Subversion Repositories Kolibri OS

Rev

Rev 5354 | Rev 6660 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3031 serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eugeni Dodonov 
25
 *
26
 */
27
 
28
//#include 
29
#include "i915_drv.h"
30
#include "intel_drv.h"
31
//#include "../../../platform/x86/intel_ips.h"
32
#include 
33
 
4560 Serge 34
 
3031 serge 35
#define FORCEWAKE_ACK_TIMEOUT_MS 2
36
 
37
void getrawmonotonic(struct timespec *ts);
38
 
4560 Serge 39
/**
40
 * RC6 is a special power stage which allows the GPU to enter an very
41
 * low-voltage mode when idle, using down to 0V while at this stage.  This
42
 * stage is entered automatically when the GPU is idle when RC6 support is
43
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
44
 *
45
 * There are different RC6 modes available in Intel GPU, which differentiate
46
 * among each other with the latency required to enter and leave RC6 and
47
 * voltage consumed by the GPU in different states.
48
 *
49
 * The combination of the following flags define which states GPU is allowed
50
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
51
 * RC6pp is deepest RC6. Their support by hardware varies according to the
52
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
53
 * which brings the most power savings; deeper states save more power, but
54
 * require higher latency to switch to and wake up.
55
 */
56
#define INTEL_RC6_ENABLE			(1<<0)
57
#define INTEL_RC6p_ENABLE			(1<<1)
58
#define INTEL_RC6pp_ENABLE			(1<<2)
59
 
6084 serge 60
static void bxt_init_clock_gating(struct drm_device *dev)
5354 serge 61
{
62
	struct drm_i915_private *dev_priv = dev->dev_private;
63
 
6084 serge 64
	/* WaDisableSDEUnitClockGating:bxt */
5354 serge 65
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
66
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
67
 
68
	/*
6084 serge 69
	 * FIXME:
70
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
5354 serge 71
	 */
6084 serge 72
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
73
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
5354 serge 74
}
75
 
3031 serge 76
static void i915_pineview_get_mem_freq(struct drm_device *dev)
77
{
5060 serge 78
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 79
	u32 tmp;
80
 
81
	tmp = I915_READ(CLKCFG);
82
 
83
	switch (tmp & CLKCFG_FSB_MASK) {
84
	case CLKCFG_FSB_533:
85
		dev_priv->fsb_freq = 533; /* 133*4 */
86
		break;
87
	case CLKCFG_FSB_800:
88
		dev_priv->fsb_freq = 800; /* 200*4 */
89
		break;
90
	case CLKCFG_FSB_667:
91
		dev_priv->fsb_freq =  667; /* 167*4 */
92
		break;
93
	case CLKCFG_FSB_400:
94
		dev_priv->fsb_freq = 400; /* 100*4 */
95
		break;
96
	}
97
 
98
	switch (tmp & CLKCFG_MEM_MASK) {
99
	case CLKCFG_MEM_533:
100
		dev_priv->mem_freq = 533;
101
		break;
102
	case CLKCFG_MEM_667:
103
		dev_priv->mem_freq = 667;
104
		break;
105
	case CLKCFG_MEM_800:
106
		dev_priv->mem_freq = 800;
107
		break;
108
	}
109
 
110
	/* detect pineview DDR3 setting */
111
	tmp = I915_READ(CSHRDDR3CTL);
112
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
113
}
114
 
115
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
116
{
5060 serge 117
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 118
	u16 ddrpll, csipll;
119
 
120
	ddrpll = I915_READ16(DDRMPLL1);
121
	csipll = I915_READ16(CSIPLL0);
122
 
123
	switch (ddrpll & 0xff) {
124
	case 0xc:
125
		dev_priv->mem_freq = 800;
126
		break;
127
	case 0x10:
128
		dev_priv->mem_freq = 1066;
129
		break;
130
	case 0x14:
131
		dev_priv->mem_freq = 1333;
132
		break;
133
	case 0x18:
134
		dev_priv->mem_freq = 1600;
135
		break;
136
	default:
137
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
138
				 ddrpll & 0xff);
139
		dev_priv->mem_freq = 0;
140
		break;
141
	}
142
 
143
	dev_priv->ips.r_t = dev_priv->mem_freq;
144
 
145
	switch (csipll & 0x3ff) {
146
	case 0x00c:
147
		dev_priv->fsb_freq = 3200;
148
		break;
149
	case 0x00e:
150
		dev_priv->fsb_freq = 3733;
151
		break;
152
	case 0x010:
153
		dev_priv->fsb_freq = 4266;
154
		break;
155
	case 0x012:
156
		dev_priv->fsb_freq = 4800;
157
		break;
158
	case 0x014:
159
		dev_priv->fsb_freq = 5333;
160
		break;
161
	case 0x016:
162
		dev_priv->fsb_freq = 5866;
163
		break;
164
	case 0x018:
165
		dev_priv->fsb_freq = 6400;
166
		break;
167
	default:
168
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
169
				 csipll & 0x3ff);
170
		dev_priv->fsb_freq = 0;
171
		break;
172
	}
173
 
174
	if (dev_priv->fsb_freq == 3200) {
175
		dev_priv->ips.c_m = 0;
176
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
177
		dev_priv->ips.c_m = 1;
178
	} else {
179
		dev_priv->ips.c_m = 2;
180
	}
181
}
182
 
183
static const struct cxsr_latency cxsr_latency_table[] = {
184
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
185
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
186
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
187
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
188
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
189
 
190
	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
191
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
192
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
193
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
194
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
195
 
196
	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
197
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
198
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
199
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
200
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
201
 
202
	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
203
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
204
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
205
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
206
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
207
 
208
	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
209
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
210
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
211
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
212
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
213
 
214
	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
215
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
216
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
217
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
218
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
219
};
220
 
221
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
222
							 int is_ddr3,
223
							 int fsb,
224
							 int mem)
225
{
226
	const struct cxsr_latency *latency;
227
	int i;
228
 
229
	if (fsb == 0 || mem == 0)
230
		return NULL;
231
 
232
	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
233
		latency = &cxsr_latency_table[i];
234
		if (is_desktop == latency->is_desktop &&
235
		    is_ddr3 == latency->is_ddr3 &&
236
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
237
			return latency;
238
	}
239
 
240
	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
241
 
242
	return NULL;
243
}
244
 
6084 serge 245
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
246
{
247
	u32 val;
248
 
249
	mutex_lock(&dev_priv->rps.hw_lock);
250
 
251
	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
252
	if (enable)
253
		val &= ~FORCE_DDR_HIGH_FREQ;
254
	else
255
		val |= FORCE_DDR_HIGH_FREQ;
256
	val &= ~FORCE_DDR_LOW_FREQ;
257
	val |= FORCE_DDR_FREQ_REQ_ACK;
258
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
259
 
260
	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
261
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
262
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
263
 
264
	mutex_unlock(&dev_priv->rps.hw_lock);
265
}
266
 
267
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
268
{
269
	u32 val;
270
 
271
	mutex_lock(&dev_priv->rps.hw_lock);
272
 
273
	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
274
	if (enable)
275
		val |= DSP_MAXFIFO_PM5_ENABLE;
276
	else
277
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
278
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
279
 
280
	mutex_unlock(&dev_priv->rps.hw_lock);
281
}
282
 
283
#define FW_WM(value, plane) \
284
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
285
 
5060 serge 286
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
3031 serge 287
{
5060 serge 288
	struct drm_device *dev = dev_priv->dev;
289
	u32 val;
3031 serge 290
 
5060 serge 291
	if (IS_VALLEYVIEW(dev)) {
292
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
6084 serge 293
		POSTING_READ(FW_BLC_SELF_VLV);
294
		dev_priv->wm.vlv.cxsr = enable;
5060 serge 295
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
296
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
6084 serge 297
		POSTING_READ(FW_BLC_SELF);
5060 serge 298
	} else if (IS_PINEVIEW(dev)) {
299
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
300
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
301
		I915_WRITE(DSPFW3, val);
6084 serge 302
		POSTING_READ(DSPFW3);
5060 serge 303
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
304
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
305
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
306
		I915_WRITE(FW_BLC_SELF, val);
6084 serge 307
		POSTING_READ(FW_BLC_SELF);
5060 serge 308
	} else if (IS_I915GM(dev)) {
309
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
310
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
311
		I915_WRITE(INSTPM, val);
6084 serge 312
		POSTING_READ(INSTPM);
5060 serge 313
	} else {
314
		return;
315
	}
316
 
317
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
318
		      enable ? "enabled" : "disabled");
3031 serge 319
}
320
 
6084 serge 321
 
3031 serge 322
/*
323
 * Latency for FIFO fetches is dependent on several factors:
324
 *   - memory configuration (speed, channels)
325
 *   - chipset
326
 *   - current MCH state
327
 * It can be fairly high in some situations, so here we assume a fairly
328
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
329
 * set this value too high, the FIFO will fetch frequently to stay full)
330
 * and power consumption (set it too low to save power and we might see
331
 * FIFO underruns and display "flicker").
332
 *
333
 * A value of 5us seems to be a good balance; safe for very low end
334
 * platforms but not overly aggressive on lower latency configs.
335
 */
5354 serge 336
static const int pessimal_latency_ns = 5000;
3031 serge 337
 
6084 serge 338
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
339
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
340
 
341
static int vlv_get_fifo_size(struct drm_device *dev,
342
			      enum pipe pipe, int plane)
343
{
344
	struct drm_i915_private *dev_priv = dev->dev_private;
345
	int sprite0_start, sprite1_start, size;
346
 
347
	switch (pipe) {
348
		uint32_t dsparb, dsparb2, dsparb3;
349
	case PIPE_A:
350
		dsparb = I915_READ(DSPARB);
351
		dsparb2 = I915_READ(DSPARB2);
352
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
353
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
354
		break;
355
	case PIPE_B:
356
		dsparb = I915_READ(DSPARB);
357
		dsparb2 = I915_READ(DSPARB2);
358
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
359
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
360
		break;
361
	case PIPE_C:
362
		dsparb2 = I915_READ(DSPARB2);
363
		dsparb3 = I915_READ(DSPARB3);
364
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
365
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
366
		break;
367
	default:
368
		return 0;
369
	}
370
 
371
	switch (plane) {
372
	case 0:
373
		size = sprite0_start;
374
		break;
375
	case 1:
376
		size = sprite1_start - sprite0_start;
377
		break;
378
	case 2:
379
		size = 512 - 1 - sprite1_start;
380
		break;
381
	default:
382
		return 0;
383
	}
384
 
385
	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
386
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
387
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
388
		      size);
389
 
390
	return size;
391
}
392
 
3031 serge 393
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
394
{
395
	struct drm_i915_private *dev_priv = dev->dev_private;
396
	uint32_t dsparb = I915_READ(DSPARB);
397
	int size;
398
 
399
	size = dsparb & 0x7f;
400
	if (plane)
401
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
402
 
403
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
404
		      plane ? "B" : "A", size);
405
 
406
	return size;
407
}
408
 
4560 Serge 409
static int i830_get_fifo_size(struct drm_device *dev, int plane)
3031 serge 410
{
411
	struct drm_i915_private *dev_priv = dev->dev_private;
412
	uint32_t dsparb = I915_READ(DSPARB);
413
	int size;
414
 
415
	size = dsparb & 0x1ff;
416
	if (plane)
417
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
418
	size >>= 1; /* Convert to cachelines */
419
 
420
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
421
		      plane ? "B" : "A", size);
422
 
423
	return size;
424
}
425
 
426
static int i845_get_fifo_size(struct drm_device *dev, int plane)
427
{
428
	struct drm_i915_private *dev_priv = dev->dev_private;
429
	uint32_t dsparb = I915_READ(DSPARB);
430
	int size;
431
 
432
	size = dsparb & 0x7f;
433
	size >>= 2; /* Convert to cachelines */
434
 
435
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
436
		      plane ? "B" : "A",
437
		      size);
438
 
439
	return size;
440
}
441
 
442
/* Pineview has different values for various configs */
443
static const struct intel_watermark_params pineview_display_wm = {
5060 serge 444
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
445
	.max_wm = PINEVIEW_MAX_WM,
446
	.default_wm = PINEVIEW_DFT_WM,
447
	.guard_size = PINEVIEW_GUARD_WM,
448
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 449
};
450
static const struct intel_watermark_params pineview_display_hplloff_wm = {
5060 serge 451
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
452
	.max_wm = PINEVIEW_MAX_WM,
453
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
454
	.guard_size = PINEVIEW_GUARD_WM,
455
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 456
};
457
static const struct intel_watermark_params pineview_cursor_wm = {
5060 serge 458
	.fifo_size = PINEVIEW_CURSOR_FIFO,
459
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
460
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
461
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
462
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 463
};
464
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
5060 serge 465
	.fifo_size = PINEVIEW_CURSOR_FIFO,
466
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
467
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
468
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
469
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
3031 serge 470
};
471
static const struct intel_watermark_params g4x_wm_info = {
5060 serge 472
	.fifo_size = G4X_FIFO_SIZE,
473
	.max_wm = G4X_MAX_WM,
474
	.default_wm = G4X_MAX_WM,
475
	.guard_size = 2,
476
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 477
};
478
static const struct intel_watermark_params g4x_cursor_wm_info = {
5060 serge 479
	.fifo_size = I965_CURSOR_FIFO,
480
	.max_wm = I965_CURSOR_MAX_WM,
481
	.default_wm = I965_CURSOR_DFT_WM,
482
	.guard_size = 2,
483
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 484
};
485
static const struct intel_watermark_params valleyview_wm_info = {
5060 serge 486
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
487
	.max_wm = VALLEYVIEW_MAX_WM,
488
	.default_wm = VALLEYVIEW_MAX_WM,
489
	.guard_size = 2,
490
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 491
};
492
static const struct intel_watermark_params valleyview_cursor_wm_info = {
5060 serge 493
	.fifo_size = I965_CURSOR_FIFO,
494
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
495
	.default_wm = I965_CURSOR_DFT_WM,
496
	.guard_size = 2,
497
	.cacheline_size = G4X_FIFO_LINE_SIZE,
3031 serge 498
};
499
static const struct intel_watermark_params i965_cursor_wm_info = {
5060 serge 500
	.fifo_size = I965_CURSOR_FIFO,
501
	.max_wm = I965_CURSOR_MAX_WM,
502
	.default_wm = I965_CURSOR_DFT_WM,
503
	.guard_size = 2,
504
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 505
};
506
static const struct intel_watermark_params i945_wm_info = {
5060 serge 507
	.fifo_size = I945_FIFO_SIZE,
508
	.max_wm = I915_MAX_WM,
509
	.default_wm = 1,
510
	.guard_size = 2,
511
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 512
};
513
static const struct intel_watermark_params i915_wm_info = {
5060 serge 514
	.fifo_size = I915_FIFO_SIZE,
515
	.max_wm = I915_MAX_WM,
516
	.default_wm = 1,
517
	.guard_size = 2,
518
	.cacheline_size = I915_FIFO_LINE_SIZE,
3031 serge 519
};
5354 serge 520
static const struct intel_watermark_params i830_a_wm_info = {
5060 serge 521
	.fifo_size = I855GM_FIFO_SIZE,
522
	.max_wm = I915_MAX_WM,
523
	.default_wm = 1,
524
	.guard_size = 2,
525
	.cacheline_size = I830_FIFO_LINE_SIZE,
3031 serge 526
};
5354 serge 527
static const struct intel_watermark_params i830_bc_wm_info = {
528
	.fifo_size = I855GM_FIFO_SIZE,
529
	.max_wm = I915_MAX_WM/2,
530
	.default_wm = 1,
531
	.guard_size = 2,
532
	.cacheline_size = I830_FIFO_LINE_SIZE,
533
};
4560 Serge 534
static const struct intel_watermark_params i845_wm_info = {
5060 serge 535
	.fifo_size = I830_FIFO_SIZE,
536
	.max_wm = I915_MAX_WM,
537
	.default_wm = 1,
538
	.guard_size = 2,
539
	.cacheline_size = I830_FIFO_LINE_SIZE,
3031 serge 540
};
541
 
542
/**
543
 * intel_calculate_wm - calculate watermark level
544
 * @clock_in_khz: pixel clock
545
 * @wm: chip FIFO params
546
 * @pixel_size: display pixel size
547
 * @latency_ns: memory latency for the platform
548
 *
549
 * Calculate the watermark level (the level at which the display plane will
550
 * start fetching from memory again).  Each chip has a different display
551
 * FIFO size and allocation, so the caller needs to figure that out and pass
552
 * in the correct intel_watermark_params structure.
553
 *
554
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
555
 * on the pixel size.  When it reaches the watermark level, it'll start
556
 * fetching FIFO line sized based chunks from memory until the FIFO fills
557
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
558
 * will occur, and a display engine hang could result.
559
 */
560
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
561
					const struct intel_watermark_params *wm,
562
					int fifo_size,
563
					int pixel_size,
564
					unsigned long latency_ns)
565
{
566
	long entries_required, wm_size;
567
 
568
	/*
569
	 * Note: we need to make sure we don't overflow for various clock &
570
	 * latency values.
571
	 * clocks go from a few thousand to several hundred thousand.
572
	 * latency is usually a few thousand
573
	 */
574
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
575
		1000;
576
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
577
 
578
	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
579
 
580
	wm_size = fifo_size - (entries_required + wm->guard_size);
581
 
582
	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
583
 
584
	/* Don't promote wm_size to unsigned... */
585
	if (wm_size > (long)wm->max_wm)
586
		wm_size = wm->max_wm;
587
	if (wm_size <= 0)
588
		wm_size = wm->default_wm;
5354 serge 589
 
590
	/*
591
	 * Bspec seems to indicate that the value shouldn't be lower than
592
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
593
	 * Lets go for 8 which is the burst size since certain platforms
594
	 * already use a hardcoded 8 (which is what the spec says should be
595
	 * done).
596
	 */
597
	if (wm_size <= 8)
598
		wm_size = 8;
599
 
3031 serge 600
	return wm_size;
601
}
602
 
603
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
604
{
605
	struct drm_crtc *crtc, *enabled = NULL;
606
 
5060 serge 607
	for_each_crtc(dev, crtc) {
3243 Serge 608
		if (intel_crtc_active(crtc)) {
3031 serge 609
			if (enabled)
610
				return NULL;
611
			enabled = crtc;
612
		}
613
	}
614
 
615
	return enabled;
616
}
617
 
4560 Serge 618
static void pineview_update_wm(struct drm_crtc *unused_crtc)
3031 serge 619
{
4560 Serge 620
	struct drm_device *dev = unused_crtc->dev;
3031 serge 621
	struct drm_i915_private *dev_priv = dev->dev_private;
622
	struct drm_crtc *crtc;
623
	const struct cxsr_latency *latency;
624
	u32 reg;
625
	unsigned long wm;
626
 
627
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
628
					 dev_priv->fsb_freq, dev_priv->mem_freq);
629
	if (!latency) {
630
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
5060 serge 631
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 632
		return;
633
	}
634
 
635
	crtc = single_enabled_crtc(dev);
636
	if (crtc) {
6084 serge 637
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
638
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
639
		int clock = adjusted_mode->crtc_clock;
3031 serge 640
 
641
		/* Display SR */
642
		wm = intel_calculate_wm(clock, &pineview_display_wm,
643
					pineview_display_wm.fifo_size,
644
					pixel_size, latency->display_sr);
645
		reg = I915_READ(DSPFW1);
646
		reg &= ~DSPFW_SR_MASK;
6084 serge 647
		reg |= FW_WM(wm, SR);
3031 serge 648
		I915_WRITE(DSPFW1, reg);
649
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
650
 
651
		/* cursor SR */
652
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
653
					pineview_display_wm.fifo_size,
654
					pixel_size, latency->cursor_sr);
655
		reg = I915_READ(DSPFW3);
656
		reg &= ~DSPFW_CURSOR_SR_MASK;
6084 serge 657
		reg |= FW_WM(wm, CURSOR_SR);
3031 serge 658
		I915_WRITE(DSPFW3, reg);
659
 
660
		/* Display HPLL off SR */
661
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
662
					pineview_display_hplloff_wm.fifo_size,
663
					pixel_size, latency->display_hpll_disable);
664
		reg = I915_READ(DSPFW3);
665
		reg &= ~DSPFW_HPLL_SR_MASK;
6084 serge 666
		reg |= FW_WM(wm, HPLL_SR);
3031 serge 667
		I915_WRITE(DSPFW3, reg);
668
 
669
		/* cursor HPLL off SR */
670
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
671
					pineview_display_hplloff_wm.fifo_size,
672
					pixel_size, latency->cursor_hpll_disable);
673
		reg = I915_READ(DSPFW3);
674
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
6084 serge 675
		reg |= FW_WM(wm, HPLL_CURSOR);
3031 serge 676
		I915_WRITE(DSPFW3, reg);
677
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
678
 
5060 serge 679
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 680
	} else {
5060 serge 681
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 682
	}
683
}
684
 
685
static bool g4x_compute_wm0(struct drm_device *dev,
686
			    int plane,
687
			    const struct intel_watermark_params *display,
688
			    int display_latency_ns,
689
			    const struct intel_watermark_params *cursor,
690
			    int cursor_latency_ns,
691
			    int *plane_wm,
692
			    int *cursor_wm)
693
{
694
	struct drm_crtc *crtc;
4560 Serge 695
	const struct drm_display_mode *adjusted_mode;
3031 serge 696
	int htotal, hdisplay, clock, pixel_size;
697
	int line_time_us, line_count;
698
	int entries, tlb_miss;
699
 
700
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 701
	if (!intel_crtc_active(crtc)) {
3031 serge 702
		*cursor_wm = cursor->guard_size;
703
		*plane_wm = display->guard_size;
6084 serge 704
		return false;
3031 serge 705
	}
706
 
6084 serge 707
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 708
	clock = adjusted_mode->crtc_clock;
709
	htotal = adjusted_mode->crtc_htotal;
6084 serge 710
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
711
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 712
 
713
	/* Use the small buffer method to calculate plane watermark */
714
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
715
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
716
	if (tlb_miss > 0)
717
		entries += tlb_miss;
718
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
719
	*plane_wm = entries + display->guard_size;
720
	if (*plane_wm > (int)display->max_wm)
721
		*plane_wm = display->max_wm;
722
 
723
	/* Use the large buffer method to calculate cursor watermark */
5060 serge 724
	line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 725
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
6084 serge 726
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
3031 serge 727
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
728
	if (tlb_miss > 0)
729
		entries += tlb_miss;
730
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
731
	*cursor_wm = entries + cursor->guard_size;
732
	if (*cursor_wm > (int)cursor->max_wm)
733
		*cursor_wm = (int)cursor->max_wm;
734
 
735
	return true;
736
}
737
 
738
/*
739
 * Check the wm result.
740
 *
741
 * If any calculated watermark values is larger than the maximum value that
742
 * can be programmed into the associated watermark register, that watermark
743
 * must be disabled.
744
 */
745
static bool g4x_check_srwm(struct drm_device *dev,
746
			   int display_wm, int cursor_wm,
747
			   const struct intel_watermark_params *display,
748
			   const struct intel_watermark_params *cursor)
749
{
750
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
751
		      display_wm, cursor_wm);
752
 
753
	if (display_wm > display->max_wm) {
754
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
755
			      display_wm, display->max_wm);
756
		return false;
757
	}
758
 
759
	if (cursor_wm > cursor->max_wm) {
760
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
761
			      cursor_wm, cursor->max_wm);
762
		return false;
763
	}
764
 
765
	if (!(display_wm || cursor_wm)) {
766
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
767
		return false;
768
	}
769
 
770
	return true;
771
}
772
 
773
static bool g4x_compute_srwm(struct drm_device *dev,
774
			     int plane,
775
			     int latency_ns,
776
			     const struct intel_watermark_params *display,
777
			     const struct intel_watermark_params *cursor,
778
			     int *display_wm, int *cursor_wm)
779
{
780
	struct drm_crtc *crtc;
4560 Serge 781
	const struct drm_display_mode *adjusted_mode;
3031 serge 782
	int hdisplay, htotal, pixel_size, clock;
783
	unsigned long line_time_us;
784
	int line_count, line_size;
785
	int small, large;
786
	int entries;
787
 
788
	if (!latency_ns) {
789
		*display_wm = *cursor_wm = 0;
790
		return false;
791
	}
792
 
793
	crtc = intel_get_crtc_for_plane(dev, plane);
6084 serge 794
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 795
	clock = adjusted_mode->crtc_clock;
796
	htotal = adjusted_mode->crtc_htotal;
6084 serge 797
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
798
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 799
 
5060 serge 800
	line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 801
	line_count = (latency_ns / line_time_us + 1000) / 1000;
802
	line_size = hdisplay * pixel_size;
803
 
804
	/* Use the minimum of the small and large buffer method for primary */
805
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
806
	large = line_count * line_size;
807
 
808
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
809
	*display_wm = entries + display->guard_size;
810
 
811
	/* calculate the self-refresh watermark for display cursor */
6084 serge 812
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
3031 serge 813
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
814
	*cursor_wm = entries + cursor->guard_size;
815
 
816
	return g4x_check_srwm(dev,
817
			      *display_wm, *cursor_wm,
818
			      display, cursor);
819
}
820
 
6084 serge 821
#define FW_WM_VLV(value, plane) \
822
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
823
 
824
static void vlv_write_wm_values(struct intel_crtc *crtc,
825
				const struct vlv_wm_values *wm)
3031 serge 826
{
6084 serge 827
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
828
	enum pipe pipe = crtc->pipe;
3031 serge 829
 
6084 serge 830
	I915_WRITE(VLV_DDL(pipe),
831
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
832
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
833
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
834
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
3031 serge 835
 
6084 serge 836
	I915_WRITE(DSPFW1,
837
		   FW_WM(wm->sr.plane, SR) |
838
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
839
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
840
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
841
	I915_WRITE(DSPFW2,
842
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
843
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
844
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
845
	I915_WRITE(DSPFW3,
846
		   FW_WM(wm->sr.cursor, CURSOR_SR));
3031 serge 847
 
6084 serge 848
	if (IS_CHERRYVIEW(dev_priv)) {
849
		I915_WRITE(DSPFW7_CHV,
850
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
851
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
852
		I915_WRITE(DSPFW8_CHV,
853
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
854
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
855
		I915_WRITE(DSPFW9_CHV,
856
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
857
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
858
		I915_WRITE(DSPHOWM,
859
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
860
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
861
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
862
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
863
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
864
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
865
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
866
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
867
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
868
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
869
	} else {
870
		I915_WRITE(DSPFW7,
871
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
872
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
873
		I915_WRITE(DSPHOWM,
874
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
875
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
876
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
877
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
878
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
879
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
880
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
881
	}
3031 serge 882
 
6084 serge 883
	/* zero (unused) WM1 watermarks */
884
	I915_WRITE(DSPFW4, 0);
885
	I915_WRITE(DSPFW5, 0);
886
	I915_WRITE(DSPFW6, 0);
887
	I915_WRITE(DSPHOWM1, 0);
3031 serge 888
 
6084 serge 889
	POSTING_READ(DSPFW1);
3031 serge 890
}
891
 
6084 serge 892
#undef FW_WM_VLV
3031 serge 893
 
6084 serge 894
enum vlv_wm_level {
895
	VLV_WM_LEVEL_PM2,
896
	VLV_WM_LEVEL_PM5,
897
	VLV_WM_LEVEL_DDR_DVFS,
898
};
899
 
900
/* latency must be in 0.1us units. */
901
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
902
				   unsigned int pipe_htotal,
903
				   unsigned int horiz_pixels,
904
				   unsigned int bytes_per_pixel,
905
				   unsigned int latency)
3031 serge 906
{
6084 serge 907
	unsigned int ret;
908
 
909
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
910
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
911
	ret = DIV_ROUND_UP(ret, 64);
912
 
913
	return ret;
914
}
915
 
916
static void vlv_setup_wm_latency(struct drm_device *dev)
917
{
3031 serge 918
	struct drm_i915_private *dev_priv = dev->dev_private;
919
 
6084 serge 920
	/* all latencies in usec */
921
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
3031 serge 922
 
6084 serge 923
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
924
 
925
	if (IS_CHERRYVIEW(dev_priv)) {
926
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
927
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
928
 
929
		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
3031 serge 930
	}
6084 serge 931
}
3031 serge 932
 
6084 serge 933
static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
934
				     struct intel_crtc *crtc,
935
				     const struct intel_plane_state *state,
936
				     int level)
937
{
938
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
939
	int clock, htotal, pixel_size, width, wm;
940
 
941
	if (dev_priv->wm.pri_latency[level] == 0)
942
		return USHRT_MAX;
943
 
944
	if (!state->visible)
945
		return 0;
946
 
947
	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
948
	clock = crtc->config->base.adjusted_mode.crtc_clock;
949
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
950
	width = crtc->config->pipe_src_w;
951
	if (WARN_ON(htotal == 0))
952
		htotal = 1;
953
 
954
	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
955
		/*
956
		 * FIXME the formula gives values that are
957
		 * too big for the cursor FIFO, and hence we
958
		 * would never be able to use cursors. For
959
		 * now just hardcode the watermark.
960
		 */
961
		wm = 63;
962
	} else {
963
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
964
				    dev_priv->wm.pri_latency[level] * 10);
5354 serge 965
	}
3031 serge 966
 
6084 serge 967
	return min_t(int, wm, USHRT_MAX);
968
}
5354 serge 969
 
6084 serge 970
static void vlv_compute_fifo(struct intel_crtc *crtc)
971
{
972
	struct drm_device *dev = crtc->base.dev;
973
	struct vlv_wm_state *wm_state = &crtc->wm_state;
974
	struct intel_plane *plane;
975
	unsigned int total_rate = 0;
976
	const int fifo_size = 512 - 1;
977
	int fifo_extra, fifo_left = fifo_size;
978
 
979
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
980
		struct intel_plane_state *state =
981
			to_intel_plane_state(plane->base.state);
982
 
983
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
984
			continue;
985
 
986
		if (state->visible) {
987
			wm_state->num_active_planes++;
988
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
989
		}
3031 serge 990
	}
5354 serge 991
 
6084 serge 992
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
993
		struct intel_plane_state *state =
994
			to_intel_plane_state(plane->base.state);
995
		unsigned int rate;
996
 
997
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
998
			plane->wm.fifo_size = 63;
999
			continue;
1000
		}
1001
 
1002
		if (!state->visible) {
1003
			plane->wm.fifo_size = 0;
1004
			continue;
1005
		}
1006
 
1007
		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1008
		plane->wm.fifo_size = fifo_size * rate / total_rate;
1009
		fifo_left -= plane->wm.fifo_size;
1010
	}
1011
 
1012
	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1013
 
1014
	/* spread the remainder evenly */
1015
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1016
		int plane_extra;
1017
 
1018
		if (fifo_left == 0)
1019
			break;
1020
 
1021
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1022
			continue;
1023
 
1024
		/* give it all to the first plane if none are active */
1025
		if (plane->wm.fifo_size == 0 &&
1026
		    wm_state->num_active_planes)
1027
			continue;
1028
 
