Subversion Repositories Kolibri OS

Rev

Rev 4539 | Rev 5060 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3031 serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eugeni Dodonov 
25
 *
26
 */
27
 
28
//#include 
29
#include "i915_drv.h"
30
#include "intel_drv.h"
31
#include 
32
//#include "../../../platform/x86/intel_ips.h"
33
#include 
34
 
4560 Serge 35
#include 
36
 
3031 serge 37
#define FORCEWAKE_ACK_TIMEOUT_MS 2
38
 
39
#define assert_spin_locked(x)
40
 
41
void getrawmonotonic(struct timespec *ts);
42
 
4560 Serge 43
static inline void outb(u8 v, u16 port)
44
{
45
    asm volatile("outb %0,%1" : : "a" (v), "dN" (port));
46
}
47
static inline u8 inb(u16 port)
48
{
49
    u8 v;
50
    asm volatile("inb %1,%0" : "=a" (v) : "dN" (port));
51
    return v;
52
}
3031 serge 53
 
54
 
4560 Serge 55
/**
56
 * RC6 is a special power stage which allows the GPU to enter an very
57
 * low-voltage mode when idle, using down to 0V while at this stage.  This
58
 * stage is entered automatically when the GPU is idle when RC6 support is
59
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
60
 *
61
 * There are different RC6 modes available in Intel GPU, which differentiate
62
 * among each other with the latency required to enter and leave RC6 and
63
 * voltage consumed by the GPU in different states.
64
 *
65
 * The combination of the following flags define which states GPU is allowed
66
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
67
 * RC6pp is deepest RC6. Their support by hardware varies according to the
68
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
69
 * which brings the most power savings; deeper states save more power, but
70
 * require higher latency to switch to and wake up.
71
 */
72
#define INTEL_RC6_ENABLE			(1<<0)
73
#define INTEL_RC6p_ENABLE			(1<<1)
74
#define INTEL_RC6pp_ENABLE			(1<<2)
75
 
3031 serge 76
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
77
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
78
 * during in-memory transfers and, therefore, reduce the power packet.
79
 *
80
 * The benefits of FBC are mostly visible with solid backgrounds and
81
 * variation-less patterns.
82
 *
83
 * FBC-related functionality can be enabled by the means of the
84
 * i915.i915_enable_fbc parameter
85
 */
86
 
87
static void i8xx_disable_fbc(struct drm_device *dev)
88
{
89
	struct drm_i915_private *dev_priv = dev->dev_private;
90
	u32 fbc_ctl;
91
 
92
	/* Disable compression */
93
	fbc_ctl = I915_READ(FBC_CONTROL);
94
	if ((fbc_ctl & FBC_CTL_EN) == 0)
95
		return;
96
 
97
	fbc_ctl &= ~FBC_CTL_EN;
98
	I915_WRITE(FBC_CONTROL, fbc_ctl);
99
 
100
	/* Wait for compressing bit to clear */
101
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
102
		DRM_DEBUG_KMS("FBC idle timed out\n");
103
		return;
104
	}
105
 
106
	DRM_DEBUG_KMS("disabled FBC\n");
107
}
108
 
4560 Serge 109
static void i8xx_enable_fbc(struct drm_crtc *crtc)
3031 serge 110
{
111
	struct drm_device *dev = crtc->dev;
112
	struct drm_i915_private *dev_priv = dev->dev_private;
113
	struct drm_framebuffer *fb = crtc->fb;
114
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
115
	struct drm_i915_gem_object *obj = intel_fb->obj;
116
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
117
	int cfb_pitch;
118
	int plane, i;
4560 Serge 119
	u32 fbc_ctl;
3031 serge 120
 
4104 Serge 121
	cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
3031 serge 122
	if (fb->pitches[0] < cfb_pitch)
123
		cfb_pitch = fb->pitches[0];
124
 
4560 Serge 125
	/* FBC_CTL wants 32B or 64B units */
126
	if (IS_GEN2(dev))
127
		cfb_pitch = (cfb_pitch / 32) - 1;
128
	else
3031 serge 129
	cfb_pitch = (cfb_pitch / 64) - 1;
130
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
131
 
132
	/* Clear old tags */
133
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
134
		I915_WRITE(FBC_TAG + (i * 4), 0);
135
 
4560 Serge 136
	if (IS_GEN4(dev)) {
137
		u32 fbc_ctl2;
138
 
3031 serge 139
	/* Set it up... */
140
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
141
	fbc_ctl2 |= plane;
142
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
143
	I915_WRITE(FBC_FENCE_OFF, crtc->y);
4560 Serge 144
	}
3031 serge 145
 
146
	/* enable it... */
4560 Serge 147
	fbc_ctl = I915_READ(FBC_CONTROL);
148
	fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
149
	fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
3031 serge 150
	if (IS_I945GM(dev))
151
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
152
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
153
	fbc_ctl |= obj->fence_reg;
154
	I915_WRITE(FBC_CONTROL, fbc_ctl);
155
 
4104 Serge 156
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
157
		      cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
3031 serge 158
}
159
 
160
static bool i8xx_fbc_enabled(struct drm_device *dev)
161
{
162
	struct drm_i915_private *dev_priv = dev->dev_private;
163
 
164
	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
165
}
166
 
4560 Serge 167
static void g4x_enable_fbc(struct drm_crtc *crtc)
3031 serge 168
{
169
	struct drm_device *dev = crtc->dev;
170
	struct drm_i915_private *dev_priv = dev->dev_private;
171
	struct drm_framebuffer *fb = crtc->fb;
172
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
173
	struct drm_i915_gem_object *obj = intel_fb->obj;
174
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
175
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
176
	u32 dpfc_ctl;
177
 
178
	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
179
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
180
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
181
 
182
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
183
 
184
	/* enable it... */
185
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
186
 
4104 Serge 187
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
3031 serge 188
}
189
 
190
static void g4x_disable_fbc(struct drm_device *dev)
191
{
192
	struct drm_i915_private *dev_priv = dev->dev_private;
193
	u32 dpfc_ctl;
194
 
195
	/* Disable compression */
196
	dpfc_ctl = I915_READ(DPFC_CONTROL);
197
	if (dpfc_ctl & DPFC_CTL_EN) {
198
		dpfc_ctl &= ~DPFC_CTL_EN;
199
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
200
 
201
		DRM_DEBUG_KMS("disabled FBC\n");
202
	}
203
}
204
 
205
static bool g4x_fbc_enabled(struct drm_device *dev)
206
{
207
	struct drm_i915_private *dev_priv = dev->dev_private;
208
 
209
	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
210
}
211
 
212
static void sandybridge_blit_fbc_update(struct drm_device *dev)
213
{
214
	struct drm_i915_private *dev_priv = dev->dev_private;
215
	u32 blt_ecoskpd;
216
 
217
	/* Make sure blitter notifies FBC of writes */
4560 Serge 218
 
219
	/* Blitter is part of Media powerwell on VLV. No impact of
220
	 * his param in other platforms for now */
221
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
222
 
3031 serge 223
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
224
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
225
		GEN6_BLITTER_LOCK_SHIFT;
226
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
227
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
228
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
229
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
230
			 GEN6_BLITTER_LOCK_SHIFT);
231
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
232
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
4560 Serge 233
 
234
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
3031 serge 235
}
236
 
4560 Serge 237
static void ironlake_enable_fbc(struct drm_crtc *crtc)
3031 serge 238
{
239
	struct drm_device *dev = crtc->dev;
240
	struct drm_i915_private *dev_priv = dev->dev_private;
241
	struct drm_framebuffer *fb = crtc->fb;
242
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
243
	struct drm_i915_gem_object *obj = intel_fb->obj;
244
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
245
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
246
	u32 dpfc_ctl;
247
 
248
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
249
	dpfc_ctl &= DPFC_RESERVED;
250
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
251
	/* Set persistent mode for front-buffer rendering, ala X. */
252
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
4560 Serge 253
	dpfc_ctl |= DPFC_CTL_FENCE_EN;
254
	if (IS_GEN5(dev))
255
		dpfc_ctl |= obj->fence_reg;
3031 serge 256
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
257
 
258
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
4104 Serge 259
	I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
3031 serge 260
	/* enable it... */
261
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
262
 
263
	if (IS_GEN6(dev)) {
264
		I915_WRITE(SNB_DPFC_CTL_SA,
265
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
266
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
267
		sandybridge_blit_fbc_update(dev);
268
	}
269
 
4104 Serge 270
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
3031 serge 271
}
272
 
273
static void ironlake_disable_fbc(struct drm_device *dev)
274
{
275
	struct drm_i915_private *dev_priv = dev->dev_private;
276
	u32 dpfc_ctl;
277
 
278
	/* Disable compression */
279
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
280
	if (dpfc_ctl & DPFC_CTL_EN) {
281
		dpfc_ctl &= ~DPFC_CTL_EN;
282
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
283
 
284
		DRM_DEBUG_KMS("disabled FBC\n");
285
	}
286
}
287
 
288
static bool ironlake_fbc_enabled(struct drm_device *dev)
289
{
290
	struct drm_i915_private *dev_priv = dev->dev_private;
291
 
292
	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
293
}
294
 
4560 Serge 295
static void gen7_enable_fbc(struct drm_crtc *crtc)
4104 Serge 296
{
297
	struct drm_device *dev = crtc->dev;
298
	struct drm_i915_private *dev_priv = dev->dev_private;
299
	struct drm_framebuffer *fb = crtc->fb;
300
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
301
	struct drm_i915_gem_object *obj = intel_fb->obj;
302
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
303
 
304
	I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
305
 
306
	I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
307
		   IVB_DPFC_CTL_FENCE_EN |
308
		   intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
309
 
310
	if (IS_IVYBRIDGE(dev)) {
311
		/* WaFbcAsynchFlipDisableFbcQueue:ivb */
312
		I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
313
	} else {
314
		/* WaFbcAsynchFlipDisableFbcQueue:hsw */
315
		I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
316
			   HSW_BYPASS_FBC_QUEUE);
317
	}
318
 
319
	I915_WRITE(SNB_DPFC_CTL_SA,
320
		   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
321
	I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
322
 
323
	sandybridge_blit_fbc_update(dev);
324
 
4560 Serge 325
	DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
4104 Serge 326
}
327
 
3031 serge 328
bool intel_fbc_enabled(struct drm_device *dev)
329
{
330
	struct drm_i915_private *dev_priv = dev->dev_private;
331
 
332
	if (!dev_priv->display.fbc_enabled)
333
		return false;
334
 
335
	return dev_priv->display.fbc_enabled(dev);
336
}
337
 
338
static void intel_fbc_work_fn(struct work_struct *__work)
339
{
340
	struct intel_fbc_work *work =
341
		container_of(to_delayed_work(__work),
342
			     struct intel_fbc_work, work);
343
	struct drm_device *dev = work->crtc->dev;
344
	struct drm_i915_private *dev_priv = dev->dev_private;
345
 
