFS_INTR_MASK;
5744
 
5745
	return ((m * x) / 127) - b;
5746
}
5747
 
6084 serge 5748
static int _pxvid_to_vd(u8 pxvid)
3031 serge 5749
{
6084 serge 5750
	if (pxvid == 0)
5751
		return 0;
5752
 
5753
	if (pxvid >= 8 && pxvid < 31)
5754
		pxvid = 31;
5755
 
5756
	return (pxvid + 2) * 125;
5757
}
5758
 
5759
static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5760
{
5060 serge 5761
	struct drm_device *dev = dev_priv->dev;
6084 serge 5762
	const int vd = _pxvid_to_vd(pxvid);
5763
	const int vm = vd - 1125;
5764
 
5060 serge 5765
	if (INTEL_INFO(dev)->is_mobile)
6084 serge 5766
		return vm > 0 ? vm : 0;
5767
 
5768
	return vd;
3031 serge 5769
}
5770
 
5771
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5772
{
5060 serge 5773
	u64 now, diff, diffms;
3031 serge 5774
	u32 count;
5775
 
5776
	assert_spin_locked(&mchdev_lock);
5777
 
5060 serge 5778
	now = ktime_get_raw_ns();
5779
	diffms = now - dev_priv->ips.last_time2;
5780
	do_div(diffms, NSEC_PER_MSEC);
3031 serge 5781
 
5782
	/* Don't divide by 0 */
5783
	if (!diffms)
5784
		return;
5785
 
5786
	count = I915_READ(GFXEC);
5787
 
5788
	if (count < dev_priv->ips.last_count2) {
5789
		diff = ~0UL - dev_priv->ips.last_count2;
5790
		diff += count;
5791
	} else {
5792
		diff = count - dev_priv->ips.last_count2;
5793
	}
5794
 
5795
	dev_priv->ips.last_count2 = count;
5796
	dev_priv->ips.last_time2 = now;
5797
 
5798
	/* More magic constants... */
5799
	diff = diff * 1181;
5800
	diff = div_u64(diff, diffms * 10);
5801
	dev_priv->ips.gfx_power = diff;
5802
}
5803
 
5804
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5805
{
5060 serge 5806
	struct drm_device *dev = dev_priv->dev;
5807
 
5808
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5809
		return;
5810
 
5811
	spin_lock_irq(&mchdev_lock);
5812
 
5813
	__i915_update_gfx_val(dev_priv);
5814
 
5815
	spin_unlock_irq(&mchdev_lock);
5816
}
5817
 
5818
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5819
{
5820
	unsigned long t, corr, state1, corr2, state2;
5821
	u32 pxvid, ext_v;
5822
 
5823
	assert_spin_locked(&mchdev_lock);
5824
 
6084 serge 5825
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
3031 serge 5826
	pxvid = (pxvid >> 24) & 0x7f;
5827
	ext_v = pvid_to_extvid(dev_priv, pxvid);
5828
 
5829
	state1 = ext_v;
5830
 
5831
	t = i915_mch_val(dev_priv);
5832
 
5833
	/* Revel in the empirically derived constants */
5834
 
5835
	/* Correction factor in 1/100000 units */
5836
	if (t > 80)
5837
		corr = ((t * 2349) + 135940);
5838
	else if (t >= 50)
5839
		corr = ((t * 964) + 29317);
5840
	else /* < 50 */
5841
		corr = ((t * 301) + 1004);
5842
 
5843
	corr = corr * ((150142 * state1) / 10000 - 78642);
5844
	corr /= 100000;
5845
	corr2 = (corr * dev_priv->ips.corr);
5846
 
5847
	state2 = (corr2 * state1) / 10000;
5848
	state2 /= 100; /* convert to mW */
5849
 
5850
	__i915_update_gfx_val(dev_priv);
5851
 
5852
	return dev_priv->ips.gfx_power + state2;
5853
}
5854
 
5855
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5856
{
5060 serge 5857
	struct drm_device *dev = dev_priv->dev;
3031 serge 5858
	unsigned long val;
5859
 
5060 serge 5860
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5861
		return 0;
5862
 
5863
	spin_lock_irq(&mchdev_lock);
5864
 
5865
	val = __i915_gfx_val(dev_priv);
5866
 
5867
	spin_unlock_irq(&mchdev_lock);
5868
 
5869
	return val;
5870
}
5871
 
5872
/**
5873
 * i915_read_mch_val - return value for IPS use
5874
 *
5875
 * Calculate and return a value for the IPS driver to use when deciding whether
5876
 * we have thermal and power headroom to increase CPU or GPU power budget.
5877
 */
5878
unsigned long i915_read_mch_val(void)
5879
{
5880
	struct drm_i915_private *dev_priv;
5881
	unsigned long chipset_val, graphics_val, ret = 0;
5882
 
5883
	spin_lock_irq(&mchdev_lock);
5884
	if (!i915_mch_dev)
5885
		goto out_unlock;
5886
	dev_priv = i915_mch_dev;
5887
 
5888
	chipset_val = __i915_chipset_val(dev_priv);
5889
	graphics_val = __i915_gfx_val(dev_priv);
5890
 
5891
	ret = chipset_val + graphics_val;
5892
 
5893
out_unlock:
5894
	spin_unlock_irq(&mchdev_lock);
5895
 
5896
	return ret;
5897
}
5898
EXPORT_SYMBOL_GPL(i915_read_mch_val);
5899
 
5900
/**
5901
 * i915_gpu_raise - raise GPU frequency limit
5902
 *
5903
 * Raise the limit; IPS indicates we have thermal headroom.
5904
 */
5905
bool i915_gpu_raise(void)
5906
{
5907
	struct drm_i915_private *dev_priv;
5908
	bool ret = true;
5909
 
5910
	spin_lock_irq(&mchdev_lock);
5911
	if (!i915_mch_dev) {
5912
		ret = false;
5913
		goto out_unlock;
5914
	}
5915
	dev_priv = i915_mch_dev;
5916
 
5917
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5918
		dev_priv->ips.max_delay--;
5919
 
5920
out_unlock:
5921
	spin_unlock_irq(&mchdev_lock);
5922
 
5923
	return ret;
5924
}
5925
EXPORT_SYMBOL_GPL(i915_gpu_raise);
5926
 
5927
/**
5928
 * i915_gpu_lower - lower GPU frequency limit
5929
 *
5930
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5931
 * frequency maximum.
5932
 */
5933
bool i915_gpu_lower(void)
5934
{
5935
	struct drm_i915_private *dev_priv;
5936
	bool ret = true;
5937
 
5938
	spin_lock_irq(&mchdev_lock);
5939
	if (!i915_mch_dev) {
5940
		ret = false;
5941
		goto out_unlock;
5942
	}
5943
	dev_priv = i915_mch_dev;
5944
 
5945
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5946
		dev_priv->ips.max_delay++;
5947
 
5948
out_unlock:
5949
	spin_unlock_irq(&mchdev_lock);
5950
 
5951
	return ret;
5952
}
5953
EXPORT_SYMBOL_GPL(i915_gpu_lower);
5954
 
5955
/**
5956
 * i915_gpu_busy - indicate GPU business to IPS
5957
 *
5958
 * Tell the IPS driver whether or not the GPU is busy.
5959
 */
5960
bool i915_gpu_busy(void)
5961
{
5962
	struct drm_i915_private *dev_priv;
5060 serge 5963
	struct intel_engine_cs *ring;
3031 serge 5964
	bool ret = false;
5965
	int i;
5966
 