1029
		plane_extra = min(fifo_extra, fifo_left);
1030
		plane->wm.fifo_size += plane_extra;
1031
		fifo_left -= plane_extra;
1032
	}
1033
 
1034
	WARN_ON(fifo_left != 0);
3031 serge 1035
}
1036
 
6084 serge 1037
static void vlv_invert_wms(struct intel_crtc *crtc)
1038
{
1039
	struct vlv_wm_state *wm_state = &crtc->wm_state;
1040
	int level;
3031 serge 1041
 
6084 serge 1042
	for (level = 0; level < wm_state->num_levels; level++) {
1043
		struct drm_device *dev = crtc->base.dev;
1044
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1045
		struct intel_plane *plane;
1046
 
1047
		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1048
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1049
 
1050
		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1051
			switch (plane->base.type) {
1052
				int sprite;
1053
			case DRM_PLANE_TYPE_CURSOR:
1054
				wm_state->wm[level].cursor = plane->wm.fifo_size -
1055
					wm_state->wm[level].cursor;
1056
				break;
1057
			case DRM_PLANE_TYPE_PRIMARY:
1058
				wm_state->wm[level].primary = plane->wm.fifo_size -
1059
					wm_state->wm[level].primary;
1060
				break;
1061
			case DRM_PLANE_TYPE_OVERLAY:
1062
				sprite = plane->plane;
1063
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1064
					wm_state->wm[level].sprite[sprite];
1065
				break;
1066
			}
1067
		}
1068
	}
1069
}
1070
 
1071
static void vlv_compute_wm(struct intel_crtc *crtc)
3031 serge 1072
{
6084 serge 1073
	struct drm_device *dev = crtc->base.dev;
1074
	struct vlv_wm_state *wm_state = &crtc->wm_state;
1075
	struct intel_plane *plane;
1076
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1077
	int level;
3031 serge 1078
 
6084 serge 1079
	memset(wm_state, 0, sizeof(*wm_state));
3031 serge 1080
 
6084 serge 1081
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1082
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
3031 serge 1083
 
6084 serge 1084
	wm_state->num_active_planes = 0;
3031 serge 1085
 
6084 serge 1086
	vlv_compute_fifo(crtc);
1087
 
1088
	if (wm_state->num_active_planes != 1)
1089
		wm_state->cxsr = false;
1090
 
1091
	if (wm_state->cxsr) {
1092
		for (level = 0; level < wm_state->num_levels; level++) {
1093
			wm_state->sr[level].plane = sr_fifo_size;
1094
			wm_state->sr[level].cursor = 63;
1095
		}
3243 Serge 1096
	}
3031 serge 1097
 
6084 serge 1098
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1099
		struct intel_plane_state *state =
1100
			to_intel_plane_state(plane->base.state);
3031 serge 1101
 
6084 serge 1102
		if (!state->visible)
1103
			continue;
5060 serge 1104
 
6084 serge 1105
		/* normal watermarks */
1106
		for (level = 0; level < wm_state->num_levels; level++) {
1107
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1108
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1109
 
1110
			/* hack */
1111
			if (WARN_ON(level == 0 && wm > max_wm))
1112
				wm = max_wm;
1113
 
1114
			if (wm > plane->wm.fifo_size)
1115
				break;
1116
 
1117
			switch (plane->base.type) {
1118
				int sprite;
1119
			case DRM_PLANE_TYPE_CURSOR:
1120
				wm_state->wm[level].cursor = wm;
1121
				break;
1122
			case DRM_PLANE_TYPE_PRIMARY:
1123
				wm_state->wm[level].primary = wm;
1124
				break;
1125
			case DRM_PLANE_TYPE_OVERLAY:
1126
				sprite = plane->plane;
1127
				wm_state->wm[level].sprite[sprite] = wm;
1128
				break;
1129
			}
1130
		}
1131
 
1132
		wm_state->num_levels = level;
1133
 
1134
		if (!wm_state->cxsr)
1135
			continue;
1136
 
1137
		/* maxfifo watermarks */
1138
		switch (plane->base.type) {
1139
			int sprite, level;
1140
		case DRM_PLANE_TYPE_CURSOR:
1141
			for (level = 0; level < wm_state->num_levels; level++)
1142
				wm_state->sr[level].cursor =
1143
					wm_state->wm[level].cursor;
1144
			break;
1145
		case DRM_PLANE_TYPE_PRIMARY:
1146
			for (level = 0; level < wm_state->num_levels; level++)
1147
				wm_state->sr[level].plane =
1148
					min(wm_state->sr[level].plane,
1149
					    wm_state->wm[level].primary);
1150
			break;
1151
		case DRM_PLANE_TYPE_OVERLAY:
1152
			sprite = plane->plane;
1153
			for (level = 0; level < wm_state->num_levels; level++)
1154
				wm_state->sr[level].plane =
1155
					min(wm_state->sr[level].plane,
1156
					    wm_state->wm[level].sprite[sprite]);
1157
			break;
1158
		}
1159
	}
1160
 
1161
	/* clear any (partially) filled invalid levels */
1162
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1163
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1164
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1165
	}
1166
 
1167
	vlv_invert_wms(crtc);
3031 serge 1168
}
1169
 
6084 serge 1170
#define VLV_FIFO(plane, value) \
1171
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1172
 
1173
static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
5354 serge 1174
{
6084 serge 1175
	struct drm_device *dev = crtc->base.dev;
1176
	struct drm_i915_private *dev_priv = to_i915(dev);
1177
	struct intel_plane *plane;
1178
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
5354 serge 1179
 
6084 serge 1180
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1181
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1182
			WARN_ON(plane->wm.fifo_size != 63);
1183
			continue;
1184
		}
5354 serge 1185
 
6084 serge 1186
		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1187
			sprite0_start = plane->wm.fifo_size;
1188
		else if (plane->plane == 0)
1189
			sprite1_start = sprite0_start + plane->wm.fifo_size;
1190
		else
1191
			fifo_size = sprite1_start + plane->wm.fifo_size;
1192
	}
5354 serge 1193
 
6084 serge 1194
	WARN_ON(fifo_size != 512 - 1);
5354 serge 1195
 
6084 serge 1196
	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1197
		      pipe_name(crtc->pipe), sprite0_start,
1198
		      sprite1_start, fifo_size);
5354 serge 1199
 
6084 serge 1200
	switch (crtc->pipe) {
1201
		uint32_t dsparb, dsparb2, dsparb3;
1202
	case PIPE_A:
1203
		dsparb = I915_READ(DSPARB);
1204
		dsparb2 = I915_READ(DSPARB2);
1205
 
1206
		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1207
			    VLV_FIFO(SPRITEB, 0xff));
1208
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1209
			   VLV_FIFO(SPRITEB, sprite1_start));
1210
 
1211
		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1212
			     VLV_FIFO(SPRITEB_HI, 0x1));
1213
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1214
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1215
 
1216
		I915_WRITE(DSPARB, dsparb);
1217
		I915_WRITE(DSPARB2, dsparb2);
1218
		break;
1219
	case PIPE_B:
1220
		dsparb = I915_READ(DSPARB);
1221
		dsparb2 = I915_READ(DSPARB2);
1222
 
1223
		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1224
			    VLV_FIFO(SPRITED, 0xff));
1225
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1226
			   VLV_FIFO(SPRITED, sprite1_start));
1227
 
1228
		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1229
			     VLV_FIFO(SPRITED_HI, 0xff));
1230
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1231
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1232
 
1233
		I915_WRITE(DSPARB, dsparb);
1234
		I915_WRITE(DSPARB2, dsparb2);
1235
		break;
1236
	case PIPE_C:
1237
		dsparb3 = I915_READ(DSPARB3);
1238
		dsparb2 = I915_READ(DSPARB2);
1239
 
1240
		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1241
			     VLV_FIFO(SPRITEF, 0xff));
1242
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1243
			    VLV_FIFO(SPRITEF, sprite1_start));
1244
 
1245
		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1246
			     VLV_FIFO(SPRITEF_HI, 0xff));
1247
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1248
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1249
 
1250
		I915_WRITE(DSPARB3, dsparb3);
1251
		I915_WRITE(DSPARB2, dsparb2);
1252
		break;
1253
	default:
1254
		break;
5354 serge 1255
	}
6084 serge 1256
}
5354 serge 1257
 
6084 serge 1258
#undef VLV_FIFO
5354 serge 1259
 
6084 serge 1260
static void vlv_merge_wm(struct drm_device *dev,
1261
			 struct vlv_wm_values *wm)
1262
{
1263
	struct intel_crtc *crtc;
1264
	int num_active_crtcs = 0;
5354 serge 1265
 
6084 serge 1266
	wm->level = to_i915(dev)->wm.max_level;
1267
	wm->cxsr = true;
1268
 
1269
	for_each_intel_crtc(dev, crtc) {
1270
		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1271
 
1272
		if (!crtc->active)
1273
			continue;
1274
 
1275
		if (!wm_state->cxsr)
1276
			wm->cxsr = false;
1277
 
1278
		num_active_crtcs++;
1279
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1280
	}
1281
 
1282
	if (num_active_crtcs != 1)
1283
		wm->cxsr = false;
1284
 
1285
	if (num_active_crtcs > 1)
1286
		wm->level = VLV_WM_LEVEL_PM2;
1287
 
1288
	for_each_intel_crtc(dev, crtc) {
1289
		struct vlv_wm_state *wm_state = &crtc->wm_state;
1290
		enum pipe pipe = crtc->pipe;
1291
 
1292
		if (!crtc->active)
1293
			continue;
1294
 
1295
		wm->pipe[pipe] = wm_state->wm[wm->level];
1296
		if (wm->cxsr)
1297
			wm->sr = wm_state->sr[wm->level];
1298
 
1299
		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1300
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1301
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1302
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1303
	}
5354 serge 1304
}
1305
 
6084 serge 1306
static void vlv_update_wm(struct drm_crtc *crtc)
5354 serge 1307
{
1308
	struct drm_device *dev = crtc->dev;
1309
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 1310
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1311
	enum pipe pipe = intel_crtc->pipe;
1312
	struct vlv_wm_values wm = {};
5354 serge 1313
 
6084 serge 1314
	vlv_compute_wm(intel_crtc);
1315
	vlv_merge_wm(dev, &wm);
5354 serge 1316
 
6084 serge 1317
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1318
		/* FIXME should be part of crtc atomic commit */
1319
		vlv_pipe_set_fifo_size(intel_crtc);
1320
		return;
5354 serge 1321
	}
1322
 
6084 serge 1323
	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1324
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1325
		chv_set_memory_dvfs(dev_priv, false);
1326
 
1327
	if (wm.level < VLV_WM_LEVEL_PM5 &&
1328
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1329
		chv_set_memory_pm5(dev_priv, false);
1330
 
1331
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1332
		intel_set_memory_cxsr(dev_priv, false);
1333
 
1334
	/* FIXME should be part of crtc atomic commit */
1335
	vlv_pipe_set_fifo_size(intel_crtc);
1336
 
1337
	vlv_write_wm_values(intel_crtc, &wm);
1338
 
1339
	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1340
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1341
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1342
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1343
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1344
 
1345
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1346
		intel_set_memory_cxsr(dev_priv, true);
1347
 
1348
	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1349
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1350
		chv_set_memory_pm5(dev_priv, true);
1351
 
1352
	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1353
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1354
		chv_set_memory_dvfs(dev_priv, true);
1355
 
1356
	dev_priv->wm.vlv = wm;
5354 serge 1357
}
1358
 
6084 serge 1359
#define single_plane_enabled(mask) is_power_of_2(mask)
1360
 
4560 Serge 1361
static void g4x_update_wm(struct drm_crtc *crtc)
3031 serge 1362
{
4560 Serge 1363
	struct drm_device *dev = crtc->dev;
3031 serge 1364
	static const int sr_latency_ns = 12000;
1365
	struct drm_i915_private *dev_priv = dev->dev_private;
1366
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1367
	int plane_sr, cursor_sr;
1368
	unsigned int enabled = 0;
5060 serge 1369
	bool cxsr_enabled;
3031 serge 1370
 
3746 Serge 1371
	if (g4x_compute_wm0(dev, PIPE_A,
5354 serge 1372
			    &g4x_wm_info, pessimal_latency_ns,
1373
			    &g4x_cursor_wm_info, pessimal_latency_ns,
3031 serge 1374
			    &planea_wm, &cursora_wm))
3746 Serge 1375
		enabled |= 1 << PIPE_A;
3031 serge 1376
 
3746 Serge 1377
	if (g4x_compute_wm0(dev, PIPE_B,
5354 serge 1378
			    &g4x_wm_info, pessimal_latency_ns,
1379
			    &g4x_cursor_wm_info, pessimal_latency_ns,
3031 serge 1380
			    &planeb_wm, &cursorb_wm))
3746 Serge 1381
		enabled |= 1 << PIPE_B;
3031 serge 1382
 
1383
	if (single_plane_enabled(enabled) &&
1384
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1385
			     sr_latency_ns,
1386
			     &g4x_wm_info,
1387
			     &g4x_cursor_wm_info,
3243 Serge 1388
			     &plane_sr, &cursor_sr)) {
5060 serge 1389
		cxsr_enabled = true;
3243 Serge 1390
	} else {
5060 serge 1391
		cxsr_enabled = false;
1392
		intel_set_memory_cxsr(dev_priv, false);
3243 Serge 1393
		plane_sr = cursor_sr = 0;
1394
	}
3031 serge 1395
 
5354 serge 1396
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1397
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3031 serge 1398
		      planea_wm, cursora_wm,
1399
		      planeb_wm, cursorb_wm,
1400
		      plane_sr, cursor_sr);
1401
 
1402
	I915_WRITE(DSPFW1,
6084 serge 1403
		   FW_WM(plane_sr, SR) |
1404
		   FW_WM(cursorb_wm, CURSORB) |
1405
		   FW_WM(planeb_wm, PLANEB) |
1406
		   FW_WM(planea_wm, PLANEA));
3031 serge 1407
	I915_WRITE(DSPFW2,
3243 Serge 1408
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
6084 serge 1409
		   FW_WM(cursora_wm, CURSORA));
3031 serge 1410
	/* HPLL off in SR has some issues on G4x... disable it */
1411
	I915_WRITE(DSPFW3,
3243 Serge 1412
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
6084 serge 1413
		   FW_WM(cursor_sr, CURSOR_SR));
5060 serge 1414
 
1415
	if (cxsr_enabled)
1416
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1417
}
1418
 
4560 Serge 1419
static void i965_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1420
{
4560 Serge 1421
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1422
	struct drm_i915_private *dev_priv = dev->dev_private;
1423
	struct drm_crtc *crtc;
1424
	int srwm = 1;
1425
	int cursor_sr = 16;
5060 serge 1426
	bool cxsr_enabled;
3031 serge 1427
 
1428
	/* Calc sr entries for one plane configs */
1429
	crtc = single_enabled_crtc(dev);
1430
	if (crtc) {
1431
		/* self-refresh has much higher latency */
1432
		static const int sr_latency_ns = 12000;
6084 serge 1433
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1434
		int clock = adjusted_mode->crtc_clock;
1435
		int htotal = adjusted_mode->crtc_htotal;
6084 serge 1436
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1437
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
3031 serge 1438
		unsigned long line_time_us;
1439
		int entries;
1440
 
5060 serge 1441
		line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 1442
 
1443
		/* Use ns/us then divide to preserve precision */
1444
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1445
			pixel_size * hdisplay;
1446
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1447
		srwm = I965_FIFO_SIZE - entries;
1448
		if (srwm < 0)
1449
			srwm = 1;
1450
		srwm &= 0x1ff;
1451
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1452
			      entries, srwm);
1453
 
1454
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
6084 serge 1455
			pixel_size * crtc->cursor->state->crtc_w;
3031 serge 1456
		entries = DIV_ROUND_UP(entries,
1457
					  i965_cursor_wm_info.cacheline_size);
1458
		cursor_sr = i965_cursor_wm_info.fifo_size -
1459
			(entries + i965_cursor_wm_info.guard_size);
1460
 
1461
		if (cursor_sr > i965_cursor_wm_info.max_wm)
1462
			cursor_sr = i965_cursor_wm_info.max_wm;
1463
 
1464
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1465
			      "cursor %d\n", srwm, cursor_sr);
1466
 
5060 serge 1467
		cxsr_enabled = true;
3031 serge 1468
	} else {
5060 serge 1469
		cxsr_enabled = false;
3031 serge 1470
		/* Turn off self refresh if both pipes are enabled */
5060 serge 1471
		intel_set_memory_cxsr(dev_priv, false);
3031 serge 1472
	}
1473
 
1474
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1475
		      srwm);
1476
 
1477
	/* 965 has limitations... */
6084 serge 1478
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1479
		   FW_WM(8, CURSORB) |
1480
		   FW_WM(8, PLANEB) |
1481
		   FW_WM(8, PLANEA));
1482
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1483
		   FW_WM(8, PLANEC_OLD));
3031 serge 1484
	/* update cursor SR watermark */
6084 serge 1485
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
5060 serge 1486
 
1487
	if (cxsr_enabled)
1488
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1489
}
1490
 
6084 serge 1491
#undef FW_WM
1492
 
4560 Serge 1493
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1494
{
4560 Serge 1495
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1496
	struct drm_i915_private *dev_priv = dev->dev_private;
1497
	const struct intel_watermark_params *wm_info;
1498
	uint32_t fwater_lo;
1499
	uint32_t fwater_hi;
1500
	int cwm, srwm = 1;
1501
	int fifo_size;
1502
	int planea_wm, planeb_wm;
1503
	struct drm_crtc *crtc, *enabled = NULL;
1504
 
1505
	if (IS_I945GM(dev))
1506
		wm_info = &i945_wm_info;
1507
	else if (!IS_GEN2(dev))
1508
		wm_info = &i915_wm_info;
1509
	else
5354 serge 1510
		wm_info = &i830_a_wm_info;
3031 serge 1511
 
1512
	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1513
	crtc = intel_get_crtc_for_plane(dev, 0);
3243 Serge 1514
	if (intel_crtc_active(crtc)) {
4560 Serge 1515
		const struct drm_display_mode *adjusted_mode;
6084 serge 1516
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
3243 Serge 1517
		if (IS_GEN2(dev))
1518
			cpp = 4;
1519
 
6084 serge 1520
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1521
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1522
					       wm_info, fifo_size, cpp,
5354 serge 1523
					       pessimal_latency_ns);
3031 serge 1524
		enabled = crtc;
5354 serge 1525
	} else {
3031 serge 1526
		planea_wm = fifo_size - wm_info->guard_size;
5354 serge 1527
		if (planea_wm > (long)wm_info->max_wm)
1528
			planea_wm = wm_info->max_wm;
1529
	}
3031 serge 1530
 
5354 serge 1531
	if (IS_GEN2(dev))
1532
		wm_info = &i830_bc_wm_info;
1533
 
3031 serge 1534
	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1535
	crtc = intel_get_crtc_for_plane(dev, 1);
3243 Serge 1536
	if (intel_crtc_active(crtc)) {
4560 Serge 1537
		const struct drm_display_mode *adjusted_mode;
6084 serge 1538
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
3243 Serge 1539
		if (IS_GEN2(dev))
1540
			cpp = 4;
1541
 
6084 serge 1542
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1543
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1544
					       wm_info, fifo_size, cpp,
5354 serge 1545
					       pessimal_latency_ns);
3031 serge 1546
		if (enabled == NULL)
1547
			enabled = crtc;
1548
		else
1549
			enabled = NULL;
5354 serge 1550
	} else {
3031 serge 1551
		planeb_wm = fifo_size - wm_info->guard_size;
5354 serge 1552
		if (planeb_wm > (long)wm_info->max_wm)
1553
			planeb_wm = wm_info->max_wm;
1554
	}
3031 serge 1555
 
1556
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1557
 
5060 serge 1558
	if (IS_I915GM(dev) && enabled) {
1559
		struct drm_i915_gem_object *obj;
1560
 
6084 serge 1561
		obj = intel_fb_obj(enabled->primary->state->fb);
5060 serge 1562
 
1563
		/* self-refresh seems busted with untiled */
1564
		if (obj->tiling_mode == I915_TILING_NONE)
1565
			enabled = NULL;
1566
	}
1567
 
3031 serge 1568
	/*
1569
	 * Overlay gets an aggressive default since video jitter is bad.
1570
	 */
1571
	cwm = 2;
1572
 
1573
	/* Play safe and disable self-refresh before adjusting watermarks. */
5060 serge 1574
	intel_set_memory_cxsr(dev_priv, false);
3031 serge 1575
 
1576
	/* Calc sr entries for one plane configs */
1577
	if (HAS_FW_BLC(dev) && enabled) {
1578
		/* self-refresh has much higher latency */
1579
		static const int sr_latency_ns = 6000;
6084 serge 1580
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
4560 Serge 1581
		int clock = adjusted_mode->crtc_clock;
1582
		int htotal = adjusted_mode->crtc_htotal;
6084 serge 1583
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1584
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
3031 serge 1585
		unsigned long line_time_us;
1586
		int entries;
1587
 
5060 serge 1588
		line_time_us = max(htotal * 1000 / clock, 1);
3031 serge 1589
 
1590
		/* Use ns/us then divide to preserve precision */
1591
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1592
			pixel_size * hdisplay;
1593
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1594
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1595
		srwm = wm_info->fifo_size - entries;
1596
		if (srwm < 0)
1597
			srwm = 1;
1598
 
1599
		if (IS_I945G(dev) || IS_I945GM(dev))
1600
			I915_WRITE(FW_BLC_SELF,
1601
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1602
		else if (IS_I915GM(dev))
1603
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1604
	}
1605
 
1606
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1607
		      planea_wm, planeb_wm, cwm, srwm);
1608
 
1609
	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1610
	fwater_hi = (cwm & 0x1f);
1611
 
1612
	/* Set request length to 8 cachelines per fetch */
1613
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1614
	fwater_hi = fwater_hi | (1 << 8);
1615
 
1616
	I915_WRITE(FW_BLC, fwater_lo);
1617
	I915_WRITE(FW_BLC2, fwater_hi);
1618
 
5060 serge 1619
	if (enabled)
1620
		intel_set_memory_cxsr(dev_priv, true);
3031 serge 1621
}
1622
 
4560 Serge 1623
static void i845_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1624
{
4560 Serge 1625
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1626
	struct drm_i915_private *dev_priv = dev->dev_private;
1627
	struct drm_crtc *crtc;
4560 Serge 1628
	const struct drm_display_mode *adjusted_mode;
3031 serge 1629
	uint32_t fwater_lo;
1630
	int planea_wm;
1631
 
1632
	crtc = single_enabled_crtc(dev);
1633
	if (crtc == NULL)
1634
		return;
1635
 
6084 serge 1636
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
4560 Serge 1637
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1638
				       &i845_wm_info,
3031 serge 1639
				       dev_priv->display.get_fifo_size(dev, 0),
5354 serge 1640
				       4, pessimal_latency_ns);
3031 serge 1641
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1642
	fwater_lo |= (3<<8) | planea_wm;
1643
 
1644
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1645
 
1646
	I915_WRITE(FW_BLC, fwater_lo);
1647
}
1648
 
6084 serge 1649
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
3031 serge 1650
{
4104 Serge 1651
	uint32_t pixel_rate;
1652
 
6084 serge 1653
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
4104 Serge 1654
 
1655
	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1656
	 * adjust the pixel_rate here. */
1657
 
6084 serge 1658
	if (pipe_config->pch_pfit.enabled) {
4104 Serge 1659
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6084 serge 1660
		uint32_t pfit_size = pipe_config->pch_pfit.size;
4104 Serge 1661
 
6084 serge 1662
		pipe_w = pipe_config->pipe_src_w;
1663
		pipe_h = pipe_config->pipe_src_h;
1664
 
4104 Serge 1665
		pfit_w = (pfit_size >> 16) & 0xFFFF;
1666
		pfit_h = pfit_size & 0xFFFF;
1667
		if (pipe_w < pfit_w)
1668
			pipe_w = pfit_w;
1669
		if (pipe_h < pfit_h)
1670
			pipe_h = pfit_h;
1671
 
1672
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1673
				     pfit_w * pfit_h);
1674
	}
1675
 
1676
	return pixel_rate;
1677
}
1678
 
1679
/* latency must be in 0.1us units. */
1680
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1681
			       uint32_t latency)
1682
{
1683
	uint64_t ret;
1684
 
1685
	if (WARN(latency == 0, "Latency value missing\n"))
1686
		return UINT_MAX;
1687
 
1688
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1689
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1690
 
1691
	return ret;
1692
}
1693
 
1694
/* latency must be in 0.1us units. */
1695
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1696
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1697
			       uint32_t latency)
1698
{
1699
	uint32_t ret;
1700
 
1701
	if (WARN(latency == 0, "Latency value missing\n"))
1702
		return UINT_MAX;
1703
 
1704
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1705
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1706
	ret = DIV_ROUND_UP(ret, 64) + 2;
1707
	return ret;
1708
}
1709
 
1710
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1711
			   uint8_t bytes_per_pixel)
1712
{
1713
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1714
}
1715
 
5354 serge 1716
struct skl_pipe_wm_parameters {
1717
	bool active;
1718
	uint32_t pipe_htotal;
1719
	uint32_t pixel_rate; /* in KHz */
1720
	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1721
};
1722
 
4560 Serge 1723
struct ilk_wm_maximums {
4104 Serge 1724
	uint16_t pri;
1725
	uint16_t spr;
1726
	uint16_t cur;
1727
	uint16_t fbc;
1728
};
1729
 
1730
/* used in computing the new watermarks state */
1731
struct intel_wm_config {
1732
	unsigned int num_pipes_active;
1733
	bool sprites_enabled;
1734
	bool sprites_scaled;
1735
};
1736
 
1737
/*
1738
 * For both WM_PIPE and WM_LP.
1739
 * mem_value must be in 0.1us units.
1740
 */
6084 serge 1741
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1742
				   const struct intel_plane_state *pstate,
4104 Serge 1743
				   uint32_t mem_value,
1744
				   bool is_lp)
1745
{
6084 serge 1746
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
4104 Serge 1747
	uint32_t method1, method2;
1748
 
6084 serge 1749
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1750
		return 0;
1751
 
6084 serge 1752
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
4104 Serge 1753
 
1754
	if (!is_lp)
1755
		return method1;
1756
 
6084 serge 1757
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1758
				 cstate->base.adjusted_mode.crtc_htotal,
1759
				 drm_rect_width(&pstate->dst),
1760
				 bpp,
4104 Serge 1761
				 mem_value);
1762
 
1763
	return min(method1, method2);
1764
}
1765
 
1766
/*
1767
 * For both WM_PIPE and WM_LP.
1768
 * mem_value must be in 0.1us units.
1769
 */
6084 serge 1770
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1771
				   const struct intel_plane_state *pstate,
4104 Serge 1772
				   uint32_t mem_value)
1773
{
6084 serge 1774
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
4104 Serge 1775
	uint32_t method1, method2;
1776
 
6084 serge 1777
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1778
		return 0;
1779
 
6084 serge 1780
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1781
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1782
				 cstate->base.adjusted_mode.crtc_htotal,
1783
				 drm_rect_width(&pstate->dst),
1784
				 bpp,
4104 Serge 1785
				 mem_value);
1786
	return min(method1, method2);
1787
}
1788
 
1789
/*
1790
 * For both WM_PIPE and WM_LP.
1791
 * mem_value must be in 0.1us units.
1792
 */
6084 serge 1793
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1794
				   const struct intel_plane_state *pstate,
4104 Serge 1795
				   uint32_t mem_value)
1796
{
6084 serge 1797
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1798
 
1799
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1800
		return 0;
1801
 
6084 serge 1802
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1803
			      cstate->base.adjusted_mode.crtc_htotal,
1804
			      drm_rect_width(&pstate->dst),
1805
			      bpp,
4104 Serge 1806
			      mem_value);
1807
}
1808
 
1809
/* Only for WM_LP. */
6084 serge 1810
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1811
				   const struct intel_plane_state *pstate,
4104 Serge 1812
				   uint32_t pri_val)
1813
{
6084 serge 1814
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1815
 
1816
	if (!cstate->base.active || !pstate->visible)
4104 Serge 1817
		return 0;
1818
 
6084 serge 1819
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
4104 Serge 1820
}
1821
 
1822
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1823
{
4560 Serge 1824
	if (INTEL_INFO(dev)->gen >= 8)
1825
		return 3072;
1826
	else if (INTEL_INFO(dev)->gen >= 7)
4104 Serge 1827
		return 768;
1828
	else
1829
		return 512;
1830
}
1831
 
5060 serge 1832
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1833
					 int level, bool is_sprite)
1834
{
1835
	if (INTEL_INFO(dev)->gen >= 8)
1836
		/* BDW primary/sprite plane watermarks */
1837
		return level == 0 ? 255 : 2047;
1838
	else if (INTEL_INFO(dev)->gen >= 7)
1839
		/* IVB/HSW primary/sprite plane watermarks */
1840
		return level == 0 ? 127 : 1023;
1841
	else if (!is_sprite)
1842
		/* ILK/SNB primary plane watermarks */
1843
		return level == 0 ? 127 : 511;
1844
	else
1845
		/* ILK/SNB sprite plane watermarks */
1846
		return level == 0 ? 63 : 255;
1847
}
1848
 
1849
static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1850
					  int level)
1851
{
1852
	if (INTEL_INFO(dev)->gen >= 7)
1853
		return level == 0 ? 63 : 255;
1854
	else
1855
		return level == 0 ? 31 : 63;
1856
}
1857
 
1858
static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1859
{
1860
	if (INTEL_INFO(dev)->gen >= 8)
1861
		return 31;
1862
	else
1863
		return 15;
1864
}
1865
 
4104 Serge 1866
/* Calculate the maximum primary/sprite plane watermark */
1867
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1868
				     int level,
1869
				     const struct intel_wm_config *config,
1870
				     enum intel_ddb_partitioning ddb_partitioning,
1871
				     bool is_sprite)
1872
{
1873
	unsigned int fifo_size = ilk_display_fifo_size(dev);
1874
 
1875
	/* if sprites aren't enabled, sprites get nothing */
1876
	if (is_sprite && !config->sprites_enabled)
1877
		return 0;
1878
 
1879
	/* HSW allows LP1+ watermarks even with multiple pipes */
1880
	if (level == 0 || config->num_pipes_active > 1) {
1881
		fifo_size /= INTEL_INFO(dev)->num_pipes;
1882
 
1883
		/*
1884
		 * For some reason the non self refresh
1885
		 * FIFO size is only half of the self
1886
		 * refresh FIFO size on ILK/SNB.
1887
		 */
1888
		if (INTEL_INFO(dev)->gen <= 6)
1889
			fifo_size /= 2;
1890
	}
1891
 