346
	mutex_lock(&dev->struct_mutex);
4104 Serge 347
	if (work == dev_priv->fbc.fbc_work) {
3031 serge 348
		/* Double check that we haven't switched fb without cancelling
349
		 * the prior work.
350
		 */
351
		if (work->crtc->fb == work->fb) {
4560 Serge 352
			dev_priv->display.enable_fbc(work->crtc);
3031 serge 353
 
4104 Serge 354
			dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
355
			dev_priv->fbc.fb_id = work->crtc->fb->base.id;
356
			dev_priv->fbc.y = work->crtc->y;
3031 serge 357
		}
358
 
4104 Serge 359
		dev_priv->fbc.fbc_work = NULL;
3031 serge 360
	}
361
	mutex_unlock(&dev->struct_mutex);
362
 
363
	kfree(work);
364
}
365
 
366
static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
367
{
4104 Serge 368
	if (dev_priv->fbc.fbc_work == NULL)
3031 serge 369
		return;
370
 
371
	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
372
 
373
	/* Synchronisation is provided by struct_mutex and checking of
4104 Serge 374
	 * dev_priv->fbc.fbc_work, so we can perform the cancellation
3031 serge 375
	 * entirely asynchronously.
376
	 */
4293 Serge 377
	if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
3031 serge 378
		/* tasklet was killed before being run, clean up */
4293 Serge 379
		kfree(dev_priv->fbc.fbc_work);
3031 serge 380
 
381
	/* Mark the work as no longer wanted so that if it does
382
	 * wake-up (because the work was already running and waiting
383
	 * for our mutex), it will discover that is no longer
384
	 * necessary to run.
385
	 */
4104 Serge 386
	dev_priv->fbc.fbc_work = NULL;
3031 serge 387
}
388
 
4560 Serge 389
static void intel_enable_fbc(struct drm_crtc *crtc)
3031 serge 390
{
391
	struct intel_fbc_work *work;
392
	struct drm_device *dev = crtc->dev;
393
	struct drm_i915_private *dev_priv = dev->dev_private;
394
 
3482 Serge 395
	if (!dev_priv->display.enable_fbc)
3031 serge 396
		return;
3482 Serge 397
 
3031 serge 398
	intel_cancel_fbc_work(dev_priv);
399
 
4560 Serge 400
	work = kzalloc(sizeof(*work), GFP_KERNEL);
3031 serge 401
	if (work == NULL) {
4104 Serge 402
		DRM_ERROR("Failed to allocate FBC work structure\n");
4560 Serge 403
		dev_priv->display.enable_fbc(crtc);
3031 serge 404
		return;
405
	}
406
 
407
	work->crtc = crtc;
408
	work->fb = crtc->fb;
409
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
410
 
4104 Serge 411
	dev_priv->fbc.fbc_work = work;
3031 serge 412
 
413
	/* Delay the actual enabling to let pageflipping cease and the
414
	 * display to settle before starting the compression. Note that
415
	 * this delay also serves a second purpose: it allows for a
416
	 * vblank to pass after disabling the FBC before we attempt
417
	 * to modify the control registers.
418
	 *
419
	 * A more complicated solution would involve tracking vblanks
420
	 * following the termination of the page-flipping sequence
421
	 * and indeed performing the enable as a co-routine and not
422
	 * waiting synchronously upon the vblank.
4104 Serge 423
	 *
424
	 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
3031 serge 425
	 */
426
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
427
}
428
 
429
void intel_disable_fbc(struct drm_device *dev)
430
{
431
	struct drm_i915_private *dev_priv = dev->dev_private;
432
 
3482 Serge 433
	intel_cancel_fbc_work(dev_priv);
3031 serge 434
 
3482 Serge 435
	if (!dev_priv->display.disable_fbc)
436
		return;
3031 serge 437
 
3482 Serge 438
	dev_priv->display.disable_fbc(dev);
4104 Serge 439
	dev_priv->fbc.plane = -1;
3031 serge 440
}
441
 
4104 Serge 442
static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
443
			      enum no_fbc_reason reason)
444
{
445
	if (dev_priv->fbc.no_fbc_reason == reason)
446
		return false;
447
 
448
	dev_priv->fbc.no_fbc_reason = reason;
449
	return true;
450
}
451
 
3031 serge 452
/**
453
 * intel_update_fbc - enable/disable FBC as needed
454
 * @dev: the drm_device
455
 *
456
 * Set up the framebuffer compression hardware at mode set time.  We
457
 * enable it if possible:
458
 *   - plane A only (on pre-965)
459
 *   - no pixel mulitply/line duplication
460
 *   - no alpha buffer discard
461
 *   - no dual wide
4104 Serge 462
 *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
3031 serge 463
 *
464
 * We can't assume that any compression will take place (worst case),
465
 * so the compressed buffer has to be the same size as the uncompressed
466
 * one.  It also must reside (along with the line length buffer) in
467
 * stolen memory.
468
 *
469
 * We need to enable/disable FBC on a global basis.
470
 */
471
void intel_update_fbc(struct drm_device *dev)
472
{
473
	struct drm_i915_private *dev_priv = dev->dev_private;
474
	struct drm_crtc *crtc = NULL, *tmp_crtc;
475
	struct intel_crtc *intel_crtc;
476
	struct drm_framebuffer *fb;
477
	struct intel_framebuffer *intel_fb;
478
	struct drm_i915_gem_object *obj;
4560 Serge 479
	const struct drm_display_mode *adjusted_mode;
480
	unsigned int max_width, max_height;
3031 serge 481
 
4560 Serge 482
	if (!HAS_FBC(dev)) {
4104 Serge 483
		set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
3031 serge 484
		return;
4104 Serge 485
	}
3031 serge 486
 
4104 Serge 487
	if (!i915_powersave) {
488
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
489
			DRM_DEBUG_KMS("fbc disabled per module param\n");
3031 serge 490
		return;
4104 Serge 491
	}
3031 serge 492
 
493
	/*
494
	 * If FBC is already on, we just have to verify that we can
495
	 * keep it that way...
496
	 * Need to disable if:
497
	 *   - more than one pipe is active
498
	 *   - changing FBC params (stride, fence, mode)
499
	 *   - new fb is too large to fit in compressed buffer
500
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
501
	 */
502
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
3243 Serge 503
		if (intel_crtc_active(tmp_crtc) &&
4560 Serge 504
		    to_intel_crtc(tmp_crtc)->primary_enabled) {
3031 serge 505
			if (crtc) {
4104 Serge 506
				if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
3031 serge 507
				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
508
				goto out_disable;
509
			}
510
			crtc = tmp_crtc;
511
		}
512
	}
513
 
514
	if (!crtc || crtc->fb == NULL) {
4104 Serge 515
		if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
3031 serge 516
		DRM_DEBUG_KMS("no output, disabling\n");
517
		goto out_disable;
518
	}
519
 
520
	intel_crtc = to_intel_crtc(crtc);
521
	fb = crtc->fb;
522
	intel_fb = to_intel_framebuffer(fb);
523
	obj = intel_fb->obj;
4560 Serge 524
	adjusted_mode = &intel_crtc->config.adjusted_mode;
3031 serge 525
 
4104 Serge 526
	if (i915_enable_fbc < 0 &&
527
	    INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
528
		if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
529
			DRM_DEBUG_KMS("disabled per chip default\n");
530
		goto out_disable;
3031 serge 531
	}
4104 Serge 532
	if (!i915_enable_fbc) {
533
		if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
3031 serge 534
		DRM_DEBUG_KMS("fbc disabled per module param\n");
535
		goto out_disable;
536
	}
4560 Serge 537
	if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
538
	    (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
4104 Serge 539
		if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
3031 serge 540
		DRM_DEBUG_KMS("mode incompatible with compression, "
541
			      "disabling\n");
542
		goto out_disable;
543
	}
4104 Serge 544
 
545
	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4560 Serge 546
		max_width = 4096;
547
		max_height = 2048;
4104 Serge 548
	} else {
4560 Serge 549
		max_width = 2048;
550
		max_height = 1536;
4104 Serge 551
	}
4560 Serge 552
	if (intel_crtc->config.pipe_src_w > max_width ||
553
	    intel_crtc->config.pipe_src_h > max_height) {
4104 Serge 554
		if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
3031 serge 555
		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
556
		goto out_disable;
557
	}
4560 Serge 558
	if ((INTEL_INFO(dev)->gen < 4 || IS_HASWELL(dev)) &&
559
	    intel_crtc->plane != PLANE_A) {
4104 Serge 560
		if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
4560 Serge 561
			DRM_DEBUG_KMS("plane not A, disabling compression\n");
3031 serge 562
		goto out_disable;
563
	}
564
 
565
	/* The use of a CPU fence is mandatory in order to detect writes
566
	 * by the CPU to the scanout and trigger updates to the FBC.
567
	 */
568
	if (obj->tiling_mode != I915_TILING_X ||
569
	    obj->fence_reg == I915_FENCE_REG_NONE) {
4104 Serge 570
		if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
3031 serge 571
		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
572
		goto out_disable;
573
	}
574
 
575
	/* If the kernel debugger is active, always disable compression */
576
	if (in_dbg_master())
577
		goto out_disable;
578
 
3480 Serge 579
	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
4104 Serge 580
		if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
3480 Serge 581
		DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
582
		goto out_disable;
583
	}
584
 
3031 serge 585
	/* If the scanout has not changed, don't modify the FBC settings.
586
	 * Note that we make the fundamental assumption that the fb->obj
587
	 * cannot be unpinned (and have its GTT offset and fence revoked)
588
	 * without first being decoupled from the scanout and FBC disabled.
589
	 */
4104 Serge 590
	if (dev_priv->fbc.plane == intel_crtc->plane &&
591
	    dev_priv->fbc.fb_id == fb->base.id &&
592
	    dev_priv->fbc.y == crtc->y)
3031 serge 593
		return;
594
 
595
	if (intel_fbc_enabled(dev)) {
596
		/* We update FBC along two paths, after changing fb/crtc
597
		 * configuration (modeswitching) and after page-flipping
598
		 * finishes. For the latter, we know that not only did
599
		 * we disable the FBC at the start of the page-flip
600
		 * sequence, but also more than one vblank has passed.
601
		 *
602
		 * For the former case of modeswitching, it is possible
603
		 * to switch between two FBC valid configurations
604
		 * instantaneously so we do need to disable the FBC
605
		 * before we can modify its control registers. We also
606
		 * have to wait for the next vblank for that to take
607
		 * effect. However, since we delay enabling FBC we can
608
		 * assume that a vblank has passed since disabling and
609
		 * that we can safely alter the registers in the deferred
610
		 * callback.
611
		 *
612
		 * In the scenario that we go from a valid to invalid
613
		 * and then back to valid FBC configuration we have
614
		 * no strict enforcement that a vblank occurred since
615
		 * disabling the FBC. However, along all current pipe
616
		 * disabling paths we do need to wait for a vblank at
617
		 * some point. And we wait before enabling FBC anyway.
618
		 */
619
		DRM_DEBUG_KMS("disabling active FBC for update\n");
620
		intel_disable_fbc(dev);
621
	}
622
 