5967
	spin_lock_irq(&mchdev_lock);
5968
	if (!i915_mch_dev)
5969
		goto out_unlock;
5970
	dev_priv = i915_mch_dev;
5971
 
5972
	for_each_ring(ring, dev_priv, i)
5973
		ret |= !list_empty(&ring->request_list);
5974
 
5975
out_unlock:
5976
	spin_unlock_irq(&mchdev_lock);
5977
 
5978
	return ret;
5979
}
5980
EXPORT_SYMBOL_GPL(i915_gpu_busy);
5981
 
5982
/**
5983
 * i915_gpu_turbo_disable - disable graphics turbo
5984
 *
5985
 * Disable graphics turbo by resetting the max frequency and setting the
5986
 * current frequency to the default.
5987
 */
5988
bool i915_gpu_turbo_disable(void)
5989
{
5990
	struct drm_i915_private *dev_priv;
5991
	bool ret = true;
5992
 
5993
	spin_lock_irq(&mchdev_lock);
5994
	if (!i915_mch_dev) {
5995
		ret = false;
5996
		goto out_unlock;
5997
	}
5998
	dev_priv = i915_mch_dev;
5999
 
6000
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6001
 
6002
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6003
		ret = false;
6004
 
6005
out_unlock:
6006
	spin_unlock_irq(&mchdev_lock);
6007
 
6008
	return ret;
6009
}
6010
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6011
 
6012
/**
6013
 * Tells the intel_ips driver that the i915 driver is now loaded, if
6014
 * IPS got loaded first.
6015
 *
6016
 * This awkward dance is so that neither module has to depend on the
6017
 * other in order for IPS to do the appropriate communication of
6018
 * GPU turbo limits to i915.
6019
 */
6020
static void
6021
ips_ping_for_i915_load(void)
6022
{
6023
	void (*link)(void);
6024
 
6025
//   link = symbol_get(ips_link_to_i915_driver);
6026
//   if (link) {
6027
//       link();
6028
//       symbol_put(ips_link_to_i915_driver);
6029
//   }
6030
}
6031
 
6032
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6033
{
6034
	/* We only register the i915 ips part with intel-ips once everything is
6035
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6036
	spin_lock_irq(&mchdev_lock);
6037
	i915_mch_dev = dev_priv;
6038
	spin_unlock_irq(&mchdev_lock);
6039
 
6040
	ips_ping_for_i915_load();
6041
}
6042
 
6043
void intel_gpu_ips_teardown(void)
6044
{
6045
	spin_lock_irq(&mchdev_lock);
6046
	i915_mch_dev = NULL;
6047
	spin_unlock_irq(&mchdev_lock);
6048
}
5060 serge 6049
 
3031 serge 6050
static void intel_init_emon(struct drm_device *dev)
6051
{
6052
	struct drm_i915_private *dev_priv = dev->dev_private;
6053
	u32 lcfuse;
6054
	u8 pxw[16];
6055
	int i;
6056
 
6057
	/* Disable to program */
6058
	I915_WRITE(ECR, 0);
6059
	POSTING_READ(ECR);
6060
 
6061
	/* Program energy weights for various events */
6062
	I915_WRITE(SDEW, 0x15040d00);
6063
	I915_WRITE(CSIEW0, 0x007f0000);
6064
	I915_WRITE(CSIEW1, 0x1e220004);
6065
	I915_WRITE(CSIEW2, 0x04000004);
6066
 
6067
	for (i = 0; i < 5; i++)
6084 serge 6068
		I915_WRITE(PEW(i), 0);
3031 serge 6069
	for (i = 0; i < 3; i++)
6084 serge 6070
		I915_WRITE(DEW(i), 0);
3031 serge 6071
 
6072
	/* Program P-state weights to account for frequency power adjustment */
6073
	for (i = 0; i < 16; i++) {
6084 serge 6074
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
3031 serge 6075
		unsigned long freq = intel_pxfreq(pxvidfreq);
6076
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6077
			PXVFREQ_PX_SHIFT;
6078
		unsigned long val;
6079
 
6080
		val = vid * vid;
6081
		val *= (freq / 1000);
6082
		val *= 255;
6083
		val /= (127*127*900);
6084
		if (val > 0xff)
6085
			DRM_ERROR("bad pxval: %ld\n", val);
6086
		pxw[i] = val;
6087
	}
6088
	/* Render standby states get 0 weight */
6089
	pxw[14] = 0;
6090
	pxw[15] = 0;
6091
 
6092
	for (i = 0; i < 4; i++) {
6093
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6094
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6084 serge 6095
		I915_WRITE(PXW(i), val);
3031 serge 6096
	}
6097
 
6098
	/* Adjust magic regs to magic values (more experimental results) */
6099
	I915_WRITE(OGW0, 0);
6100
	I915_WRITE(OGW1, 0);
6101
	I915_WRITE(EG0, 0x00007f00);
6102
	I915_WRITE(EG1, 0x0000000e);
6103
	I915_WRITE(EG2, 0x000e0000);
6104
	I915_WRITE(EG3, 0x68000300);
6105
	I915_WRITE(EG4, 0x42000000);
6106
	I915_WRITE(EG5, 0x00140031);
6107
	I915_WRITE(EG6, 0);
6108
	I915_WRITE(EG7, 0);
6109
 
6110
	for (i = 0; i < 8; i++)
6084 serge 6111
		I915_WRITE(PXWL(i), 0);
3031 serge 6112
 
6113
	/* Enable PMON + select events */
6114
	I915_WRITE(ECR, 0x80000019);
6115
 
6116
	lcfuse = I915_READ(LCFUSE02);
6117
 
6118
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6119
}
6120
 
5060 serge 6121
void intel_init_gt_powersave(struct drm_device *dev)
6122
{
6123
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6124
 
6125
	if (IS_CHERRYVIEW(dev))
6126
		cherryview_init_gt_powersave(dev);
6127
	else if (IS_VALLEYVIEW(dev))
6128
		valleyview_init_gt_powersave(dev);
6129
}
6130
 
6131
void intel_cleanup_gt_powersave(struct drm_device *dev)
6132
{
6133
	if (IS_CHERRYVIEW(dev))
6134
		return;
6135
	else if (IS_VALLEYVIEW(dev))
6136
		valleyview_cleanup_gt_powersave(dev);
6137
}
6138
 
5354 serge 6139
static void gen6_suspend_rps(struct drm_device *dev)
6140
{
6141
	struct drm_i915_private *dev_priv = dev->dev_private;
6142
 
6143
//   flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6144
 
6084 serge 6145
	gen6_disable_rps_interrupts(dev);
5354 serge 6146
}
6147
 
5060 serge 6148
/**
6149
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6150
 * @dev: drm device
6151
 *
6152
 * We don't want to disable RC6 or other features here, we just want
6153
 * to make sure any work we've queued has finished and won't bother
6154
 * us while we're suspended.
6155
 */
6156
void intel_suspend_gt_powersave(struct drm_device *dev)
6157
{
6158
	struct drm_i915_private *dev_priv = dev->dev_private;
6159
 
5354 serge 6160
	if (INTEL_INFO(dev)->gen < 6)
6161
		return;
5060 serge 6162
 
5354 serge 6163
	gen6_suspend_rps(dev);
5060 serge 6164
 
6165
	/* Force GPU to min freq during suspend */
6166
	gen6_rps_idle(dev_priv);
6167
}
6168
 