1892
	if (config->sprites_enabled) {
1893
		/* level 0 is always calculated with 1:1 split */
1894
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1895
			if (is_sprite)
1896
				fifo_size *= 5;
1897
			fifo_size /= 6;
1898
		} else {
1899
			fifo_size /= 2;
1900
		}
1901
	}
1902
 
1903
	/* clamp to max that the registers can hold */
5060 serge 1904
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
4104 Serge 1905
}
1906
 
1907
/* Calculate the maximum cursor plane watermark */
1908
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1909
				      int level,
1910
				      const struct intel_wm_config *config)
1911
{
1912
	/* HSW LP1+ watermarks w/ multiple pipes */
1913
	if (level > 0 && config->num_pipes_active > 1)
1914
		return 64;
1915
 
1916
	/* otherwise just report max that registers can hold */
5060 serge 1917
	return ilk_cursor_wm_reg_max(dev, level);
4539 Serge 1918
}
4104 Serge 1919
 
5060 serge 1920
static void ilk_compute_wm_maximums(const struct drm_device *dev,
6084 serge 1921
				    int level,
1922
				    const struct intel_wm_config *config,
1923
				    enum intel_ddb_partitioning ddb_partitioning,
4560 Serge 1924
				    struct ilk_wm_maximums *max)
4104 Serge 1925
{
1926
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1927
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1928
	max->cur = ilk_cursor_wm_max(dev, level, config);
5060 serge 1929
	max->fbc = ilk_fbc_wm_reg_max(dev);
4539 Serge 1930
}
4104 Serge 1931
 
5060 serge 1932
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1933
					int level,
1934
					struct ilk_wm_maximums *max)
1935
{
1936
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1937
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1938
	max->cur = ilk_cursor_wm_reg_max(dev, level);
1939
	max->fbc = ilk_fbc_wm_reg_max(dev);
1940
}
1941
 
4560 Serge 1942
static bool ilk_validate_wm_level(int level,
1943
				  const struct ilk_wm_maximums *max,
6084 serge 1944
				  struct intel_wm_level *result)
4104 Serge 1945
{
1946
	bool ret;
1947
 
1948
	/* already determined to be invalid? */
1949
	if (!result->enable)
1950
		return false;
1951
 
1952
	result->enable = result->pri_val <= max->pri &&
1953
			 result->spr_val <= max->spr &&
1954
			 result->cur_val <= max->cur;
1955
 
1956
	ret = result->enable;
1957
 
1958
	/*
1959
	 * HACK until we can pre-compute everything,
1960
	 * and thus fail gracefully if LP0 watermarks
1961
	 * are exceeded...
1962
	 */
1963
	if (level == 0 && !result->enable) {
1964
		if (result->pri_val > max->pri)
1965
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1966
				      level, result->pri_val, max->pri);
1967
		if (result->spr_val > max->spr)
1968
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1969
				      level, result->spr_val, max->spr);
1970
		if (result->cur_val > max->cur)
1971
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1972
				      level, result->cur_val, max->cur);
1973
 
1974
		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1975
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1976
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1977
		result->enable = true;
1978
	}
1979
 
1980
	return ret;
1981
}
1982
 
5060 serge 1983
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
6084 serge 1984
				 const struct intel_crtc *intel_crtc,
4104 Serge 1985
				 int level,
6084 serge 1986
				 struct intel_crtc_state *cstate,
4104 Serge 1987
				 struct intel_wm_level *result)
1988
{
6084 serge 1989
	struct intel_plane *intel_plane;
4104 Serge 1990
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1991
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1992
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1993
 
1994
	/* WM1+ latency values stored in 0.5us units */
1995
	if (level > 0) {
1996
		pri_latency *= 5;
1997
		spr_latency *= 5;
1998
		cur_latency *= 5;
1999
	}
2000
 
6084 serge 2001
	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
2002
		struct intel_plane_state *pstate =
2003
			to_intel_plane_state(intel_plane->base.state);
2004
 
2005
		switch (intel_plane->base.type) {
2006
		case DRM_PLANE_TYPE_PRIMARY:
2007
			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
2008
							     pri_latency,
2009
							     level);
2010
			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
2011
							     result->pri_val);
2012
			break;
2013
		case DRM_PLANE_TYPE_OVERLAY:
2014
			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
2015
							     spr_latency);
2016
			break;
2017
		case DRM_PLANE_TYPE_CURSOR:
2018
			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
2019
							     cur_latency);
2020
			break;
2021
		}
2022
	}
2023
 
4104 Serge 2024
	result->enable = true;
2025
}
2026
 
2027
static uint32_t
2028
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2029
{
3031 serge 2030
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 2031
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 2032
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
4104 Serge 2033
	u32 linetime, ips_linetime;
3031 serge 2034
 
6084 serge 2035
	if (!intel_crtc->active)
4104 Serge 2036
		return 0;
3031 serge 2037
 
2038
	/* The WM are computed with base on how long it takes to fill a single
2039
	 * row at the given clock rate, multiplied by 8.
2040
	 * */
6084 serge 2041
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2042
				     adjusted_mode->crtc_clock);
2043
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2044
					 dev_priv->cdclk_freq);
3031 serge 2045
 
4104 Serge 2046
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2047
	       PIPE_WM_LINETIME_TIME(linetime);
2048
}
2049
 
5354 serge 2050
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
4104 Serge 2051
{
2052
	struct drm_i915_private *dev_priv = dev->dev_private;
2053
 
5354 serge 2054
	if (IS_GEN9(dev)) {
2055
		uint32_t val;
2056
		int ret, i;
2057
		int level, max_level = ilk_wm_max_level(dev);
2058
 
2059
		/* read the first set of memory latencies[0:3] */
2060
		val = 0; /* data0 to be programmed to 0 for first set */
2061
		mutex_lock(&dev_priv->rps.hw_lock);
2062
		ret = sandybridge_pcode_read(dev_priv,
2063
					     GEN9_PCODE_READ_MEM_LATENCY,
2064
					     &val);
2065
		mutex_unlock(&dev_priv->rps.hw_lock);
2066
 
2067
		if (ret) {
2068
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2069
			return;
2070
		}
2071
 
2072
		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2073
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2074
				GEN9_MEM_LATENCY_LEVEL_MASK;
2075
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2076
				GEN9_MEM_LATENCY_LEVEL_MASK;
2077
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2078
				GEN9_MEM_LATENCY_LEVEL_MASK;
2079
 
2080
		/* read the second set of memory latencies[4:7] */
2081
		val = 1; /* data0 to be programmed to 1 for second set */
2082
		mutex_lock(&dev_priv->rps.hw_lock);
2083
		ret = sandybridge_pcode_read(dev_priv,
2084
					     GEN9_PCODE_READ_MEM_LATENCY,
2085
					     &val);
2086
		mutex_unlock(&dev_priv->rps.hw_lock);
2087
		if (ret) {
2088
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2089
			return;
2090
		}
2091
 
2092
		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2093
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2094
				GEN9_MEM_LATENCY_LEVEL_MASK;
2095
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2096
				GEN9_MEM_LATENCY_LEVEL_MASK;
2097
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2098
				GEN9_MEM_LATENCY_LEVEL_MASK;
2099
 
2100
		/*
6084 serge 2101
		 * WaWmMemoryReadLatency:skl
2102
		 *
5354 serge 2103
		 * punit doesn't take into account the read latency so we need
2104
		 * to add 2us to the various latency levels we retrieve from
2105
		 * the punit.
2106
		 *   - W0 is a bit special in that it's the only level that
2107
		 *   can't be disabled if we want to have display working, so
2108
		 *   we always add 2us there.
2109
		 *   - For levels >=1, punit returns 0us latency when they are
2110
		 *   disabled, so we respect that and don't add 2us then
2111
		 *
2112
		 * Additionally, if a level n (n > 1) has a 0us latency, all
2113
		 * levels m (m >= n) need to be disabled. We make sure to
2114
		 * sanitize the values out of the punit to satisfy this
2115
		 * requirement.
2116
		 */
2117
		wm[0] += 2;
2118
		for (level = 1; level <= max_level; level++)
2119
			if (wm[level] != 0)
2120
				wm[level] += 2;
2121
			else {
2122
				for (i = level + 1; i <= max_level; i++)
2123
					wm[i] = 0;
2124
 
2125
				break;
2126
			}
2127
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4104 Serge 2128
		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2129
 
2130
		wm[0] = (sskpd >> 56) & 0xFF;
2131
		if (wm[0] == 0)
2132
			wm[0] = sskpd & 0xF;
2133
		wm[1] = (sskpd >> 4) & 0xFF;
2134
		wm[2] = (sskpd >> 12) & 0xFF;
2135
		wm[3] = (sskpd >> 20) & 0x1FF;
2136
		wm[4] = (sskpd >> 32) & 0x1FF;
2137
	} else if (INTEL_INFO(dev)->gen >= 6) {
2138
		uint32_t sskpd = I915_READ(MCH_SSKPD);
2139
 
2140
		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2141
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2142
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2143
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2144
	} else if (INTEL_INFO(dev)->gen >= 5) {
2145
		uint32_t mltr = I915_READ(MLTR_ILK);
2146
 
2147
		/* ILK primary LP0 latency is 700 ns */
2148
		wm[0] = 7;
2149
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2150
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2151
	}
2152
}
2153
 
2154
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2155
{
2156
	/* ILK sprite LP0 latency is 1300 ns */
2157
	if (INTEL_INFO(dev)->gen == 5)
2158
		wm[0] = 13;
2159
}
2160
 
2161
static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2162
{
2163
	/* ILK cursor LP0 latency is 1300 ns */
2164
	if (INTEL_INFO(dev)->gen == 5)
2165
		wm[0] = 13;
2166
 
2167
	/* WaDoubleCursorLP3Latency:ivb */
2168
	if (IS_IVYBRIDGE(dev))
2169
		wm[3] *= 2;
2170
}
2171
 
5060 serge 2172
int ilk_wm_max_level(const struct drm_device *dev)
4560 Serge 2173
{
2174
	/* how many WM levels are we expecting */
6084 serge 2175
	if (INTEL_INFO(dev)->gen >= 9)
5354 serge 2176
		return 7;
2177
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4560 Serge 2178
		return 4;
2179
	else if (INTEL_INFO(dev)->gen >= 6)
2180
		return 3;
2181
	else
2182
		return 2;
2183
}
2184
 
4104 Serge 2185
static void intel_print_wm_latency(struct drm_device *dev,
2186
				   const char *name,
5354 serge 2187
				   const uint16_t wm[8])
4104 Serge 2188
{
4560 Serge 2189
	int level, max_level = ilk_wm_max_level(dev);
4104 Serge 2190
 
2191
	for (level = 0; level <= max_level; level++) {
2192
		unsigned int latency = wm[level];
2193
 
2194
		if (latency == 0) {
2195
			DRM_ERROR("%s WM%d latency not provided\n",
2196
				  name, level);
2197
			continue;
2198
		}
2199
 
5354 serge 2200
		/*
2201
		 * - latencies are in us on gen9.
2202
		 * - before then, WM1+ latency values are in 0.5us units
2203
		 */
2204
		if (IS_GEN9(dev))
2205
			latency *= 10;
2206
		else if (level > 0)
4104 Serge 2207
			latency *= 5;
2208
 
2209
		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2210
			      name, level, wm[level],
2211
			      latency / 10, latency % 10);
2212
	}
2213
}
2214
 
5060 serge 2215
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2216
				    uint16_t wm[5], uint16_t min)
4104 Serge 2217
{
5060 serge 2218
	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2219
 
2220
	if (wm[0] >= min)
2221
		return false;
2222
 
2223
	wm[0] = max(wm[0], min);
2224
	for (level = 1; level <= max_level; level++)
2225
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2226
 
2227
	return true;
2228
}
2229
 
2230
static void snb_wm_latency_quirk(struct drm_device *dev)
2231
{
4104 Serge 2232
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2233
	bool changed;
4104 Serge 2234
 
5060 serge 2235
	/*
2236
	 * The BIOS provided WM memory latency values are often
2237
	 * inadequate for high resolution displays. Adjust them.
2238
	 */
2239
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2240
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2241
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2242
 
2243
	if (!changed)
2244
		return;
2245
 
2246
	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2247
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2248
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2249
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2250
}
2251
 
2252
static void ilk_setup_wm_latency(struct drm_device *dev)
2253
{
2254
	struct drm_i915_private *dev_priv = dev->dev_private;
2255
 
4104 Serge 2256
	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2257
 
2258
	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2259
	       sizeof(dev_priv->wm.pri_latency));
2260
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2261
	       sizeof(dev_priv->wm.pri_latency));
2262
 
2263
	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2264
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2265
 
2266
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2267
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2268
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
5060 serge 2269
 
2270
	if (IS_GEN6(dev))
2271
		snb_wm_latency_quirk(dev);
4104 Serge 2272
}
2273
 
5354 serge 2274
static void skl_setup_wm_latency(struct drm_device *dev)
2275
{
2276
	struct drm_i915_private *dev_priv = dev->dev_private;
2277
 
2278
	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2279
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2280
}
2281
 
5060 serge 2282
static void ilk_compute_wm_config(struct drm_device *dev,
2283
				  struct intel_wm_config *config)
2284
{
2285
	struct intel_crtc *intel_crtc;
2286
 
2287
	/* Compute the currently _active_ config */
2288
	for_each_intel_crtc(dev, intel_crtc) {
2289
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2290
 
2291
		if (!wm->pipe_enabled)
2292
			continue;
2293
 
2294
		config->sprites_enabled |= wm->sprites_enabled;
2295
		config->sprites_scaled |= wm->sprites_scaled;
2296
		config->num_pipes_active++;
4104 Serge 2297
	}
4560 Serge 2298
}
4104 Serge 2299
 
4560 Serge 2300
/* Compute new watermarks for the pipe */
6084 serge 2301
static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
4560 Serge 2302
				  struct intel_pipe_wm *pipe_wm)
2303
{
6084 serge 2304
	struct drm_crtc *crtc = cstate->base.crtc;
4560 Serge 2305
	struct drm_device *dev = crtc->dev;
5060 serge 2306
	const struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 2307
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2308
	struct intel_plane *intel_plane;
2309
	struct intel_plane_state *sprstate = NULL;
4560 Serge 2310
	int level, max_level = ilk_wm_max_level(dev);
2311
	/* LP0 watermark maximums depend on this pipe alone */
2312
	struct intel_wm_config config = {
2313
		.num_pipes_active = 1,
2314
	};
2315
	struct ilk_wm_maximums max;
4104 Serge 2316
 
6084 serge 2317
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2318
		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2319
			sprstate = to_intel_plane_state(intel_plane->base.state);
2320
			break;
2321
		}
2322
	}
4560 Serge 2323
 
6084 serge 2324
	config.sprites_enabled = sprstate->visible;
2325
	config.sprites_scaled = sprstate->visible &&
2326
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2327
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2328
 
2329
	pipe_wm->pipe_enabled = cstate->base.active;
2330
	pipe_wm->sprites_enabled = sprstate->visible;
2331
	pipe_wm->sprites_scaled = config.sprites_scaled;
2332
 
4560 Serge 2333
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
6084 serge 2334
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
4560 Serge 2335
		max_level = 1;
2336
 
2337
	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
6084 serge 2338
	if (config.sprites_scaled)
4560 Serge 2339
		max_level = 0;
2340
 
6084 serge 2341
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
4560 Serge 2342
 
2343
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2344
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2345
 
5060 serge 2346
	/* LP0 watermarks always use 1/2 DDB partitioning */
2347
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2348
 
4560 Serge 2349
	/* At least LP0 must be valid */
5060 serge 2350
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2351
		return false;
2352
 
2353
	ilk_compute_wm_reg_maximums(dev, 1, &max);
2354
 
2355
	for (level = 1; level <= max_level; level++) {
2356
		struct intel_wm_level wm = {};
2357
 
6084 serge 2358
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
5060 serge 2359
 
2360
		/*
2361
		 * Disable any watermark level that exceeds the
2362
		 * register maximums since such watermarks are
2363
		 * always invalid.
2364
		 */
2365
		if (!ilk_validate_wm_level(level, &max, &wm))
2366
			break;
2367
 
2368
		pipe_wm->wm[level] = wm;
2369
	}
2370
 
2371
	return true;
4104 Serge 2372
}
2373
 
4560 Serge 2374
/*
2375
 * Merge the watermarks from all active pipes for a specific level.
2376
 */
2377
static void ilk_merge_wm_level(struct drm_device *dev,
2378
			       int level,
2379
			       struct intel_wm_level *ret_wm)
4104 Serge 2380
{
4560 Serge 2381
	const struct intel_crtc *intel_crtc;
4104 Serge 2382
 
5060 serge 2383
	ret_wm->enable = true;
4104 Serge 2384
 
5060 serge 2385
	for_each_intel_crtc(dev, intel_crtc) {
2386
		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2387
		const struct intel_wm_level *wm = &active->wm[level];
2388
 
2389
		if (!active->pipe_enabled)
2390
			continue;
2391
 
2392
		/*
2393
		 * The watermark values may have been used in the past,
2394
		 * so we must maintain them in the registers for some
2395
		 * time even if the level is now disabled.
2396
		 */
4560 Serge 2397
		if (!wm->enable)
5060 serge 2398
			ret_wm->enable = false;
4104 Serge 2399
 
4560 Serge 2400
		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2401
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2402
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2403
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2404
	}
2405
}
2406
 
2407
/*
2408
 * Merge all low power watermarks for all active pipes.
2409
 */
2410
static void ilk_wm_merge(struct drm_device *dev,
2411
			 const struct intel_wm_config *config,
2412
			 const struct ilk_wm_maximums *max,
2413
			 struct intel_pipe_wm *merged)
2414
{
6084 serge 2415
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2416
	int level, max_level = ilk_wm_max_level(dev);
5060 serge 2417
	int last_enabled_level = max_level;
4560 Serge 2418
 
2419
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2420
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2421
	    config->num_pipes_active > 1)
2422
		return;
2423
 
2424
	/* ILK: FBC WM must be disabled always */
2425
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2426
 
2427
	/* merge each WM1+ level */
4104 Serge 2428
	for (level = 1; level <= max_level; level++) {
4560 Serge 2429
		struct intel_wm_level *wm = &merged->wm[level];
2430
 
2431
		ilk_merge_wm_level(dev, level, wm);
2432
 
5060 serge 2433
		if (level > last_enabled_level)
2434
			wm->enable = false;
2435
		else if (!ilk_validate_wm_level(level, max, wm))
2436
			/* make sure all following levels get disabled */
2437
			last_enabled_level = level - 1;
4560 Serge 2438
 
2439
		/*
2440
		 * The spec says it is preferred to disable
2441
		 * FBC WMs instead of disabling a WM level.
2442
		 */
2443
		if (wm->fbc_val > max->fbc) {
5060 serge 2444
			if (wm->enable)
6084 serge 2445
				merged->fbc_wm_enabled = false;
4560 Serge 2446
			wm->fbc_val = 0;
4104 Serge 2447
		}
2448
	}
2449
 
4560 Serge 2450
	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2451
	/*
2452
	 * FIXME this is racy. FBC might get enabled later.
2453
	 * What we should check here is whether FBC can be
2454
	 * enabled sometime later.
2455
	 */
6084 serge 2456
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2457
	    intel_fbc_enabled(dev_priv)) {
4560 Serge 2458
		for (level = 2; level <= max_level; level++) {
2459
			struct intel_wm_level *wm = &merged->wm[level];
2460
 
2461
			wm->enable = false;
2462
		}
2463
	}
2464
}
2465
 
2466
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2467
{
2468
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2469
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2470
}
2471
 
2472
/* The value we need to program into the WM_LPx latency field */
2473
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2474
{
2475
	struct drm_i915_private *dev_priv = dev->dev_private;
2476
 
2477
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2478
		return 2 * level;
2479
	else
2480
		return dev_priv->wm.pri_latency[level];
2481
}
2482
 
2483
static void ilk_compute_wm_results(struct drm_device *dev,
2484
				   const struct intel_pipe_wm *merged,
2485
				   enum intel_ddb_partitioning partitioning,
2486
				   struct ilk_wm_values *results)
2487
{
2488
	struct intel_crtc *intel_crtc;
2489
	int level, wm_lp;
2490
 
2491
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2492
	results->partitioning = partitioning;
2493
 
2494
	/* LP1+ register values */
4104 Serge 2495
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2496
		const struct intel_wm_level *r;
2497
 
4560 Serge 2498
		level = ilk_wm_lp_to_level(wm_lp, merged);
2499
 
2500
		r = &merged->wm[level];
4104 Serge 2501
 
5060 serge 2502
		/*
2503
		 * Maintain the watermark values even if the level is
2504
		 * disabled. Doing otherwise could cause underruns.
2505
		 */
2506
		results->wm_lp[wm_lp - 1] =
4560 Serge 2507
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2508
			(r->pri_val << WM1_LP_SR_SHIFT) |
2509
			r->cur_val;
2510
 
5060 serge 2511
		if (r->enable)
2512
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2513
 
4560 Serge 2514
		if (INTEL_INFO(dev)->gen >= 8)
2515
			results->wm_lp[wm_lp - 1] |=
2516
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2517
		else
2518
			results->wm_lp[wm_lp - 1] |=
2519
				r->fbc_val << WM1_LP_FBC_SHIFT;
2520
 
5060 serge 2521
		/*
2522
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2523
		 * level is disabled. Doing otherwise could cause underruns.
2524
		 */
4560 Serge 2525
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2526
			WARN_ON(wm_lp != 1);
2527
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2528
		} else
6084 serge 2529
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
4104 Serge 2530
	}
2531
 
4560 Serge 2532
	/* LP0 register values */
5060 serge 2533
	for_each_intel_crtc(dev, intel_crtc) {
4560 Serge 2534
		enum pipe pipe = intel_crtc->pipe;
2535
		const struct intel_wm_level *r =
2536
			&intel_crtc->wm.active.wm[0];
4104 Serge 2537
 
4560 Serge 2538
		if (WARN_ON(!r->enable))
2539
			continue;
2540
 
2541
		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2542
 
2543
		results->wm_pipe[pipe] =
2544
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2545
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2546
			r->cur_val;
4104 Serge 2547
	}
2548
}
2549
 
2550
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2551
 * case both are at the same level. Prefer r1 in case they're the same. */
4560 Serge 2552
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2553
						  struct intel_pipe_wm *r1,
2554
						  struct intel_pipe_wm *r2)
4104 Serge 2555
{
4560 Serge 2556
	int level, max_level = ilk_wm_max_level(dev);
2557
	int level1 = 0, level2 = 0;
4104 Serge 2558
 
4560 Serge 2559
	for (level = 1; level <= max_level; level++) {
2560
		if (r1->wm[level].enable)
2561
			level1 = level;
2562
		if (r2->wm[level].enable)
2563
			level2 = level;
4104 Serge 2564
	}
2565
 
4560 Serge 2566
	if (level1 == level2) {
2567
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
4104 Serge 2568
			return r2;
2569
		else
2570
			return r1;
4560 Serge 2571
	} else if (level1 > level2) {
4104 Serge 2572
		return r1;
2573
	} else {
2574
		return r2;
2575
	}
2576
}
2577
 
4560 Serge 2578
/* dirty bits used to track which watermarks need changes */
2579
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2580
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2581
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2582
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2583
#define WM_DIRTY_FBC (1 << 24)
2584
#define WM_DIRTY_DDB (1 << 25)
2585
 
5354 serge 2586
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
4560 Serge 2587
					 const struct ilk_wm_values *old,
2588
					 const struct ilk_wm_values *new)
2589
{
2590
	unsigned int dirty = 0;
2591
	enum pipe pipe;
2592
	int wm_lp;
2593
 
5354 serge 2594
	for_each_pipe(dev_priv, pipe) {
4560 Serge 2595
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2596
			dirty |= WM_DIRTY_LINETIME(pipe);
2597
			/* Must disable LP1+ watermarks too */
2598
			dirty |= WM_DIRTY_LP_ALL;
2599
		}
2600
 
2601
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2602
			dirty |= WM_DIRTY_PIPE(pipe);
2603
			/* Must disable LP1+ watermarks too */
2604
			dirty |= WM_DIRTY_LP_ALL;
2605
		}
2606
	}
2607
 
2608
	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2609
		dirty |= WM_DIRTY_FBC;
2610
		/* Must disable LP1+ watermarks too */
2611
		dirty |= WM_DIRTY_LP_ALL;
2612
	}
2613
 
2614
	if (old->partitioning != new->partitioning) {
2615
		dirty |= WM_DIRTY_DDB;
2616
		/* Must disable LP1+ watermarks too */
2617
		dirty |= WM_DIRTY_LP_ALL;
2618
	}
2619
 
2620
	/* LP1+ watermarks already deemed dirty, no need to continue */
2621
	if (dirty & WM_DIRTY_LP_ALL)
2622
		return dirty;
2623
 
2624
	/* Find the lowest numbered LP1+ watermark in need of an update... */
2625
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2626
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2627
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2628
			break;
2629
	}
2630
 
2631
	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2632
	for (; wm_lp <= 3; wm_lp++)
2633
		dirty |= WM_DIRTY_LP(wm_lp);
2634
 
2635
	return dirty;
2636
}
2637
 
2638
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2639
			       unsigned int dirty)
2640
{
2641
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2642
	bool changed = false;
2643
 
2644
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2645
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2646
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2647
		changed = true;
2648
	}
2649
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2650
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2651
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2652
		changed = true;
2653
	}
2654
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2655
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2656
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2657
		changed = true;
2658
	}
2659
 
2660
	/*
2661
	 * Don't touch WM1S_LP_EN here.
2662
	 * Doing so could cause underruns.
2663
	 */
2664
 
2665
	return changed;
2666
}
2667
 
4104 Serge 2668
/*
2669
 * The spec says we shouldn't write when we don't need, because every write
2670
 * causes WMs to be re-evaluated, expending some power.
6084 serge 2671
 */
4560 Serge 2672
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2673
				struct ilk_wm_values *results)
4104 Serge 2674
{
4560 Serge 2675
	struct drm_device *dev = dev_priv->dev;
2676
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2677
	unsigned int dirty;
4104 Serge 2678
	uint32_t val;
3031 serge 2679
 
5354 serge 2680
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
4560 Serge 2681
	if (!dirty)
4104 Serge 2682
		return;
2683
 
4560 Serge 2684
	_ilk_disable_lp_wm(dev_priv, dirty);
4104 Serge 2685
 
4560 Serge 2686
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
4104 Serge 2687
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
4560 Serge 2688
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
4104 Serge 2689
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
4560 Serge 2690
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
4104 Serge 2691
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2692
 
4560 Serge 2693
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
4104 Serge 2694
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
4560 Serge 2695
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
4104 Serge 2696
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
4560 Serge 2697
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
4104 Serge 2698
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2699
 
4560 Serge 2700
	if (dirty & WM_DIRTY_DDB) {
2701
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6084 serge 2702
			val = I915_READ(WM_MISC);
4560 Serge 2703
			if (results->partitioning == INTEL_DDB_PART_1_2)
6084 serge 2704
				val &= ~WM_MISC_DATA_PARTITION_5_6;
2705
			else
2706
				val |= WM_MISC_DATA_PARTITION_5_6;
2707
			I915_WRITE(WM_MISC, val);
4560 Serge 2708
		} else {
2709
			val = I915_READ(DISP_ARB_CTL2);
2710
			if (results->partitioning == INTEL_DDB_PART_1_2)
2711
				val &= ~DISP_DATA_PARTITION_5_6;
2712
			else
2713
				val |= DISP_DATA_PARTITION_5_6;
2714
			I915_WRITE(DISP_ARB_CTL2, val);
2715
		}
4104 Serge 2716
	}
2717
 
4560 Serge 2718
	if (dirty & WM_DIRTY_FBC) {
4104 Serge 2719
		val = I915_READ(DISP_ARB_CTL);
2720
		if (results->enable_fbc_wm)
2721
			val &= ~DISP_FBC_WM_DIS;
2722
		else
2723
			val |= DISP_FBC_WM_DIS;
2724
		I915_WRITE(DISP_ARB_CTL, val);
2725
	}
2726
 
4560 Serge 2727
	if (dirty & WM_DIRTY_LP(1) &&
2728
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
4104 Serge 2729
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
4560 Serge 2730
 
2731
	if (INTEL_INFO(dev)->gen >= 7) {
2732
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
6084 serge 2733
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
4560 Serge 2734
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
6084 serge 2735
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
4560 Serge 2736
	}
4104 Serge 2737
 
4560 Serge 2738
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
4104 Serge 2739
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
4560 Serge 2740
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
4104 Serge 2741
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
4560 Serge 2742
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
4104 Serge 2743
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
4560 Serge 2744
 
2745
	dev_priv->wm.hw = *results;
3031 serge 2746
}
2747
 
4560 Serge 2748
static bool ilk_disable_lp_wm(struct drm_device *dev)
4104 Serge 2749
{
2750
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2751
 
2752
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2753
}
2754
 
5354 serge 2755
/*
2756
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2757
 * different active planes.
2758
 */
2759
 
2760
#define SKL_DDB_SIZE		896	/* in blocks */
6084 serge 2761
#define BXT_DDB_SIZE		512
5354 serge 2762
 
2763
static void
2764
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2765
				   struct drm_crtc *for_crtc,
2766
				   const struct intel_wm_config *config,
2767
				   const struct skl_pipe_wm_parameters *params,
2768
				   struct skl_ddb_entry *alloc /* out */)
2769
{
2770
	struct drm_crtc *crtc;
2771
	unsigned int pipe_size, ddb_size;
2772
	int nth_active_pipe;
2773
 
2774
	if (!params->active) {
2775
		alloc->start = 0;
2776
		alloc->end = 0;
2777
		return;
2778
	}
2779
 
6084 serge 2780
	if (IS_BROXTON(dev))
2781
		ddb_size = BXT_DDB_SIZE;
2782
	else
2783
		ddb_size = SKL_DDB_SIZE;
5354 serge 2784
 
2785
	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2786
 
2787
	nth_active_pipe = 0;
2788
	for_each_crtc(dev, crtc) {
6084 serge 2789
		if (!to_intel_crtc(crtc)->active)
5354 serge 2790
			continue;
2791
 
2792
		if (crtc == for_crtc)
2793
			break;
2794
 
2795
		nth_active_pipe++;
2796
	}
2797
 
2798
	pipe_size = ddb_size / config->num_pipes_active;
2799
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2800
	alloc->end = alloc->start + pipe_size;
2801
}
2802
 
2803
static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2804
{
2805
	if (config->num_pipes_active == 1)
2806
		return 32;
2807
 
2808
	return 8;
2809
}
2810
 
2811
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2812
{
2813
	entry->start = reg & 0x3ff;
2814
	entry->end = (reg >> 16) & 0x3ff;
2815
	if (entry->end)
2816
		entry->end += 1;
2817
}
2818
 
2819
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2820
			  struct skl_ddb_allocation *ddb /* out */)
2821
{
2822
	enum pipe pipe;
2823
	int plane;
2824
	u32 val;
2825
 