4560 Serge 623
	intel_enable_fbc(crtc);
4104 Serge 624
	dev_priv->fbc.no_fbc_reason = FBC_OK;
3031 serge 625
	return;
626
 
627
out_disable:
628
	/* Multiple disables should be harmless */
629
	if (intel_fbc_enabled(dev)) {
630
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
631
		intel_disable_fbc(dev);
632
	}
3480 Serge 633
	i915_gem_stolen_cleanup_compression(dev);
3031 serge 634
}
635
 
636
static void i915_pineview_get_mem_freq(struct drm_device *dev)
637
{
638
	drm_i915_private_t *dev_priv = dev->dev_private;
639
	u32 tmp;
640
 
641
	tmp = I915_READ(CLKCFG);
642
 
643
	switch (tmp & CLKCFG_FSB_MASK) {
644
	case CLKCFG_FSB_533:
645
		dev_priv->fsb_freq = 533; /* 133*4 */
646
		break;
647
	case CLKCFG_FSB_800:
648
		dev_priv->fsb_freq = 800; /* 200*4 */
649
		break;
650
	case CLKCFG_FSB_667:
651
		dev_priv->fsb_freq =  667; /* 167*4 */
652
		break;
653
	case CLKCFG_FSB_400:
654
		dev_priv->fsb_freq = 400; /* 100*4 */
655
		break;
656
	}
657
 
658
	switch (tmp & CLKCFG_MEM_MASK) {
659
	case CLKCFG_MEM_533:
660
		dev_priv->mem_freq = 533;
661
		break;
662
	case CLKCFG_MEM_667:
663
		dev_priv->mem_freq = 667;
664
		break;
665
	case CLKCFG_MEM_800:
666
		dev_priv->mem_freq = 800;
667
		break;
668
	}
669
 
670
	/* detect pineview DDR3 setting */
671
	tmp = I915_READ(CSHRDDR3CTL);
672
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
673
}
674
 
675
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
676
{
677
	drm_i915_private_t *dev_priv = dev->dev_private;
678
	u16 ddrpll, csipll;
679
 
680
	ddrpll = I915_READ16(DDRMPLL1);
681
	csipll = I915_READ16(CSIPLL0);
682
 
683
	switch (ddrpll & 0xff) {
684
	case 0xc:
685
		dev_priv->mem_freq = 800;
686
		break;
687
	case 0x10:
688
		dev_priv->mem_freq = 1066;
689
		break;
690
	case 0x14:
691
		dev_priv->mem_freq = 1333;
692
		break;
693
	case 0x18:
694
		dev_priv->mem_freq = 1600;
695
		break;
696
	default:
697
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
698
				 ddrpll & 0xff);
699
		dev_priv->mem_freq = 0;
700
		break;
701
	}
702
 
703
	dev_priv->ips.r_t = dev_priv->mem_freq;
704
 
705
	switch (csipll & 0x3ff) {
706
	case 0x00c:
707
		dev_priv->fsb_freq = 3200;
708
		break;
709
	case 0x00e:
710
		dev_priv->fsb_freq = 3733;
711
		break;
712
	case 0x010:
713
		dev_priv->fsb_freq = 4266;
714
		break;
715
	case 0x012:
716
		dev_priv->fsb_freq = 4800;
717
		break;
718
	case 0x014:
719
		dev_priv->fsb_freq = 5333;
720
		break;
721
	case 0x016:
722
		dev_priv->fsb_freq = 5866;
723
		break;
724
	case 0x018:
725
		dev_priv->fsb_freq = 6400;
726
		break;
727
	default:
728
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
729
				 csipll & 0x3ff);
730
		dev_priv->fsb_freq = 0;
731
		break;
732
	}
733
 
734
	if (dev_priv->fsb_freq == 3200) {
735
		dev_priv->ips.c_m = 0;
736
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
737
		dev_priv->ips.c_m = 1;
738
	} else {
739
		dev_priv->ips.c_m = 2;
740
	}
741
}
742
 
743
static const struct cxsr_latency cxsr_latency_table[] = {
744
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
745
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
746
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
747
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
748
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
749
 
750
	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
751
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
752
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
753
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
754
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
755
 
756
	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
757
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
758
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
759
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
760
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
761
 
762
	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
763
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
764
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
765
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
766
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
767
 
768
	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
769
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
770
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
771
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
772
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
773
 
774
	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
775
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
776
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
777
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
778
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
779
};
780
 
781
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
782
							 int is_ddr3,
783
							 int fsb,
784
							 int mem)
785
{
786
	const struct cxsr_latency *latency;
787
	int i;
788
 
789
	if (fsb == 0 || mem == 0)
790
		return NULL;
791
 
792
	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
793
		latency = &cxsr_latency_table[i];
794
		if (is_desktop == latency->is_desktop &&
795
		    is_ddr3 == latency->is_ddr3 &&
796
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
797
			return latency;
798
	}
799
 
800
	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
801
 
802
	return NULL;
803
}
804
 
805
static void pineview_disable_cxsr(struct drm_device *dev)
806
{
807
	struct drm_i915_private *dev_priv = dev->dev_private;
808
 
809
	/* deactivate cxsr */
810
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
811
}
812
 
813
/*
814
 * Latency for FIFO fetches is dependent on several factors:
815
 *   - memory configuration (speed, channels)
816
 *   - chipset
817
 *   - current MCH state
818
 * It can be fairly high in some situations, so here we assume a fairly
819
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
820
 * set this value too high, the FIFO will fetch frequently to stay full)
821
 * and power consumption (set it too low to save power and we might see
822
 * FIFO underruns and display "flicker").
823
 *
824
 * A value of 5us seems to be a good balance; safe for very low end
825
 * platforms but not overly aggressive on lower latency configs.
826
 */
827
static const int latency_ns = 5000;
828
 
829
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
830
{
831
	struct drm_i915_private *dev_priv = dev->dev_private;
832
	uint32_t dsparb = I915_READ(DSPARB);
833
	int size;
834
 
835
	size = dsparb & 0x7f;
836
	if (plane)
837
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
838
 
839
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
840
		      plane ? "B" : "A", size);
841
 
842
	return size;
843
}
844
 
4560 Serge 845
static int i830_get_fifo_size(struct drm_device *dev, int plane)
3031 serge 846
{
847
	struct drm_i915_private *dev_priv = dev->dev_private;
848
	uint32_t dsparb = I915_READ(DSPARB);
849
	int size;
850
 
851
	size = dsparb & 0x1ff;
852
	if (plane)
853
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
854
	size >>= 1; /* Convert to cachelines */
855
 
856
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
857
		      plane ? "B" : "A", size);
858
 
859
	return size;
860
}
861
 
862
static int i845_get_fifo_size(struct drm_device *dev, int plane)
863
{
864
	struct drm_i915_private *dev_priv = dev->dev_private;
865
	uint32_t dsparb = I915_READ(DSPARB);
866
	int size;
867
 
868
	size = dsparb & 0x7f;
869
	size >>= 2; /* Convert to cachelines */
870
 
871
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
872
		      plane ? "B" : "A",
873
		      size);
874
 
875
	return size;
876
}
877
 
878
/* Pineview has different values for various configs */
879
static const struct intel_watermark_params pineview_display_wm = {
880
	PINEVIEW_DISPLAY_FIFO,
881
	PINEVIEW_MAX_WM,
882
	PINEVIEW_DFT_WM,
883
	PINEVIEW_GUARD_WM,
884
	PINEVIEW_FIFO_LINE_SIZE
885
};
886
static const struct intel_watermark_params pineview_display_hplloff_wm = {
887
	PINEVIEW_DISPLAY_FIFO,
888
	PINEVIEW_MAX_WM,
889
	PINEVIEW_DFT_HPLLOFF_WM,
890
	PINEVIEW_GUARD_WM,
891
	PINEVIEW_FIFO_LINE_SIZE
892
};
893
static const struct intel_watermark_params pineview_cursor_wm = {
894
	PINEVIEW_CURSOR_FIFO,
895
	PINEVIEW_CURSOR_MAX_WM,
896
	PINEVIEW_CURSOR_DFT_WM,
897
	PINEVIEW_CURSOR_GUARD_WM,
898
	PINEVIEW_FIFO_LINE_SIZE,
899
};
900
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
901
	PINEVIEW_CURSOR_FIFO,
902
	PINEVIEW_CURSOR_MAX_WM,
903
	PINEVIEW_CURSOR_DFT_WM,
904
	PINEVIEW_CURSOR_GUARD_WM,
905
	PINEVIEW_FIFO_LINE_SIZE
906
};
907
static const struct intel_watermark_params g4x_wm_info = {
908
	G4X_FIFO_SIZE,
909
	G4X_MAX_WM,
910
	G4X_MAX_WM,
911
	2,
912
	G4X_FIFO_LINE_SIZE,
913
};
914
static const struct intel_watermark_params g4x_cursor_wm_info = {
915
	I965_CURSOR_FIFO,
916
	I965_CURSOR_MAX_WM,
917
	I965_CURSOR_DFT_WM,
918
	2,
919
	G4X_FIFO_LINE_SIZE,
920
};
921
static const struct intel_watermark_params valleyview_wm_info = {
922
	VALLEYVIEW_FIFO_SIZE,
923
	VALLEYVIEW_MAX_WM,
924
	VALLEYVIEW_MAX_WM,
925
	2,
926
	G4X_FIFO_LINE_SIZE,
927
};
928
static const struct intel_watermark_params valleyview_cursor_wm_info = {
929
	I965_CURSOR_FIFO,
930
	VALLEYVIEW_CURSOR_MAX_WM,
931
	I965_CURSOR_DFT_WM,
932
	2,
933
	G4X_FIFO_LINE_SIZE,
934
};
935
static const struct intel_watermark_params i965_cursor_wm_info = {
936
	I965_CURSOR_FIFO,
937
	I965_CURSOR_MAX_WM,
938
	I965_CURSOR_DFT_WM,
939
	2,
940
	I915_FIFO_LINE_SIZE,
941
};
942
static const struct intel_watermark_params i945_wm_info = {
943
	I945_FIFO_SIZE,
944
	I915_MAX_WM,
945
	1,
946
	2,
947
	I915_FIFO_LINE_SIZE
948
};
949
static const struct intel_watermark_params i915_wm_info = {
950
	I915_FIFO_SIZE,
951
	I915_MAX_WM,
952
	1,
953
	2,
954
	I915_FIFO_LINE_SIZE
955
};
4560 Serge 956
static const struct intel_watermark_params i830_wm_info = {
3031 serge 957
	I855GM_FIFO_SIZE,
958
	I915_MAX_WM,
959
	1,
960
	2,
961
	I830_FIFO_LINE_SIZE
962
};
4560 Serge 963
static const struct intel_watermark_params i845_wm_info = {
3031 serge 964
	I830_FIFO_SIZE,
965
	I915_MAX_WM,
966
	1,
967
	2,
968
	I830_FIFO_LINE_SIZE
969
};
970
 