3031 serge 6169
void intel_disable_gt_powersave(struct drm_device *dev)
6170
{
3243 Serge 6171
	struct drm_i915_private *dev_priv = dev->dev_private;
6172
 
3031 serge 6173
	if (IS_IRONLAKE_M(dev)) {
6174
		ironlake_disable_drps(dev);
4293 Serge 6175
	} else if (INTEL_INFO(dev)->gen >= 6) {
5060 serge 6176
		intel_suspend_gt_powersave(dev);
6177
 
3482 Serge 6178
		mutex_lock(&dev_priv->rps.hw_lock);
5354 serge 6179
		if (INTEL_INFO(dev)->gen >= 9)
6180
			gen9_disable_rps(dev);
6181
		else if (IS_CHERRYVIEW(dev))
5060 serge 6182
			cherryview_disable_rps(dev);
6183
		else if (IS_VALLEYVIEW(dev))
4104 Serge 6184
			valleyview_disable_rps(dev);
6185
		else
6084 serge 6186
			gen6_disable_rps(dev);
5354 serge 6187
 
4560 Serge 6188
		dev_priv->rps.enabled = false;
3480 Serge 6189
		mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 6190
	}
6191
}
6192
 
3482 Serge 6193
static void intel_gen6_powersave_work(struct work_struct *work)
6194
{
6195
	struct drm_i915_private *dev_priv =
6196
		container_of(work, struct drm_i915_private,
6197
			     rps.delayed_resume_work.work);
6198
	struct drm_device *dev = dev_priv->dev;
6199
 
6200
	mutex_lock(&dev_priv->rps.hw_lock);
4104 Serge 6201
 
6084 serge 6202
	gen6_reset_rps_interrupts(dev);
5354 serge 6203
 
5060 serge 6204
	if (IS_CHERRYVIEW(dev)) {
6205
		cherryview_enable_rps(dev);
6206
	} else if (IS_VALLEYVIEW(dev)) {
4104 Serge 6207
		valleyview_enable_rps(dev);
5354 serge 6208
	} else if (INTEL_INFO(dev)->gen >= 9) {
6084 serge 6209
		gen9_enable_rc6(dev);
5354 serge 6210
		gen9_enable_rps(dev);
6084 serge 6211
		if (IS_SKYLAKE(dev))
6212
			__gen6_update_ring_freq(dev);
4560 Serge 6213
	} else if (IS_BROADWELL(dev)) {
6214
		gen8_enable_rps(dev);
5060 serge 6215
		__gen6_update_ring_freq(dev);
4104 Serge 6216
	} else {
6084 serge 6217
		gen6_enable_rps(dev);
5060 serge 6218
		__gen6_update_ring_freq(dev);
4104 Serge 6219
	}
6084 serge 6220
 
6221
	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6222
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6223
 
6224
	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6225
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6226
 
4560 Serge 6227
	dev_priv->rps.enabled = true;
5354 serge 6228
 
6084 serge 6229
	gen6_enable_rps_interrupts(dev);
5354 serge 6230
 
3482 Serge 6231
	mutex_unlock(&dev_priv->rps.hw_lock);
5060 serge 6232
 
6233
	intel_runtime_pm_put(dev_priv);
3482 Serge 6234
}
6235
 
3031 serge 6236
void intel_enable_gt_powersave(struct drm_device *dev)
6237
{
3243 Serge 6238
	struct drm_i915_private *dev_priv = dev->dev_private;
6239
 
6084 serge 6240
	/* Powersaving is controlled by the host when inside a VM */
6241
	if (intel_vgpu_active(dev))
6242
		return;
6243
 
3031 serge 6244
	if (IS_IRONLAKE_M(dev)) {
5060 serge 6245
		mutex_lock(&dev->struct_mutex);
3031 serge 6246
		ironlake_enable_drps(dev);
6247
		intel_init_emon(dev);
5060 serge 6248
		mutex_unlock(&dev->struct_mutex);
6249
	} else if (INTEL_INFO(dev)->gen >= 6) {
3243 Serge 6250
		/*
6251
		 * PCU communication is slow and this doesn't need to be
6252
		 * done at any specific time, so do this out of our fast path
6253
		 * to make resume and init faster.
5060 serge 6254
		 *
6255
		 * We depend on the HW RC6 power context save/restore
6256
		 * mechanism when entering D3 through runtime PM suspend. So
6257
		 * disable RPM until RPS/RC6 is properly setup. We can only
6258
		 * get here via the driver load/system resume/runtime resume
6259
		 * paths, so the _noresume version is enough (and in case of
6260
		 * runtime resume it's necessary).
3243 Serge 6261
		 */
5060 serge 6262
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6263
					   round_jiffies_up_relative(HZ)))
6264
			intel_runtime_pm_get_noresume(dev_priv);
3031 serge 6265
	}
6266
}
6267
 
5060 serge 6268
void intel_reset_gt_powersave(struct drm_device *dev)
6269
{
6270
	struct drm_i915_private *dev_priv = dev->dev_private;
6271
 
5354 serge 6272
	if (INTEL_INFO(dev)->gen < 6)
6273
		return;
6274
 
6275
	gen6_suspend_rps(dev);
5060 serge 6276
	dev_priv->rps.enabled = false;
6277
}
6278
 
3243 Serge 6279
static void ibx_init_clock_gating(struct drm_device *dev)
6280
{
6281
	struct drm_i915_private *dev_priv = dev->dev_private;
6282
 
6283
	/*
6284
	 * On Ibex Peak and Cougar Point, we need to disable clock
6285
	 * gating for the panel power sequencer or it will fail to
6286
	 * start up when no ports are active.
6287
	 */
6288
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6289
}
6290
 
4104 Serge 6291
static void g4x_disable_trickle_feed(struct drm_device *dev)
6292
{
6293
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 6294
	enum pipe pipe;
4104 Serge 6295
 
5354 serge 6296
	for_each_pipe(dev_priv, pipe) {
4104 Serge 6297
		I915_WRITE(DSPCNTR(pipe),
6298
			   I915_READ(DSPCNTR(pipe)) |
6299
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6084 serge 6300
 
6301
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6302
		POSTING_READ(DSPSURF(pipe));
4104 Serge 6303
	}
6304
}
6305
 
4560 Serge 6306
static void ilk_init_lp_watermarks(struct drm_device *dev)
6307
{
6308
	struct drm_i915_private *dev_priv = dev->dev_private;
6309
 
6310
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6311
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6312
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6313
 
6314
	/*
6315
	 * Don't touch WM1S_LP_EN here.
6316
	 * Doing so could cause underruns.
6317
	 */
6318
}
6319
 
3031 serge 6320
static void ironlake_init_clock_gating(struct drm_device *dev)
6321
{
6322
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6323
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 6324
 
4104 Serge 6325
	/*
6326
	 * Required for FBC
6327
	 * WaFbcDisableDpfcClockGating:ilk
6328
	 */
3243 Serge 6329
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6330
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6331
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3031 serge 6332
 
6333
	I915_WRITE(PCH_3DCGDIS0,
6334
		   MARIUNIT_CLOCK_GATE_DISABLE |
6335
		   SVSMUNIT_CLOCK_GATE_DISABLE);
6336
	I915_WRITE(PCH_3DCGDIS1,
6337
		   VFMUNIT_CLOCK_GATE_DISABLE);
6338
 