6084 serge 2826
	memset(ddb, 0, sizeof(*ddb));
2827
 
5354 serge 2828
	for_each_pipe(dev_priv, pipe) {
6084 serge 2829
		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2830
			continue;
2831
 
2832
		for_each_plane(dev_priv, pipe, plane) {
5354 serge 2833
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2834
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2835
						   val);
2836
		}
2837
 
2838
		val = I915_READ(CUR_BUF_CFG(pipe));
6084 serge 2839
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2840
					   val);
5354 serge 2841
	}
2842
}
2843
 
2844
static unsigned int
6084 serge 2845
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
5354 serge 2846
{
6084 serge 2847
 
2848
	/* for planar format */
2849
	if (p->y_bytes_per_pixel) {
2850
		if (y)  /* y-plane data rate */
2851
			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2852
		else    /* uv-plane data rate */
2853
			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2854
	}
2855
 
2856
	/* for packed formats */
5354 serge 2857
	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2858
}
2859
 
2860
/*
2861
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2862
 * a 8192x4096@32bpp framebuffer:
2863
 *   3 * 4096 * 8192  * 4 < 2^32
2864
 */
2865
static unsigned int
2866
skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2867
				 const struct skl_pipe_wm_parameters *params)
2868
{
2869
	unsigned int total_data_rate = 0;
2870
	int plane;
2871
 
2872
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2873
		const struct intel_plane_wm_parameters *p;
2874
 
2875
		p = ¶ms->plane[plane];
2876
		if (!p->enabled)
2877
			continue;
2878
 
6084 serge 2879
		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2880
		if (p->y_bytes_per_pixel) {
2881
			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2882
		}
5354 serge 2883
	}
2884
 
2885
	return total_data_rate;
2886
}
2887
 
2888
static void
2889
skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2890
		      const struct intel_wm_config *config,
2891
		      const struct skl_pipe_wm_parameters *params,
2892
		      struct skl_ddb_allocation *ddb /* out */)
2893
{
2894
	struct drm_device *dev = crtc->dev;
6084 serge 2895
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 2896
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2897
	enum pipe pipe = intel_crtc->pipe;
2898
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2899
	uint16_t alloc_size, start, cursor_blocks;
6084 serge 2900
	uint16_t minimum[I915_MAX_PLANES];
2901
	uint16_t y_minimum[I915_MAX_PLANES];
5354 serge 2902
	unsigned int total_data_rate;
2903
	int plane;
2904
 
2905
	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2906
	alloc_size = skl_ddb_entry_size(alloc);
2907
	if (alloc_size == 0) {
2908
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
6084 serge 2909
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2910
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
5354 serge 2911
		return;
2912
	}
2913
 
2914
	cursor_blocks = skl_cursor_allocation(config);
6084 serge 2915
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2916
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
5354 serge 2917
 
2918
	alloc_size -= cursor_blocks;
2919
	alloc->end -= cursor_blocks;
2920
 
6084 serge 2921
	/* 1. Allocate the mininum required blocks for each active plane */
2922
	for_each_plane(dev_priv, pipe, plane) {
2923
		const struct intel_plane_wm_parameters *p;
2924
 
2925
		p = ¶ms->plane[plane];
2926
		if (!p->enabled)
2927
			continue;
2928
 
2929
		minimum[plane] = 8;
2930
		alloc_size -= minimum[plane];
2931
		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2932
		alloc_size -= y_minimum[plane];
2933
	}
2934
 
2935
	/*
2936
	 * 2. Distribute the remaining space in proportion to the amount of
2937
	 * data each plane needs to fetch from memory.
5354 serge 2938
	 *
2939
	 * FIXME: we may not allocate every single block here.
6084 serge 2940
	 */
5354 serge 2941
	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2942
 
2943
	start = alloc->start;
2944
	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2945
		const struct intel_plane_wm_parameters *p;
6084 serge 2946
		unsigned int data_rate, y_data_rate;
2947
		uint16_t plane_blocks, y_plane_blocks = 0;
5354 serge 2948
 
2949
		p = ¶ms->plane[plane];
2950
		if (!p->enabled)
2951
			continue;
2952
 
6084 serge 2953
		data_rate = skl_plane_relative_data_rate(p, 0);
5354 serge 2954
 
2955
		/*
6084 serge 2956
		 * allocation for (packed formats) or (uv-plane part of planar format):
5354 serge 2957
		 * promote the expression to 64 bits to avoid overflowing, the
2958
		 * result is < available as data_rate / total_data_rate < 1
2959
		 */
6084 serge 2960
		plane_blocks = minimum[plane];
2961
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2962
					total_data_rate);
5354 serge 2963
 
2964
		ddb->plane[pipe][plane].start = start;
2965
		ddb->plane[pipe][plane].end = start + plane_blocks;
2966
 
2967
		start += plane_blocks;
6084 serge 2968
 
2969
		/*
2970
		 * allocation for y_plane part of planar format:
2971
		 */
2972
		if (p->y_bytes_per_pixel) {
2973
			y_data_rate = skl_plane_relative_data_rate(p, 1);
2974
			y_plane_blocks = y_minimum[plane];
2975
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2976
						total_data_rate);
2977
 
2978
			ddb->y_plane[pipe][plane].start = start;
2979
			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2980
 
2981
			start += y_plane_blocks;
2982
		}
2983
 
5354 serge 2984
	}
2985
 
2986
}
2987
 
6084 serge 2988
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
5354 serge 2989
{
2990
	/* TODO: Take into account the scalers once we support them */
6084 serge 2991
	return config->base.adjusted_mode.crtc_clock;
5354 serge 2992
}
2993
 
2994
/*
2995
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
2996
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
2997
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2998
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2999
*/
3000
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3001
			       uint32_t latency)
3002
{
3003
	uint32_t wm_intermediate_val, ret;
3004
 
3005
	if (latency == 0)
3006
		return UINT_MAX;
3007
 
6084 serge 3008
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
5354 serge 3009
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3010
 
3011
	return ret;
3012
}
3013
 
3014
static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3015
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
6084 serge 3016
			       uint64_t tiling, uint32_t latency)
5354 serge 3017
{
6084 serge 3018
	uint32_t ret;
3019
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3020
	uint32_t wm_intermediate_val;
5354 serge 3021
 
3022
	if (latency == 0)
3023
		return UINT_MAX;
3024
 
3025
	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
6084 serge 3026
 
3027
	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3028
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3029
		plane_bytes_per_line *= 4;
3030
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3031
		plane_blocks_per_line /= 4;
3032
	} else {
3033
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3034
	}
3035
 
5354 serge 3036
	wm_intermediate_val = latency * pixel_rate;
3037
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
6084 serge 3038
				plane_blocks_per_line;
5354 serge 3039
 
3040
	return ret;
3041
}
3042
 
3043
static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3044
				       const struct intel_crtc *intel_crtc)
3045
{
3046
	struct drm_device *dev = intel_crtc->base.dev;
3047
	struct drm_i915_private *dev_priv = dev->dev_private;
3048
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3049
	enum pipe pipe = intel_crtc->pipe;
3050
 
3051
	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3052
		   sizeof(new_ddb->plane[pipe])))
3053
		return true;
3054
 
6084 serge 3055
	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3056
		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
5354 serge 3057
		return true;
3058
 
3059
	return false;
3060
}
3061
 
3062
static void skl_compute_wm_global_parameters(struct drm_device *dev,
3063
					     struct intel_wm_config *config)
3064
{
3065
	struct drm_crtc *crtc;
3066
	struct drm_plane *plane;
3067
 
3068
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
6084 serge 3069
		config->num_pipes_active += to_intel_crtc(crtc)->active;
5354 serge 3070
 
3071
	/* FIXME: I don't think we need those two global parameters on SKL */
3072
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3073
		struct intel_plane *intel_plane = to_intel_plane(plane);
3074
 
3075
		config->sprites_enabled |= intel_plane->wm.enabled;
3076
		config->sprites_scaled |= intel_plane->wm.scaled;
3077
	}
3078
}
3079
 
3080
static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3081
					   struct skl_pipe_wm_parameters *p)
3082
{
3083
	struct drm_device *dev = crtc->dev;
3084
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3085
	enum pipe pipe = intel_crtc->pipe;
3086
	struct drm_plane *plane;
6084 serge 3087
	struct drm_framebuffer *fb;
5354 serge 3088
	int i = 1; /* Index for sprite planes start */
3089
 
6084 serge 3090
	p->active = intel_crtc->active;
5354 serge 3091
	if (p->active) {
6084 serge 3092
		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3093
		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
5354 serge 3094
 
6084 serge 3095
		fb = crtc->primary->state->fb;
3096
		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3097
		if (fb) {
3098
			p->plane[0].enabled = true;
3099
			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3100
				drm_format_plane_cpp(fb->pixel_format, 1) :
3101
				drm_format_plane_cpp(fb->pixel_format, 0);
3102
			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3103
				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3104
			p->plane[0].tiling = fb->modifier[0];
3105
		} else {
3106
			p->plane[0].enabled = false;
3107
			p->plane[0].bytes_per_pixel = 0;
3108
			p->plane[0].y_bytes_per_pixel = 0;
3109
			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3110
		}
3111
		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3112
		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3113
		p->plane[0].rotation = crtc->primary->state->rotation;
5354 serge 3114
 
6084 serge 3115
		fb = crtc->cursor->state->fb;
3116
		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
3117
		if (fb) {
3118
			p->plane[PLANE_CURSOR].enabled = true;
3119
			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
3120
			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
3121
			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
3122
		} else {
3123
			p->plane[PLANE_CURSOR].enabled = false;
3124
			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
3125
			p->plane[PLANE_CURSOR].horiz_pixels = 64;
3126
			p->plane[PLANE_CURSOR].vert_pixels = 64;
3127
		}
5354 serge 3128
	}
3129
 
3130
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3131
		struct intel_plane *intel_plane = to_intel_plane(plane);
3132
 
6084 serge 3133
		if (intel_plane->pipe == pipe &&
3134
			plane->type == DRM_PLANE_TYPE_OVERLAY)
5354 serge 3135
			p->plane[i++] = intel_plane->wm;
3136
	}
3137
}
3138
 
6084 serge 3139
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3140
				 struct skl_pipe_wm_parameters *p,
5354 serge 3141
				 struct intel_plane_wm_parameters *p_params,
3142
				 uint16_t ddb_allocation,
6084 serge 3143
				 int level,
5354 serge 3144
				 uint16_t *out_blocks, /* out */
3145
				 uint8_t *out_lines /* out */)
3146
{
6084 serge 3147
	uint32_t latency = dev_priv->wm.skl_latency[level];
3148
	uint32_t method1, method2;
3149
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3150
	uint32_t res_blocks, res_lines;
3151
	uint32_t selected_result;
3152
	uint8_t bytes_per_pixel;
5354 serge 3153
 
6084 serge 3154
	if (latency == 0 || !p->active || !p_params->enabled)
5354 serge 3155
		return false;
3156
 
6084 serge 3157
	bytes_per_pixel = p_params->y_bytes_per_pixel ?
3158
		p_params->y_bytes_per_pixel :
3159
		p_params->bytes_per_pixel;
5354 serge 3160
	method1 = skl_wm_method1(p->pixel_rate,
6084 serge 3161
				 bytes_per_pixel,
3162
				 latency);
5354 serge 3163
	method2 = skl_wm_method2(p->pixel_rate,
3164
				 p->pipe_htotal,
3165
				 p_params->horiz_pixels,
6084 serge 3166
				 bytes_per_pixel,
3167
				 p_params->tiling,
3168
				 latency);
5354 serge 3169
 
6084 serge 3170
	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3171
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
5354 serge 3172
 
6084 serge 3173
	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3174
	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3175
		uint32_t min_scanlines = 4;
3176
		uint32_t y_tile_minimum;
3177
		if (intel_rotation_90_or_270(p_params->rotation)) {
3178
			switch (p_params->bytes_per_pixel) {
3179
			case 1:
3180
				min_scanlines = 16;
3181
				break;
3182
			case 2:
3183
				min_scanlines = 8;
3184
				break;
3185
			case 8:
3186
				WARN(1, "Unsupported pixel depth for rotation");
3187
			}
3188
		}
3189
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3190
		selected_result = max(method2, y_tile_minimum);
3191
	} else {
3192
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3193
			selected_result = min(method1, method2);
3194
		else
3195
			selected_result = method1;
3196
	}
5354 serge 3197
 
6084 serge 3198
	res_blocks = selected_result + 1;
3199
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
5354 serge 3200
 
6084 serge 3201
	if (level >= 1 && level <= 7) {
3202
		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3203
		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3204
			res_lines += 4;
3205
		else
3206
			res_blocks++;
3207
	}
3208
 
3209
	if (res_blocks >= ddb_allocation || res_lines > 31)
5354 serge 3210
		return false;
3211
 
3212
	*out_blocks = res_blocks;
3213
	*out_lines = res_lines;
3214
 
3215
	return true;
3216
}
3217
 
3218
static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3219
				 struct skl_ddb_allocation *ddb,
3220
				 struct skl_pipe_wm_parameters *p,
3221
				 enum pipe pipe,
3222
				 int level,
3223
				 int num_planes,
3224
				 struct skl_wm_level *result)
3225
{
3226
	uint16_t ddb_blocks;
3227
	int i;
3228
 
3229
	for (i = 0; i < num_planes; i++) {
3230
		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3231
 
6084 serge 3232
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3233
						p, &p->plane[i],
5354 serge 3234
						ddb_blocks,
6084 serge 3235
						level,
5354 serge 3236
						&result->plane_res_b[i],
3237
						&result->plane_res_l[i]);
3238
	}
3239
 
6084 serge 3240
	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
3241
	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
3242
						 &p->plane[PLANE_CURSOR],
3243
						 ddb_blocks, level,
3244
						 &result->plane_res_b[PLANE_CURSOR],
3245
						 &result->plane_res_l[PLANE_CURSOR]);
5354 serge 3246
}
3247
 
3248
static uint32_t
3249
skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3250
{
6084 serge 3251
	if (!to_intel_crtc(crtc)->active)
5354 serge 3252
		return 0;
3253
 
6084 serge 3254
	if (WARN_ON(p->pixel_rate == 0))
3255
		return 0;
3256
 
5354 serge 3257
	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3258
}
3259
 
3260
static void skl_compute_transition_wm(struct drm_crtc *crtc,
3261
				      struct skl_pipe_wm_parameters *params,
3262
				      struct skl_wm_level *trans_wm /* out */)
3263
{
3264
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3265
	int i;
3266
 
3267
	if (!params->active)
3268
		return;
3269
 
3270
	/* Until we know more, just disable transition WMs */
3271
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3272
		trans_wm->plane_en[i] = false;
6084 serge 3273
	trans_wm->plane_en[PLANE_CURSOR] = false;
5354 serge 3274
}
3275
 
3276
static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3277
				struct skl_ddb_allocation *ddb,
3278
				struct skl_pipe_wm_parameters *params,
3279
				struct skl_pipe_wm *pipe_wm)
3280
{
3281
	struct drm_device *dev = crtc->dev;
3282
	const struct drm_i915_private *dev_priv = dev->dev_private;
3283
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284
	int level, max_level = ilk_wm_max_level(dev);
3285
 
3286
	for (level = 0; level <= max_level; level++) {
3287
		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3288
				     level, intel_num_planes(intel_crtc),
3289
				     &pipe_wm->wm[level]);
3290
	}
3291
	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3292
 
3293
	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3294
}
3295
 
3296
static void skl_compute_wm_results(struct drm_device *dev,
3297
				   struct skl_pipe_wm_parameters *p,
3298
				   struct skl_pipe_wm *p_wm,
3299
				   struct skl_wm_values *r,
3300
				   struct intel_crtc *intel_crtc)
3301
{
3302
	int level, max_level = ilk_wm_max_level(dev);
3303
	enum pipe pipe = intel_crtc->pipe;
3304
	uint32_t temp;
3305
	int i;
3306
 
3307
	for (level = 0; level <= max_level; level++) {
3308
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3309
			temp = 0;
3310
 
3311
			temp |= p_wm->wm[level].plane_res_l[i] <<
3312
					PLANE_WM_LINES_SHIFT;
3313
			temp |= p_wm->wm[level].plane_res_b[i];
3314
			if (p_wm->wm[level].plane_en[i])
3315
				temp |= PLANE_WM_EN;
3316
 
3317
			r->plane[pipe][i][level] = temp;
3318
		}
3319
 
3320
		temp = 0;
3321
 
6084 serge 3322
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3323
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
5354 serge 3324
 
6084 serge 3325
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
5354 serge 3326
			temp |= PLANE_WM_EN;
3327
 
6084 serge 3328
		r->plane[pipe][PLANE_CURSOR][level] = temp;
5354 serge 3329
 
3330
	}
3331
 
3332
	/* transition WMs */
3333
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3334
		temp = 0;
3335
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3336
		temp |= p_wm->trans_wm.plane_res_b[i];
3337
		if (p_wm->trans_wm.plane_en[i])
3338
			temp |= PLANE_WM_EN;
3339
 
3340
		r->plane_trans[pipe][i] = temp;
3341
	}
3342
 
3343
	temp = 0;
6084 serge 3344
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3345
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3346
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
5354 serge 3347
		temp |= PLANE_WM_EN;
3348
 
6084 serge 3349
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
5354 serge 3350
 
3351
	r->wm_linetime[pipe] = p_wm->linetime;
3352
}
3353
 
3354
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3355
				const struct skl_ddb_entry *entry)
3356
{
3357
	if (entry->end)
3358
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3359
	else
3360
		I915_WRITE(reg, 0);
3361
}
3362
 
3363
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3364
				const struct skl_wm_values *new)
3365
{
3366
	struct drm_device *dev = dev_priv->dev;
3367
	struct intel_crtc *crtc;
3368
 
3369
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3370
		int i, level, max_level = ilk_wm_max_level(dev);
3371
		enum pipe pipe = crtc->pipe;
3372
 
3373
		if (!new->dirty[pipe])
3374
			continue;
3375
 
3376
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3377
 
3378
		for (level = 0; level <= max_level; level++) {
3379
			for (i = 0; i < intel_num_planes(crtc); i++)
3380
				I915_WRITE(PLANE_WM(pipe, i, level),
3381
					   new->plane[pipe][i][level]);
3382
			I915_WRITE(CUR_WM(pipe, level),
6084 serge 3383
				   new->plane[pipe][PLANE_CURSOR][level]);
5354 serge 3384
		}
3385
		for (i = 0; i < intel_num_planes(crtc); i++)
3386
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3387
				   new->plane_trans[pipe][i]);
6084 serge 3388
		I915_WRITE(CUR_WM_TRANS(pipe),
3389
			   new->plane_trans[pipe][PLANE_CURSOR]);
5354 serge 3390
 
6084 serge 3391
		for (i = 0; i < intel_num_planes(crtc); i++) {
5354 serge 3392
			skl_ddb_entry_write(dev_priv,
3393
					    PLANE_BUF_CFG(pipe, i),
3394
					    &new->ddb.plane[pipe][i]);
6084 serge 3395
			skl_ddb_entry_write(dev_priv,
3396
					    PLANE_NV12_BUF_CFG(pipe, i),
3397
					    &new->ddb.y_plane[pipe][i]);
3398
		}
5354 serge 3399
 
3400
		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
6084 serge 3401
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
5354 serge 3402
	}
3403
}
3404
 
3405
/*
3406
 * When setting up a new DDB allocation arrangement, we need to correctly
3407
 * sequence the times at which the new allocations for the pipes are taken into
3408
 * account or we'll have pipes fetching from space previously allocated to
3409
 * another pipe.
3410
 *
3411
 * Roughly the sequence looks like:
3412
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
3413
 *     overlapping with a previous light-up pipe (another way to put it is:
3414
 *     pipes with their new allocation strickly included into their old ones).
3415
 *  2. re-allocate the other pipes that get their allocation reduced
3416
 *  3. allocate the pipes having their allocation increased
3417
 *
3418
 * Steps 1. and 2. are here to take care of the following case:
3419
 * - Initially DDB looks like this:
3420
 *     |   B    |   C    |
3421
 * - enable pipe A.
3422
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3423
 *   allocation
3424
 *     |  A  |  B  |  C  |
3425
 *
3426
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3427
 */
3428
 
3429
static void
3430
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3431
{
3432
	int plane;
3433
 
3434
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3435
 
6084 serge 3436
	for_each_plane(dev_priv, pipe, plane) {
5354 serge 3437
		I915_WRITE(PLANE_SURF(pipe, plane),
3438
			   I915_READ(PLANE_SURF(pipe, plane)));
3439
	}
3440
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3441
}
3442
 
3443
static bool
3444
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3445
			    const struct skl_ddb_allocation *new,
3446
			    enum pipe pipe)
3447
{
3448
	uint16_t old_size, new_size;
3449
 
3450
	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3451
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3452
 
3453
	return old_size != new_size &&
3454
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3455
	       new->pipe[pipe].end <= old->pipe[pipe].end;
3456
}
3457
 
3458
static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3459
				struct skl_wm_values *new_values)
3460
{
3461
	struct drm_device *dev = dev_priv->dev;
3462
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
6084 serge 3463
	bool reallocated[I915_MAX_PIPES] = {};
5354 serge 3464
	struct intel_crtc *crtc;
3465
	enum pipe pipe;
3466
 
3467
	new_ddb = &new_values->ddb;
3468
	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3469
 
3470
	/*
3471
	 * First pass: flush the pipes with the new allocation contained into
3472
	 * the old space.
3473
	 *
3474
	 * We'll wait for the vblank on those pipes to ensure we can safely
3475
	 * re-allocate the freed space without this pipe fetching from it.
3476
	 */
3477
	for_each_intel_crtc(dev, crtc) {
3478
		if (!crtc->active)
3479
			continue;
3480
 
3481
		pipe = crtc->pipe;
3482
 
3483
		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3484
			continue;
3485
 
3486
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3487
		intel_wait_for_vblank(dev, pipe);
3488
 
3489
		reallocated[pipe] = true;
3490
	}
3491
 
3492
 
3493
	/*
3494
	 * Second pass: flush the pipes that are having their allocation
3495
	 * reduced, but overlapping with a previous allocation.
3496
	 *
3497
	 * Here as well we need to wait for the vblank to make sure the freed
3498
	 * space is not used anymore.
3499
	 */
3500
	for_each_intel_crtc(dev, crtc) {
3501
		if (!crtc->active)
3502
			continue;
3503
 
3504
		pipe = crtc->pipe;
3505
 
3506
		if (reallocated[pipe])
3507
			continue;
3508
 
3509
		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3510
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3511
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3512
			intel_wait_for_vblank(dev, pipe);
6084 serge 3513
			reallocated[pipe] = true;
5354 serge 3514
		}
3515
	}
3516
 
3517
	/*
3518
	 * Third pass: flush the pipes that got more space allocated.
3519
	 *
3520
	 * We don't need to actively wait for the update here, next vblank
3521
	 * will just get more DDB space with the correct WM values.
3522
	 */
3523
	for_each_intel_crtc(dev, crtc) {
3524
		if (!crtc->active)
3525
			continue;
3526
 
3527
		pipe = crtc->pipe;
3528
 
3529
		/*
3530
		 * At this point, only the pipes more space than before are
3531
		 * left to re-allocate.
3532
		 */
3533
		if (reallocated[pipe])
3534
			continue;
3535
 
3536
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3537
	}
3538
}
3539
 
3540
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3541
			       struct skl_pipe_wm_parameters *params,
3542
			       struct intel_wm_config *config,
3543
			       struct skl_ddb_allocation *ddb, /* out */
3544
			       struct skl_pipe_wm *pipe_wm /* out */)
3545
{
3546
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3547
 
3548
	skl_compute_wm_pipe_parameters(crtc, params);
3549
	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3550
	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3551
 
3552
	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3553
		return false;
3554
 
3555
	intel_crtc->wm.skl_active = *pipe_wm;
6084 serge 3556
 
5354 serge 3557
	return true;
3558
}
3559
 
3560
static void skl_update_other_pipe_wm(struct drm_device *dev,
3561
				     struct drm_crtc *crtc,
3562
				     struct intel_wm_config *config,
3563
				     struct skl_wm_values *r)
3564
{
3565
	struct intel_crtc *intel_crtc;
3566
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3567
 
3568
	/*
3569
	 * If the WM update hasn't changed the allocation for this_crtc (the
3570
	 * crtc we are currently computing the new WM values for), other
3571
	 * enabled crtcs will keep the same allocation and we don't need to
3572
	 * recompute anything for them.
3573
	 */
3574
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3575
		return;
3576
 
3577
	/*
3578
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3579
	 * other active pipes need new DDB allocation and WM values.
3580
	 */
3581
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3582
				base.head) {
3583
		struct skl_pipe_wm_parameters params = {};
3584
		struct skl_pipe_wm pipe_wm = {};
3585
		bool wm_changed;
3586
 
3587
		if (this_crtc->pipe == intel_crtc->pipe)
3588
			continue;
3589
 
3590
		if (!intel_crtc->active)
3591
			continue;
3592
 
3593
		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3594
						¶ms, config,
3595
						&r->ddb, &pipe_wm);
3596
 
3597
		/*
3598
		 * If we end up re-computing the other pipe WM values, it's
3599
		 * because it was really needed, so we expect the WM values to
3600
		 * be different.
6084 serge 3601
		 */
5354 serge 3602
		WARN_ON(!wm_changed);
3603
 
3604
		skl_compute_wm_results(dev, ¶ms, &pipe_wm, r, intel_crtc);
3605
		r->dirty[intel_crtc->pipe] = true;
3606
	}
3607
}
3608
 
6084 serge 3609
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3610
{
3611
	watermarks->wm_linetime[pipe] = 0;
3612
	memset(watermarks->plane[pipe], 0,
3613
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3614
	memset(watermarks->plane_trans[pipe],
3615
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3616
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3617
 
3618
	/* Clear ddb entries for pipe */
3619
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3620
	memset(&watermarks->ddb.plane[pipe], 0,
3621
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3622
	memset(&watermarks->ddb.y_plane[pipe], 0,
3623
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3624
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3625
	       sizeof(struct skl_ddb_entry));
3626
 
3627
}
3628
 
5354 serge 3629
static void skl_update_wm(struct drm_crtc *crtc)
3630
{
3631
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3632
	struct drm_device *dev = crtc->dev;
3633
	struct drm_i915_private *dev_priv = dev->dev_private;
3634
	struct skl_pipe_wm_parameters params = {};
3635
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3636
	struct skl_pipe_wm pipe_wm = {};
3637
	struct intel_wm_config config = {};
3638
 
3639
 
6084 serge 3640
	/* Clear all dirty flags */
3641
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3642
 
3643
	skl_clear_wm(results, intel_crtc->pipe);
3644
 
5354 serge 3645
	skl_compute_wm_global_parameters(dev, &config);
3646
 
3647
	if (!skl_update_pipe_wm(crtc, ¶ms, &config,
3648
				&results->ddb, &pipe_wm))
3649
		return;
3650
 
3651
	skl_compute_wm_results(dev, ¶ms, &pipe_wm, results, intel_crtc);
3652
	results->dirty[intel_crtc->pipe] = true;
3653
 
3654
	skl_update_other_pipe_wm(dev, crtc, &config, results);
3655
	skl_write_wm_values(dev_priv, results);
3656
	skl_flush_wm_values(dev_priv, results);
3657
 
3658
	/* store the new configuration */
3659
	dev_priv->wm.skl_hw = *results;
3660
}
3661
 
3662
static void
3663
skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3664
		     uint32_t sprite_width, uint32_t sprite_height,
3665
		     int pixel_size, bool enabled, bool scaled)
3666
{
3667
	struct intel_plane *intel_plane = to_intel_plane(plane);
6084 serge 3668
	struct drm_framebuffer *fb = plane->state->fb;
5354 serge 3669
 
3670
	intel_plane->wm.enabled = enabled;
3671
	intel_plane->wm.scaled = scaled;
3672
	intel_plane->wm.horiz_pixels = sprite_width;
3673
	intel_plane->wm.vert_pixels = sprite_height;
6084 serge 3674
	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
5354 serge 3675
 
6084 serge 3676
	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3677
	intel_plane->wm.bytes_per_pixel =
3678
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3679
		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3680
	intel_plane->wm.y_bytes_per_pixel =
3681
		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3682
		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3683
 
3684
	/*
3685
	 * Framebuffer can be NULL on plane disable, but it does not
3686
	 * matter for watermarks if we assume no tiling in that case.
3687
	 */
3688
	if (fb)
3689
		intel_plane->wm.tiling = fb->modifier[0];
3690
	intel_plane->wm.rotation = plane->state->rotation;
3691
 
5354 serge 3692
	skl_update_wm(crtc);
3693
}
3694
 
4560 Serge 3695
static void ilk_update_wm(struct drm_crtc *crtc)
3696
{
3697
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6084 serge 3698
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4560 Serge 3699
	struct drm_device *dev = crtc->dev;
3700
	struct drm_i915_private *dev_priv = dev->dev_private;
3701
	struct ilk_wm_maximums max;
3702
	struct ilk_wm_values results = {};
4104 Serge 3703
	enum intel_ddb_partitioning partitioning;
4560 Serge 3704
	struct intel_pipe_wm pipe_wm = {};
3705
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3706
	struct intel_wm_config config = {};
4104 Serge 3707
 
6084 serge 3708
	WARN_ON(cstate->base.active != intel_crtc->active);
4104 Serge 3709
 
6084 serge 3710
	intel_compute_pipe_wm(cstate, &pipe_wm);
4560 Serge 3711
 
3712
	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3713
		return;
3714
 
3715
	intel_crtc->wm.active = pipe_wm;
3716
 
5060 serge 3717
	ilk_compute_wm_config(dev, &config);
3718
 
4560 Serge 3719
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3720
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3721
 
3722
	/* 5/6 split only in single pipe config on IVB+ */
3723
	if (INTEL_INFO(dev)->gen >= 7 &&
3724
	    config.num_pipes_active == 1 && config.sprites_enabled) {
3725
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3726
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3727
 
3728
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4104 Serge 3729
	} else {
4560 Serge 3730
		best_lp_wm = &lp_wm_1_2;
4104 Serge 3731
	}
3732
 
4560 Serge 3733
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4104 Serge 3734
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3735
 
4560 Serge 3736
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3737
 
3738
	ilk_write_wm_values(dev_priv, &results);
4104 Serge 3739
}
3740
 
5060 serge 3741
static void
3742
ilk_update_sprite_wm(struct drm_plane *plane,
5354 serge 3743
		     struct drm_crtc *crtc,
5060 serge 3744
		     uint32_t sprite_width, uint32_t sprite_height,
3745
		     int pixel_size, bool enabled, bool scaled)
4104 Serge 3746
{
4560 Serge 3747
	struct drm_device *dev = plane->dev;
5354 serge 3748
	struct intel_plane *intel_plane = to_intel_plane(plane);
4104 Serge 3749
 