971
/**
972
 * intel_calculate_wm - calculate watermark level
973
 * @clock_in_khz: pixel clock
974
 * @wm: chip FIFO params
975
 * @pixel_size: display pixel size
976
 * @latency_ns: memory latency for the platform
977
 *
978
 * Calculate the watermark level (the level at which the display plane will
979
 * start fetching from memory again).  Each chip has a different display
980
 * FIFO size and allocation, so the caller needs to figure that out and pass
981
 * in the correct intel_watermark_params structure.
982
 *
983
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
984
 * on the pixel size.  When it reaches the watermark level, it'll start
985
 * fetching FIFO line sized based chunks from memory until the FIFO fills
986
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
987
 * will occur, and a display engine hang could result.
988
 */
989
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
990
					const struct intel_watermark_params *wm,
991
					int fifo_size,
992
					int pixel_size,
993
					unsigned long latency_ns)
994
{
995
	long entries_required, wm_size;
996
 
997
	/*
998
	 * Note: we need to make sure we don't overflow for various clock &
999
	 * latency values.
1000
	 * clocks go from a few thousand to several hundred thousand.
1001
	 * latency is usually a few thousand
1002
	 */
1003
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1004
		1000;
1005
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1006
 
1007
	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1008
 
1009
	wm_size = fifo_size - (entries_required + wm->guard_size);
1010
 
1011
	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1012
 
1013
	/* Don't promote wm_size to unsigned... */
1014
	if (wm_size > (long)wm->max_wm)
1015
		wm_size = wm->max_wm;
1016
	if (wm_size <= 0)
1017
		wm_size = wm->default_wm;
1018
	return wm_size;
1019
}
1020
 
1021
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1022
{
1023
	struct drm_crtc *crtc, *enabled = NULL;
1024
 
1025
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3243 Serge 1026
		if (intel_crtc_active(crtc)) {
3031 serge 1027
			if (enabled)
1028
				return NULL;
1029
			enabled = crtc;
1030
		}
1031
	}
1032
 
1033
	return enabled;
1034
}
1035
 
4560 Serge 1036
static void pineview_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1037
{
4560 Serge 1038
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1039
	struct drm_i915_private *dev_priv = dev->dev_private;
1040
	struct drm_crtc *crtc;
1041
	const struct cxsr_latency *latency;
1042
	u32 reg;
1043
	unsigned long wm;
1044
 
1045
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1046
					 dev_priv->fsb_freq, dev_priv->mem_freq);
1047
	if (!latency) {
1048
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1049
		pineview_disable_cxsr(dev);
1050
		return;
1051
	}
1052
 
1053
	crtc = single_enabled_crtc(dev);
1054
	if (crtc) {
4560 Serge 1055
		const struct drm_display_mode *adjusted_mode;
3031 serge 1056
		int pixel_size = crtc->fb->bits_per_pixel / 8;
4560 Serge 1057
		int clock;
3031 serge 1058
 
4560 Serge 1059
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1060
		clock = adjusted_mode->crtc_clock;
1061
 
3031 serge 1062
		/* Display SR */
1063
		wm = intel_calculate_wm(clock, &pineview_display_wm,
1064
					pineview_display_wm.fifo_size,
1065
					pixel_size, latency->display_sr);
1066
		reg = I915_READ(DSPFW1);
1067
		reg &= ~DSPFW_SR_MASK;
1068
		reg |= wm << DSPFW_SR_SHIFT;
1069
		I915_WRITE(DSPFW1, reg);
1070
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1071
 
1072
		/* cursor SR */
1073
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1074
					pineview_display_wm.fifo_size,
1075
					pixel_size, latency->cursor_sr);
1076
		reg = I915_READ(DSPFW3);
1077
		reg &= ~DSPFW_CURSOR_SR_MASK;
1078
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1079
		I915_WRITE(DSPFW3, reg);
1080
 
1081
		/* Display HPLL off SR */
1082
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1083
					pineview_display_hplloff_wm.fifo_size,
1084
					pixel_size, latency->display_hpll_disable);
1085
		reg = I915_READ(DSPFW3);
1086
		reg &= ~DSPFW_HPLL_SR_MASK;
1087
		reg |= wm & DSPFW_HPLL_SR_MASK;
1088
		I915_WRITE(DSPFW3, reg);
1089
 
1090
		/* cursor HPLL off SR */
1091
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1092
					pineview_display_hplloff_wm.fifo_size,
1093
					pixel_size, latency->cursor_hpll_disable);
1094
		reg = I915_READ(DSPFW3);
1095
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1096
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1097
		I915_WRITE(DSPFW3, reg);
1098
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1099
 
1100
		/* activate cxsr */
1101
		I915_WRITE(DSPFW3,
1102
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1103
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1104
	} else {
1105
		pineview_disable_cxsr(dev);
1106
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1107
	}
1108
}
1109
 
1110
static bool g4x_compute_wm0(struct drm_device *dev,
1111
			    int plane,
1112
			    const struct intel_watermark_params *display,
1113
			    int display_latency_ns,
1114
			    const struct intel_watermark_params *cursor,
1115
			    int cursor_latency_ns,
1116
			    int *plane_wm,
1117
			    int *cursor_wm)
1118
{
1119
	struct drm_crtc *crtc;
4560 Serge 1120
	const struct drm_display_mode *adjusted_mode;
3031 serge 1121
	int htotal, hdisplay, clock, pixel_size;
1122
	int line_time_us, line_count;
1123
	int entries, tlb_miss;
1124
 
1125
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 1126
	if (!intel_crtc_active(crtc)) {
3031 serge 1127
		*cursor_wm = cursor->guard_size;
1128
		*plane_wm = display->guard_size;
1129
        return false;
1130
	}
1131
 
4560 Serge 1132
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1133
	clock = adjusted_mode->crtc_clock;
1134
	htotal = adjusted_mode->crtc_htotal;
1135
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
3031 serge 1136
	pixel_size = crtc->fb->bits_per_pixel / 8;
1137
 
1138
	/* Use the small buffer method to calculate plane watermark */
1139
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1140
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1141
	if (tlb_miss > 0)
1142
		entries += tlb_miss;
1143
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1144
	*plane_wm = entries + display->guard_size;
1145
	if (*plane_wm > (int)display->max_wm)
1146
		*plane_wm = display->max_wm;
1147
 
1148
	/* Use the large buffer method to calculate cursor watermark */
1149
	line_time_us = ((htotal * 1000) / clock);
1150
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1151
	entries = line_count * 64 * pixel_size;
1152
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1153
	if (tlb_miss > 0)
1154
		entries += tlb_miss;
1155
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1156
	*cursor_wm = entries + cursor->guard_size;
1157
	if (*cursor_wm > (int)cursor->max_wm)
1158
		*cursor_wm = (int)cursor->max_wm;
1159
 
1160
	return true;
1161
}
1162
 
1163
/*
1164
 * Check the wm result.
1165
 *
1166
 * If any calculated watermark values is larger than the maximum value that
1167
 * can be programmed into the associated watermark register, that watermark
1168
 * must be disabled.
1169
 */
1170
static bool g4x_check_srwm(struct drm_device *dev,
1171
			   int display_wm, int cursor_wm,
1172
			   const struct intel_watermark_params *display,
1173
			   const struct intel_watermark_params *cursor)
1174
{
1175
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1176
		      display_wm, cursor_wm);
1177
 
1178
	if (display_wm > display->max_wm) {
1179
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1180
			      display_wm, display->max_wm);
1181
		return false;
1182
	}
1183
 
1184
	if (cursor_wm > cursor->max_wm) {
1185
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1186
			      cursor_wm, cursor->max_wm);
1187
		return false;
1188
	}
1189
 
1190
	if (!(display_wm || cursor_wm)) {
1191
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1192
		return false;
1193
	}
1194
 
1195
	return true;
1196
}
1197
 
1198
static bool g4x_compute_srwm(struct drm_device *dev,
1199
			     int plane,
1200
			     int latency_ns,
1201
			     const struct intel_watermark_params *display,
1202
			     const struct intel_watermark_params *cursor,
1203
			     int *display_wm, int *cursor_wm)
1204
{
1205
	struct drm_crtc *crtc;
4560 Serge 1206
	const struct drm_display_mode *adjusted_mode;
3031 serge 1207
	int hdisplay, htotal, pixel_size, clock;
1208
	unsigned long line_time_us;
1209
	int line_count, line_size;
1210
	int small, large;
1211
	int entries;
1212
 
1213
	if (!latency_ns) {
1214
		*display_wm = *cursor_wm = 0;
1215
		return false;
1216
	}
1217
 
1218
	crtc = intel_get_crtc_for_plane(dev, plane);
4560 Serge 1219
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1220
	clock = adjusted_mode->crtc_clock;
1221
	htotal = adjusted_mode->crtc_htotal;
1222
	hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
3031 serge 1223
	pixel_size = crtc->fb->bits_per_pixel / 8;
1224
 
1225
	line_time_us = (htotal * 1000) / clock;
1226
	line_count = (latency_ns / line_time_us + 1000) / 1000;
1227
	line_size = hdisplay * pixel_size;
1228
 
1229
	/* Use the minimum of the small and large buffer method for primary */
1230
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1231
	large = line_count * line_size;
1232
 
1233
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1234
	*display_wm = entries + display->guard_size;
1235
 
1236
	/* calculate the self-refresh watermark for display cursor */
1237
	entries = line_count * pixel_size * 64;
1238
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1239
	*cursor_wm = entries + cursor->guard_size;
1240
 
1241
	return g4x_check_srwm(dev,
1242
			      *display_wm, *cursor_wm,
1243
			      display, cursor);
1244
}
1245
 
1246
static bool vlv_compute_drain_latency(struct drm_device *dev,
1247
				     int plane,
1248
				     int *plane_prec_mult,
1249
				     int *plane_dl,
1250
				     int *cursor_prec_mult,
1251
				     int *cursor_dl)
1252
{
1253
	struct drm_crtc *crtc;
1254
	int clock, pixel_size;
1255
	int entries;
1256
 