6339
	/*
6340
	 * According to the spec the following bits should be set in
6341
	 * order to enable memory self-refresh
6342
	 * The bit 22/21 of 0x42004
6343
	 * The bit 5 of 0x42020
6344
	 * The bit 15 of 0x45000
6345
	 */
6346
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6347
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6348
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3243 Serge 6349
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3031 serge 6350
	I915_WRITE(DISP_ARB_CTL,
6351
		   (I915_READ(DISP_ARB_CTL) |
6352
		    DISP_FBC_WM_DIS));
6353
 
4560 Serge 6354
	ilk_init_lp_watermarks(dev);
6355
 
3031 serge 6356
	/*
6357
	 * Based on the document from hardware guys the following bits
6358
	 * should be set unconditionally in order to enable FBC.
6359
	 * The bit 22 of 0x42000
6360
	 * The bit 22 of 0x42004
6361
	 * The bit 7,8,9 of 0x42020.
6362
	 */
6363
	if (IS_IRONLAKE_M(dev)) {
4104 Serge 6364
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
3031 serge 6365
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6366
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6367
			   ILK_FBCQ_DIS);
6368
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6369
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6370
			   ILK_DPARB_GATE);
6371
	}
6372
 
3243 Serge 6373
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6374
 
3031 serge 6375
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6376
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6377
		   ILK_ELPIN_409_SELECT);
6378
	I915_WRITE(_3D_CHICKEN2,
6379
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6380
		   _3D_CHICKEN2_WM_READ_PIPELINED);
3243 Serge 6381
 
4104 Serge 6382
	/* WaDisableRenderCachePipelinedFlush:ilk */
3243 Serge 6383
	I915_WRITE(CACHE_MODE_0,
6384
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6385
 
5060 serge 6386
	/* WaDisable_RenderCache_OperationalFlush:ilk */
6387
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6388
 
4104 Serge 6389
	g4x_disable_trickle_feed(dev);
6390
 
3243 Serge 6391
	ibx_init_clock_gating(dev);
3031 serge 6392
}
6393
 
3243 Serge 6394
static void cpt_init_clock_gating(struct drm_device *dev)
6395
{
6396
	struct drm_i915_private *dev_priv = dev->dev_private;
6397
	int pipe;
3746 Serge 6398
	uint32_t val;
3243 Serge 6399
 
6400
	/*
6401
	 * On Ibex Peak and Cougar Point, we need to disable clock
6402
	 * gating for the panel power sequencer or it will fail to
6403
	 * start up when no ports are active.
6404
	 */
4280 Serge 6405
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6406
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6407
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
3243 Serge 6408
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6409
		   DPLS_EDP_PPS_FIX_DIS);
6410
	/* The below fixes the weird display corruption, a few pixels shifted
6411
	 * downward, on (only) LVDS of some HP laptops with IVY.
6412
	 */
5354 serge 6413
	for_each_pipe(dev_priv, pipe) {
3746 Serge 6414
		val = I915_READ(TRANS_CHICKEN2(pipe));
6415
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6416
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4104 Serge 6417
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
3746 Serge 6418
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6419
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6420
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6421
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6422
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6423
	}
3243 Serge 6424
	/* WADP0ClockGatingDisable */
5354 serge 6425
	for_each_pipe(dev_priv, pipe) {
3243 Serge 6426
		I915_WRITE(TRANS_CHICKEN1(pipe),
6427
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6428
	}
6429
}
6430
 
3480 Serge 6431
static void gen6_check_mch_setup(struct drm_device *dev)
6432
{
6433
	struct drm_i915_private *dev_priv = dev->dev_private;
6434
	uint32_t tmp;
6435
 
6436
	tmp = I915_READ(MCH_SSKPD);
5060 serge 6437
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6438
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6439
			      tmp);
3480 Serge 6440
}
6441
 
3031 serge 6442
static void gen6_init_clock_gating(struct drm_device *dev)
6443
{
6444
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6445
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 6446
 
3243 Serge 6447
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3031 serge 6448
 
6449
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6450
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6451
		   ILK_ELPIN_409_SELECT);
6452
 
4104 Serge 6453
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3243 Serge 6454
	I915_WRITE(_3D_CHICKEN,
6455
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6456
 
5060 serge 6457
	/* WaDisable_RenderCache_OperationalFlush:snb */
6458
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6459
 
6460
	/*
6461
	 * BSpec recoomends 8x4 when MSAA is used,
6462
	 * however in practice 16x4 seems fastest.
6463
	 *
6464
	 * Note that PS/WM thread counts depend on the WIZ hashing
6465
	 * disable bit, which we don't touch here, but it's good
6466
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6467
	 */
6468
	I915_WRITE(GEN6_GT_MODE,
5354 serge 6469
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6470
 
4560 Serge 6471
	ilk_init_lp_watermarks(dev);
3031 serge 6472
 
6473
	I915_WRITE(CACHE_MODE_0,
6474
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6475
 
6476
	I915_WRITE(GEN6_UCGCTL1,
6477
		   I915_READ(GEN6_UCGCTL1) |
6478
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6479
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6480
 
6481
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6482
	 * gating disable must be set.  Failure to set it results in
6483
	 * flickering pixels due to Z write ordering failures after
6484
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6485
	 * Sanctuary and Tropics, and apparently anything else with
6486
	 * alpha test or pixel discard.
6487
	 *
6488
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6489
	 * but we didn't debug actual testcases to find it out.
6490
	 *
5060 serge 6491
	 * WaDisableRCCUnitClockGating:snb
6492
	 * WaDisableRCPBUnitClockGating:snb
3031 serge 6493
	 */
6494
	I915_WRITE(GEN6_UCGCTL2,
6495
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6496
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6497
 
5060 serge 6498
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6499
	I915_WRITE(_3D_CHICKEN3,
6500
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
3031 serge 6501
 
6502
	/*
5060 serge 6503
	 * Bspec says:
6504
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6505
	 * 3DSTATE_SF number of SF output attributes is more than 16."
6506
	 */
6507
	I915_WRITE(_3D_CHICKEN3,
6508
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6509
 
6510
	/*
3031 serge 6511
	 * According to the spec the following bits should be
6512
	 * set in order to enable memory self-refresh and fbc:
6513
	 * The bit21 and bit22 of 0x42000
6514
	 * The bit21 and bit22 of 0x42004
6515
	 * The bit5 and bit7 of 0x42020
6516
	 * The bit14 of 0x70180
6517
	 * The bit14 of 0x71180
4104 Serge 6518
	 *
6519
	 * WaFbcAsynchFlipDisableFbcQueue:snb
3031 serge 6520
	 */
6521
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6522
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6523
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6524
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6525
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6526
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3243 Serge 6527
	I915_WRITE(ILK_DSPCLK_GATE_D,
6528
		   I915_READ(ILK_DSPCLK_GATE_D) |
6529
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6530
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3031 serge 6531
 
4104 Serge 6532
	g4x_disable_trickle_feed(dev);
3031 serge 6533
 
3243 Serge 6534
	cpt_init_clock_gating(dev);
3480 Serge 6535
 
6536
	gen6_check_mch_setup(dev);
3031 serge 6537
}
6538
 
6539
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6540
{
6541
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6542
 