4560 Serge 3750
	/*
3751
	 * IVB workaround: must disable low power watermarks for at least
3752
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3753
	 * when scaling is disabled.
3754
	 *
3755
	 * WaCxSRDisabledForSpriteScaling:ivb
3756
	 */
3757
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3758
		intel_wait_for_vblank(dev, intel_plane->pipe);
3759
 
3760
	ilk_update_wm(crtc);
4104 Serge 3761
}
3762
 
5354 serge 3763
static void skl_pipe_wm_active_state(uint32_t val,
3764
				     struct skl_pipe_wm *active,
3765
				     bool is_transwm,
3766
				     bool is_cursor,
3767
				     int i,
3768
				     int level)
3769
{
3770
	bool is_enabled = (val & PLANE_WM_EN) != 0;
3771
 
3772
	if (!is_transwm) {
3773
		if (!is_cursor) {
3774
			active->wm[level].plane_en[i] = is_enabled;
3775
			active->wm[level].plane_res_b[i] =
3776
					val & PLANE_WM_BLOCKS_MASK;
3777
			active->wm[level].plane_res_l[i] =
3778
					(val >> PLANE_WM_LINES_SHIFT) &
3779
						PLANE_WM_LINES_MASK;
3780
		} else {
6084 serge 3781
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3782
			active->wm[level].plane_res_b[PLANE_CURSOR] =
5354 serge 3783
					val & PLANE_WM_BLOCKS_MASK;
6084 serge 3784
			active->wm[level].plane_res_l[PLANE_CURSOR] =
5354 serge 3785
					(val >> PLANE_WM_LINES_SHIFT) &
3786
						PLANE_WM_LINES_MASK;
3787
		}
3788
	} else {
3789
		if (!is_cursor) {
3790
			active->trans_wm.plane_en[i] = is_enabled;
3791
			active->trans_wm.plane_res_b[i] =
3792
					val & PLANE_WM_BLOCKS_MASK;
3793
			active->trans_wm.plane_res_l[i] =
3794
					(val >> PLANE_WM_LINES_SHIFT) &
3795
						PLANE_WM_LINES_MASK;
3796
		} else {
6084 serge 3797
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3798
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
5354 serge 3799
					val & PLANE_WM_BLOCKS_MASK;
6084 serge 3800
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
5354 serge 3801
					(val >> PLANE_WM_LINES_SHIFT) &
3802
						PLANE_WM_LINES_MASK;
3803
		}
3804
	}
3805
}
3806
 
3807
static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3808
{
3809
	struct drm_device *dev = crtc->dev;
3810
	struct drm_i915_private *dev_priv = dev->dev_private;
3811
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3812
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3813
	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3814
	enum pipe pipe = intel_crtc->pipe;
3815
	int level, i, max_level;
3816
	uint32_t temp;
3817
 
3818
	max_level = ilk_wm_max_level(dev);
3819
 
3820
	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3821
 
3822
	for (level = 0; level <= max_level; level++) {
3823
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3824
			hw->plane[pipe][i][level] =
3825
					I915_READ(PLANE_WM(pipe, i, level));
6084 serge 3826
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
5354 serge 3827
	}
3828
 
3829
	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3830
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
6084 serge 3831
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
5354 serge 3832
 
6084 serge 3833
	if (!intel_crtc->active)
5354 serge 3834
		return;
3835
 
3836
	hw->dirty[pipe] = true;
3837
 
3838
	active->linetime = hw->wm_linetime[pipe];
3839
 
3840
	for (level = 0; level <= max_level; level++) {
3841
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3842
			temp = hw->plane[pipe][i][level];
3843
			skl_pipe_wm_active_state(temp, active, false,
3844
						false, i, level);
3845
		}
6084 serge 3846
		temp = hw->plane[pipe][PLANE_CURSOR][level];
5354 serge 3847
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3848
	}
3849
 
3850
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3851
		temp = hw->plane_trans[pipe][i];
3852
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3853
	}
3854
 
6084 serge 3855
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
5354 serge 3856
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3857
}
3858
 
3859
void skl_wm_get_hw_state(struct drm_device *dev)
3860
{
3861
	struct drm_i915_private *dev_priv = dev->dev_private;
3862
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3863
	struct drm_crtc *crtc;
3864
 
3865
	skl_ddb_get_hw_state(dev_priv, ddb);
3866
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3867
		skl_pipe_wm_get_hw_state(crtc);
3868
}
3869
 
4560 Serge 3870
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3031 serge 3871
{
4560 Serge 3872
	struct drm_device *dev = crtc->dev;
3873
	struct drm_i915_private *dev_priv = dev->dev_private;
3874
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3875
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3876
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3877
	enum pipe pipe = intel_crtc->pipe;
3878
	static const unsigned int wm0_pipe_reg[] = {
3879
		[PIPE_A] = WM0_PIPEA_ILK,
3880
		[PIPE_B] = WM0_PIPEB_ILK,
3881
		[PIPE_C] = WM0_PIPEC_IVB,
3882
	};
3031 serge 3883
 
4560 Serge 3884
	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3885
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3886
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3031 serge 3887
 
6084 serge 3888
	active->pipe_enabled = intel_crtc->active;
5060 serge 3889
 
3890
	if (active->pipe_enabled) {
4560 Serge 3891
		u32 tmp = hw->wm_pipe[pipe];
3031 serge 3892
 
4560 Serge 3893
		/*
3894
		 * For active pipes LP0 watermark is marked as
3895
		 * enabled, and LP1+ watermaks as disabled since
3896
		 * we can't really reverse compute them in case
3897
		 * multiple pipes are active.
3898
		 */
3899
		active->wm[0].enable = true;
3900
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3901
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3902
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3903
		active->linetime = hw->wm_linetime[pipe];
3904
	} else {
3905
		int level, max_level = ilk_wm_max_level(dev);
3031 serge 3906
 
4560 Serge 3907
		/*
3908
		 * For inactive pipes, all watermark levels
3909
		 * should be marked as enabled but zeroed,
3910
		 * which is what we'd compute them to.
3911
		 */
3912
		for (level = 0; level <= max_level; level++)
3913
			active->wm[level].enable = true;
3031 serge 3914
	}
3915
}
3916
 
6084 serge 3917
#define _FW_WM(value, plane) \
3918
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3919
#define _FW_WM_VLV(value, plane) \
3920
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3921
 
3922
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3923
			       struct vlv_wm_values *wm)
3924
{
3925
	enum pipe pipe;
3926
	uint32_t tmp;
3927
 
3928
	for_each_pipe(dev_priv, pipe) {
3929
		tmp = I915_READ(VLV_DDL(pipe));
3930
 
3931
		wm->ddl[pipe].primary =
3932
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3933
		wm->ddl[pipe].cursor =
3934
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3935
		wm->ddl[pipe].sprite[0] =
3936
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3937
		wm->ddl[pipe].sprite[1] =
3938
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3939
	}
3940
 
3941
	tmp = I915_READ(DSPFW1);
3942
	wm->sr.plane = _FW_WM(tmp, SR);
3943
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3944
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3945
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3946
 
3947
	tmp = I915_READ(DSPFW2);
3948
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3949
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3950
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3951
 
3952
	tmp = I915_READ(DSPFW3);
3953
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3954
 
3955
	if (IS_CHERRYVIEW(dev_priv)) {
3956
		tmp = I915_READ(DSPFW7_CHV);
3957
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3958
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3959
 
3960
		tmp = I915_READ(DSPFW8_CHV);
3961
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3962
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3963
 
3964
		tmp = I915_READ(DSPFW9_CHV);
3965
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3966
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3967
 
3968
		tmp = I915_READ(DSPHOWM);
3969
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3970
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3971
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3972
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3973
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3974
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3975
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3976
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3977
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3978
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3979
	} else {
3980
		tmp = I915_READ(DSPFW7);
3981
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3982
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3983
 
3984
		tmp = I915_READ(DSPHOWM);
3985
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3986
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3987
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3988
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3989
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3990
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3991
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3992
	}
3993
}
3994
 
3995
#undef _FW_WM
3996
#undef _FW_WM_VLV
3997
 
3998
void vlv_wm_get_hw_state(struct drm_device *dev)
3999
{
4000
	struct drm_i915_private *dev_priv = to_i915(dev);
4001
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4002
	struct intel_plane *plane;
4003
	enum pipe pipe;
4004
	u32 val;
4005
 
4006
	vlv_read_wm_values(dev_priv, wm);
4007
 
4008
	for_each_intel_plane(dev, plane) {
4009
		switch (plane->base.type) {
4010
			int sprite;
4011
		case DRM_PLANE_TYPE_CURSOR:
4012
			plane->wm.fifo_size = 63;
4013
			break;
4014
		case DRM_PLANE_TYPE_PRIMARY:
4015
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4016
			break;
4017
		case DRM_PLANE_TYPE_OVERLAY:
4018
			sprite = plane->plane;
4019
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4020
			break;
4021
		}
4022
	}
4023
 
4024
	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4025
	wm->level = VLV_WM_LEVEL_PM2;
4026
 
4027
	if (IS_CHERRYVIEW(dev_priv)) {
4028
		mutex_lock(&dev_priv->rps.hw_lock);
4029
 
4030
		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4031
		if (val & DSP_MAXFIFO_PM5_ENABLE)
4032
			wm->level = VLV_WM_LEVEL_PM5;
4033
 
4034
		/*
4035
		 * If DDR DVFS is disabled in the BIOS, Punit
4036
		 * will never ack the request. So if that happens
4037
		 * assume we don't have to enable/disable DDR DVFS
4038
		 * dynamically. To test that just set the REQ_ACK
4039
		 * bit to poke the Punit, but don't change the
4040
		 * HIGH/LOW bits so that we don't actually change
4041
		 * the current state.
4042
		 */
4043
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4044
		val |= FORCE_DDR_FREQ_REQ_ACK;
4045
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4046
 
4047
		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4048
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4049
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4050
				      "assuming DDR DVFS is disabled\n");
4051
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4052
		} else {
4053
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4054
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4055
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4056
		}
4057
 
4058
		mutex_unlock(&dev_priv->rps.hw_lock);
4059
	}
4060
 
4061
	for_each_pipe(dev_priv, pipe)
4062
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4063
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4064
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4065
 
4066
	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4067
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4068
}
4069
 
4560 Serge 4070
void ilk_wm_get_hw_state(struct drm_device *dev)
3031 serge 4071
{
4072
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4073
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4074
	struct drm_crtc *crtc;
3031 serge 4075
 
5060 serge 4076
	for_each_crtc(dev, crtc)
4560 Serge 4077
		ilk_pipe_wm_get_hw_state(crtc);
4104 Serge 4078
 
4560 Serge 4079
	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4080
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4081
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3031 serge 4082
 
4560 Serge 4083
	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
5060 serge 4084
	if (INTEL_INFO(dev)->gen >= 7) {
5354 serge 4085
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4086
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
5060 serge 4087
	}
3031 serge 4088
 
4560 Serge 4089
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4090
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4091
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4092
	else if (IS_IVYBRIDGE(dev))
4093
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4094
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3031 serge 4095
 
4560 Serge 4096
	hw->enable_fbc_wm =
4097
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3031 serge 4098
}
4099
 
4100
/**
4101
 * intel_update_watermarks - update FIFO watermark values based on current modes
4102
 *
4103
 * Calculate watermark values for the various WM regs based on current mode
4104
 * and plane configuration.
4105
 *
4106
 * There are several cases to deal with here:
4107
 *   - normal (i.e. non-self-refresh)
4108
 *   - self-refresh (SR) mode
4109
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4110
 *   - lines are small relative to FIFO size (buffer can hold more than 2
4111
 *     lines), so need to account for TLB latency
4112
 *
4113
 *   The normal calculation is:
4114
 *     watermark = dotclock * bytes per pixel * latency
4115
 *   where latency is platform & configuration dependent (we assume pessimal
4116
 *   values here).
4117
 *
4118
 *   The SR calculation is:
4119
 *     watermark = (trunc(latency/line time)+1) * surface width *
4120
 *       bytes per pixel
4121
 *   where
4122
 *     line time = htotal / dotclock
4123
 *     surface width = hdisplay for normal plane and 64 for cursor
4124
 *   and latency is assumed to be high, as above.
4125
 *
4126
 * The final value programmed to the register should always be rounded up,
4127
 * and include an extra 2 entries to account for clock crossings.
4128
 *
4129
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4130
 * to set the non-SR watermarks to 8.
4131
 */
4560 Serge 4132
void intel_update_watermarks(struct drm_crtc *crtc)
3031 serge 4133
{
4560 Serge 4134
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3031 serge 4135
 
4136
	if (dev_priv->display.update_wm)
4560 Serge 4137
		dev_priv->display.update_wm(crtc);
3031 serge 4138
}
4139
 
4104 Serge 4140
void intel_update_sprite_watermarks(struct drm_plane *plane,
4141
				    struct drm_crtc *crtc,
5060 serge 4142
				    uint32_t sprite_width,
4143
				    uint32_t sprite_height,
4144
				    int pixel_size,
4104 Serge 4145
				    bool enabled, bool scaled)
3031 serge 4146
{
4104 Serge 4147
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3031 serge 4148
 
4149
	if (dev_priv->display.update_sprite_wm)
5060 serge 4150
		dev_priv->display.update_sprite_wm(plane, crtc,
4151
						   sprite_width, sprite_height,
4104 Serge 4152
						   pixel_size, enabled, scaled);
3031 serge 4153
}
4154
 
4155
/**
4156
 * Lock protecting IPS related data structures
4157
 */
4158
DEFINE_SPINLOCK(mchdev_lock);
4159
 
4160
/* Global for IPS driver to get at the current i915 device. Protected by
4161
 * mchdev_lock. */
4162
static struct drm_i915_private *i915_mch_dev;
4163
 
4164
bool ironlake_set_drps(struct drm_device *dev, u8 val)
4165
{
4166
	struct drm_i915_private *dev_priv = dev->dev_private;
4167
	u16 rgvswctl;
4168
 
4169
	assert_spin_locked(&mchdev_lock);
4170
 
4171
	rgvswctl = I915_READ16(MEMSWCTL);
4172
	if (rgvswctl & MEMCTL_CMD_STS) {
4173
		DRM_DEBUG("gpu busy, RCS change rejected\n");
4174
		return false; /* still busy with another command */
4175
	}
4176
 
4177
	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4178
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4179
	I915_WRITE16(MEMSWCTL, rgvswctl);
4180
	POSTING_READ16(MEMSWCTL);
4181
 
4182
	rgvswctl |= MEMCTL_CMD_STS;
4183
	I915_WRITE16(MEMSWCTL, rgvswctl);
4184
 
4185
	return true;
4186
}
4187
 
4188
static void ironlake_enable_drps(struct drm_device *dev)
4189
{
4190
	struct drm_i915_private *dev_priv = dev->dev_private;
4191
	u32 rgvmodectl = I915_READ(MEMMODECTL);
4192
	u8 fmax, fmin, fstart, vstart;
4193
 
4194
	spin_lock_irq(&mchdev_lock);
4195
 
4196
	/* Enable temp reporting */
4197
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4198
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4199
 
4200
	/* 100ms RC evaluation intervals */
4201
	I915_WRITE(RCUPEI, 100000);
4202
	I915_WRITE(RCDNEI, 100000);
4203
 
4204
	/* Set max/min thresholds to 90ms and 80ms respectively */
4205
	I915_WRITE(RCBMAXAVG, 90000);
4206
	I915_WRITE(RCBMINAVG, 80000);
4207
 
4208
	I915_WRITE(MEMIHYST, 1);
4209
 
4210
	/* Set up min, max, and cur for interrupt handling */
4211
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4212
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4213
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4214
		MEMMODE_FSTART_SHIFT;
4215
 
6084 serge 4216
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
3031 serge 4217
		PXVFREQ_PX_SHIFT;
4218
 
4219
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4220
	dev_priv->ips.fstart = fstart;
4221
 
4222
	dev_priv->ips.max_delay = fstart;
4223
	dev_priv->ips.min_delay = fmin;
4224
	dev_priv->ips.cur_delay = fstart;
4225
 
4226
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4227
			 fmax, fmin, fstart);
4228
 
4229
	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4230
 
4231
	/*
4232
	 * Interrupts will be enabled in ironlake_irq_postinstall
4233
	 */
4234
 
4235
	I915_WRITE(VIDSTART, vstart);
4236
	POSTING_READ(VIDSTART);
4237
 
4238
	rgvmodectl |= MEMMODE_SWMODE_EN;
4239
	I915_WRITE(MEMMODECTL, rgvmodectl);
4240
 
4241
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4242
		DRM_ERROR("stuck trying to change perf mode\n");
4243
	mdelay(1);
4244
 
4245
	ironlake_set_drps(dev, fstart);
4246
 
6084 serge 4247
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4248
		I915_READ(DDREC) + I915_READ(CSIEC);
5060 serge 4249
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6084 serge 4250
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
5060 serge 4251
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3031 serge 4252
 
4253
	spin_unlock_irq(&mchdev_lock);
4254
}
4255
 
4256
static void ironlake_disable_drps(struct drm_device *dev)
4257
{
4258
	struct drm_i915_private *dev_priv = dev->dev_private;
4259
	u16 rgvswctl;
4260
 
4261
	spin_lock_irq(&mchdev_lock);
4262
 
4263
	rgvswctl = I915_READ16(MEMSWCTL);
4264
 
4265
	/* Ack interrupts, disable EFC interrupt */
4266
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4267
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4268
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4269
	I915_WRITE(DEIIR, DE_PCU_EVENT);
4270
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4271
 
4272
	/* Go back to the starting frequency */
4273
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4274
	mdelay(1);
4275
	rgvswctl |= MEMCTL_CMD_STS;
4276
	I915_WRITE(MEMSWCTL, rgvswctl);
4277
	mdelay(1);
4278
 
4279
	spin_unlock_irq(&mchdev_lock);
4280
}
4281
 
4282
/* There's a funny hw issue where the hw returns all 0 when reading from
4283
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4284
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4285
 * all limits and the gpu stuck at whatever frequency it is at atm).
4286
 */
6084 serge 4287
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3031 serge 4288
{
4289
	u32 limits;
4290
 
4291
	/* Only set the down limit when we've reached the lowest level to avoid
4292
	 * getting more interrupts, otherwise leave this clear. This prevents a
4293
	 * race in the hw when coming out of rc6: There's a tiny window where
4294
	 * the hw runs at the minimal clock before selecting the desired
4295
	 * frequency, if the down threshold expires in that window we will not
4296
	 * receive a down interrupt. */
6084 serge 4297
	if (IS_GEN9(dev_priv->dev)) {
4298
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4299
		if (val <= dev_priv->rps.min_freq_softlimit)
4300
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4301
	} else {
4302
		limits = dev_priv->rps.max_freq_softlimit << 24;
4303
		if (val <= dev_priv->rps.min_freq_softlimit)
4304
			limits |= dev_priv->rps.min_freq_softlimit << 16;
4305
	}
3031 serge 4306
 
4307
	return limits;
4308
}
4309
 
4560 Serge 4310
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4311
{
4312
	int new_power;
6084 serge 4313
	u32 threshold_up = 0, threshold_down = 0; /* in % */
4314
	u32 ei_up = 0, ei_down = 0;
4560 Serge 4315
 
4316
	new_power = dev_priv->rps.power;
4317
	switch (dev_priv->rps.power) {
4318
	case LOW_POWER:
5060 serge 4319
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4560 Serge 4320
			new_power = BETWEEN;
4321
		break;
4322
 
4323
	case BETWEEN:
5060 serge 4324
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4560 Serge 4325
			new_power = LOW_POWER;
5060 serge 4326
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4560 Serge 4327
			new_power = HIGH_POWER;
4328
		break;
4329
 
4330
	case HIGH_POWER:
5060 serge 4331
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4560 Serge 4332
			new_power = BETWEEN;
4333
		break;
4334
	}
4335
	/* Max/min bins are special */
6084 serge 4336
	if (val <= dev_priv->rps.min_freq_softlimit)
4560 Serge 4337
		new_power = LOW_POWER;
6084 serge 4338
	if (val >= dev_priv->rps.max_freq_softlimit)
4560 Serge 4339
		new_power = HIGH_POWER;
4340
	if (new_power == dev_priv->rps.power)
4341
		return;
4342
 
4343
	/* Note the units here are not exactly 1us, but 1280ns. */
4344
	switch (new_power) {
4345
	case LOW_POWER:
4346
		/* Upclock if more than 95% busy over 16ms */
6084 serge 4347
		ei_up = 16000;
4348
		threshold_up = 95;
4560 Serge 4349
 
4350
		/* Downclock if less than 85% busy over 32ms */
6084 serge 4351
		ei_down = 32000;
4352
		threshold_down = 85;
4560 Serge 4353
		break;
4354
 
4355
	case BETWEEN:
4356
		/* Upclock if more than 90% busy over 13ms */
6084 serge 4357
		ei_up = 13000;
4358
		threshold_up = 90;
4560 Serge 4359
 
4360
		/* Downclock if less than 75% busy over 32ms */
6084 serge 4361
		ei_down = 32000;
4362
		threshold_down = 75;
4560 Serge 4363
		break;
4364
 
4365
	case HIGH_POWER:
4366
		/* Upclock if more than 85% busy over 10ms */
6084 serge 4367
		ei_up = 10000;
4368
		threshold_up = 85;
4560 Serge 4369
 
4370
		/* Downclock if less than 60% busy over 32ms */
6084 serge 4371
		ei_down = 32000;
4372
		threshold_down = 60;
4560 Serge 4373
		break;
4374
	}
4375
 
6084 serge 4376
	I915_WRITE(GEN6_RP_UP_EI,
4377
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4378
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4379
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4380
 
4381
	I915_WRITE(GEN6_RP_DOWN_EI,
4382
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4383
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4384
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4385
 
4386
	 I915_WRITE(GEN6_RP_CONTROL,
4387
		    GEN6_RP_MEDIA_TURBO |
4388
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4389
		    GEN6_RP_MEDIA_IS_GFX |
4390
		    GEN6_RP_ENABLE |
4391
		    GEN6_RP_UP_BUSY_AVG |
4392
		    GEN6_RP_DOWN_IDLE_AVG);
4393
 
4560 Serge 4394
	dev_priv->rps.power = new_power;
6084 serge 4395
	dev_priv->rps.up_threshold = threshold_up;
4396
	dev_priv->rps.down_threshold = threshold_down;
4560 Serge 4397
	dev_priv->rps.last_adj = 0;
4398
}
4399
 
5060 serge 4400
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4401
{
4402
	u32 mask = 0;
4403
 
4404
	if (val > dev_priv->rps.min_freq_softlimit)
6084 serge 4405
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
5060 serge 4406
	if (val < dev_priv->rps.max_freq_softlimit)
6084 serge 4407
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
5060 serge 4408
 
4409
	mask &= dev_priv->pm_rps_events;
4410
 
6084 serge 4411
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
5060 serge 4412
}
4413
 
4414
/* gen6_set_rps is called to update the frequency request, but should also be
4415
 * called when the range (min_delay and max_delay) is modified so that we can
4416
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6084 serge 4417
static void gen6_set_rps(struct drm_device *dev, u8 val)
3031 serge 4418
{
4419
	struct drm_i915_private *dev_priv = dev->dev_private;
4420
 
6084 serge 4421
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4422
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4423
		return;
4424
 
3243 Serge 4425
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6084 serge 4426
	WARN_ON(val > dev_priv->rps.max_freq);
4427
	WARN_ON(val < dev_priv->rps.min_freq);
3031 serge 4428
 
5060 serge 4429
	/* min/max delay may still have been modified so be sure to
4430
	 * write the limits value.
4431
	 */
4432
	if (val != dev_priv->rps.cur_freq) {
5354 serge 4433
		gen6_set_rps_thresholds(dev_priv, val);
4560 Serge 4434
 
6084 serge 4435
		if (IS_GEN9(dev))
5354 serge 4436
			I915_WRITE(GEN6_RPNSWREQ,
6084 serge 4437
				   GEN9_FREQUENCY(val));
4438
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4439
			I915_WRITE(GEN6_RPNSWREQ,
5354 serge 4440
				   HSW_FREQUENCY(val));
4441
		else
4442
			I915_WRITE(GEN6_RPNSWREQ,
4443
				   GEN6_FREQUENCY(val) |
4444
				   GEN6_OFFSET(0) |
4445
				   GEN6_AGGRESSIVE_TURBO);
5060 serge 4446
	}
3031 serge 4447
 
4448
	/* Make sure we continue to get interrupts
4449
	 * until we hit the minimum or maximum frequencies.
4450
	 */
6084 serge 4451
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
5060 serge 4452
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3031 serge 4453
 
4454
	POSTING_READ(GEN6_RPNSWREQ);
4455
 
5060 serge 4456
	dev_priv->rps.cur_freq = val;
6084 serge 4457
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
3031 serge 4458
}
4459
 
6084 serge 4460
static void valleyview_set_rps(struct drm_device *dev, u8 val)
5060 serge 4461
{
6084 serge 4462
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4463
 
6084 serge 4464
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4465
	WARN_ON(val > dev_priv->rps.max_freq);
4466
	WARN_ON(val < dev_priv->rps.min_freq);
5060 serge 4467
 
6084 serge 4468
	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4469
		      "Odd GPU freq value\n"))
4470
		val &= ~1;
5060 serge 4471
 
6084 serge 4472
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5060 serge 4473
 
6084 serge 4474
	if (val != dev_priv->rps.cur_freq) {
4475
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4476
		if (!IS_CHERRYVIEW(dev_priv))
4477
			gen6_set_rps_thresholds(dev_priv, val);
4478
	}
5060 serge 4479
 
6084 serge 4480
	dev_priv->rps.cur_freq = val;
4481
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4482
}
5060 serge 4483
 
6084 serge 4484
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4485
 *
4486
 * * If Gfx is Idle, then
4487
 * 1. Forcewake Media well.
4488
 * 2. Request idle freq.
4489
 * 3. Release Forcewake of Media well.
4490
*/
4491
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4492
{
4493
	u32 val = dev_priv->rps.idle_freq;
5060 serge 4494
 
6084 serge 4495
	if (dev_priv->rps.cur_freq <= val)
4496
		return;
5060 serge 4497
 
6084 serge 4498
	/* Wake up the media well, as that takes a lot less
4499
	 * power than the Render well. */
4500
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4501
	valleyview_set_rps(dev_priv->dev, val);
4502
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5060 serge 4503
}
4504
 
6084 serge 4505
void gen6_rps_busy(struct drm_i915_private *dev_priv)
3031 serge 4506
{
4560 Serge 4507
	mutex_lock(&dev_priv->rps.hw_lock);
4508
	if (dev_priv->rps.enabled) {
6084 serge 4509
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4510
			gen6_rps_reset_ei(dev_priv);
4511
		I915_WRITE(GEN6_PMINTRMSK,
4512
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4560 Serge 4513
	}
4514
	mutex_unlock(&dev_priv->rps.hw_lock);
4515
}
4104 Serge 4516
 
6084 serge 4517
void gen6_rps_idle(struct drm_i915_private *dev_priv)
4560 Serge 4518
{
4519
	struct drm_device *dev = dev_priv->dev;
4104 Serge 4520
 
4560 Serge 4521
	mutex_lock(&dev_priv->rps.hw_lock);
4522
	if (dev_priv->rps.enabled) {
4523
		if (IS_VALLEYVIEW(dev))
6084 serge 4524
			vlv_set_rps_idle(dev_priv);
4560 Serge 4525
		else
6084 serge 4526
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4560 Serge 4527
		dev_priv->rps.last_adj = 0;
6084 serge 4528
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4560 Serge 4529
	}
4530
	mutex_unlock(&dev_priv->rps.hw_lock);
6084 serge 4531
 
4532
	spin_lock(&dev_priv->rps.client_lock);
4533
	while (!list_empty(&dev_priv->rps.clients))
4534
		list_del_init(dev_priv->rps.clients.next);
4535
	spin_unlock(&dev_priv->rps.client_lock);
4104 Serge 4536
}
4537
 
6084 serge 4538
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4539
		    struct intel_rps_client *rps,
4540
		    unsigned long submitted)
4104 Serge 4541
{
6084 serge 4542
	/* This is intentionally racy! We peek at the state here, then
4543
	 * validate inside the RPS worker.
4544
	 */
4545
	if (!(dev_priv->mm.busy &&
4546
	      dev_priv->rps.enabled &&
4547
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4548
		return;
3031 serge 4549
 
6084 serge 4550
	/* Force a RPS boost (and don't count it against the client) if
4551
	 * the GPU is severely congested.
4552
	 */
4553
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4554
		rps = NULL;
4104 Serge 4555
 
6084 serge 4556
	spin_lock(&dev_priv->rps.client_lock);
4557
	if (rps == NULL || list_empty(&rps->link)) {
4558
		spin_lock_irq(&dev_priv->irq_lock);
4559
		if (dev_priv->rps.interrupts_enabled) {
4560
			dev_priv->rps.client_boost = true;
4561
			queue_work(dev_priv->wq, &dev_priv->rps.work);
4562
		}
4563
		spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 4564
 
6084 serge 4565
		if (rps != NULL) {
4566
			list_add(&rps->link, &dev_priv->rps.clients);
4567
			rps->boosts++;
4568
		} else
4569
			dev_priv->rps.boosts++;
4570
	}
4571
	spin_unlock(&dev_priv->rps.client_lock);
4572
}
4104 Serge 4573
 
6084 serge 4574
void intel_set_rps(struct drm_device *dev, u8 val)
4575
{
4576
	if (IS_VALLEYVIEW(dev))
4577
		valleyview_set_rps(dev, val);
4578
	else
4579
		gen6_set_rps(dev, val);
4104 Serge 4580
}
4581
 
5354 serge 4582
static void gen9_disable_rps(struct drm_device *dev)
5060 serge 4583
{
4584
	struct drm_i915_private *dev_priv = dev->dev_private;
4585
 
5354 serge 4586
	I915_WRITE(GEN6_RC_CONTROL, 0);
6084 serge 4587
	I915_WRITE(GEN9_PG_ENABLE, 0);
5060 serge 4588
}
4589
 
4104 Serge 4590
static void gen6_disable_rps(struct drm_device *dev)
4591
{
4592
	struct drm_i915_private *dev_priv = dev->dev_private;
4593
 
4594
	I915_WRITE(GEN6_RC_CONTROL, 0);
4595
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4596
}
4597
 
5060 serge 4598
static void cherryview_disable_rps(struct drm_device *dev)
4599
{
4600
	struct drm_i915_private *dev_priv = dev->dev_private;
4601
 
4602
	I915_WRITE(GEN6_RC_CONTROL, 0);
4603
}
4604
 
4104 Serge 4605
static void valleyview_disable_rps(struct drm_device *dev)
4606
{
4607
	struct drm_i915_private *dev_priv = dev->dev_private;
4608
 