1257
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 1258
	if (!intel_crtc_active(crtc))
3031 serge 1259
		return false;
1260
 
4560 Serge 1261
	clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3031 serge 1262
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
1263
 
1264
	entries = (clock / 1000) * pixel_size;
1265
	*plane_prec_mult = (entries > 256) ?
1266
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1267
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1268
						     pixel_size);
1269
 
1270
	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1271
	*cursor_prec_mult = (entries > 256) ?
1272
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1273
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1274
 
1275
	return true;
1276
}
1277
 
1278
/*
1279
 * Update drain latency registers of memory arbiter
1280
 *
1281
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1282
 * to be programmed. Each plane has a drain latency multiplier and a drain
1283
 * latency value.
1284
 */
1285
 
1286
static void vlv_update_drain_latency(struct drm_device *dev)
1287
{
1288
	struct drm_i915_private *dev_priv = dev->dev_private;
1289
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1290
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1291
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1292
							either 16 or 32 */
1293
 
1294
	/* For plane A, Cursor A */
1295
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1296
				      &cursor_prec_mult, &cursora_dl)) {
1297
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1298
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1299
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1300
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1301
 
1302
		I915_WRITE(VLV_DDL1, cursora_prec |
1303
				(cursora_dl << DDL_CURSORA_SHIFT) |
1304
				planea_prec | planea_dl);
1305
	}
1306
 
1307
	/* For plane B, Cursor B */
1308
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1309
				      &cursor_prec_mult, &cursorb_dl)) {
1310
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1311
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1312
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1313
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1314
 
1315
		I915_WRITE(VLV_DDL2, cursorb_prec |
1316
				(cursorb_dl << DDL_CURSORB_SHIFT) |
1317
				planeb_prec | planeb_dl);
1318
	}
1319
}
1320
 
1321
#define single_plane_enabled(mask) is_power_of_2(mask)
1322
 
4560 Serge 1323
static void valleyview_update_wm(struct drm_crtc *crtc)
3031 serge 1324
{
4560 Serge 1325
	struct drm_device *dev = crtc->dev;
3031 serge 1326
	static const int sr_latency_ns = 12000;
1327
	struct drm_i915_private *dev_priv = dev->dev_private;
1328
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1329
	int plane_sr, cursor_sr;
3243 Serge 1330
	int ignore_plane_sr, ignore_cursor_sr;
3031 serge 1331
	unsigned int enabled = 0;
1332
 
1333
	vlv_update_drain_latency(dev);
1334
 
3746 Serge 1335
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1336
			    &valleyview_wm_info, latency_ns,
1337
			    &valleyview_cursor_wm_info, latency_ns,
1338
			    &planea_wm, &cursora_wm))
3746 Serge 1339
		enabled |= 1 << PIPE_A;
3031 serge 1340
 
3746 Serge 1341
	if (g4x_compute_wm0(dev, PIPE_B,
3031 serge 1342
			    &valleyview_wm_info, latency_ns,
1343
			    &valleyview_cursor_wm_info, latency_ns,
1344
			    &planeb_wm, &cursorb_wm))
3746 Serge 1345
		enabled |= 1 << PIPE_B;
3031 serge 1346
 
1347
	if (single_plane_enabled(enabled) &&
1348
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1349
			     sr_latency_ns,
1350
			     &valleyview_wm_info,
1351
			     &valleyview_cursor_wm_info,
3243 Serge 1352
			     &plane_sr, &ignore_cursor_sr) &&
1353
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1354
			     2*sr_latency_ns,
1355
			     &valleyview_wm_info,
1356
			     &valleyview_cursor_wm_info,
1357
			     &ignore_plane_sr, &cursor_sr)) {
3031 serge 1358
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
3243 Serge 1359
	} else {
3031 serge 1360
		I915_WRITE(FW_BLC_SELF_VLV,
1361
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
3243 Serge 1362
		plane_sr = cursor_sr = 0;
1363
	}
3031 serge 1364
 
1365
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1366
		      planea_wm, cursora_wm,
1367
		      planeb_wm, cursorb_wm,
1368
		      plane_sr, cursor_sr);
1369
 
1370
	I915_WRITE(DSPFW1,
1371
		   (plane_sr << DSPFW_SR_SHIFT) |
1372
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1373
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1374
		   planea_wm);
1375
	I915_WRITE(DSPFW2,
3243 Serge 1376
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
3031 serge 1377
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1378
	I915_WRITE(DSPFW3,
3243 Serge 1379
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1380
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3031 serge 1381
}
1382
 
4560 Serge 1383
static void g4x_update_wm(struct drm_crtc *crtc)
3031 serge 1384
{
4560 Serge 1385
	struct drm_device *dev = crtc->dev;
3031 serge 1386
	static const int sr_latency_ns = 12000;
1387
	struct drm_i915_private *dev_priv = dev->dev_private;
1388
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1389
	int plane_sr, cursor_sr;
1390
	unsigned int enabled = 0;
1391
 
3746 Serge 1392
	if (g4x_compute_wm0(dev, PIPE_A,
3031 serge 1393
			    &g4x_wm_info, latency_ns,
1394
			    &g4x_cursor_wm_info, latency_ns,
1395
			    &planea_wm, &cursora_wm))
3746 Serge 1396
		enabled |= 1 << PIPE_A;
3031 serge 1397
 
3746 Serge 1398
	if (g4x_compute_wm0(dev, PIPE_B,
3031 serge 1399
			    &g4x_wm_info, latency_ns,
1400
			    &g4x_cursor_wm_info, latency_ns,
1401
			    &planeb_wm, &cursorb_wm))
3746 Serge 1402
		enabled |= 1 << PIPE_B;
3031 serge 1403
 
1404
	if (single_plane_enabled(enabled) &&
1405
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1406
			     sr_latency_ns,
1407
			     &g4x_wm_info,
1408
			     &g4x_cursor_wm_info,
3243 Serge 1409
			     &plane_sr, &cursor_sr)) {
3031 serge 1410
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3243 Serge 1411
	} else {
3031 serge 1412
		I915_WRITE(FW_BLC_SELF,
1413
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3243 Serge 1414
		plane_sr = cursor_sr = 0;
1415
	}
3031 serge 1416
 
1417
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1418
		      planea_wm, cursora_wm,
1419
		      planeb_wm, cursorb_wm,
1420
		      plane_sr, cursor_sr);
1421
 
1422
	I915_WRITE(DSPFW1,
1423
		   (plane_sr << DSPFW_SR_SHIFT) |
1424
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1425
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1426
		   planea_wm);
1427
	I915_WRITE(DSPFW2,
3243 Serge 1428
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
3031 serge 1429
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1430
	/* HPLL off in SR has some issues on G4x... disable it */
1431
	I915_WRITE(DSPFW3,
3243 Serge 1432
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
3031 serge 1433
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1434
}
1435
 
4560 Serge 1436
static void i965_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1437
{
4560 Serge 1438
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1439
	struct drm_i915_private *dev_priv = dev->dev_private;
1440
	struct drm_crtc *crtc;
1441
	int srwm = 1;
1442
	int cursor_sr = 16;
1443
 
1444
	/* Calc sr entries for one plane configs */
1445
	crtc = single_enabled_crtc(dev);
1446
	if (crtc) {
1447
		/* self-refresh has much higher latency */
1448
		static const int sr_latency_ns = 12000;
4560 Serge 1449
		const struct drm_display_mode *adjusted_mode =
1450
			&to_intel_crtc(crtc)->config.adjusted_mode;
1451
		int clock = adjusted_mode->crtc_clock;
1452
		int htotal = adjusted_mode->crtc_htotal;
1453
		int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
3031 serge 1454
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1455
		unsigned long line_time_us;
1456
		int entries;
1457
 
1458
		line_time_us = ((htotal * 1000) / clock);
1459
 
1460
		/* Use ns/us then divide to preserve precision */
1461
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1462
			pixel_size * hdisplay;
1463
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1464
		srwm = I965_FIFO_SIZE - entries;
1465
		if (srwm < 0)
1466
			srwm = 1;
1467
		srwm &= 0x1ff;
1468
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1469
			      entries, srwm);
1470
 
1471
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1472
			pixel_size * 64;
1473
		entries = DIV_ROUND_UP(entries,
1474
					  i965_cursor_wm_info.cacheline_size);
1475
		cursor_sr = i965_cursor_wm_info.fifo_size -
1476
			(entries + i965_cursor_wm_info.guard_size);
1477
 
1478
		if (cursor_sr > i965_cursor_wm_info.max_wm)
1479
			cursor_sr = i965_cursor_wm_info.max_wm;
1480
 
1481
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1482
			      "cursor %d\n", srwm, cursor_sr);
1483
 
1484
		if (IS_CRESTLINE(dev))
1485
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1486
	} else {
1487
		/* Turn off self refresh if both pipes are enabled */
1488
		if (IS_CRESTLINE(dev))
1489
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1490
				   & ~FW_BLC_SELF_EN);
1491
	}
1492
 
1493
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1494
		      srwm);
1495
 
1496
	/* 965 has limitations... */
1497
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1498
		   (8 << 16) | (8 << 8) | (8 << 0));
1499
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1500
	/* update cursor SR watermark */
1501
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1502
}
1503
 
4560 Serge 1504
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1505
{
4560 Serge 1506
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1507
	struct drm_i915_private *dev_priv = dev->dev_private;
1508
	const struct intel_watermark_params *wm_info;
1509
	uint32_t fwater_lo;
1510
	uint32_t fwater_hi;
1511
	int cwm, srwm = 1;
1512
	int fifo_size;
1513
	int planea_wm, planeb_wm;
1514
	struct drm_crtc *crtc, *enabled = NULL;
1515
 
1516
	if (IS_I945GM(dev))
1517
		wm_info = &i945_wm_info;
1518
	else if (!IS_GEN2(dev))
1519
		wm_info = &i915_wm_info;
1520
	else
4560 Serge 1521
		wm_info = &i830_wm_info;
3031 serge 1522
 
1523
	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1524
	crtc = intel_get_crtc_for_plane(dev, 0);
3243 Serge 1525
	if (intel_crtc_active(crtc)) {
4560 Serge 1526
		const struct drm_display_mode *adjusted_mode;
3243 Serge 1527
		int cpp = crtc->fb->bits_per_pixel / 8;
1528
		if (IS_GEN2(dev))
1529
			cpp = 4;
1530
 
4560 Serge 1531
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1532
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1533
					       wm_info, fifo_size, cpp,
3031 serge 1534
					       latency_ns);
1535
		enabled = crtc;
1536
	} else
1537
		planea_wm = fifo_size - wm_info->guard_size;
1538
 