5060 serge 6543
	/*
6544
	 * WaVSThreadDispatchOverride:ivb,vlv
6545
	 *
6546
	 * This actually overrides the dispatch
6547
	 * mode for all thread types.
6548
	 */
3031 serge 6549
	reg &= ~GEN7_FF_SCHED_MASK;
6550
	reg |= GEN7_FF_TS_SCHED_HW;
6551
	reg |= GEN7_FF_VS_SCHED_HW;
6552
	reg |= GEN7_FF_DS_SCHED_HW;
6553
 
6554
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6555
}
6556
 
3243 Serge 6557
static void lpt_init_clock_gating(struct drm_device *dev)
6558
{
6559
	struct drm_i915_private *dev_priv = dev->dev_private;
6560
 
6561
	/*
6562
	 * TODO: this bit should only be enabled when really needed, then
6563
	 * disabled when not needed anymore in order to save power.
6564
	 */
6084 serge 6565
	if (HAS_PCH_LPT_LP(dev))
3243 Serge 6566
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6567
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6568
			   PCH_LP_PARTITION_LEVEL_DISABLE);
4104 Serge 6569
 
6570
	/* WADPOClockGatingDisable:hsw */
6084 serge 6571
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6572
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
4104 Serge 6573
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3243 Serge 6574
}
6575
 
4104 Serge 6576
static void lpt_suspend_hw(struct drm_device *dev)
6577
{
6578
	struct drm_i915_private *dev_priv = dev->dev_private;
6579
 
6084 serge 6580
	if (HAS_PCH_LPT_LP(dev)) {
4104 Serge 6581
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6582
 
6583
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6584
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6585
	}
6586
}
6587
 
5354 serge 6588
static void broadwell_init_clock_gating(struct drm_device *dev)
3031 serge 6589
{
6590
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 6591
	enum pipe pipe;
6084 serge 6592
	uint32_t misccpctl;
3031 serge 6593
 
6084 serge 6594
	ilk_init_lp_watermarks(dev);
3031 serge 6595
 
4560 Serge 6596
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6597
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6598
 
6599
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6600
	I915_WRITE(CHICKEN_PAR1_1,
6601
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6602
 
6603
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5354 serge 6604
	for_each_pipe(dev_priv, pipe) {
5060 serge 6605
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6606
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6607
			   BDW_DPRS_MASK_VBLANK_SRD);
4560 Serge 6608
	}
6609
 
6610
	/* WaVSRefCountFullforceMissDisable:bdw */
6611
	/* WaDSRefCountFullforceMissDisable:bdw */
6612
	I915_WRITE(GEN7_FF_THREAD_MODE,
6613
		   I915_READ(GEN7_FF_THREAD_MODE) &
6614
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5060 serge 6615
 
6616
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6617
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6618
 
6619
	/* WaDisableSDEUnitClockGating:bdw */
6620
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6621
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6622
 
6084 serge 6623
	/*
6624
	 * WaProgramL3SqcReg1Default:bdw
6625
	 * WaTempDisableDOPClkGating:bdw
6626
	 */
6627
	misccpctl = I915_READ(GEN7_MISCCPCTL);
6628
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6629
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6660 serge 6630
	/*
6631
	 * Wait at least 100 clocks before re-enabling clock gating. See
6632
	 * the definition of L3SQCREG1 in BSpec.
6633
	 */
6634
	POSTING_READ(GEN8_L3SQCREG1);
6635
	udelay(1);
6084 serge 6636
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6637
 
6638
	/*
6639
	 * WaGttCachingOffByDefault:bdw
6640
	 * GTT cache may not work with big pages, so if those
6641
	 * are ever enabled GTT cache may need to be disabled.
6642
	 */
6643
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6644
 
5354 serge 6645
	lpt_init_clock_gating(dev);
4560 Serge 6646
}
6647
 
6648
static void haswell_init_clock_gating(struct drm_device *dev)
6649
{
6650
	struct drm_i915_private *dev_priv = dev->dev_private;
6651
 
6652
	ilk_init_lp_watermarks(dev);
6653
 
4104 Serge 6654
	/* L3 caching of data atomics doesn't work -- disable it. */
6655
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6656
	I915_WRITE(HSW_ROW_CHICKEN3,
6657
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6658
 
6659
	/* This is required by WaCatErrorRejectionIssue:hsw */
3031 serge 6660
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6661
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6662
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6663
 
4104 Serge 6664
	/* WaVSRefCountFullforceMissDisable:hsw */
5060 serge 6665
	I915_WRITE(GEN7_FF_THREAD_MODE,
6666
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
3031 serge 6667
 
5060 serge 6668
	/* WaDisable_RenderCache_OperationalFlush:hsw */
6669
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6670
 
6671
	/* enable HiZ Raw Stall Optimization */
6672
	I915_WRITE(CACHE_MODE_0_GEN7,
6673
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6674
 
4104 Serge 6675
	/* WaDisable4x2SubspanOptimization:hsw */
3031 serge 6676
	I915_WRITE(CACHE_MODE_1,
6677
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6678
 
5060 serge 6679
	/*
6680
	 * BSpec recommends 8x4 when MSAA is used,
6681
	 * however in practice 16x4 seems fastest.
6682
	 *
6683
	 * Note that PS/WM thread counts depend on the WIZ hashing
6684
	 * disable bit, which we don't touch here, but it's good
6685
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6686
	 */
6687
	I915_WRITE(GEN7_GT_MODE,
5354 serge 6688
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6689
 
6084 serge 6690
	/* WaSampleCChickenBitEnable:hsw */
6691
	I915_WRITE(HALF_SLICE_CHICKEN3,
6692
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6693
 
4104 Serge 6694
	/* WaSwitchSolVfFArbitrationPriority:hsw */
3746 Serge 6695
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6696
 
4104 Serge 6697
	/* WaRsPkgCStateDisplayPMReq:hsw */
6698
	I915_WRITE(CHICKEN_PAR1_1,
6699
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
3031 serge 6700
 
3243 Serge 6701
	lpt_init_clock_gating(dev);
3031 serge 6702
}
6703
 
6704
static void ivybridge_init_clock_gating(struct drm_device *dev)
6705
{
6706
	struct drm_i915_private *dev_priv = dev->dev_private;
6707
	uint32_t snpcr;
6708
 
4560 Serge 6709
	ilk_init_lp_watermarks(dev);
3031 serge 6710
 
3243 Serge 6711
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 6712
 
4104 Serge 6713
	/* WaDisableEarlyCull:ivb */
3243 Serge 6714
	I915_WRITE(_3D_CHICKEN3,
6715
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6716
 
4104 Serge 6717
	/* WaDisableBackToBackFlipFix:ivb */
3031 serge 6718
	I915_WRITE(IVB_CHICKEN3,
6719
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6720
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6721
 
4104 Serge 6722
	/* WaDisablePSDDualDispatchEnable:ivb */
3243 Serge 6723
	if (IS_IVB_GT1(dev))
6724
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6725
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6726
 
5060 serge 6727
	/* WaDisable_RenderCache_OperationalFlush:ivb */
6728
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6729
 
4104 Serge 6730
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
3031 serge 6731
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6732
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6733
 