5354 serge 4609
	/* we're doing forcewake before Disabling RC6,
4610
	 * This what the BIOS expects when going into suspend */
6084 serge 4611
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5354 serge 4612
 
4104 Serge 4613
	I915_WRITE(GEN6_RC_CONTROL, 0);
4614
 
6084 serge 4615
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4104 Serge 4616
}
4617
 
4560 Serge 4618
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4619
{
5060 serge 4620
	if (IS_VALLEYVIEW(dev)) {
4621
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4622
			mode = GEN6_RC_CTL_RC6_ENABLE;
4623
		else
4624
			mode = 0;
4625
	}
5354 serge 4626
	if (HAS_RC6p(dev))
4627
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
6084 serge 4628
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4629
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4630
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
5354 serge 4631
 
4632
	else
4633
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4634
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4560 Serge 4635
}
4636
 
5060 serge 4637
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3031 serge 4638
{
6084 serge 4639
	/* No RC6 before Ironlake and code is gone for ilk. */
4640
	if (INTEL_INFO(dev)->gen < 6)
4104 Serge 4641
		return 0;
4642
 
3031 serge 4643
	/* Respect the kernel parameter if it is set */
5060 serge 4644
	if (enable_rc6 >= 0) {
4645
		int mask;
3031 serge 4646
 
5354 serge 4647
		if (HAS_RC6p(dev))
5060 serge 4648
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4649
			       INTEL_RC6pp_ENABLE;
4650
		else
4651
			mask = INTEL_RC6_ENABLE;
4652
 
4653
		if ((enable_rc6 & mask) != enable_rc6)
4654
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
6084 serge 4655
				      enable_rc6 & mask, enable_rc6, mask);
5060 serge 4656
 
4657
		return enable_rc6 & mask;
4658
	}
4659
 
4660
	if (IS_IVYBRIDGE(dev))
4661
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3031 serge 4662
 
6084 serge 4663
	return INTEL_RC6_ENABLE;
5060 serge 4664
}
3031 serge 4665
 
5060 serge 4666
int intel_enable_rc6(const struct drm_device *dev)
4667
{
4668
	return i915.enable_rc6;
3031 serge 4669
}
4670
 
5354 serge 4671
static void gen6_init_rps_frequencies(struct drm_device *dev)
5060 serge 4672
{
4673
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4674
	uint32_t rp_state_cap;
4675
	u32 ddcc_status = 0;
4676
	int ret;
5060 serge 4677
 
4678
	/* All of these values are in units of 50MHz */
4679
	dev_priv->rps.cur_freq		= 0;
5354 serge 4680
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
6084 serge 4681
	if (IS_BROXTON(dev)) {
4682
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4683
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4684
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4685
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4686
	} else {
4687
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4688
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4689
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4690
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4691
	}
4692
 
5060 serge 4693
	/* hw_max = RP0 until we check for overclocking */
4694
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4104 Serge 4695
 
5354 serge 4696
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
6084 serge 4697
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
5354 serge 4698
		ret = sandybridge_pcode_read(dev_priv,
4699
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4700
					&ddcc_status);
4701
		if (0 == ret)
4702
			dev_priv->rps.efficient_freq =
6084 serge 4703
				clamp_t(u8,
4704
					((ddcc_status >> 8) & 0xff),
4705
					dev_priv->rps.min_freq,
4706
					dev_priv->rps.max_freq);
5354 serge 4707
	}
4708
 
6084 serge 4709
	if (IS_SKYLAKE(dev)) {
4710
		/* Store the frequency values in 16.66 MHZ units, which is
4711
		   the natural hardware unit for SKL */
4712
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4713
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4714
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4715
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4716
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4717
	}
4718
 
4719
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4720
 
5060 serge 4721
	/* Preserve min/max settings in case of re-init */
4722
	if (dev_priv->rps.max_freq_softlimit == 0)
4723
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4104 Serge 4724
 
5354 serge 4725
	if (dev_priv->rps.min_freq_softlimit == 0) {
4726
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4727
			dev_priv->rps.min_freq_softlimit =
6084 serge 4728
				max_t(int, dev_priv->rps.efficient_freq,
4729
				      intel_freq_opcode(dev_priv, 450));
5354 serge 4730
		else
4731
			dev_priv->rps.min_freq_softlimit =
4732
				dev_priv->rps.min_freq;
4733
	}
4104 Serge 4734
}
4735
 
6084 serge 4736
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
5354 serge 4737
static void gen9_enable_rps(struct drm_device *dev)
4738
{
4739
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 4740
 
4741
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4742
 
4743
	gen6_init_rps_frequencies(dev);
4744
 
4745
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4746
	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4747
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4748
		return;
4749
	}
4750
 
4751
	/* Program defaults and thresholds for RPS*/
4752
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4753
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4754
 
4755
	/* 1 second timeout*/
4756
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4757
		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4758
 
4759
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4760
 
4761
	/* Leaning on the below call to gen6_set_rps to program/setup the
4762
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4763
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4764
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4765
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4766
 
4767
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4768
}
4769
 
4770
static void gen9_enable_rc6(struct drm_device *dev)
4771
{
4772
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4773
	struct intel_engine_cs *ring;
4774
	uint32_t rc6_mask = 0;
4775
	int unused;
4776
 
4777
	/* 1a: Software RC state - RC0 */
4778
	I915_WRITE(GEN6_RC_STATE, 0);
4779
 
4780
	/* 1b: Get forcewake during program sequence. Although the driver
4781
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 4782
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5354 serge 4783
 
4784
	/* 2a: Disable RC states. */
4785
	I915_WRITE(GEN6_RC_CONTROL, 0);
4786
 
4787
	/* 2b: Program RC6 thresholds.*/
6084 serge 4788
 
4789
	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4790
	if (IS_SKYLAKE(dev))
4791
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4792
	else
4793
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5354 serge 4794
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4795
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4796
	for_each_ring(ring, dev_priv, unused)
4797
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
6084 serge 4798
 
4799
	if (HAS_GUC_UCODE(dev))
4800
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4801
 
5354 serge 4802
	I915_WRITE(GEN6_RC_SLEEP, 0);
4803
 
6084 serge 4804
	/* 2c: Program Coarse Power Gating Policies. */
4805
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4806
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4807
 
5354 serge 4808
	/* 3a: Enable RC6 */
4809
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4810
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4811
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4812
			"on" : "off");
6084 serge 4813
	/* WaRsUseTimeoutMode */
4814
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4815
	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
4816
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4817
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4818
			   GEN7_RC_CTL_TO_MODE |
4819
			   rc6_mask);
4820
	} else {
4821
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4822
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4823
			   GEN6_RC_CTL_EI_MODE(1) |
4824
			   rc6_mask);
4825
	}
5354 serge 4826
 
6084 serge 4827
	/*
4828
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4829
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4830
	 */
4831
	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4832
	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) && (INTEL_REVID(dev) <= SKL_REVID_F0)))
4833
		I915_WRITE(GEN9_PG_ENABLE, 0);
4834
	else
4835
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4836
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5354 serge 4837
 
6084 serge 4838
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4839
 
5354 serge 4840
}
4841
 
4560 Serge 4842
static void gen8_enable_rps(struct drm_device *dev)
4843
{
4844
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4845
	struct intel_engine_cs *ring;
5354 serge 4846
	uint32_t rc6_mask = 0;
4560 Serge 4847
	int unused;
4848
 
4849
	/* 1a: Software RC state - RC0 */
4850
	I915_WRITE(GEN6_RC_STATE, 0);
4851
 
4852
	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4853
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 4854
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4560 Serge 4855
 
4856
	/* 2a: Disable RC states. */
4857
	I915_WRITE(GEN6_RC_CONTROL, 0);
4858
 
5354 serge 4859
	/* Initialize rps frequencies */
4860
	gen6_init_rps_frequencies(dev);
4560 Serge 4861
 
4862
	/* 2b: Program RC6 thresholds.*/
4863
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4864
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4865
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4866
	for_each_ring(ring, dev_priv, unused)
4867
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4868
	I915_WRITE(GEN6_RC_SLEEP, 0);
5060 serge 4869
	if (IS_BROADWELL(dev))
4870
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4871
	else
6084 serge 4872
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4560 Serge 4873
 
4874
	/* 3: Enable RC6 */
4875
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4876
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5060 serge 4877
	intel_print_rc6_info(dev, rc6_mask);
4878
	if (IS_BROADWELL(dev))
4879
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4880
				GEN7_RC_CTL_TO_MODE |
4881
				rc6_mask);
4882
	else
6084 serge 4883
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4884
				GEN6_RC_CTL_EI_MODE(1) |
4885
				rc6_mask);
4560 Serge 4886
 
4887
	/* 4 Program defaults and thresholds for RPS*/
5060 serge 4888
	I915_WRITE(GEN6_RPNSWREQ,
4889
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4890
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4891
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4560 Serge 4892
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4893
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4894
 
4895
	/* Docs recommend 900MHz, and 300 MHz respectively */
4896
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5060 serge 4897
		   dev_priv->rps.max_freq_softlimit << 24 |
4898
		   dev_priv->rps.min_freq_softlimit << 16);
4560 Serge 4899
 
4900
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4901
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4902
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4903
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4904
 
4905
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4906
 
4907
	/* 5: Enable RPS */
4908
	I915_WRITE(GEN6_RP_CONTROL,
4909
		   GEN6_RP_MEDIA_TURBO |
4910
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4911
		   GEN6_RP_MEDIA_IS_GFX |
4912
		   GEN6_RP_ENABLE |
4913
		   GEN6_RP_UP_BUSY_AVG |
4914
		   GEN6_RP_DOWN_IDLE_AVG);
4915
 
4916
	/* 6: Ring frequency + overclocking (our driver does this later */
4917
 
5354 serge 4918
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
6084 serge 4919
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4560 Serge 4920
 
6084 serge 4921
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4560 Serge 4922
}
4923
 
3031 serge 4924
static void gen6_enable_rps(struct drm_device *dev)
4925
{
4926
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 4927
	struct intel_engine_cs *ring;
4928
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3031 serge 4929
	u32 gtfifodbg;
4930
	int rc6_mode;
3243 Serge 4931
	int i, ret;
3031 serge 4932
 
3243 Serge 4933
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 4934
 
4935
	/* Here begins a magic sequence of register writes to enable
4936
	 * auto-downclocking.
4937
	 *
4938
	 * Perhaps there might be some value in exposing these to
4939
	 * userspace...
4940
	 */
4941
	I915_WRITE(GEN6_RC_STATE, 0);
4942
 
4943
	/* Clear the DBG now so we don't confuse earlier errors */
4944
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4945
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4946
		I915_WRITE(GTFIFODBG, gtfifodbg);
4947
	}
4948
 
6084 serge 4949
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
3031 serge 4950
 
5354 serge 4951
	/* Initialize rps frequencies */
4952
	gen6_init_rps_frequencies(dev);
3031 serge 4953
 
4954
	/* disable the counters and set deterministic thresholds */
4955
	I915_WRITE(GEN6_RC_CONTROL, 0);
4956
 
4957
	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4958
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4959
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4960
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4961
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4962
 
4963
	for_each_ring(ring, dev_priv, i)
4964
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4965
 
4966
	I915_WRITE(GEN6_RC_SLEEP, 0);
4967
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4560 Serge 4968
	if (IS_IVYBRIDGE(dev))
4104 Serge 4969
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4970
	else
6084 serge 4971
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3480 Serge 4972
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3031 serge 4973
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4974
 
4975
	/* Check if we are enabling RC6 */
4976
	rc6_mode = intel_enable_rc6(dev_priv->dev);
4977
	if (rc6_mode & INTEL_RC6_ENABLE)
4978
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4979
 
4980
	/* We don't use those on Haswell */
4981
	if (!IS_HASWELL(dev)) {
4982
		if (rc6_mode & INTEL_RC6p_ENABLE)
4983
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4984
 
4985
		if (rc6_mode & INTEL_RC6pp_ENABLE)
4986
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4987
	}
4988
 
4560 Serge 4989
	intel_print_rc6_info(dev, rc6_mask);
3031 serge 4990
 
4991
	I915_WRITE(GEN6_RC_CONTROL,
4992
		   rc6_mask |
4993
		   GEN6_RC_CTL_EI_MODE(1) |
4994
		   GEN6_RC_CTL_HW_ENABLE);
4995
 
4560 Serge 4996
	/* Power down if completely idle for over 50ms */
4997
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3031 serge 4998
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4999
 
3243 Serge 5000
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5060 serge 5001
	if (ret)
5002
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5003
 
6084 serge 5004
	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5005
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5006
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5060 serge 5007
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
6084 serge 5008
				 (pcu_mbox & 0xff) * 50);
5060 serge 5009
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
3031 serge 5010
	}
5011
 
4560 Serge 5012
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
6084 serge 5013
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
3031 serge 5014
 
3243 Serge 5015
	rc6vids = 0;
5016
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5017
	if (IS_GEN6(dev) && ret) {
5018
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5019
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5020
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5021
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5022
		rc6vids &= 0xffff00;
5023
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5024
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5025
		if (ret)
5026
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5027
	}
5028
 
6084 serge 5029
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
3031 serge 5030
}
5031
 
5060 serge 5032
static void __gen6_update_ring_freq(struct drm_device *dev)
3031 serge 5033
{
5034
	struct drm_i915_private *dev_priv = dev->dev_private;
5035
	int min_freq = 15;
3746 Serge 5036
	unsigned int gpu_freq;
5037
	unsigned int max_ia_freq, min_ring_freq;
6084 serge 5038
	unsigned int max_gpu_freq, min_gpu_freq;
3031 serge 5039
	int scaling_factor = 180;
4560 Serge 5040
	struct cpufreq_policy *policy;
3031 serge 5041
 
3243 Serge 5042
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 5043
 
5044
	max_ia_freq = cpufreq_quick_get_max(0);
5045
	/*
5060 serge 5046
		 * Default to measured freq if none found, PCU will ensure we
5047
		 * don't go over
3031 serge 5048
	 */
5049
		max_ia_freq = tsc_khz;
5050
 
5051
	/* Convert from kHz to MHz */
5052
	max_ia_freq /= 1000;
5053
 
4560 Serge 5054
	min_ring_freq = I915_READ(DCLK) & 0xf;
5055
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5056
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3746 Serge 5057
 
6084 serge 5058
	if (IS_SKYLAKE(dev)) {
5059
		/* Convert GT frequency to 50 HZ units */
5060
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5061
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5062
	} else {
5063
		min_gpu_freq = dev_priv->rps.min_freq;
5064
		max_gpu_freq = dev_priv->rps.max_freq;
5065
	}
5066
 
3031 serge 5067
	/*
5068
	 * For each potential GPU frequency, load a ring frequency we'd like
5069
	 * to use for memory access.  We do this by specifying the IA frequency
5070
	 * the PCU should use as a reference to determine the ring frequency.
5071
	 */
6084 serge 5072
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5073
		int diff = max_gpu_freq - gpu_freq;
3746 Serge 5074
		unsigned int ia_freq = 0, ring_freq = 0;
3031 serge 5075
 
6084 serge 5076
		if (IS_SKYLAKE(dev)) {
5077
			/*
5078
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5079
			 * No floor required for ring frequency on SKL.
5080
			 */
5081
			ring_freq = gpu_freq;
5082
		} else if (INTEL_INFO(dev)->gen >= 8) {
4560 Serge 5083
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5084
			ring_freq = max(min_ring_freq, gpu_freq);
5085
		} else if (IS_HASWELL(dev)) {
5086
			ring_freq = mult_frac(gpu_freq, 5, 4);
3746 Serge 5087
			ring_freq = max(min_ring_freq, ring_freq);
5088
			/* leave ia_freq as the default, chosen by cpufreq */
5089
		} else {
5090
			/* On older processors, there is no separate ring
5091
			 * clock domain, so in order to boost the bandwidth
5092
			 * of the ring, we need to upclock the CPU (ia_freq).
5093
			 *
5094
			 * For GPU frequencies less than 750MHz,
5095
			 * just use the lowest ring freq.
6084 serge 5096
			 */
5097
			if (gpu_freq < min_freq)
5098
				ia_freq = 800;
5099
			else
5100
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5101
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3746 Serge 5102
		}
3031 serge 5103
 
3243 Serge 5104
		sandybridge_pcode_write(dev_priv,
5105
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3746 Serge 5106
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5107
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5108
					gpu_freq);
3031 serge 5109
	}
5110
}
5111
 
5060 serge 5112
void gen6_update_ring_freq(struct drm_device *dev)
4104 Serge 5113
{
5060 serge 5114
	struct drm_i915_private *dev_priv = dev->dev_private;
5115
 
6084 serge 5116
	if (!HAS_CORE_RING_FREQ(dev))
5060 serge 5117
		return;
5118
 
5119
	mutex_lock(&dev_priv->rps.hw_lock);
5120
	__gen6_update_ring_freq(dev);
5121
	mutex_unlock(&dev_priv->rps.hw_lock);
5122
}
5123
 
5124
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5125
{
6084 serge 5126
	struct drm_device *dev = dev_priv->dev;
4104 Serge 5127
	u32 val, rp0;
5128
 
6084 serge 5129
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5060 serge 5130
 
6084 serge 5131
	switch (INTEL_INFO(dev)->eu_total) {
5132
	case 8:
5133
		/* (2 * 4) config */
5134
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5135
		break;
5136
	case 12:
5137
		/* (2 * 6) config */
5138
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5139
		break;
5140
	case 16:
5141
		/* (2 * 8) config */
5142
	default:
5143
		/* Setting (2 * 8) Min RP0 for any other combination */
5144
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5145
		break;
5146
	}
5147
 
5148
	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5149
 
5060 serge 5150
	return rp0;
5151
}
5152
 
5153
static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5154
{
5155
	u32 val, rpe;
5156
 
5157
	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5158
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5159
 
5160
	return rpe;
5161
}
5162
 
5163
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5164
{
5165
	u32 val, rp1;
5166
 
6084 serge 5167
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5168
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5060 serge 5169
 
5170
	return rp1;
5171
}
5172
 
5173
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5174
{
5175
	u32 val, rp1;
5176
 
4104 Serge 5177
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5178
 
5060 serge 5179
	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5180
 
5181
	return rp1;
5182
}
5183
 
5184
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5185
{
5186
	u32 val, rp0;
5187
 
5188
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5189
 
4104 Serge 5190
	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5191
	/* Clamp to max */
5192
	rp0 = min_t(u32, rp0, 0xea);
5193
 
5194
	return rp0;
5195
}
5196
 
5197
static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5198
{
5199
	u32 val, rpe;
5200
 
5201
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5202
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5203
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5204
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5205
 
5206
	return rpe;
5207
}
5208
 
5060 serge 5209
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4104 Serge 5210
{
5211
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5212
}
5213
 
5060 serge 5214
/* Check that the pctx buffer wasn't move under us. */
5215
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5216
{
5217
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5218
 
5219
	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5220
			     dev_priv->vlv_pctx->stolen->start);
5221
}
5222
 
5223
 
5224
/* Check that the pcbr address is not empty. */
5225
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5226
{
5227
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5228
 
5229
	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5230
}
5231
 
5232
static void cherryview_setup_pctx(struct drm_device *dev)
5233
{
5234
	struct drm_i915_private *dev_priv = dev->dev_private;
5235
	unsigned long pctx_paddr, paddr;
5236
	struct i915_gtt *gtt = &dev_priv->gtt;
5237
	u32 pcbr;
5238
	int pctx_size = 32*1024;
5239
 
5240
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5241
 
5242
	pcbr = I915_READ(VLV_PCBR);
5243
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5354 serge 5244
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5060 serge 5245
		paddr = (dev_priv->mm.stolen_base +
5246
			 (gtt->stolen_size - pctx_size));
5247
 
5248
		pctx_paddr = (paddr & (~4095));
5249
		I915_WRITE(VLV_PCBR, pctx_paddr);
5250
	}
5354 serge 5251
 
5252
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5060 serge 5253
}
5254
 
4104 Serge 5255
static void valleyview_setup_pctx(struct drm_device *dev)
5256
{
5257
	struct drm_i915_private *dev_priv = dev->dev_private;
5258
	struct drm_i915_gem_object *pctx;
5259
	unsigned long pctx_paddr;
5260
	u32 pcbr;
5261
	int pctx_size = 24*1024;
5262
 
5060 serge 5263
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5264
 
4104 Serge 5265
	pcbr = I915_READ(VLV_PCBR);
5266
	if (pcbr) {
5267
		/* BIOS set it up already, grab the pre-alloc'd space */
5268
		int pcbr_offset;
5269
 
5270
		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5271
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5272
								      pcbr_offset,
5273
								      I915_GTT_OFFSET_NONE,
5274
								      pctx_size);
5275
		goto out;
5276
	}
5277
 
5354 serge 5278
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5279
 
4104 Serge 5280
	/*
5281
	 * From the Gunit register HAS:
5282
	 * The Gfx driver is expected to program this register and ensure
5283
	 * proper allocation within Gfx stolen memory.  For example, this
5284
	 * register should be programmed such than the PCBR range does not
5285
	 * overlap with other ranges, such as the frame buffer, protected
5286
	 * memory, or any other relevant ranges.
5287
	 */
5288
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5289
	if (!pctx) {
5290
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5291
		return;
5292
	}
5293
 
5294
	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5295
	I915_WRITE(VLV_PCBR, pctx_paddr);
5296
 
5297
out:
5354 serge 5298
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4104 Serge 5299
	dev_priv->vlv_pctx = pctx;
5300
}
5301
 
5060 serge 5302
static void valleyview_cleanup_pctx(struct drm_device *dev)
5303
{
5304
	struct drm_i915_private *dev_priv = dev->dev_private;
5305
 
5306
	if (WARN_ON(!dev_priv->vlv_pctx))
5307
		return;
5308
 
5309
	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5310
	dev_priv->vlv_pctx = NULL;
5311
}
5312
 
5313
static void valleyview_init_gt_powersave(struct drm_device *dev)
5314
{
5315
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 5316
	u32 val;
5060 serge 5317
 
5318
	valleyview_setup_pctx(dev);
5319
 
5320
	mutex_lock(&dev_priv->rps.hw_lock);
5321
 
5354 serge 5322
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5323
	switch ((val >> 6) & 3) {
5324
	case 0:
5325
	case 1:
5326
		dev_priv->mem_freq = 800;
5327
		break;
5328
	case 2:
5329
		dev_priv->mem_freq = 1066;
5330
		break;
5331
	case 3:
5332
		dev_priv->mem_freq = 1333;
5333
		break;
5334
	}
5335
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5336
 
5060 serge 5337
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5338
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5339
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6084 serge 5340
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5060 serge 5341
			 dev_priv->rps.max_freq);
5342
 
5343
	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5344
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6084 serge 5345
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5346
			 dev_priv->rps.efficient_freq);
5347
 
5348
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5349
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
6084 serge 5350
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5060 serge 5351
			 dev_priv->rps.rp1_freq);
5352
 
5353
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5354
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6084 serge 5355
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5060 serge 5356
			 dev_priv->rps.min_freq);
5357
 
6084 serge 5358
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5359
 
5060 serge 5360
	/* Preserve min/max settings in case of re-init */
5361
	if (dev_priv->rps.max_freq_softlimit == 0)
5362
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5363
 
5364
	if (dev_priv->rps.min_freq_softlimit == 0)
5365
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5366
 
5367
	mutex_unlock(&dev_priv->rps.hw_lock);
5368
}
5369
 
5370
static void cherryview_init_gt_powersave(struct drm_device *dev)
5371
{
5372
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 5373
	u32 val;
5060 serge 5374
 
5375
	cherryview_setup_pctx(dev);
5376
 
5377
	mutex_lock(&dev_priv->rps.hw_lock);
5378
 
6084 serge 5379
	mutex_lock(&dev_priv->sb_lock);
5354 serge 5380
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
6084 serge 5381
	mutex_unlock(&dev_priv->sb_lock);
5354 serge 5382
 
5383
	switch ((val >> 2) & 0x7) {
5384
	case 3:
5385
		dev_priv->mem_freq = 2000;
5386
		break;
6084 serge 5387
	default:
5354 serge 5388
		dev_priv->mem_freq = 1600;
5389
		break;
5390
	}
5391
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5392
 
5060 serge 5393
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5394
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5395
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
6084 serge 5396
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5060 serge 5397
			 dev_priv->rps.max_freq);
5398
 
5399
	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5400
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
6084 serge 5401
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5402
			 dev_priv->rps.efficient_freq);
5403
 
5404
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5405
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
6084 serge 5406
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5060 serge 5407
			 dev_priv->rps.rp1_freq);
5408
 
6084 serge 5409
	/* PUnit validated range is only [RPe, RP0] */
5410
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5060 serge 5411
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6084 serge 5412
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5060 serge 5413
			 dev_priv->rps.min_freq);
5414
 
5354 serge 5415
	WARN_ONCE((dev_priv->rps.max_freq |
5416
		   dev_priv->rps.efficient_freq |
5417
		   dev_priv->rps.rp1_freq |
5418
		   dev_priv->rps.min_freq) & 1,
5419
		  "Odd GPU freq values\n");
5420
 
6084 serge 5421
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5422
 
5060 serge 5423
	/* Preserve min/max settings in case of re-init */
5424
	if (dev_priv->rps.max_freq_softlimit == 0)
5425
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5426
 
5427
	if (dev_priv->rps.min_freq_softlimit == 0)
5428
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5429
 
5430
	mutex_unlock(&dev_priv->rps.hw_lock);
5431
}
5432
 
5433
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5434
{
5435
	valleyview_cleanup_pctx(dev);
5436
}
5437
 
5438
static void cherryview_enable_rps(struct drm_device *dev)
5439
{
5440
	struct drm_i915_private *dev_priv = dev->dev_private;
5441
	struct intel_engine_cs *ring;
5442
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5443
	int i;
5444
 
5445
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5446
 
5447
	gtfifodbg = I915_READ(GTFIFODBG);
5448
	if (gtfifodbg) {
5449
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5450
				 gtfifodbg);
5451
		I915_WRITE(GTFIFODBG, gtfifodbg);
5452
	}
5453
 
5454
	cherryview_check_pctx(dev_priv);
5455
 
5456
	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5457
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6084 serge 5458
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5060 serge 5459
 
6084 serge 5460
	/*  Disable RC states. */
5461
	I915_WRITE(GEN6_RC_CONTROL, 0);
5462
 
5060 serge 5463
	/* 2a: Program RC6 thresholds.*/
5464
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5465
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5466
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5467
 
5468
	for_each_ring(ring, dev_priv, i)
5469
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5470
	I915_WRITE(GEN6_RC_SLEEP, 0);
5471
 
6084 serge 5472
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5473
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5060 serge 5474
 
5475
	/* allows RC6 residency counter to work */
5476
	I915_WRITE(VLV_COUNTER_CONTROL,
5477
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5478
				      VLV_MEDIA_RC6_COUNT_EN |
5479
				      VLV_RENDER_RC6_COUNT_EN));
5480
 
5481
	/* For now we assume BIOS is allocating and populating the PCBR  */
5482
	pcbr = I915_READ(VLV_PCBR);
5483
 
5484
	/* 3: Enable RC6 */
5485
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5486
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
6084 serge 5487
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5060 serge 5488
 
5489
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5490
 
5491
	/* 4 Program defaults and thresholds for RPS*/
6084 serge 5492
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5060 serge 5493
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5494
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5495
	I915_WRITE(GEN6_RP_UP_EI, 66000);
5496
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5497
 
5498
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5499
 
5500
	/* 5: Enable RPS */
5501
	I915_WRITE(GEN6_RP_CONTROL,
5502
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6084 serge 5503
		   GEN6_RP_MEDIA_IS_GFX |
5060 serge 5504
		   GEN6_RP_ENABLE |
5505
		   GEN6_RP_UP_BUSY_AVG |
5506
		   GEN6_RP_DOWN_IDLE_AVG);
5507
 
6084 serge 5508
	/* Setting Fixed Bias */
5509
	val = VLV_OVERRIDE_EN |
5510
		  VLV_SOC_TDP_EN |
5511
		  CHV_BIAS_CPU_50_SOC_50;
5512
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5513
 
5060 serge 5514
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5515
 
5354 serge 5516
	/* RPS code assumes GPLL is used */
5517
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5518
 
6084 serge 5519
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5060 serge 5520
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5521
 
5522
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5523
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6084 serge 5524
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5060 serge 5525
			 dev_priv->rps.cur_freq);
5526
 
5527
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6084 serge 5528
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5529
			 dev_priv->rps.efficient_freq);
5530
 
5531
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5532
 
6084 serge 5533
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5060 serge 5534
}
5535
 
4104 Serge 5536
static void valleyview_enable_rps(struct drm_device *dev)
5537
{
5538
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 5539
	struct intel_engine_cs *ring;
4560 Serge 5540
	u32 gtfifodbg, val, rc6_mode = 0;
4104 Serge 5541
	int i;
5542
 
5543
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5544
 
5060 serge 5545
	valleyview_check_pctx(dev_priv);
5546
 
4104 Serge 5547
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4560 Serge 5548
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5549
				 gtfifodbg);
4104 Serge 5550
		I915_WRITE(GTFIFODBG, gtfifodbg);
5551
	}
5552
 
4560 Serge 5553
	/* If VLV, Forcewake all wells, else re-direct to regular path */
6084 serge 5554
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4104 Serge 5555
 
6084 serge 5556
	/*  Disable RC states. */
5557
	I915_WRITE(GEN6_RC_CONTROL, 0);
5558
 
5559
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
4104 Serge 5560
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5561
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5562
	I915_WRITE(GEN6_RP_UP_EI, 66000);
5563
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5564
 
5565
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5566
 
5567
	I915_WRITE(GEN6_RP_CONTROL,
5568
		   GEN6_RP_MEDIA_TURBO |
5569
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5570
		   GEN6_RP_MEDIA_IS_GFX |
5571
		   GEN6_RP_ENABLE |
5572
		   GEN6_RP_UP_BUSY_AVG |
5573
		   GEN6_RP_DOWN_IDLE_CONT);
5574
 
5575
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5576
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5577
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5578
 
5579
	for_each_ring(ring, dev_priv, i)
5580
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5581
 
4560 Serge 5582
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4104 Serge 5583
 
5584
	/* allows RC6 residency counter to work */
4560 Serge 5585
	I915_WRITE(VLV_COUNTER_CONTROL,
5060 serge 5586
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5587
				      VLV_RENDER_RC0_COUNT_EN |
4560 Serge 5588
				      VLV_MEDIA_RC6_COUNT_EN |
5589
				      VLV_RENDER_RC6_COUNT_EN));
5060 serge 5590
 
4560 Serge 5591
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5592
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4104 Serge 5593
 
4560 Serge 5594
	intel_print_rc6_info(dev, rc6_mode);
5595
 
5596
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5597
 
6084 serge 5598
	/* Setting Fixed Bias */
5599
	val = VLV_OVERRIDE_EN |
5600
		  VLV_SOC_TDP_EN |
5601
		  VLV_BIAS_CPU_125_SOC_875;
5602
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5603
 