1539
	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1540
	crtc = intel_get_crtc_for_plane(dev, 1);
3243 Serge 1541
	if (intel_crtc_active(crtc)) {
4560 Serge 1542
		const struct drm_display_mode *adjusted_mode;
3243 Serge 1543
		int cpp = crtc->fb->bits_per_pixel / 8;
1544
		if (IS_GEN2(dev))
1545
			cpp = 4;
1546
 
4560 Serge 1547
		adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1548
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
3243 Serge 1549
					       wm_info, fifo_size, cpp,
3031 serge 1550
					       latency_ns);
1551
		if (enabled == NULL)
1552
			enabled = crtc;
1553
		else
1554
			enabled = NULL;
1555
	} else
1556
		planeb_wm = fifo_size - wm_info->guard_size;
1557
 
1558
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1559
 
1560
	/*
1561
	 * Overlay gets an aggressive default since video jitter is bad.
1562
	 */
1563
	cwm = 2;
1564
 
1565
	/* Play safe and disable self-refresh before adjusting watermarks. */
1566
	if (IS_I945G(dev) || IS_I945GM(dev))
1567
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1568
	else if (IS_I915GM(dev))
4560 Serge 1569
		I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
3031 serge 1570
 
1571
	/* Calc sr entries for one plane configs */
1572
	if (HAS_FW_BLC(dev) && enabled) {
1573
		/* self-refresh has much higher latency */
1574
		static const int sr_latency_ns = 6000;
4560 Serge 1575
		const struct drm_display_mode *adjusted_mode =
1576
			&to_intel_crtc(enabled)->config.adjusted_mode;
1577
		int clock = adjusted_mode->crtc_clock;
1578
		int htotal = adjusted_mode->crtc_htotal;
1579
		int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
3031 serge 1580
		int pixel_size = enabled->fb->bits_per_pixel / 8;
1581
		unsigned long line_time_us;
1582
		int entries;
1583
 
1584
		line_time_us = (htotal * 1000) / clock;
1585
 
1586
		/* Use ns/us then divide to preserve precision */
1587
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1588
			pixel_size * hdisplay;
1589
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1590
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1591
		srwm = wm_info->fifo_size - entries;
1592
		if (srwm < 0)
1593
			srwm = 1;
1594
 
1595
		if (IS_I945G(dev) || IS_I945GM(dev))
1596
			I915_WRITE(FW_BLC_SELF,
1597
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1598
		else if (IS_I915GM(dev))
1599
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1600
	}
1601
 
1602
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1603
		      planea_wm, planeb_wm, cwm, srwm);
1604
 
1605
	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1606
	fwater_hi = (cwm & 0x1f);
1607
 
1608
	/* Set request length to 8 cachelines per fetch */
1609
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1610
	fwater_hi = fwater_hi | (1 << 8);
1611
 
1612
	I915_WRITE(FW_BLC, fwater_lo);
1613
	I915_WRITE(FW_BLC2, fwater_hi);
1614
 
1615
	if (HAS_FW_BLC(dev)) {
1616
		if (enabled) {
1617
			if (IS_I945G(dev) || IS_I945GM(dev))
1618
				I915_WRITE(FW_BLC_SELF,
1619
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1620
			else if (IS_I915GM(dev))
4560 Serge 1621
				I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
3031 serge 1622
			DRM_DEBUG_KMS("memory self refresh enabled\n");
1623
		} else
1624
			DRM_DEBUG_KMS("memory self refresh disabled\n");
1625
	}
1626
}
1627
 
4560 Serge 1628
static void i845_update_wm(struct drm_crtc *unused_crtc)
3031 serge 1629
{
4560 Serge 1630
	struct drm_device *dev = unused_crtc->dev;
3031 serge 1631
	struct drm_i915_private *dev_priv = dev->dev_private;
1632
	struct drm_crtc *crtc;
4560 Serge 1633
	const struct drm_display_mode *adjusted_mode;
3031 serge 1634
	uint32_t fwater_lo;
1635
	int planea_wm;
1636
 
1637
	crtc = single_enabled_crtc(dev);
1638
	if (crtc == NULL)
1639
		return;
1640
 
4560 Serge 1641
	adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1642
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1643
				       &i845_wm_info,
3031 serge 1644
				       dev_priv->display.get_fifo_size(dev, 0),
3243 Serge 1645
				       4, latency_ns);
3031 serge 1646
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1647
	fwater_lo |= (3<<8) | planea_wm;
1648
 
1649
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1650
 
1651
	I915_WRITE(FW_BLC, fwater_lo);
1652
}
1653
 
4104 Serge 1654
static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1655
				      struct drm_crtc *crtc)
3031 serge 1656
{
4104 Serge 1657
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1658
	uint32_t pixel_rate;
1659
 
4560 Serge 1660
	pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
4104 Serge 1661
 
1662
	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1663
	 * adjust the pixel_rate here. */
1664
 
1665
	if (intel_crtc->config.pch_pfit.enabled) {
1666
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1667
		uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1668
 
4560 Serge 1669
		pipe_w = intel_crtc->config.pipe_src_w;
1670
		pipe_h = intel_crtc->config.pipe_src_h;
4104 Serge 1671
		pfit_w = (pfit_size >> 16) & 0xFFFF;
1672
		pfit_h = pfit_size & 0xFFFF;
1673
		if (pipe_w < pfit_w)
1674
			pipe_w = pfit_w;
1675
		if (pipe_h < pfit_h)
1676
			pipe_h = pfit_h;
1677
 
1678
		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1679
				     pfit_w * pfit_h);
1680
	}
1681
 
1682
	return pixel_rate;
1683
}
1684
 
1685
/* latency must be in 0.1us units. */
1686
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1687
			       uint32_t latency)
1688
{
1689
	uint64_t ret;
1690
 
1691
	if (WARN(latency == 0, "Latency value missing\n"))
1692
		return UINT_MAX;
1693
 
1694
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1695
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1696
 
1697
	return ret;
1698
}
1699
 
1700
/* latency must be in 0.1us units. */
1701
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1702
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1703
			       uint32_t latency)
1704
{
1705
	uint32_t ret;
1706
 
1707
	if (WARN(latency == 0, "Latency value missing\n"))
1708
		return UINT_MAX;
1709
 
1710
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1711
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1712
	ret = DIV_ROUND_UP(ret, 64) + 2;
1713
	return ret;
1714
}
1715
 
1716
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1717
			   uint8_t bytes_per_pixel)
1718
{
1719
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1720
}
1721
 
4560 Serge 1722
struct ilk_pipe_wm_parameters {
4104 Serge 1723
	bool active;
1724
	uint32_t pipe_htotal;
1725
	uint32_t pixel_rate;
1726
	struct intel_plane_wm_parameters pri;
1727
	struct intel_plane_wm_parameters spr;
1728
	struct intel_plane_wm_parameters cur;
1729
};
1730
 
4560 Serge 1731
struct ilk_wm_maximums {
4104 Serge 1732
	uint16_t pri;
1733
	uint16_t spr;
1734
	uint16_t cur;
1735
	uint16_t fbc;
1736
};
1737
 
1738
/* used in computing the new watermarks state */
1739
struct intel_wm_config {
1740
	unsigned int num_pipes_active;
1741
	bool sprites_enabled;
1742
	bool sprites_scaled;
1743
};
1744
 
1745
/*
1746
 * For both WM_PIPE and WM_LP.
1747
 * mem_value must be in 0.1us units.
1748
 */
4560 Serge 1749
static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
4104 Serge 1750
				   uint32_t mem_value,
1751
				   bool is_lp)
1752
{
1753
	uint32_t method1, method2;
1754
 
1755
	if (!params->active || !params->pri.enabled)
1756
		return 0;
1757
 
1758
	method1 = ilk_wm_method1(params->pixel_rate,
1759
				 params->pri.bytes_per_pixel,
1760
				 mem_value);
1761
 
1762
	if (!is_lp)
1763
		return method1;
1764
 
1765
	method2 = ilk_wm_method2(params->pixel_rate,
1766
				 params->pipe_htotal,
1767
				 params->pri.horiz_pixels,
1768
				 params->pri.bytes_per_pixel,
1769
				 mem_value);
1770
 
1771
	return min(method1, method2);
1772
}
1773
 
1774
/*
1775
 * For both WM_PIPE and WM_LP.
1776
 * mem_value must be in 0.1us units.
1777
 */
4560 Serge 1778
static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
4104 Serge 1779
				   uint32_t mem_value)
1780
{
1781
	uint32_t method1, method2;
1782
 
1783
	if (!params->active || !params->spr.enabled)
1784
		return 0;
1785
 
1786
	method1 = ilk_wm_method1(params->pixel_rate,
1787
				 params->spr.bytes_per_pixel,
1788
				 mem_value);
1789
	method2 = ilk_wm_method2(params->pixel_rate,
1790
				 params->pipe_htotal,
1791
				 params->spr.horiz_pixels,
1792
				 params->spr.bytes_per_pixel,
1793
				 mem_value);
1794
	return min(method1, method2);
1795
}
1796
 
1797
/*
1798
 * For both WM_PIPE and WM_LP.
1799
 * mem_value must be in 0.1us units.
1800
 */
4560 Serge 1801
static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
4104 Serge 1802
				   uint32_t mem_value)
1803
{
1804
	if (!params->active || !params->cur.enabled)
1805
		return 0;
1806
 
1807
	return ilk_wm_method2(params->pixel_rate,
1808
			      params->pipe_htotal,
1809
			      params->cur.horiz_pixels,
1810
			      params->cur.bytes_per_pixel,
1811
			      mem_value);
1812
}
1813
 
1814
/* Only for WM_LP. */
4560 Serge 1815
static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
4104 Serge 1816
				   uint32_t pri_val)
1817
{
1818
	if (!params->active || !params->pri.enabled)
1819
		return 0;
1820
 
1821
	return ilk_wm_fbc(pri_val,
1822
			  params->pri.horiz_pixels,
1823
			  params->pri.bytes_per_pixel);
1824
}
1825
 
1826
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1827
{
4560 Serge 1828
	if (INTEL_INFO(dev)->gen >= 8)
1829
		return 3072;
1830
	else if (INTEL_INFO(dev)->gen >= 7)
4104 Serge 1831
		return 768;
1832
	else
1833
		return 512;
1834
}
1835
 
1836
/* Calculate the maximum primary/sprite plane watermark */
1837
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1838
				     int level,
1839
				     const struct intel_wm_config *config,
1840
				     enum intel_ddb_partitioning ddb_partitioning,
1841
				     bool is_sprite)
1842
{
1843
	unsigned int fifo_size = ilk_display_fifo_size(dev);
1844
	unsigned int max;
1845
 
1846
	/* if sprites aren't enabled, sprites get nothing */
1847
	if (is_sprite && !config->sprites_enabled)
1848
		return 0;
1849
 