4104 Serge 6734
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
3031 serge 6735
	I915_WRITE(GEN7_L3CNTLREG1,
6736
			GEN7_WA_FOR_GEN7_L3_CONTROL);
6737
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6084 serge 6738
		   GEN7_WA_L3_CHICKEN_MODE);
3243 Serge 6739
	if (IS_IVB_GT1(dev))
6740
		I915_WRITE(GEN7_ROW_CHICKEN2,
6741
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5060 serge 6742
	else {
6743
		/* must write both registers */
6744
		I915_WRITE(GEN7_ROW_CHICKEN2,
6745
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3243 Serge 6746
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6747
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5060 serge 6748
	}
3031 serge 6749
 
4104 Serge 6750
	/* WaForceL3Serialization:ivb */
3243 Serge 6751
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6752
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6753
 
5060 serge 6754
	/*
3031 serge 6755
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 6756
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
3031 serge 6757
	 */
6758
	I915_WRITE(GEN6_UCGCTL2,
5060 serge 6759
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3031 serge 6760
 
4104 Serge 6761
	/* This is required by WaCatErrorRejectionIssue:ivb */
3031 serge 6762
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6763
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6764
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6765
 
4104 Serge 6766
	g4x_disable_trickle_feed(dev);
3031 serge 6767
 
6768
	gen7_setup_fixed_func_scheduler(dev_priv);
6769
 
5060 serge 6770
	if (0) { /* causes HiZ corruption on ivb:gt1 */
6771
		/* enable HiZ Raw Stall Optimization */
6772
		I915_WRITE(CACHE_MODE_0_GEN7,
6773
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6774
	}
6775
 
4104 Serge 6776
	/* WaDisable4x2SubspanOptimization:ivb */
3031 serge 6777
	I915_WRITE(CACHE_MODE_1,
6778
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6779
 
5060 serge 6780
	/*
6781
	 * BSpec recommends 8x4 when MSAA is used,
6782
	 * however in practice 16x4 seems fastest.
6783
	 *
6784
	 * Note that PS/WM thread counts depend on the WIZ hashing
6785
	 * disable bit, which we don't touch here, but it's good
6786
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6787
	 */
6788
	I915_WRITE(GEN7_GT_MODE,
5354 serge 6789
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6790
 
3031 serge 6791
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6792
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6793
	snpcr |= GEN6_MBC_SNPCR_MED;
6794
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3243 Serge 6795
 
3746 Serge 6796
	if (!HAS_PCH_NOP(dev))
6084 serge 6797
		cpt_init_clock_gating(dev);
3480 Serge 6798
 
6799
	gen6_check_mch_setup(dev);
3031 serge 6800
}
6801
 
6084 serge 6802
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6803
{
6804
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6805
 
6806
	/*
6807
	 * Disable trickle feed and enable pnd deadline calculation
6808
	 */
6809
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6810
	I915_WRITE(CBR1_VLV, 0);
6811
}
6812
 
3031 serge 6813
static void valleyview_init_clock_gating(struct drm_device *dev)
6814
{
6815
	struct drm_i915_private *dev_priv = dev->dev_private;
6816
 
6084 serge 6817
	vlv_init_display_clock_gating(dev_priv);
3031 serge 6818
 
4104 Serge 6819
	/* WaDisableEarlyCull:vlv */
3243 Serge 6820
	I915_WRITE(_3D_CHICKEN3,
6821
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6822
 
4104 Serge 6823
	/* WaDisableBackToBackFlipFix:vlv */
3031 serge 6824
	I915_WRITE(IVB_CHICKEN3,
6825
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6826
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6827
 
5060 serge 6828
	/* WaPsdDispatchEnable:vlv */
4104 Serge 6829
	/* WaDisablePSDDualDispatchEnable:vlv */
3243 Serge 6830
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3746 Serge 6831
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6832
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3243 Serge 6833
 
5060 serge 6834
	/* WaDisable_RenderCache_OperationalFlush:vlv */
6835
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6836
 
4104 Serge 6837
	/* WaForceL3Serialization:vlv */
3243 Serge 6838
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6839
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6840
 
4104 Serge 6841
	/* WaDisableDopClockGating:vlv */
3243 Serge 6842
	I915_WRITE(GEN7_ROW_CHICKEN2,
6843
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6844
 
4104 Serge 6845
	/* This is required by WaCatErrorRejectionIssue:vlv */
3031 serge 6846
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6847
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6848
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6849
 
5060 serge 6850
	gen7_setup_fixed_func_scheduler(dev_priv);
6851
 
6852
	/*
3031 serge 6853
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 6854
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
3031 serge 6855
	 */
6856
	I915_WRITE(GEN6_UCGCTL2,
5060 serge 6857
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3031 serge 6858
 
5060 serge 6859
	/* WaDisableL3Bank2xClockGate:vlv
6860
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6861
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6862
	I915_WRITE(GEN7_UCGCTL4,
6863
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3031 serge 6864
 
5060 serge 6865
	/*
6866
	 * BSpec says this must be set, even though
6867
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6868
	 */
3031 serge 6869
	I915_WRITE(CACHE_MODE_1,
6870
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6871
 
6872
	/*
6084 serge 6873
	 * BSpec recommends 8x4 when MSAA is used,
6874
	 * however in practice 16x4 seems fastest.
6875
	 *
6876
	 * Note that PS/WM thread counts depend on the WIZ hashing
6877
	 * disable bit, which we don't touch here, but it's good
6878
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6879
	 */
6880
	I915_WRITE(GEN7_GT_MODE,
6881
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6882
 
6883
	/*
5060 serge 6884
	 * WaIncreaseL3CreditsForVLVB0:vlv
6885
	 * This is the hardware default actually.
6886
	 */
6887
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6888
 
6889
	/*
4104 Serge 6890
	 * WaDisableVLVClockGating_VBIIssue:vlv
3243 Serge 6891
	 * Disable clock gating on th GCFG unit to prevent a delay
6892
	 * in the reporting of vblank events.
6893
	 */
5060 serge 6894
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6895
}
3746 Serge 6896
 
5060 serge 6897
static void cherryview_init_clock_gating(struct drm_device *dev)
6898
{
6899
	struct drm_i915_private *dev_priv = dev->dev_private;
6900
 
6084 serge 6901
	vlv_init_display_clock_gating(dev_priv);
5060 serge 6902
 
6903
	/* WaVSRefCountFullforceMissDisable:chv */
6904
	/* WaDSRefCountFullforceMissDisable:chv */
6905
	I915_WRITE(GEN7_FF_THREAD_MODE,
6906
		   I915_READ(GEN7_FF_THREAD_MODE) &
6907
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6908
 
6909
	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6910
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6911
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6912
 
6913
	/* WaDisableCSUnitClockGating:chv */
6914
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6915
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6916
 
6917
	/* WaDisableSDEUnitClockGating:chv */
6918
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6919
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6084 serge 6920
 
6921
	/*
6922
	 * GTT cache may not work with big pages, so if those
6923
	 * are ever enabled GTT cache may need to be disabled.
6924
	 */
6925
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
3031 serge 6926
}
6927
 
6928
static void g4x_init_clock_gating(struct drm_device *dev)
6929
{
6930
	struct drm_i915_private *dev_priv = dev->dev_private;
6931
	uint32_t dspclk_gate;
6932
 
6933
	I915_WRITE(RENCLK_GATE_D1, 0);
6934
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6935
		   GS_UNIT_CLOCK_GATE_DISABLE |
6936
		   CL_UNIT_CLOCK_GATE_DISABLE);
6937
	I915_WRITE(RAMCLK_GATE_D, 0);
6938
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6939
		OVRUNIT_CLOCK_GATE_DISABLE |
6940
		OVCUNIT_CLOCK_GATE_DISABLE;
6941
	if (IS_GM45(dev))
6942
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6943
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3243 Serge 6944
 