4104 Serge 5604
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5605
 
5354 serge 5606
	/* RPS code assumes GPLL is used */
5607
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5608
 
6084 serge 5609
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
4104 Serge 5610
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5611
 
5060 serge 5612
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4104 Serge 5613
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
6084 serge 5614
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5060 serge 5615
			 dev_priv->rps.cur_freq);
4104 Serge 5616
 
5617
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
6084 serge 5618
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5060 serge 5619
			 dev_priv->rps.efficient_freq);
4104 Serge 5620
 
5060 serge 5621
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4104 Serge 5622
 
6084 serge 5623
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4104 Serge 5624
}
5625
 
3031 serge 5626
static unsigned long intel_pxfreq(u32 vidfreq)
5627
{
5628
	unsigned long freq;
5629
	int div = (vidfreq & 0x3f0000) >> 16;
5630
	int post = (vidfreq & 0x3000) >> 12;
5631
	int pre = (vidfreq & 0x7);
5632
 
5633
	if (!pre)
5634
		return 0;
5635
 
5636
	freq = ((div * 133333) / ((1<
5637
 
5638
	return freq;
5639
}
5640
 
5641
static const struct cparams {
5642
	u16 i;
5643
	u16 t;
5644
	u16 m;
5645
	u16 c;
5646
} cparams[] = {
5647
	{ 1, 1333, 301, 28664 },
5648
	{ 1, 1066, 294, 24460 },
5649
	{ 1, 800, 294, 25192 },
5650
	{ 0, 1333, 276, 27605 },
5651
	{ 0, 1066, 276, 27605 },
5652
	{ 0, 800, 231, 23784 },
5653
};
5654
 
5655
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5656
{
5657
	u64 total_count, diff, ret;
5658
	u32 count1, count2, count3, m = 0, c = 0;
5060 serge 5659
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
3031 serge 5660
	int i;
5661
 
5662
	assert_spin_locked(&mchdev_lock);
5663
 
5664
	diff1 = now - dev_priv->ips.last_time1;
5665
 
5666
	/* Prevent division-by-zero if we are asking too fast.
5667
	 * Also, we don't get interesting results if we are polling
5668
	 * faster than once in 10ms, so just return the saved value
5669
	 * in such cases.
5670
	 */
5671
	if (diff1 <= 10)
5672
		return dev_priv->ips.chipset_power;
5673
 
5674
	count1 = I915_READ(DMIEC);
5675
	count2 = I915_READ(DDREC);
5676
	count3 = I915_READ(CSIEC);
5677
 
5678
	total_count = count1 + count2 + count3;
5679
 
5680
	/* FIXME: handle per-counter overflow */
5681
	if (total_count < dev_priv->ips.last_count1) {
5682
		diff = ~0UL - dev_priv->ips.last_count1;
5683
		diff += total_count;
5684
	} else {
5685
		diff = total_count - dev_priv->ips.last_count1;
5686
	}
5687
 
5688
	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5689
		if (cparams[i].i == dev_priv->ips.c_m &&
5690
		    cparams[i].t == dev_priv->ips.r_t) {
5691
			m = cparams[i].m;
5692
			c = cparams[i].c;
5693
			break;
5694
		}
5695
	}
5696
 
5697
	diff = div_u64(diff, diff1);
5698
	ret = ((m * diff) + c);
5699
	ret = div_u64(ret, 10);
5700
 
5701
	dev_priv->ips.last_count1 = total_count;
5702
	dev_priv->ips.last_time1 = now;
5703
 
5704
	dev_priv->ips.chipset_power = ret;
5705
 
5706
	return ret;
5707
}
5708
 
5709
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5710
{
5060 serge 5711
	struct drm_device *dev = dev_priv->dev;
3031 serge 5712
	unsigned long val;
5713
 
5060 serge 5714
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5715
		return 0;
5716
 
5717
	spin_lock_irq(&mchdev_lock);
5718
 
5719
	val = __i915_chipset_val(dev_priv);
5720
 
5721
	spin_unlock_irq(&mchdev_lock);
5722
 
5723
	return val;
5724
}
5725
 
5726
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5727
{
5728
	unsigned long m, x, b;
5729
	u32 tsfs;
5730
 
5731
	tsfs = I915_READ(TSFS);
5732
 
5733
	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5734
	x = I915_READ8(TR1);
5735
 
5736
	b = tsfs & TSFS_INTR_MASK;
5737
 
5738
	return ((m * x) / 127) - b;
5739
}
5740
 
6084 serge 5741
static int _pxvid_to_vd(u8 pxvid)
3031 serge 5742
{
6084 serge 5743
	if (pxvid == 0)
5744
		return 0;
5745
 
5746
	if (pxvid >= 8 && pxvid < 31)
5747
		pxvid = 31;
5748
 
5749
	return (pxvid + 2) * 125;
5750
}
5751
 
5752
static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5753
{
5060 serge 5754
	struct drm_device *dev = dev_priv->dev;
6084 serge 5755
	const int vd = _pxvid_to_vd(pxvid);
5756
	const int vm = vd - 1125;
5757
 
5060 serge 5758
	if (INTEL_INFO(dev)->is_mobile)
6084 serge 5759
		return vm > 0 ? vm : 0;
5760
 
5761
	return vd;
3031 serge 5762
}
5763
 
5764
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5765
{
5060 serge 5766
	u64 now, diff, diffms;
3031 serge 5767
	u32 count;
5768
 
5769
	assert_spin_locked(&mchdev_lock);
5770
 
5060 serge 5771
	now = ktime_get_raw_ns();
5772
	diffms = now - dev_priv->ips.last_time2;
5773
	do_div(diffms, NSEC_PER_MSEC);
3031 serge 5774
 
5775
	/* Don't divide by 0 */
5776
	if (!diffms)
5777
		return;
5778
 
5779
	count = I915_READ(GFXEC);
5780
 
5781
	if (count < dev_priv->ips.last_count2) {
5782
		diff = ~0UL - dev_priv->ips.last_count2;
5783
		diff += count;
5784
	} else {
5785
		diff = count - dev_priv->ips.last_count2;
5786
	}
5787
 
5788
	dev_priv->ips.last_count2 = count;
5789
	dev_priv->ips.last_time2 = now;
5790
 
5791
	/* More magic constants... */
5792
	diff = diff * 1181;
5793
	diff = div_u64(diff, diffms * 10);
5794
	dev_priv->ips.gfx_power = diff;
5795
}
5796
 
5797
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5798
{
5060 serge 5799
	struct drm_device *dev = dev_priv->dev;
5800
 
5801
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5802
		return;
5803
 
5804
	spin_lock_irq(&mchdev_lock);
5805
 
5806
	__i915_update_gfx_val(dev_priv);
5807
 
5808
	spin_unlock_irq(&mchdev_lock);
5809
}
5810
 
5811
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5812
{
5813
	unsigned long t, corr, state1, corr2, state2;
5814
	u32 pxvid, ext_v;
5815
 
5816
	assert_spin_locked(&mchdev_lock);
5817
 
6084 serge 5818
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
3031 serge 5819
	pxvid = (pxvid >> 24) & 0x7f;
5820
	ext_v = pvid_to_extvid(dev_priv, pxvid);
5821
 
5822
	state1 = ext_v;
5823
 
5824
	t = i915_mch_val(dev_priv);
5825
 
5826
	/* Revel in the empirically derived constants */
5827
 
5828
	/* Correction factor in 1/100000 units */
5829
	if (t > 80)
5830
		corr = ((t * 2349) + 135940);
5831
	else if (t >= 50)
5832
		corr = ((t * 964) + 29317);
5833
	else /* < 50 */
5834
		corr = ((t * 301) + 1004);
5835
 
5836
	corr = corr * ((150142 * state1) / 10000 - 78642);
5837
	corr /= 100000;
5838
	corr2 = (corr * dev_priv->ips.corr);
5839
 
5840
	state2 = (corr2 * state1) / 10000;
5841
	state2 /= 100; /* convert to mW */
5842
 
5843
	__i915_update_gfx_val(dev_priv);
5844
 
5845
	return dev_priv->ips.gfx_power + state2;
5846
}
5847
 
5848
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5849
{
5060 serge 5850
	struct drm_device *dev = dev_priv->dev;
3031 serge 5851
	unsigned long val;
5852
 
5060 serge 5853
	if (INTEL_INFO(dev)->gen != 5)
3031 serge 5854
		return 0;
5855
 
5856
	spin_lock_irq(&mchdev_lock);
5857
 
5858
	val = __i915_gfx_val(dev_priv);
5859
 
5860
	spin_unlock_irq(&mchdev_lock);
5861
 
5862
	return val;
5863
}
5864
 
5865
/**
5866
 * i915_read_mch_val - return value for IPS use
5867
 *
5868
 * Calculate and return a value for the IPS driver to use when deciding whether
5869
 * we have thermal and power headroom to increase CPU or GPU power budget.
5870
 */
5871
unsigned long i915_read_mch_val(void)
5872
{
5873
	struct drm_i915_private *dev_priv;
5874
	unsigned long chipset_val, graphics_val, ret = 0;
5875
 
5876
	spin_lock_irq(&mchdev_lock);
5877
	if (!i915_mch_dev)
5878
		goto out_unlock;
5879
	dev_priv = i915_mch_dev;
5880
 
5881
	chipset_val = __i915_chipset_val(dev_priv);
5882
	graphics_val = __i915_gfx_val(dev_priv);
5883
 
5884
	ret = chipset_val + graphics_val;
5885
 
5886
out_unlock:
5887
	spin_unlock_irq(&mchdev_lock);
5888
 
5889
	return ret;
5890
}
5891
EXPORT_SYMBOL_GPL(i915_read_mch_val);
5892
 
5893
/**
5894
 * i915_gpu_raise - raise GPU frequency limit
5895
 *
5896
 * Raise the limit; IPS indicates we have thermal headroom.
5897
 */
5898
bool i915_gpu_raise(void)
5899
{
5900
	struct drm_i915_private *dev_priv;
5901
	bool ret = true;
5902
 
5903
	spin_lock_irq(&mchdev_lock);
5904
	if (!i915_mch_dev) {
5905
		ret = false;
5906
		goto out_unlock;
5907
	}
5908
	dev_priv = i915_mch_dev;
5909
 
5910
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5911
		dev_priv->ips.max_delay--;
5912
 
5913
out_unlock:
5914
	spin_unlock_irq(&mchdev_lock);
5915
 
5916
	return ret;
5917
}
5918
EXPORT_SYMBOL_GPL(i915_gpu_raise);
5919
 
5920
/**
5921
 * i915_gpu_lower - lower GPU frequency limit
5922
 *
5923
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5924
 * frequency maximum.
5925
 */
5926
bool i915_gpu_lower(void)
5927
{
5928
	struct drm_i915_private *dev_priv;
5929
	bool ret = true;
5930
 
5931
	spin_lock_irq(&mchdev_lock);
5932
	if (!i915_mch_dev) {
5933
		ret = false;
5934
		goto out_unlock;
5935
	}
5936
	dev_priv = i915_mch_dev;
5937
 
5938
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5939
		dev_priv->ips.max_delay++;
5940
 
5941
out_unlock:
5942
	spin_unlock_irq(&mchdev_lock);
5943
 
5944
	return ret;
5945
}
5946
EXPORT_SYMBOL_GPL(i915_gpu_lower);
5947
 
5948
/**
5949
 * i915_gpu_busy - indicate GPU business to IPS
5950
 *
5951
 * Tell the IPS driver whether or not the GPU is busy.
5952
 */
5953
bool i915_gpu_busy(void)
5954
{
5955
	struct drm_i915_private *dev_priv;
5060 serge 5956
	struct intel_engine_cs *ring;
3031 serge 5957
	bool ret = false;
5958
	int i;
5959
 
5960
	spin_lock_irq(&mchdev_lock);
5961
	if (!i915_mch_dev)
5962
		goto out_unlock;
5963
	dev_priv = i915_mch_dev;
5964
 
5965
	for_each_ring(ring, dev_priv, i)
5966
		ret |= !list_empty(&ring->request_list);
5967
 
5968
out_unlock:
5969
	spin_unlock_irq(&mchdev_lock);
5970
 
5971
	return ret;
5972
}
5973
EXPORT_SYMBOL_GPL(i915_gpu_busy);
5974
 
5975
/**
5976
 * i915_gpu_turbo_disable - disable graphics turbo
5977
 *
5978
 * Disable graphics turbo by resetting the max frequency and setting the
5979
 * current frequency to the default.
5980
 */
5981
bool i915_gpu_turbo_disable(void)
5982
{
5983
	struct drm_i915_private *dev_priv;
5984
	bool ret = true;
5985
 
5986
	spin_lock_irq(&mchdev_lock);
5987
	if (!i915_mch_dev) {
5988
		ret = false;
5989
		goto out_unlock;
5990
	}
5991
	dev_priv = i915_mch_dev;
5992
 
5993
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5994
 
5995
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5996
		ret = false;
5997
 
5998
out_unlock:
5999
	spin_unlock_irq(&mchdev_lock);
6000
 
6001
	return ret;
6002
}
6003
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6004
 
6005
/**
6006
 * Tells the intel_ips driver that the i915 driver is now loaded, if
6007
 * IPS got loaded first.
6008
 *
6009
 * This awkward dance is so that neither module has to depend on the
6010
 * other in order for IPS to do the appropriate communication of
6011
 * GPU turbo limits to i915.
6012
 */
6013
static void
6014
ips_ping_for_i915_load(void)
6015
{
6016
	void (*link)(void);
6017
 
6018
//   link = symbol_get(ips_link_to_i915_driver);
6019
//   if (link) {
6020
//       link();
6021
//       symbol_put(ips_link_to_i915_driver);
6022
//   }
6023
}
6024
 
6025
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6026
{
6027
	/* We only register the i915 ips part with intel-ips once everything is
6028
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6029
	spin_lock_irq(&mchdev_lock);
6030
	i915_mch_dev = dev_priv;
6031
	spin_unlock_irq(&mchdev_lock);
6032
 
6033
	ips_ping_for_i915_load();
6034
}
6035
 
6036
void intel_gpu_ips_teardown(void)
6037
{
6038
	spin_lock_irq(&mchdev_lock);
6039
	i915_mch_dev = NULL;
6040
	spin_unlock_irq(&mchdev_lock);
6041
}
5060 serge 6042
 
3031 serge 6043
static void intel_init_emon(struct drm_device *dev)
6044
{
6045
	struct drm_i915_private *dev_priv = dev->dev_private;
6046
	u32 lcfuse;
6047
	u8 pxw[16];
6048
	int i;
6049
 
6050
	/* Disable to program */
6051
	I915_WRITE(ECR, 0);
6052
	POSTING_READ(ECR);
6053
 
6054
	/* Program energy weights for various events */
6055
	I915_WRITE(SDEW, 0x15040d00);
6056
	I915_WRITE(CSIEW0, 0x007f0000);
6057
	I915_WRITE(CSIEW1, 0x1e220004);
6058
	I915_WRITE(CSIEW2, 0x04000004);
6059
 
6060
	for (i = 0; i < 5; i++)
6084 serge 6061
		I915_WRITE(PEW(i), 0);
3031 serge 6062
	for (i = 0; i < 3; i++)
6084 serge 6063
		I915_WRITE(DEW(i), 0);
3031 serge 6064
 
6065
	/* Program P-state weights to account for frequency power adjustment */
6066
	for (i = 0; i < 16; i++) {
6084 serge 6067
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
3031 serge 6068
		unsigned long freq = intel_pxfreq(pxvidfreq);
6069
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6070
			PXVFREQ_PX_SHIFT;
6071
		unsigned long val;
6072
 
6073
		val = vid * vid;
6074
		val *= (freq / 1000);
6075
		val *= 255;
6076
		val /= (127*127*900);
6077
		if (val > 0xff)
6078
			DRM_ERROR("bad pxval: %ld\n", val);
6079
		pxw[i] = val;
6080
	}
6081
	/* Render standby states get 0 weight */
6082
	pxw[14] = 0;
6083
	pxw[15] = 0;
6084
 
6085
	for (i = 0; i < 4; i++) {
6086
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6087
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6084 serge 6088
		I915_WRITE(PXW(i), val);
3031 serge 6089
	}
6090
 
6091
	/* Adjust magic regs to magic values (more experimental results) */
6092
	I915_WRITE(OGW0, 0);
6093
	I915_WRITE(OGW1, 0);
6094
	I915_WRITE(EG0, 0x00007f00);
6095
	I915_WRITE(EG1, 0x0000000e);
6096
	I915_WRITE(EG2, 0x000e0000);
6097
	I915_WRITE(EG3, 0x68000300);
6098
	I915_WRITE(EG4, 0x42000000);
6099
	I915_WRITE(EG5, 0x00140031);
6100
	I915_WRITE(EG6, 0);
6101
	I915_WRITE(EG7, 0);
6102
 
6103
	for (i = 0; i < 8; i++)
6084 serge 6104
		I915_WRITE(PXWL(i), 0);
3031 serge 6105
 
6106
	/* Enable PMON + select events */
6107
	I915_WRITE(ECR, 0x80000019);
6108
 
6109
	lcfuse = I915_READ(LCFUSE02);
6110
 
6111
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6112
}
6113
 
5060 serge 6114
void intel_init_gt_powersave(struct drm_device *dev)
6115
{
6116
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6117
 
6118
	if (IS_CHERRYVIEW(dev))
6119
		cherryview_init_gt_powersave(dev);
6120
	else if (IS_VALLEYVIEW(dev))
6121
		valleyview_init_gt_powersave(dev);
6122
}
6123
 
6124
void intel_cleanup_gt_powersave(struct drm_device *dev)
6125
{
6126
	if (IS_CHERRYVIEW(dev))
6127
		return;
6128
	else if (IS_VALLEYVIEW(dev))
6129
		valleyview_cleanup_gt_powersave(dev);
6130
}
6131
 
5354 serge 6132
static void gen6_suspend_rps(struct drm_device *dev)
6133
{
6134
	struct drm_i915_private *dev_priv = dev->dev_private;
6135
 
6136
//   flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6137
 
6084 serge 6138
	gen6_disable_rps_interrupts(dev);
5354 serge 6139
}
6140
 
5060 serge 6141
/**
6142
 * intel_suspend_gt_powersave - suspend PM work and helper threads
6143
 * @dev: drm device
6144
 *
6145
 * We don't want to disable RC6 or other features here, we just want
6146
 * to make sure any work we've queued has finished and won't bother
6147
 * us while we're suspended.
6148
 */
6149
void intel_suspend_gt_powersave(struct drm_device *dev)
6150
{
6151
	struct drm_i915_private *dev_priv = dev->dev_private;
6152
 
5354 serge 6153
	if (INTEL_INFO(dev)->gen < 6)
6154
		return;
5060 serge 6155
 
5354 serge 6156
	gen6_suspend_rps(dev);
5060 serge 6157
 
6158
	/* Force GPU to min freq during suspend */
6159
	gen6_rps_idle(dev_priv);
6160
}
6161
 
3031 serge 6162
void intel_disable_gt_powersave(struct drm_device *dev)
6163
{
3243 Serge 6164
	struct drm_i915_private *dev_priv = dev->dev_private;
6165
 
3031 serge 6166
	if (IS_IRONLAKE_M(dev)) {
6167
		ironlake_disable_drps(dev);
4293 Serge 6168
	} else if (INTEL_INFO(dev)->gen >= 6) {
5060 serge 6169
		intel_suspend_gt_powersave(dev);
6170
 
3482 Serge 6171
		mutex_lock(&dev_priv->rps.hw_lock);
5354 serge 6172
		if (INTEL_INFO(dev)->gen >= 9)
6173
			gen9_disable_rps(dev);
6174
		else if (IS_CHERRYVIEW(dev))
5060 serge 6175
			cherryview_disable_rps(dev);
6176
		else if (IS_VALLEYVIEW(dev))
4104 Serge 6177
			valleyview_disable_rps(dev);
6178
		else
6084 serge 6179
			gen6_disable_rps(dev);
5354 serge 6180
 
4560 Serge 6181
		dev_priv->rps.enabled = false;
3480 Serge 6182
		mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 6183
	}
6184
}
6185
 
3482 Serge 6186
static void intel_gen6_powersave_work(struct work_struct *work)
6187
{
6188
	struct drm_i915_private *dev_priv =
6189
		container_of(work, struct drm_i915_private,
6190
			     rps.delayed_resume_work.work);
6191
	struct drm_device *dev = dev_priv->dev;
6192
 
6193
	mutex_lock(&dev_priv->rps.hw_lock);
4104 Serge 6194
 
6084 serge 6195
	gen6_reset_rps_interrupts(dev);
5354 serge 6196
 
5060 serge 6197
	if (IS_CHERRYVIEW(dev)) {
6198
		cherryview_enable_rps(dev);
6199
	} else if (IS_VALLEYVIEW(dev)) {
4104 Serge 6200
		valleyview_enable_rps(dev);
5354 serge 6201
	} else if (INTEL_INFO(dev)->gen >= 9) {
6084 serge 6202
		gen9_enable_rc6(dev);
5354 serge 6203
		gen9_enable_rps(dev);
6084 serge 6204
		if (IS_SKYLAKE(dev))
6205
			__gen6_update_ring_freq(dev);
4560 Serge 6206
	} else if (IS_BROADWELL(dev)) {
6207
		gen8_enable_rps(dev);
5060 serge 6208
		__gen6_update_ring_freq(dev);
4104 Serge 6209
	} else {
6084 serge 6210
		gen6_enable_rps(dev);
5060 serge 6211
		__gen6_update_ring_freq(dev);
4104 Serge 6212
	}
6084 serge 6213
 
6214
	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6215
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6216
 
6217
	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6218
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6219
 
4560 Serge 6220
	dev_priv->rps.enabled = true;
5354 serge 6221
 
6084 serge 6222
	gen6_enable_rps_interrupts(dev);
5354 serge 6223
 
3482 Serge 6224
	mutex_unlock(&dev_priv->rps.hw_lock);
5060 serge 6225
 
6226
	intel_runtime_pm_put(dev_priv);
3482 Serge 6227
}
6228
 
3031 serge 6229
void intel_enable_gt_powersave(struct drm_device *dev)
6230
{
3243 Serge 6231
	struct drm_i915_private *dev_priv = dev->dev_private;
6232
 
6084 serge 6233
	/* Powersaving is controlled by the host when inside a VM */
6234
	if (intel_vgpu_active(dev))
6235
		return;
6236
 
3031 serge 6237
	if (IS_IRONLAKE_M(dev)) {
5060 serge 6238
		mutex_lock(&dev->struct_mutex);
3031 serge 6239
		ironlake_enable_drps(dev);
6240
		intel_init_emon(dev);
5060 serge 6241
		mutex_unlock(&dev->struct_mutex);
6242
	} else if (INTEL_INFO(dev)->gen >= 6) {
3243 Serge 6243
		/*
6244
		 * PCU communication is slow and this doesn't need to be
6245
		 * done at any specific time, so do this out of our fast path
6246
		 * to make resume and init faster.
5060 serge 6247
		 *
6248
		 * We depend on the HW RC6 power context save/restore
6249
		 * mechanism when entering D3 through runtime PM suspend. So
6250
		 * disable RPM until RPS/RC6 is properly setup. We can only
6251
		 * get here via the driver load/system resume/runtime resume
6252
		 * paths, so the _noresume version is enough (and in case of
6253
		 * runtime resume it's necessary).
3243 Serge 6254
		 */
5060 serge 6255
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6256
					   round_jiffies_up_relative(HZ)))
6257
			intel_runtime_pm_get_noresume(dev_priv);
3031 serge 6258
	}
6259
}
6260
 
5060 serge 6261
void intel_reset_gt_powersave(struct drm_device *dev)
6262
{
6263
	struct drm_i915_private *dev_priv = dev->dev_private;
6264
 
5354 serge 6265
	if (INTEL_INFO(dev)->gen < 6)
6266
		return;
6267
 
6268
	gen6_suspend_rps(dev);
5060 serge 6269
	dev_priv->rps.enabled = false;
6270
}
6271
 
3243 Serge 6272
static void ibx_init_clock_gating(struct drm_device *dev)
6273
{
6274
	struct drm_i915_private *dev_priv = dev->dev_private;
6275
 
6276
	/*
6277
	 * On Ibex Peak and Cougar Point, we need to disable clock
6278
	 * gating for the panel power sequencer or it will fail to
6279
	 * start up when no ports are active.
6280
	 */
6281
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6282
}
6283
 
4104 Serge 6284
static void g4x_disable_trickle_feed(struct drm_device *dev)
6285
{
6286
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 6287
	enum pipe pipe;
4104 Serge 6288
 
5354 serge 6289
	for_each_pipe(dev_priv, pipe) {
4104 Serge 6290
		I915_WRITE(DSPCNTR(pipe),
6291
			   I915_READ(DSPCNTR(pipe)) |
6292
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6084 serge 6293
 
6294
		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6295
		POSTING_READ(DSPSURF(pipe));
4104 Serge 6296
	}
6297
}
6298
 
4560 Serge 6299
static void ilk_init_lp_watermarks(struct drm_device *dev)
6300
{
6301
	struct drm_i915_private *dev_priv = dev->dev_private;
6302
 
6303
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6304
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6305
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6306
 
6307
	/*
6308
	 * Don't touch WM1S_LP_EN here.
6309
	 * Doing so could cause underruns.
6310
	 */
6311
}
6312
 
3031 serge 6313
static void ironlake_init_clock_gating(struct drm_device *dev)
6314
{
6315
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6316
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 6317
 
4104 Serge 6318
	/*
6319
	 * Required for FBC
6320
	 * WaFbcDisableDpfcClockGating:ilk
6321
	 */
3243 Serge 6322
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6323
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6324
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3031 serge 6325
 
6326
	I915_WRITE(PCH_3DCGDIS0,
6327
		   MARIUNIT_CLOCK_GATE_DISABLE |
6328
		   SVSMUNIT_CLOCK_GATE_DISABLE);
6329
	I915_WRITE(PCH_3DCGDIS1,
6330
		   VFMUNIT_CLOCK_GATE_DISABLE);
6331
 
6332
	/*
6333
	 * According to the spec the following bits should be set in
6334
	 * order to enable memory self-refresh
6335
	 * The bit 22/21 of 0x42004
6336
	 * The bit 5 of 0x42020
6337
	 * The bit 15 of 0x45000
6338
	 */
6339
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6340
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6341
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3243 Serge 6342
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3031 serge 6343
	I915_WRITE(DISP_ARB_CTL,
6344
		   (I915_READ(DISP_ARB_CTL) |
6345
		    DISP_FBC_WM_DIS));
6346
 
4560 Serge 6347
	ilk_init_lp_watermarks(dev);
6348
 
3031 serge 6349
	/*
6350
	 * Based on the document from hardware guys the following bits
6351
	 * should be set unconditionally in order to enable FBC.
6352
	 * The bit 22 of 0x42000
6353
	 * The bit 22 of 0x42004
6354
	 * The bit 7,8,9 of 0x42020.
6355
	 */
6356
	if (IS_IRONLAKE_M(dev)) {
4104 Serge 6357
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
3031 serge 6358
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6359
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6360
			   ILK_FBCQ_DIS);
6361
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6362
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6363
			   ILK_DPARB_GATE);
6364
	}
6365
 
3243 Serge 6366
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6367
 
3031 serge 6368
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6369
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6370
		   ILK_ELPIN_409_SELECT);
6371
	I915_WRITE(_3D_CHICKEN2,
6372
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6373
		   _3D_CHICKEN2_WM_READ_PIPELINED);
3243 Serge 6374
 
4104 Serge 6375
	/* WaDisableRenderCachePipelinedFlush:ilk */
3243 Serge 6376
	I915_WRITE(CACHE_MODE_0,
6377
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6378
 
5060 serge 6379
	/* WaDisable_RenderCache_OperationalFlush:ilk */
6380
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6381
 
4104 Serge 6382
	g4x_disable_trickle_feed(dev);
6383
 
3243 Serge 6384
	ibx_init_clock_gating(dev);
3031 serge 6385
}
6386
 
3243 Serge 6387
static void cpt_init_clock_gating(struct drm_device *dev)
6388
{
6389
	struct drm_i915_private *dev_priv = dev->dev_private;
6390
	int pipe;
3746 Serge 6391
	uint32_t val;
3243 Serge 6392
 
6393
	/*
6394
	 * On Ibex Peak and Cougar Point, we need to disable clock
6395
	 * gating for the panel power sequencer or it will fail to
6396
	 * start up when no ports are active.
6397
	 */
4280 Serge 6398
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6399
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6400
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
3243 Serge 6401
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6402
		   DPLS_EDP_PPS_FIX_DIS);
6403
	/* The below fixes the weird display corruption, a few pixels shifted
6404
	 * downward, on (only) LVDS of some HP laptops with IVY.
6405
	 */
5354 serge 6406
	for_each_pipe(dev_priv, pipe) {
3746 Serge 6407
		val = I915_READ(TRANS_CHICKEN2(pipe));
6408
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6409
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4104 Serge 6410
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
3746 Serge 6411
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6412
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6413
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6414
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6415
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6416
	}
3243 Serge 6417
	/* WADP0ClockGatingDisable */
5354 serge 6418
	for_each_pipe(dev_priv, pipe) {
3243 Serge 6419
		I915_WRITE(TRANS_CHICKEN1(pipe),
6420
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6421
	}
6422
}
6423
 
3480 Serge 6424
static void gen6_check_mch_setup(struct drm_device *dev)
6425
{
6426
	struct drm_i915_private *dev_priv = dev->dev_private;
6427
	uint32_t tmp;
6428
 
6429
	tmp = I915_READ(MCH_SSKPD);
5060 serge 6430
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6431
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6432
			      tmp);
3480 Serge 6433
}
6434
 
3031 serge 6435
static void gen6_init_clock_gating(struct drm_device *dev)
6436
{
6437
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6438
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 6439
 
3243 Serge 6440
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3031 serge 6441
 
6442
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6443
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6444
		   ILK_ELPIN_409_SELECT);
6445
 
4104 Serge 6446
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3243 Serge 6447
	I915_WRITE(_3D_CHICKEN,
6448
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6449
 
5060 serge 6450
	/* WaDisable_RenderCache_OperationalFlush:snb */
6451
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6452
 
6453
	/*
6454
	 * BSpec recoomends 8x4 when MSAA is used,
6455
	 * however in practice 16x4 seems fastest.
6456
	 *
6457
	 * Note that PS/WM thread counts depend on the WIZ hashing
6458
	 * disable bit, which we don't touch here, but it's good
6459
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6460
	 */
6461
	I915_WRITE(GEN6_GT_MODE,
5354 serge 6462
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6463
 
4560 Serge 6464
	ilk_init_lp_watermarks(dev);
3031 serge 6465
 
6466
	I915_WRITE(CACHE_MODE_0,
6467
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6468
 
6469
	I915_WRITE(GEN6_UCGCTL1,
6470
		   I915_READ(GEN6_UCGCTL1) |
6471
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6472
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6473
 