1850
	/* HSW allows LP1+ watermarks even with multiple pipes */
1851
	if (level == 0 || config->num_pipes_active > 1) {
1852
		fifo_size /= INTEL_INFO(dev)->num_pipes;
1853
 
1854
		/*
1855
		 * For some reason the non self refresh
1856
		 * FIFO size is only half of the self
1857
		 * refresh FIFO size on ILK/SNB.
1858
		 */
1859
		if (INTEL_INFO(dev)->gen <= 6)
1860
			fifo_size /= 2;
1861
	}
1862
 
1863
	if (config->sprites_enabled) {
1864
		/* level 0 is always calculated with 1:1 split */
1865
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1866
			if (is_sprite)
1867
				fifo_size *= 5;
1868
			fifo_size /= 6;
1869
		} else {
1870
			fifo_size /= 2;
1871
		}
1872
	}
1873
 
1874
	/* clamp to max that the registers can hold */
4560 Serge 1875
	if (INTEL_INFO(dev)->gen >= 8)
1876
		max = level == 0 ? 255 : 2047;
1877
	else if (INTEL_INFO(dev)->gen >= 7)
4104 Serge 1878
		/* IVB/HSW primary/sprite plane watermarks */
1879
		max = level == 0 ? 127 : 1023;
1880
	else if (!is_sprite)
1881
		/* ILK/SNB primary plane watermarks */
1882
		max = level == 0 ? 127 : 511;
1883
	else
1884
		/* ILK/SNB sprite plane watermarks */
1885
		max = level == 0 ? 63 : 255;
1886
 
1887
	return min(fifo_size, max);
1888
}
1889
 
1890
/* Calculate the maximum cursor plane watermark */
1891
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1892
				      int level,
1893
				      const struct intel_wm_config *config)
1894
{
1895
	/* HSW LP1+ watermarks w/ multiple pipes */
1896
	if (level > 0 && config->num_pipes_active > 1)
1897
		return 64;
1898
 
1899
	/* otherwise just report max that registers can hold */
1900
	if (INTEL_INFO(dev)->gen >= 7)
1901
		return level == 0 ? 63 : 255;
1902
	else
1903
		return level == 0 ? 31 : 63;
4539 Serge 1904
}
4104 Serge 1905
 
1906
/* Calculate the maximum FBC watermark */
4560 Serge 1907
static unsigned int ilk_fbc_wm_max(struct drm_device *dev)
4104 Serge 1908
{
1909
	/* max that registers can hold */
4560 Serge 1910
	if (INTEL_INFO(dev)->gen >= 8)
1911
		return 31;
1912
	else
4104 Serge 1913
	return 15;
1914
}
1915
 
4560 Serge 1916
static void ilk_compute_wm_maximums(struct drm_device *dev,
4104 Serge 1917
		       int level,
1918
		       const struct intel_wm_config *config,
1919
		       enum intel_ddb_partitioning ddb_partitioning,
4560 Serge 1920
				    struct ilk_wm_maximums *max)
4104 Serge 1921
{
1922
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1923
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1924
	max->cur = ilk_cursor_wm_max(dev, level, config);
4560 Serge 1925
	max->fbc = ilk_fbc_wm_max(dev);
4539 Serge 1926
}
4104 Serge 1927
 
4560 Serge 1928
static bool ilk_validate_wm_level(int level,
1929
				  const struct ilk_wm_maximums *max,
4104 Serge 1930
			 struct intel_wm_level *result)
1931
{
1932
	bool ret;
1933
 
1934
	/* already determined to be invalid? */
1935
	if (!result->enable)
1936
		return false;
1937
 
1938
	result->enable = result->pri_val <= max->pri &&
1939
			 result->spr_val <= max->spr &&
1940
			 result->cur_val <= max->cur;
1941
 
1942
	ret = result->enable;
1943
 
1944
	/*
1945
	 * HACK until we can pre-compute everything,
1946
	 * and thus fail gracefully if LP0 watermarks
1947
	 * are exceeded...
1948
	 */
1949
	if (level == 0 && !result->enable) {
1950
		if (result->pri_val > max->pri)
1951
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1952
				      level, result->pri_val, max->pri);
1953
		if (result->spr_val > max->spr)
1954
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1955
				      level, result->spr_val, max->spr);
1956
		if (result->cur_val > max->cur)
1957
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1958
				      level, result->cur_val, max->cur);
1959
 
1960
		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1961
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1962
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1963
		result->enable = true;
1964
	}
1965
 
1966
	return ret;
1967
}
1968
 
1969
static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
1970
				 int level,
4560 Serge 1971
				 const struct ilk_pipe_wm_parameters *p,
4104 Serge 1972
				 struct intel_wm_level *result)
1973
{
1974
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1975
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1976
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1977
 
1978
	/* WM1+ latency values stored in 0.5us units */
1979
	if (level > 0) {
1980
		pri_latency *= 5;
1981
		spr_latency *= 5;
1982
		cur_latency *= 5;
1983
	}
1984
 
1985
	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1986
	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1987
	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1988
	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1989
	result->enable = true;
1990
}
1991
 
1992
static uint32_t
1993
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1994
{
3031 serge 1995
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1996
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1997
	struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
1998
	u32 linetime, ips_linetime;
3031 serge 1999
 
4104 Serge 2000
	if (!intel_crtc_active(crtc))
2001
		return 0;
3031 serge 2002
 
2003
	/* The WM are computed with base on how long it takes to fill a single
2004
	 * row at the given clock rate, multiplied by 8.
2005
	 * */
4560 Serge 2006
	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2007
				     mode->crtc_clock);
2008
	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
4104 Serge 2009
					 intel_ddi_get_cdclk_freq(dev_priv));
3031 serge 2010
 
4104 Serge 2011
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2012
	       PIPE_WM_LINETIME_TIME(linetime);
2013
}
2014
 
2015
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2016
{
2017
	struct drm_i915_private *dev_priv = dev->dev_private;
2018
 
4560 Serge 2019
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4104 Serge 2020
		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2021
 
2022
		wm[0] = (sskpd >> 56) & 0xFF;
2023
		if (wm[0] == 0)
2024
			wm[0] = sskpd & 0xF;
2025
		wm[1] = (sskpd >> 4) & 0xFF;
2026
		wm[2] = (sskpd >> 12) & 0xFF;
2027
		wm[3] = (sskpd >> 20) & 0x1FF;
2028
		wm[4] = (sskpd >> 32) & 0x1FF;
2029
	} else if (INTEL_INFO(dev)->gen >= 6) {
2030
		uint32_t sskpd = I915_READ(MCH_SSKPD);
2031
 
2032
		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2033
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2034
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2035
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2036
	} else if (INTEL_INFO(dev)->gen >= 5) {
2037
		uint32_t mltr = I915_READ(MLTR_ILK);
2038
 
2039
		/* ILK primary LP0 latency is 700 ns */
2040
		wm[0] = 7;
2041
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2042
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2043
	}
2044
}
2045
 
2046
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2047
{
2048
	/* ILK sprite LP0 latency is 1300 ns */
2049
	if (INTEL_INFO(dev)->gen == 5)
2050
		wm[0] = 13;
2051
}
2052
 
2053
static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2054
{
2055
	/* ILK cursor LP0 latency is 1300 ns */
2056
	if (INTEL_INFO(dev)->gen == 5)
2057
		wm[0] = 13;
2058
 
2059
	/* WaDoubleCursorLP3Latency:ivb */
2060
	if (IS_IVYBRIDGE(dev))
2061
		wm[3] *= 2;
2062
}
2063
 
4560 Serge 2064
static int ilk_wm_max_level(const struct drm_device *dev)
2065
{
2066
	/* how many WM levels are we expecting */
2067
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2068
		return 4;
2069
	else if (INTEL_INFO(dev)->gen >= 6)
2070
		return 3;
2071
	else
2072
		return 2;
2073
}
2074
 
4104 Serge 2075
static void intel_print_wm_latency(struct drm_device *dev,
2076
				   const char *name,
2077
				   const uint16_t wm[5])
2078
{
4560 Serge 2079
	int level, max_level = ilk_wm_max_level(dev);
4104 Serge 2080
 
2081
	for (level = 0; level <= max_level; level++) {
2082
		unsigned int latency = wm[level];
2083
 
2084
		if (latency == 0) {
2085
			DRM_ERROR("%s WM%d latency not provided\n",
2086
				  name, level);
2087
			continue;
2088
		}
2089
 
2090
		/* WM1+ latency values in 0.5us units */
2091
		if (level > 0)
2092
			latency *= 5;
2093
 
2094
		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2095
			      name, level, wm[level],
2096
			      latency / 10, latency % 10);
2097
	}
2098
}
2099
 
2100
static void intel_setup_wm_latency(struct drm_device *dev)
2101
{
2102
	struct drm_i915_private *dev_priv = dev->dev_private;
2103
 
2104
	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2105
 
2106
	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2107
	       sizeof(dev_priv->wm.pri_latency));
2108
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2109
	       sizeof(dev_priv->wm.pri_latency));
2110
 
2111
	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2112
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2113
 
2114
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2115
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2116
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2117
}
2118
 
4560 Serge 2119
static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2120
				      struct ilk_pipe_wm_parameters *p,
2121
				      struct intel_wm_config *config)
4104 Serge 2122
{
4560 Serge 2123
	struct drm_device *dev = crtc->dev;
2124
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2125
	enum pipe pipe = intel_crtc->pipe;
4104 Serge 2126
	struct drm_plane *plane;
2127
 
2128
		p->active = intel_crtc_active(crtc);
4560 Serge 2129
	if (p->active) {
2130
		p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
4104 Serge 2131
		p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2132
		p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2133
		p->cur.bytes_per_pixel = 4;
4560 Serge 2134
		p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
4104 Serge 2135
		p->cur.horiz_pixels = 64;
2136
		/* TODO: for now, assume primary and cursor planes are always enabled. */
2137
		p->pri.enabled = true;
2138
		p->cur.enabled = true;
2139
	}
2140
 
4560 Serge 2141
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2142
		config->num_pipes_active += intel_crtc_active(crtc);
2143
 
4104 Serge 2144
	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2145
		struct intel_plane *intel_plane = to_intel_plane(plane);
2146
 
4560 Serge 2147
		if (intel_plane->pipe == pipe)
4104 Serge 2148
		p->spr = intel_plane->wm;
2149
 
4560 Serge 2150
		config->sprites_enabled |= intel_plane->wm.enabled;
2151
		config->sprites_scaled |= intel_plane->wm.scaled;
4104 Serge 2152
	}
4560 Serge 2153
}
4104 Serge 2154
 