6945
	/* WaDisableRenderCachePipelinedFlush */
6946
	I915_WRITE(CACHE_MODE_0,
6947
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4104 Serge 6948
 
5060 serge 6949
	/* WaDisable_RenderCache_OperationalFlush:g4x */
6950
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6951
 
4104 Serge 6952
	g4x_disable_trickle_feed(dev);
3031 serge 6953
}
6954
 
6955
static void crestline_init_clock_gating(struct drm_device *dev)
6956
{
6957
	struct drm_i915_private *dev_priv = dev->dev_private;
6958
 
6959
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6960
	I915_WRITE(RENCLK_GATE_D2, 0);
6961
	I915_WRITE(DSPCLK_GATE_D, 0);
6962
	I915_WRITE(RAMCLK_GATE_D, 0);
6963
	I915_WRITE16(DEUC, 0);
4104 Serge 6964
	I915_WRITE(MI_ARB_STATE,
6965
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5060 serge 6966
 
6967
	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6968
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6969
}
6970
 
6971
static void broadwater_init_clock_gating(struct drm_device *dev)
6972
{
6973
	struct drm_i915_private *dev_priv = dev->dev_private;
6974
 
6975
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6976
		   I965_RCC_CLOCK_GATE_DISABLE |
6977
		   I965_RCPB_CLOCK_GATE_DISABLE |
6978
		   I965_ISC_CLOCK_GATE_DISABLE |
6979
		   I965_FBC_CLOCK_GATE_DISABLE);
6980
	I915_WRITE(RENCLK_GATE_D2, 0);
4104 Serge 6981
	I915_WRITE(MI_ARB_STATE,
6982
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5060 serge 6983
 
6984
	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6985
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6986
}
6987
 
6988
static void gen3_init_clock_gating(struct drm_device *dev)
6989
{
6990
	struct drm_i915_private *dev_priv = dev->dev_private;
6991
	u32 dstate = I915_READ(D_STATE);
6992
 
6993
	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6994
		DSTATE_DOT_CLOCK_GATING;
6995
	I915_WRITE(D_STATE, dstate);
6996
 
6997
	if (IS_PINEVIEW(dev))
6998
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6999
 
7000
	/* IIR "flip pending" means done if this bit is set */
7001
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5060 serge 7002
 
7003
	/* interrupts should cause a wake up from C3 */
7004
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7005
 
7006
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7007
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5354 serge 7008
 
7009
	I915_WRITE(MI_ARB_STATE,
7010
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 7011
}
7012
 
7013
static void i85x_init_clock_gating(struct drm_device *dev)
7014
{
7015
	struct drm_i915_private *dev_priv = dev->dev_private;
7016
 
7017
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5060 serge 7018
 
7019
	/* interrupts should cause a wake up from C3 */
7020
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7021
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5354 serge 7022
 
7023
	I915_WRITE(MEM_MODE,
7024
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 7025
}
7026
 
7027
static void i830_init_clock_gating(struct drm_device *dev)
7028
{
7029
	struct drm_i915_private *dev_priv = dev->dev_private;
7030
 
7031
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5354 serge 7032
 
7033
	I915_WRITE(MEM_MODE,
7034
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7035
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
3031 serge 7036
}
7037
 
7038
void intel_init_clock_gating(struct drm_device *dev)
7039
{
7040
	struct drm_i915_private *dev_priv = dev->dev_private;
7041
 
6084 serge 7042
	if (dev_priv->display.init_clock_gating)
7043
		dev_priv->display.init_clock_gating(dev);
3031 serge 7044
}
7045
 
4104 Serge 7046
void intel_suspend_hw(struct drm_device *dev)
7047
{
7048
	if (HAS_PCH_LPT(dev))
7049
		lpt_suspend_hw(dev);
7050
}
7051
 
5354 serge 7052
/* Set up chip specific power management-related functions */
7053
void intel_init_pm(struct drm_device *dev)
7054
{
7055
	struct drm_i915_private *dev_priv = dev->dev_private;
7056
 
6084 serge 7057
	intel_fbc_init(dev_priv);
5354 serge 7058
 
3031 serge 7059
	/* For cxsr */
7060
	if (IS_PINEVIEW(dev))
7061
		i915_pineview_get_mem_freq(dev);
7062
	else if (IS_GEN5(dev))
7063
		i915_ironlake_get_mem_freq(dev);
7064
 
7065
	/* For FIFO watermark updates */
5354 serge 7066
	if (INTEL_INFO(dev)->gen >= 9) {
7067
		skl_setup_wm_latency(dev);
7068
 
6084 serge 7069
		if (IS_BROXTON(dev))
7070
			dev_priv->display.init_clock_gating =
7071
				bxt_init_clock_gating;
5354 serge 7072
		dev_priv->display.update_wm = skl_update_wm;
7073
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7074
	} else if (HAS_PCH_SPLIT(dev)) {
5060 serge 7075
		ilk_setup_wm_latency(dev);
4104 Serge 7076
 
4560 Serge 7077
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7078
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7079
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7080
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7081
			dev_priv->display.update_wm = ilk_update_wm;
7082
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6084 serge 7083
		} else {
7084
			DRM_DEBUG_KMS("Failed to read display plane latency. "
7085
				      "Disable CxSR\n");
7086
		}
4560 Serge 7087
 
7088
		if (IS_GEN5(dev))
7089
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7090
		else if (IS_GEN6(dev))
3031 serge 7091
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4560 Serge 7092
		else if (IS_IVYBRIDGE(dev))
3031 serge 7093
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4560 Serge 7094
		else if (IS_HASWELL(dev))
3031 serge 7095
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4560 Serge 7096
		else if (INTEL_INFO(dev)->gen == 8)
5354 serge 7097
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
5060 serge 7098
	} else if (IS_CHERRYVIEW(dev)) {
6084 serge 7099
		vlv_setup_wm_latency(dev);
7100
 
7101
		dev_priv->display.update_wm = vlv_update_wm;
5060 serge 7102
		dev_priv->display.init_clock_gating =
7103
			cherryview_init_clock_gating;
3031 serge 7104
	} else if (IS_VALLEYVIEW(dev)) {
6084 serge 7105
		vlv_setup_wm_latency(dev);
7106
 
7107
		dev_priv->display.update_wm = vlv_update_wm;
3031 serge 7108
		dev_priv->display.init_clock_gating =
7109
			valleyview_init_clock_gating;
7110
	} else if (IS_PINEVIEW(dev)) {
7111
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7112
					    dev_priv->is_ddr3,
7113
					    dev_priv->fsb_freq,
7114
					    dev_priv->mem_freq)) {
7115
			DRM_INFO("failed to find known CxSR latency "
7116
				 "(found ddr%s fsb freq %d, mem freq %d), "
7117
				 "disabling CxSR\n",
7118
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7119
				 dev_priv->fsb_freq, dev_priv->mem_freq);
7120
			/* Disable CxSR and never update its watermark again */
5060 serge 7121
			intel_set_memory_cxsr(dev_priv, false);
3031 serge 7122
			dev_priv->display.update_wm = NULL;
7123
		} else
7124
			dev_priv->display.update_wm = pineview_update_wm;
7125
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7126
	} else if (IS_G4X(dev)) {
7127
		dev_priv->display.update_wm = g4x_update_wm;
7128
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7129
	} else if (IS_GEN4(dev)) {
7130
		dev_priv->display.update_wm = i965_update_wm;
7131
		if (IS_CRESTLINE(dev))
7132
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7133
		else if (IS_BROADWATER(dev))
7134
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7135
	} else if (IS_GEN3(dev)) {
7136
		dev_priv->display.update_wm = i9xx_update_wm;
7137
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7138
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4560 Serge 7139
	} else if (IS_GEN2(dev)) {
7140
		if (INTEL_INFO(dev)->num_pipes == 1) {
7141
			dev_priv->display.update_wm = i845_update_wm;
7142
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7143
		} else {
7144
			dev_priv->display.update_wm = i9xx_update_wm;
6084 serge 7145
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4560 Serge 7146
		}
7147
 