6474
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6475
	 * gating disable must be set.  Failure to set it results in
6476
	 * flickering pixels due to Z write ordering failures after
6477
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6478
	 * Sanctuary and Tropics, and apparently anything else with
6479
	 * alpha test or pixel discard.
6480
	 *
6481
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6482
	 * but we didn't debug actual testcases to find it out.
6483
	 *
5060 serge 6484
	 * WaDisableRCCUnitClockGating:snb
6485
	 * WaDisableRCPBUnitClockGating:snb
3031 serge 6486
	 */
6487
	I915_WRITE(GEN6_UCGCTL2,
6488
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6489
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6490
 
5060 serge 6491
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6492
	I915_WRITE(_3D_CHICKEN3,
6493
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
3031 serge 6494
 
6495
	/*
5060 serge 6496
	 * Bspec says:
6497
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6498
	 * 3DSTATE_SF number of SF output attributes is more than 16."
6499
	 */
6500
	I915_WRITE(_3D_CHICKEN3,
6501
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6502
 
6503
	/*
3031 serge 6504
	 * According to the spec the following bits should be
6505
	 * set in order to enable memory self-refresh and fbc:
6506
	 * The bit21 and bit22 of 0x42000
6507
	 * The bit21 and bit22 of 0x42004
6508
	 * The bit5 and bit7 of 0x42020
6509
	 * The bit14 of 0x70180
6510
	 * The bit14 of 0x71180
4104 Serge 6511
	 *
6512
	 * WaFbcAsynchFlipDisableFbcQueue:snb
3031 serge 6513
	 */
6514
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6515
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6516
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6517
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6518
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6519
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3243 Serge 6520
	I915_WRITE(ILK_DSPCLK_GATE_D,
6521
		   I915_READ(ILK_DSPCLK_GATE_D) |
6522
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6523
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3031 serge 6524
 
4104 Serge 6525
	g4x_disable_trickle_feed(dev);
3031 serge 6526
 
3243 Serge 6527
	cpt_init_clock_gating(dev);
3480 Serge 6528
 
6529
	gen6_check_mch_setup(dev);
3031 serge 6530
}
6531
 
6532
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6533
{
6534
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6535
 
5060 serge 6536
	/*
6537
	 * WaVSThreadDispatchOverride:ivb,vlv
6538
	 *
6539
	 * This actually overrides the dispatch
6540
	 * mode for all thread types.
6541
	 */
3031 serge 6542
	reg &= ~GEN7_FF_SCHED_MASK;
6543
	reg |= GEN7_FF_TS_SCHED_HW;
6544
	reg |= GEN7_FF_VS_SCHED_HW;
6545
	reg |= GEN7_FF_DS_SCHED_HW;
6546
 
6547
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6548
}
6549
 
3243 Serge 6550
static void lpt_init_clock_gating(struct drm_device *dev)
6551
{
6552
	struct drm_i915_private *dev_priv = dev->dev_private;
6553
 
6554
	/*
6555
	 * TODO: this bit should only be enabled when really needed, then
6556
	 * disabled when not needed anymore in order to save power.
6557
	 */
6084 serge 6558
	if (HAS_PCH_LPT_LP(dev))
3243 Serge 6559
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6560
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6561
			   PCH_LP_PARTITION_LEVEL_DISABLE);
4104 Serge 6562
 
6563
	/* WADPOClockGatingDisable:hsw */
6084 serge 6564
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6565
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
4104 Serge 6566
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3243 Serge 6567
}
6568
 
4104 Serge 6569
static void lpt_suspend_hw(struct drm_device *dev)
6570
{
6571
	struct drm_i915_private *dev_priv = dev->dev_private;
6572
 
6084 serge 6573
	if (HAS_PCH_LPT_LP(dev)) {
4104 Serge 6574
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6575
 
6576
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6577
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6578
	}
6579
}
6580
 
5354 serge 6581
static void broadwell_init_clock_gating(struct drm_device *dev)
3031 serge 6582
{
6583
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 6584
	enum pipe pipe;
6084 serge 6585
	uint32_t misccpctl;
3031 serge 6586
 
6084 serge 6587
	ilk_init_lp_watermarks(dev);
3031 serge 6588
 
4560 Serge 6589
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6590
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6591
 
6592
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6593
	I915_WRITE(CHICKEN_PAR1_1,
6594
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6595
 
6596
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5354 serge 6597
	for_each_pipe(dev_priv, pipe) {
5060 serge 6598
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6599
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6600
			   BDW_DPRS_MASK_VBLANK_SRD);
4560 Serge 6601
	}
6602
 
6603
	/* WaVSRefCountFullforceMissDisable:bdw */
6604
	/* WaDSRefCountFullforceMissDisable:bdw */
6605
	I915_WRITE(GEN7_FF_THREAD_MODE,
6606
		   I915_READ(GEN7_FF_THREAD_MODE) &
6607
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5060 serge 6608
 
6609
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6610
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6611
 
6612
	/* WaDisableSDEUnitClockGating:bdw */
6613
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6614
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6615
 
6084 serge 6616
	/*
6617
	 * WaProgramL3SqcReg1Default:bdw
6618
	 * WaTempDisableDOPClkGating:bdw
6619
	 */
6620
	misccpctl = I915_READ(GEN7_MISCCPCTL);
6621
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6622
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6623
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6624
 
6625
	/*
6626
	 * WaGttCachingOffByDefault:bdw
6627
	 * GTT cache may not work with big pages, so if those
6628
	 * are ever enabled GTT cache may need to be disabled.
6629
	 */
6630
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6631
 
5354 serge 6632
	lpt_init_clock_gating(dev);
4560 Serge 6633
}
6634
 
6635
static void haswell_init_clock_gating(struct drm_device *dev)
6636
{
6637
	struct drm_i915_private *dev_priv = dev->dev_private;
6638
 
6639
	ilk_init_lp_watermarks(dev);
6640
 
4104 Serge 6641
	/* L3 caching of data atomics doesn't work -- disable it. */
6642
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6643
	I915_WRITE(HSW_ROW_CHICKEN3,
6644
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6645
 
6646
	/* This is required by WaCatErrorRejectionIssue:hsw */
3031 serge 6647
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6648
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6649
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6650
 
4104 Serge 6651
	/* WaVSRefCountFullforceMissDisable:hsw */
5060 serge 6652
	I915_WRITE(GEN7_FF_THREAD_MODE,
6653
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
3031 serge 6654
 
5060 serge 6655
	/* WaDisable_RenderCache_OperationalFlush:hsw */
6656
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6657
 
6658
	/* enable HiZ Raw Stall Optimization */
6659
	I915_WRITE(CACHE_MODE_0_GEN7,
6660
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6661
 
4104 Serge 6662
	/* WaDisable4x2SubspanOptimization:hsw */
3031 serge 6663
	I915_WRITE(CACHE_MODE_1,
6664
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6665
 
5060 serge 6666
	/*
6667
	 * BSpec recommends 8x4 when MSAA is used,
6668
	 * however in practice 16x4 seems fastest.
6669
	 *
6670
	 * Note that PS/WM thread counts depend on the WIZ hashing
6671
	 * disable bit, which we don't touch here, but it's good
6672
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6673
	 */
6674
	I915_WRITE(GEN7_GT_MODE,
5354 serge 6675
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6676
 
6084 serge 6677
	/* WaSampleCChickenBitEnable:hsw */
6678
	I915_WRITE(HALF_SLICE_CHICKEN3,
6679
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6680
 
4104 Serge 6681
	/* WaSwitchSolVfFArbitrationPriority:hsw */
3746 Serge 6682
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6683
 
4104 Serge 6684
	/* WaRsPkgCStateDisplayPMReq:hsw */
6685
	I915_WRITE(CHICKEN_PAR1_1,
6686
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
3031 serge 6687
 
3243 Serge 6688
	lpt_init_clock_gating(dev);
3031 serge 6689
}
6690
 
6691
static void ivybridge_init_clock_gating(struct drm_device *dev)
6692
{
6693
	struct drm_i915_private *dev_priv = dev->dev_private;
6694
	uint32_t snpcr;
6695
 
4560 Serge 6696
	ilk_init_lp_watermarks(dev);
3031 serge 6697
 
3243 Serge 6698
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 6699
 
4104 Serge 6700
	/* WaDisableEarlyCull:ivb */
3243 Serge 6701
	I915_WRITE(_3D_CHICKEN3,
6702
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6703
 
4104 Serge 6704
	/* WaDisableBackToBackFlipFix:ivb */
3031 serge 6705
	I915_WRITE(IVB_CHICKEN3,
6706
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6707
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6708
 
4104 Serge 6709
	/* WaDisablePSDDualDispatchEnable:ivb */
3243 Serge 6710
	if (IS_IVB_GT1(dev))
6711
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6712
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6713
 
5060 serge 6714
	/* WaDisable_RenderCache_OperationalFlush:ivb */
6715
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6716
 
4104 Serge 6717
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
3031 serge 6718
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6719
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6720
 
4104 Serge 6721
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
3031 serge 6722
	I915_WRITE(GEN7_L3CNTLREG1,
6723
			GEN7_WA_FOR_GEN7_L3_CONTROL);
6724
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6084 serge 6725
		   GEN7_WA_L3_CHICKEN_MODE);
3243 Serge 6726
	if (IS_IVB_GT1(dev))
6727
		I915_WRITE(GEN7_ROW_CHICKEN2,
6728
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5060 serge 6729
	else {
6730
		/* must write both registers */
6731
		I915_WRITE(GEN7_ROW_CHICKEN2,
6732
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3243 Serge 6733
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6734
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5060 serge 6735
	}
3031 serge 6736
 
4104 Serge 6737
	/* WaForceL3Serialization:ivb */
3243 Serge 6738
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6739
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6740
 
5060 serge 6741
	/*
3031 serge 6742
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 6743
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
3031 serge 6744
	 */
6745
	I915_WRITE(GEN6_UCGCTL2,
5060 serge 6746
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3031 serge 6747
 
4104 Serge 6748
	/* This is required by WaCatErrorRejectionIssue:ivb */
3031 serge 6749
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6750
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6751
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6752
 
4104 Serge 6753
	g4x_disable_trickle_feed(dev);
3031 serge 6754
 
6755
	gen7_setup_fixed_func_scheduler(dev_priv);
6756
 
5060 serge 6757
	if (0) { /* causes HiZ corruption on ivb:gt1 */
6758
		/* enable HiZ Raw Stall Optimization */
6759
		I915_WRITE(CACHE_MODE_0_GEN7,
6760
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6761
	}
6762
 
4104 Serge 6763
	/* WaDisable4x2SubspanOptimization:ivb */
3031 serge 6764
	I915_WRITE(CACHE_MODE_1,
6765
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6766
 
5060 serge 6767
	/*
6768
	 * BSpec recommends 8x4 when MSAA is used,
6769
	 * however in practice 16x4 seems fastest.
6770
	 *
6771
	 * Note that PS/WM thread counts depend on the WIZ hashing
6772
	 * disable bit, which we don't touch here, but it's good
6773
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6774
	 */
6775
	I915_WRITE(GEN7_GT_MODE,
5354 serge 6776
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5060 serge 6777
 
3031 serge 6778
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6779
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6780
	snpcr |= GEN6_MBC_SNPCR_MED;
6781
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3243 Serge 6782
 
3746 Serge 6783
	if (!HAS_PCH_NOP(dev))
6084 serge 6784
		cpt_init_clock_gating(dev);
3480 Serge 6785
 
6786
	gen6_check_mch_setup(dev);
3031 serge 6787
}
6788
 
6084 serge 6789
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6790
{
6791
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6792
 
6793
	/*
6794
	 * Disable trickle feed and enable pnd deadline calculation
6795
	 */
6796
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6797
	I915_WRITE(CBR1_VLV, 0);
6798
}
6799
 
3031 serge 6800
static void valleyview_init_clock_gating(struct drm_device *dev)
6801
{
6802
	struct drm_i915_private *dev_priv = dev->dev_private;
6803
 
6084 serge 6804
	vlv_init_display_clock_gating(dev_priv);
3031 serge 6805
 
4104 Serge 6806
	/* WaDisableEarlyCull:vlv */
3243 Serge 6807
	I915_WRITE(_3D_CHICKEN3,
6808
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6809
 
4104 Serge 6810
	/* WaDisableBackToBackFlipFix:vlv */
3031 serge 6811
	I915_WRITE(IVB_CHICKEN3,
6812
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6813
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6814
 
5060 serge 6815
	/* WaPsdDispatchEnable:vlv */
4104 Serge 6816
	/* WaDisablePSDDualDispatchEnable:vlv */
3243 Serge 6817
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3746 Serge 6818
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6819
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3243 Serge 6820
 
5060 serge 6821
	/* WaDisable_RenderCache_OperationalFlush:vlv */
6822
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6823
 
4104 Serge 6824
	/* WaForceL3Serialization:vlv */
3243 Serge 6825
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6826
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6827
 
4104 Serge 6828
	/* WaDisableDopClockGating:vlv */
3243 Serge 6829
	I915_WRITE(GEN7_ROW_CHICKEN2,
6830
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6831
 
4104 Serge 6832
	/* This is required by WaCatErrorRejectionIssue:vlv */
3031 serge 6833
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6834
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6835
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6836
 
5060 serge 6837
	gen7_setup_fixed_func_scheduler(dev_priv);
6838
 
6839
	/*
3031 serge 6840
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 6841
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
3031 serge 6842
	 */
6843
	I915_WRITE(GEN6_UCGCTL2,
5060 serge 6844
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3031 serge 6845
 
5060 serge 6846
	/* WaDisableL3Bank2xClockGate:vlv
6847
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6848
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6849
	I915_WRITE(GEN7_UCGCTL4,
6850
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3031 serge 6851
 
5060 serge 6852
	/*
6853
	 * BSpec says this must be set, even though
6854
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6855
	 */
3031 serge 6856
	I915_WRITE(CACHE_MODE_1,
6857
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6858
 
6859
	/*
6084 serge 6860
	 * BSpec recommends 8x4 when MSAA is used,
6861
	 * however in practice 16x4 seems fastest.
6862
	 *
6863
	 * Note that PS/WM thread counts depend on the WIZ hashing
6864
	 * disable bit, which we don't touch here, but it's good
6865
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6866
	 */
6867
	I915_WRITE(GEN7_GT_MODE,
6868
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6869
 
6870
	/*
5060 serge 6871
	 * WaIncreaseL3CreditsForVLVB0:vlv
6872
	 * This is the hardware default actually.
6873
	 */
6874
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6875
 
6876
	/*
4104 Serge 6877
	 * WaDisableVLVClockGating_VBIIssue:vlv
3243 Serge 6878
	 * Disable clock gating on th GCFG unit to prevent a delay
6879
	 * in the reporting of vblank events.
6880
	 */
5060 serge 6881
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6882
}
3746 Serge 6883
 
5060 serge 6884
static void cherryview_init_clock_gating(struct drm_device *dev)
6885
{
6886
	struct drm_i915_private *dev_priv = dev->dev_private;
6887
 
6084 serge 6888
	vlv_init_display_clock_gating(dev_priv);
5060 serge 6889
 
6890
	/* WaVSRefCountFullforceMissDisable:chv */
6891
	/* WaDSRefCountFullforceMissDisable:chv */
6892
	I915_WRITE(GEN7_FF_THREAD_MODE,
6893
		   I915_READ(GEN7_FF_THREAD_MODE) &
6894
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6895
 
6896
	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6897
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6898
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6899
 
6900
	/* WaDisableCSUnitClockGating:chv */
6901
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6902
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6903
 
6904
	/* WaDisableSDEUnitClockGating:chv */
6905
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6906
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6084 serge 6907
 
6908
	/*
6909
	 * GTT cache may not work with big pages, so if those
6910
	 * are ever enabled GTT cache may need to be disabled.
6911
	 */
6912
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
3031 serge 6913
}
6914
 
6915
static void g4x_init_clock_gating(struct drm_device *dev)
6916
{
6917
	struct drm_i915_private *dev_priv = dev->dev_private;
6918
	uint32_t dspclk_gate;
6919
 
6920
	I915_WRITE(RENCLK_GATE_D1, 0);
6921
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6922
		   GS_UNIT_CLOCK_GATE_DISABLE |
6923
		   CL_UNIT_CLOCK_GATE_DISABLE);
6924
	I915_WRITE(RAMCLK_GATE_D, 0);
6925
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6926
		OVRUNIT_CLOCK_GATE_DISABLE |
6927
		OVCUNIT_CLOCK_GATE_DISABLE;
6928
	if (IS_GM45(dev))
6929
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6930
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3243 Serge 6931
 
6932
	/* WaDisableRenderCachePipelinedFlush */
6933
	I915_WRITE(CACHE_MODE_0,
6934
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4104 Serge 6935
 
5060 serge 6936
	/* WaDisable_RenderCache_OperationalFlush:g4x */
6937
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6938
 
4104 Serge 6939
	g4x_disable_trickle_feed(dev);
3031 serge 6940
}
6941
 
6942
static void crestline_init_clock_gating(struct drm_device *dev)
6943
{
6944
	struct drm_i915_private *dev_priv = dev->dev_private;
6945
 
6946
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6947
	I915_WRITE(RENCLK_GATE_D2, 0);
6948
	I915_WRITE(DSPCLK_GATE_D, 0);
6949
	I915_WRITE(RAMCLK_GATE_D, 0);
6950
	I915_WRITE16(DEUC, 0);
4104 Serge 6951
	I915_WRITE(MI_ARB_STATE,
6952
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5060 serge 6953
 
6954
	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6955
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6956
}
6957
 
6958
static void broadwater_init_clock_gating(struct drm_device *dev)
6959
{
6960
	struct drm_i915_private *dev_priv = dev->dev_private;
6961
 
6962
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6963
		   I965_RCC_CLOCK_GATE_DISABLE |
6964
		   I965_RCPB_CLOCK_GATE_DISABLE |
6965
		   I965_ISC_CLOCK_GATE_DISABLE |
6966
		   I965_FBC_CLOCK_GATE_DISABLE);
6967
	I915_WRITE(RENCLK_GATE_D2, 0);
4104 Serge 6968
	I915_WRITE(MI_ARB_STATE,
6969
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5060 serge 6970
 
6971
	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6972
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
3031 serge 6973
}
6974
 
6975
static void gen3_init_clock_gating(struct drm_device *dev)
6976
{
6977
	struct drm_i915_private *dev_priv = dev->dev_private;
6978
	u32 dstate = I915_READ(D_STATE);
6979
 
6980
	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6981
		DSTATE_DOT_CLOCK_GATING;
6982
	I915_WRITE(D_STATE, dstate);
6983
 
6984
	if (IS_PINEVIEW(dev))
6985
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6986
 
6987
	/* IIR "flip pending" means done if this bit is set */
6988
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5060 serge 6989
 
6990
	/* interrupts should cause a wake up from C3 */
6991
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6992
 
6993
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6994
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5354 serge 6995
 
6996
	I915_WRITE(MI_ARB_STATE,
6997
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 6998
}
6999
 
7000
static void i85x_init_clock_gating(struct drm_device *dev)
7001
{
7002
	struct drm_i915_private *dev_priv = dev->dev_private;
7003
 
7004
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5060 serge 7005
 
7006
	/* interrupts should cause a wake up from C3 */
7007
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7008
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5354 serge 7009
 
7010
	I915_WRITE(MEM_MODE,
7011
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 7012
}
7013
 
7014
static void i830_init_clock_gating(struct drm_device *dev)
7015
{
7016
	struct drm_i915_private *dev_priv = dev->dev_private;
7017
 
7018
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5354 serge 7019
 
7020
	I915_WRITE(MEM_MODE,
7021
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7022
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
3031 serge 7023
}
7024
 
7025
void intel_init_clock_gating(struct drm_device *dev)
7026
{
7027
	struct drm_i915_private *dev_priv = dev->dev_private;
7028
 
6084 serge 7029
	if (dev_priv->display.init_clock_gating)
7030
		dev_priv->display.init_clock_gating(dev);
3031 serge 7031
}
7032
 
4104 Serge 7033
void intel_suspend_hw(struct drm_device *dev)
7034
{
7035
	if (HAS_PCH_LPT(dev))
7036
		lpt_suspend_hw(dev);
7037
}
7038
 
5354 serge 7039
/* Set up chip specific power management-related functions */
7040
void intel_init_pm(struct drm_device *dev)
7041
{
7042
	struct drm_i915_private *dev_priv = dev->dev_private;
7043
 
6084 serge 7044
	intel_fbc_init(dev_priv);
5354 serge 7045
 
3031 serge 7046
	/* For cxsr */
7047
	if (IS_PINEVIEW(dev))
7048
		i915_pineview_get_mem_freq(dev);
7049
	else if (IS_GEN5(dev))
7050
		i915_ironlake_get_mem_freq(dev);
7051
 
7052
	/* For FIFO watermark updates */
5354 serge 7053
	if (INTEL_INFO(dev)->gen >= 9) {
7054
		skl_setup_wm_latency(dev);
7055
 
6084 serge 7056
		if (IS_BROXTON(dev))
7057
			dev_priv->display.init_clock_gating =
7058
				bxt_init_clock_gating;
5354 serge 7059
		dev_priv->display.update_wm = skl_update_wm;
7060
		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7061
	} else if (HAS_PCH_SPLIT(dev)) {
5060 serge 7062
		ilk_setup_wm_latency(dev);
4104 Serge 7063
 
4560 Serge 7064
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7065
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7066
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7067
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7068
			dev_priv->display.update_wm = ilk_update_wm;
7069
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6084 serge 7070
		} else {
7071
			DRM_DEBUG_KMS("Failed to read display plane latency. "
7072
				      "Disable CxSR\n");
7073
		}
4560 Serge 7074
 
7075
		if (IS_GEN5(dev))
7076
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7077
		else if (IS_GEN6(dev))
3031 serge 7078
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4560 Serge 7079
		else if (IS_IVYBRIDGE(dev))
3031 serge 7080
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4560 Serge 7081
		else if (IS_HASWELL(dev))
3031 serge 7082
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4560 Serge 7083
		else if (INTEL_INFO(dev)->gen == 8)
5354 serge 7084
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
5060 serge 7085
	} else if (IS_CHERRYVIEW(dev)) {
6084 serge 7086
		vlv_setup_wm_latency(dev);
7087
 
7088
		dev_priv->display.update_wm = vlv_update_wm;
5060 serge 7089
		dev_priv->display.init_clock_gating =
7090
			cherryview_init_clock_gating;
3031 serge 7091
	} else if (IS_VALLEYVIEW(dev)) {
6084 serge 7092
		vlv_setup_wm_latency(dev);
7093
 
7094
		dev_priv->display.update_wm = vlv_update_wm;
3031 serge 7095
		dev_priv->display.init_clock_gating =
7096
			valleyview_init_clock_gating;
7097
	} else if (IS_PINEVIEW(dev)) {
7098
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7099
					    dev_priv->is_ddr3,
7100
					    dev_priv->fsb_freq,
7101
					    dev_priv->mem_freq)) {
7102
			DRM_INFO("failed to find known CxSR latency "
7103
				 "(found ddr%s fsb freq %d, mem freq %d), "
7104
				 "disabling CxSR\n",
7105
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7106
				 dev_priv->fsb_freq, dev_priv->mem_freq);
7107
			/* Disable CxSR and never update its watermark again */
5060 serge 7108
			intel_set_memory_cxsr(dev_priv, false);
3031 serge 7109
			dev_priv->display.update_wm = NULL;
7110
		} else
7111
			dev_priv->display.update_wm = pineview_update_wm;
7112
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7113
	} else if (IS_G4X(dev)) {
7114
		dev_priv->display.update_wm = g4x_update_wm;
7115
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7116
	} else if (IS_GEN4(dev)) {
7117
		dev_priv->display.update_wm = i965_update_wm;
7118
		if (IS_CRESTLINE(dev))
7119
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7120
		else if (IS_BROADWATER(dev))
7121
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7122
	} else if (IS_GEN3(dev)) {
7123
		dev_priv->display.update_wm = i9xx_update_wm;
7124
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7125
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4560 Serge 7126
	} else if (IS_GEN2(dev)) {
7127
		if (INTEL_INFO(dev)->num_pipes == 1) {
7128
			dev_priv->display.update_wm = i845_update_wm;
7129
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7130
		} else {
7131
			dev_priv->display.update_wm = i9xx_update_wm;
6084 serge 7132
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4560 Serge 7133
		}
7134
 
7135
		if (IS_I85X(dev) || IS_I865G(dev))
6084 serge 7136
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4560 Serge 7137
		else
7138
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
3031 serge 7139
	} else {
4560 Serge 7140
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
3031 serge 7141
	}
7142
}
7143
 
5354 serge 7144
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
3243 Serge 7145
{
7146
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 7147
 
3243 Serge 7148
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7149
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7150
		return -EAGAIN;
7151
	}
3031 serge 7152
 
3243 Serge 7153
	I915_WRITE(GEN6_PCODE_DATA, *val);
5354 serge 7154
	I915_WRITE(GEN6_PCODE_DATA1, 0);
3243 Serge 7155
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7156
 
7157
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7158
		     500)) {
7159
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7160
		return -ETIMEDOUT;
6084 serge 7161
	}
3243 Serge 7162
 
7163
	*val = I915_READ(GEN6_PCODE_DATA);
7164
	I915_WRITE(GEN6_PCODE_DATA, 0);
7165
 
7166
	return 0;
7167
}
7168
 
5354 serge 7169
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
3243 Serge 7170
{
7171
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7172
 
7173
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7174
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7175
		return -EAGAIN;
6084 serge 7176
	}
3243 Serge 7177
 
7178
	I915_WRITE(GEN6_PCODE_DATA, val);
7179
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7180
 
7181
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7182
		     500)) {
7183
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7184
		return -ETIMEDOUT;
3031 serge 7185
	}
3243 Serge 7186
 
7187
	I915_WRITE(GEN6_PCODE_DATA, 0);
7188
 
7189
	return 0;
3031 serge 7190
}
3746 Serge 7191
 
5354 serge 7192
static int vlv_gpu_freq_div(unsigned int czclk_freq)
3746 Serge 7193
{
5354 serge 7194
	switch (czclk_freq) {
7195
	case 200:
7196
		return 10;
7197
	case 267:
7198
		return 12;
7199
	case 320:
7200
	case 333:
7201
		return 16;
7202
	case 400:
7203
		return 20;
4104 Serge 7204
	default:
7205
		return -1;
7206
	}
5354 serge 7207
}
3746 Serge 7208
 
5354 serge 7209
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7210
{
6084 serge 7211
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5354 serge 7212
 
7213
	div = vlv_gpu_freq_div(czclk_freq);
7214
	if (div < 0)
7215
		return div;
7216
 
7217
	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
4104 Serge 7218
}
3746 Serge 7219
 
5060 serge 7220
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
4104 Serge 7221
{
6084 serge 7222
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
3746 Serge 7223
 
5354 serge 7224
	mul = vlv_gpu_freq_div(czclk_freq);
7225
	if (mul < 0)
7226
		return mul;
3746 Serge 7227
 
5354 serge 7228
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
3746 Serge 7229
}
7230
 
5060 serge 7231
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7232
{
6084 serge 7233
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5060 serge 7234
 
5354 serge 7235
	div = vlv_gpu_freq_div(czclk_freq) / 2;
7236
	if (div < 0)
7237
		return div;
5060 serge 7238
 
5354 serge 7239
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
5060 serge 7240
}
7241
 
7242
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7243
{
6084 serge 7244
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
5060 serge 7245
 
5354 serge 7246
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
7247
	if (mul < 0)
7248
		return mul;
5060 serge 7249
 
5354 serge 7250
	/* CHV needs even values */
7251
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
5060 serge 7252
}
7253
 
6084 serge 7254
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
5060 serge 7255
{
6084 serge 7256
	if (IS_GEN9(dev_priv->dev))
7257
		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7258
					 GEN9_FREQ_SCALER);
7259
	else if (IS_CHERRYVIEW(dev_priv->dev))
7260
		return chv_gpu_freq(dev_priv, val);
7261
	else if (IS_VALLEYVIEW(dev_priv->dev))
7262
		return byt_gpu_freq(dev_priv, val);
7263
	else
7264
		return val * GT_FREQUENCY_MULTIPLIER;
7265
}
5060 serge 7266
 
6084 serge 7267
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7268
{
7269
	if (IS_GEN9(dev_priv->dev))
7270
		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7271
					 GT_FREQUENCY_MULTIPLIER);
7272
	else if (IS_CHERRYVIEW(dev_priv->dev))
7273
		return chv_freq_opcode(dev_priv, val);
5060 serge 7274
	else if (IS_VALLEYVIEW(dev_priv->dev))
6084 serge 7275
		return byt_freq_opcode(dev_priv, val);
7276
	else
7277
		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7278
}
5060 serge 7279
 
6084 serge 7280
struct request_boost {
7281
	struct work_struct work;
7282
	struct drm_i915_gem_request *req;
7283
};
7284
 
7285
static void __intel_rps_boost_work(struct work_struct *work)
7286
{
7287
	struct request_boost *boost = container_of(work, struct request_boost, work);
7288
	struct drm_i915_gem_request *req = boost->req;
7289
 
7290
	if (!i915_gem_request_completed(req, true))
7291
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7292
			       req->emitted_jiffies);
7293
 
7294
	i915_gem_request_unreference__unlocked(req);
7295
	kfree(boost);
5060 serge 7296
}
7297
 
6084 serge 7298
void intel_queue_rps_boost_for_request(struct drm_device *dev,
7299
				       struct drm_i915_gem_request *req)
5060 serge 7300
{
6084 serge 7301
	struct request_boost *boost;
5060 serge 7302
 
6084 serge 7303
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7304
		return;
5060 serge 7305
 
6084 serge 7306
	if (i915_gem_request_completed(req, true))
7307
		return;
7308
 
7309
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7310
	if (boost == NULL)
7311
		return;
7312
 
7313
	i915_gem_request_reference(req);
7314
	boost->req = req;
7315
 
7316
	INIT_WORK(&boost->work, __intel_rps_boost_work);
7317
	queue_work(to_i915(dev)->wq, &boost->work);
5060 serge 7318
}
7319
 
4560 Serge 7320
void intel_pm_setup(struct drm_device *dev)
3746 Serge 7321
{
4104 Serge 7322
	struct drm_i915_private *dev_priv = dev->dev_private;
7323
 
4560 Serge 7324
	mutex_init(&dev_priv->rps.hw_lock);
6084 serge 7325
	spin_lock_init(&dev_priv->rps.client_lock);
4560 Serge 7326
 
4104 Serge 7327
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7328
			  intel_gen6_powersave_work);
6084 serge 7329
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7330
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7331
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
5060 serge 7332
 
7333
	dev_priv->pm.suspended = false;
3746 Serge 7334
}