7148
		if (IS_I85X(dev) || IS_I865G(dev))
6084 serge 7149
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4560 Serge 7150
		else
7151
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
3031 serge 7152
	} else {
4560 Serge 7153
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
3031 serge 7154
	}
7155
}
7156
 
5354 serge 7157
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
3243 Serge 7158
{
7159
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 7160
 
3243 Serge 7161
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7162
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7163
		return -EAGAIN;
7164
	}
3031 serge 7165
 
3243 Serge 7166
	I915_WRITE(GEN6_PCODE_DATA, *val);
5354 serge 7167
	I915_WRITE(GEN6_PCODE_DATA1, 0);
3243 Serge 7168
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7169
 
7170
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7171
		     500)) {
7172
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7173
		return -ETIMEDOUT;
6084 serge 7174
	}
3243 Serge 7175
 
7176
	*val = I915_READ(GEN6_PCODE_DATA);
7177
	I915_WRITE(GEN6_PCODE_DATA, 0);
7178
 
7179
	return 0;
7180
}
7181
 
5354 serge 7182
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
3243 Serge 7183
{
7184
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7185
 
7186
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7187
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7188
		return -EAGAIN;
6084 serge 7189
	}
3243 Serge 7190
 
7191
	I915_WRITE(GEN6_PCODE_DATA, val);
7192
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7193
 
7194
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7195
		     500)) {
7196
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7197
		return -ETIMEDOUT;
3031 serge 7198
	}
3243 Serge 7199
 
7200
	I915_WRITE(GEN6_PCODE_DATA, 0);
7201
 
7202
	return 0;
3031 serge 7203
}
3746 Serge 7204
 
5354 serge 7205
static int vlv_gpu_freq_div(unsigned int czclk_freq)
3746 Serge 7206
{
5354 serge 7207
	switch (czclk_freq) {
7208
	case 200:
7209
		return 10;
7210
	case 267:
7211
		return 12;
7212
	case 320:
7213
	case 333:
7214
		return 16;
7215
	case 400:
7216
		return 20;
4104 Serge 7217
	default:
7218
		return -1;
7219
	}
5354 serge 7220
}
3746 Serge 7221
 
5354 serge 7222
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7223
{
6084 serge 7224
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5354 serge 7225
 
7226
	div = vlv_gpu_freq_div(czclk_freq);
7227
	if (div < 0)
7228
		return div;
7229
 
7230
	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
4104 Serge 7231
}
3746 Serge 7232
 
5060 serge 7233
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
4104 Serge 7234
{
6084 serge 7235
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
3746 Serge 7236
 
5354 serge 7237
	mul = vlv_gpu_freq_div(czclk_freq);
7238
	if (mul < 0)
7239
		return mul;
3746 Serge 7240
 
5354 serge 7241
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
3746 Serge 7242
}
7243
 
5060 serge 7244
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7245
{
6084 serge 7246
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5060 serge 7247
 
5354 serge 7248
	div = vlv_gpu_freq_div(czclk_freq) / 2;
7249
	if (div < 0)
7250
		return div;
5060 serge 7251
 
5354 serge 7252
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
5060 serge 7253
}
7254
 
7255
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7256
{
6084 serge 7257
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5060 serge 7258
 
5354 serge 7259
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
7260
	if (mul < 0)
7261
		return mul;
5060 serge 7262
 
5354 serge 7263
	/* CHV needs even values */
7264
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
5060 serge 7265
}
7266
 
6084 serge 7267
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
5060 serge 7268
{
6084 serge 7269
	if (IS_GEN9(dev_priv->dev))
7270
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7271
					 GEN9_FREQ_SCALER);
7272
	else if (IS_CHERRYVIEW(dev_priv->dev))
7273
		return chv_gpu_freq(dev_priv, val);
7274
	else if (IS_VALLEYVIEW(dev_priv->dev))
7275
		return byt_gpu_freq(dev_priv, val);
7276
	else
7277
		return val * GT_FREQUENCY_MULTIPLIER;
7278
}
5060 serge 7279
 
6084 serge 7280
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7281
{
7282
	if (IS_GEN9(dev_priv->dev))
7283
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7284
					 GT_FREQUENCY_MULTIPLIER);
7285
	else if (IS_CHERRYVIEW(dev_priv->dev))
7286
		return chv_freq_opcode(dev_priv, val);
5060 serge 7287
	else if (IS_VALLEYVIEW(dev_priv->dev))
6084 serge 7288
		return byt_freq_opcode(dev_priv, val);
7289
	else
7290
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7291
}
5060 serge 7292
 
6084 serge 7293
struct request_boost {
7294
	struct work_struct work;
7295
	struct drm_i915_gem_request *req;
7296
};
7297
 
7298
static void __intel_rps_boost_work(struct work_struct *work)
7299
{
7300
	struct request_boost *boost = container_of(work, struct request_boost, work);
7301
	struct drm_i915_gem_request *req = boost->req;
7302
 
7303
	if (!i915_gem_request_completed(req, true))
7304
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7305
			       req->emitted_jiffies);
7306
 
7307
	i915_gem_request_unreference__unlocked(req);
7308
	kfree(boost);
5060 serge 7309
}
7310
 
6084 serge 7311
void intel_queue_rps_boost_for_request(struct drm_device *dev,
7312
				       struct drm_i915_gem_request *req)
5060 serge 7313
{
6084 serge 7314
	struct request_boost *boost;
5060 serge 7315
 
6084 serge 7316
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7317
		return;
5060 serge 7318
 
6084 serge 7319
	if (i915_gem_request_completed(req, true))
7320
		return;
7321
 
7322
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7323
	if (boost == NULL)
7324
		return;
7325
 
7326
	i915_gem_request_reference(req);
7327
	boost->req = req;
7328
 
7329
	INIT_WORK(&boost->work, __intel_rps_boost_work);
7330
	queue_work(to_i915(dev)->wq, &boost->work);
5060 serge 7331
}
7332
 
4560 Serge 7333
void intel_pm_setup(struct drm_device *dev)
3746 Serge 7334
{
4104 Serge 7335
	struct drm_i915_private *dev_priv = dev->dev_private;
7336
 
4560 Serge 7337
	mutex_init(&dev_priv->rps.hw_lock);
6084 serge 7338
	spin_lock_init(&dev_priv->rps.client_lock);
4560 Serge 7339
 
4104 Serge 7340
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7341
			  intel_gen6_powersave_work);
6084 serge 7342
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7343
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7344
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
5060 serge 7345
 
7346
	dev_priv->pm.suspended = false;
3746 Serge 7347
}