4560 Serge 2155
/* Compute new watermarks for the pipe */
2156
static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2157
				  const struct ilk_pipe_wm_parameters *params,
2158
				  struct intel_pipe_wm *pipe_wm)
2159
{
2160
	struct drm_device *dev = crtc->dev;
2161
	struct drm_i915_private *dev_priv = dev->dev_private;
2162
	int level, max_level = ilk_wm_max_level(dev);
2163
	/* LP0 watermark maximums depend on this pipe alone */
2164
	struct intel_wm_config config = {
2165
		.num_pipes_active = 1,
2166
		.sprites_enabled = params->spr.enabled,
2167
		.sprites_scaled = params->spr.scaled,
2168
	};
2169
	struct ilk_wm_maximums max;
4104 Serge 2170
 
4560 Serge 2171
	/* LP0 watermarks always use 1/2 DDB partitioning */
2172
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2173
 
2174
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2175
	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2176
		max_level = 1;
2177
 
2178
	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2179
	if (params->spr.scaled)
2180
		max_level = 0;
2181
 
2182
	for (level = 0; level <= max_level; level++)
2183
		ilk_compute_wm_level(dev_priv, level, params,
2184
				     &pipe_wm->wm[level]);
2185
 
2186
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2187
		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2188
 
2189
	/* At least LP0 must be valid */
2190
	return ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]);
4104 Serge 2191
}
2192
 
4560 Serge 2193
/*
2194
 * Merge the watermarks from all active pipes for a specific level.
2195
 */
2196
static void ilk_merge_wm_level(struct drm_device *dev,
2197
			       int level,
2198
			       struct intel_wm_level *ret_wm)
4104 Serge 2199
{
4560 Serge 2200
	const struct intel_crtc *intel_crtc;
4104 Serge 2201
 
4560 Serge 2202
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2203
		const struct intel_wm_level *wm =
2204
			&intel_crtc->wm.active.wm[level];
4104 Serge 2205
 
4560 Serge 2206
		if (!wm->enable)
2207
			return;
4104 Serge 2208
 
4560 Serge 2209
		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2210
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2211
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2212
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2213
	}
2214
 
2215
	ret_wm->enable = true;
2216
}
2217
 
2218
/*
2219
 * Merge all low power watermarks for all active pipes.
2220
 */
2221
static void ilk_wm_merge(struct drm_device *dev,
2222
			 const struct intel_wm_config *config,
2223
			 const struct ilk_wm_maximums *max,
2224
			 struct intel_pipe_wm *merged)
2225
{
2226
	int level, max_level = ilk_wm_max_level(dev);
2227
 
2228
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2229
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2230
	    config->num_pipes_active > 1)
2231
		return;
2232
 
2233
	/* ILK: FBC WM must be disabled always */
2234
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2235
 
2236
	/* merge each WM1+ level */
4104 Serge 2237
	for (level = 1; level <= max_level; level++) {
4560 Serge 2238
		struct intel_wm_level *wm = &merged->wm[level];
2239
 
2240
		ilk_merge_wm_level(dev, level, wm);
2241
 
2242
		if (!ilk_validate_wm_level(level, max, wm))
2243
			break;
2244
 
2245
		/*
2246
		 * The spec says it is preferred to disable
2247
		 * FBC WMs instead of disabling a WM level.
2248
		 */
2249
		if (wm->fbc_val > max->fbc) {
2250
			merged->fbc_wm_enabled = false;
2251
			wm->fbc_val = 0;
4104 Serge 2252
		}
2253
	}
2254
 
4560 Serge 2255
	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2256
	/*
2257
	 * FIXME this is racy. FBC might get enabled later.
2258
	 * What we should check here is whether FBC can be
2259
	 * enabled sometime later.
2260
	 */
2261
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2262
		for (level = 2; level <= max_level; level++) {
2263
			struct intel_wm_level *wm = &merged->wm[level];
2264
 
2265
			wm->enable = false;
2266
		}
2267
	}
2268
}
2269
 
2270
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2271
{
2272
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2273
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2274
}
2275
 
2276
/* The value we need to program into the WM_LPx latency field */
2277
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2278
{
2279
	struct drm_i915_private *dev_priv = dev->dev_private;
2280
 
2281
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2282
		return 2 * level;
2283
	else
2284
		return dev_priv->wm.pri_latency[level];
2285
}
2286
 
2287
static void ilk_compute_wm_results(struct drm_device *dev,
2288
				   const struct intel_pipe_wm *merged,
2289
				   enum intel_ddb_partitioning partitioning,
2290
				   struct ilk_wm_values *results)
2291
{
2292
	struct intel_crtc *intel_crtc;
2293
	int level, wm_lp;
2294
 
2295
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2296
	results->partitioning = partitioning;
2297
 
2298
	/* LP1+ register values */
4104 Serge 2299
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2300
		const struct intel_wm_level *r;
2301
 
4560 Serge 2302
		level = ilk_wm_lp_to_level(wm_lp, merged);
2303
 
2304
		r = &merged->wm[level];
2305
		if (!r->enable)
4104 Serge 2306
			break;
2307
 
4560 Serge 2308
		results->wm_lp[wm_lp - 1] = WM3_LP_EN |
2309
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2310
			(r->pri_val << WM1_LP_SR_SHIFT) |
2311
			r->cur_val;
2312
 
2313
		if (INTEL_INFO(dev)->gen >= 8)
2314
			results->wm_lp[wm_lp - 1] |=
2315
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2316
		else
2317
			results->wm_lp[wm_lp - 1] |=
2318
				r->fbc_val << WM1_LP_FBC_SHIFT;
2319
 
2320
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2321
			WARN_ON(wm_lp != 1);
2322
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2323
		} else
4104 Serge 2324
		results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2325
	}
2326
 
4560 Serge 2327
	/* LP0 register values */
2328
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
2329
		enum pipe pipe = intel_crtc->pipe;
2330
		const struct intel_wm_level *r =
2331
			&intel_crtc->wm.active.wm[0];
4104 Serge 2332
 
4560 Serge 2333
		if (WARN_ON(!r->enable))
2334
			continue;
2335
 
2336
		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2337
 
2338
		results->wm_pipe[pipe] =
2339
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2340
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2341
			r->cur_val;
4104 Serge 2342
	}
2343
}
2344
 
2345
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2346
 * case both are at the same level. Prefer r1 in case they're the same. */
4560 Serge 2347
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2348
						  struct intel_pipe_wm *r1,
2349
						  struct intel_pipe_wm *r2)
4104 Serge 2350
{
4560 Serge 2351
	int level, max_level = ilk_wm_max_level(dev);
2352
	int level1 = 0, level2 = 0;
4104 Serge 2353
 
4560 Serge 2354
	for (level = 1; level <= max_level; level++) {
2355
		if (r1->wm[level].enable)
2356
			level1 = level;
2357
		if (r2->wm[level].enable)
2358
			level2 = level;
4104 Serge 2359
	}
2360
 
4560 Serge 2361
	if (level1 == level2) {
2362
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
4104 Serge 2363
			return r2;
2364
		else
2365
			return r1;
4560 Serge 2366
	} else if (level1 > level2) {
4104 Serge 2367
		return r1;
2368
	} else {
2369
		return r2;
2370
	}
2371
}
2372
 
4560 Serge 2373
/* dirty bits used to track which watermarks need changes */
2374
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2375
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2376
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2377
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2378
#define WM_DIRTY_FBC (1 << 24)
2379
#define WM_DIRTY_DDB (1 << 25)
2380
 
2381
static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2382
					 const struct ilk_wm_values *old,
2383
					 const struct ilk_wm_values *new)
2384
{
2385
	unsigned int dirty = 0;
2386
	enum pipe pipe;
2387
	int wm_lp;
2388
 
2389
	for_each_pipe(pipe) {
2390
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2391
			dirty |= WM_DIRTY_LINETIME(pipe);
2392
			/* Must disable LP1+ watermarks too */
2393
			dirty |= WM_DIRTY_LP_ALL;
2394
		}
2395
 
2396
		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2397
			dirty |= WM_DIRTY_PIPE(pipe);
2398
			/* Must disable LP1+ watermarks too */
2399
			dirty |= WM_DIRTY_LP_ALL;
2400
		}
2401
	}
2402
 
2403
	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2404
		dirty |= WM_DIRTY_FBC;
2405
		/* Must disable LP1+ watermarks too */
2406
		dirty |= WM_DIRTY_LP_ALL;
2407
	}
2408
 
2409
	if (old->partitioning != new->partitioning) {
2410
		dirty |= WM_DIRTY_DDB;
2411
		/* Must disable LP1+ watermarks too */
2412
		dirty |= WM_DIRTY_LP_ALL;
2413
	}
2414
 
2415
	/* LP1+ watermarks already deemed dirty, no need to continue */
2416
	if (dirty & WM_DIRTY_LP_ALL)
2417
		return dirty;
2418
 
2419
	/* Find the lowest numbered LP1+ watermark in need of an update... */
2420
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2421
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2422
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2423
			break;
2424
	}
2425
 
2426
	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2427
	for (; wm_lp <= 3; wm_lp++)
2428
		dirty |= WM_DIRTY_LP(wm_lp);
2429
 
2430
	return dirty;
2431
}
2432
 
2433
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2434
			       unsigned int dirty)
2435
{
2436
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2437
	bool changed = false;
2438
 
2439
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2440
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2441
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2442
		changed = true;
2443
	}
2444
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2445
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2446
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2447
		changed = true;
2448
	}
2449
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2450
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2451
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2452
		changed = true;
2453
	}
2454
 
2455
	/*
2456
	 * Don't touch WM1S_LP_EN here.
2457
	 * Doing so could cause underruns.
2458
	 */
2459
 
2460
	return changed;
2461
}
2462
 
4104 Serge 2463
/*
2464
 * The spec says we shouldn't write when we don't need, because every write
2465
 * causes WMs to be re-evaluated, expending some power.
3031 serge 2466
	 */
4560 Serge 2467
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2468
				struct ilk_wm_values *results)
4104 Serge 2469
{
4560 Serge 2470
	struct drm_device *dev = dev_priv->dev;
2471
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2472
	unsigned int dirty;
4104 Serge 2473
	uint32_t val;
3031 serge 2474
 
4560 Serge 2475
	dirty = ilk_compute_wm_dirty(dev, previous, results);
2476
	if (!dirty)
4104 Serge 2477
		return;
2478
 
4560 Serge 2479
	_ilk_disable_lp_wm(dev_priv, dirty);
4104 Serge 2480
 
4560 Serge 2481
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
4104 Serge 2482
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
4560 Serge 2483
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
4104 Serge 2484
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
4560 Serge 2485
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
4104 Serge 2486
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2487
 
4560 Serge 2488
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
4104 Serge 2489
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
4560 Serge 2490
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
4104 Serge 2491
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
4560 Serge 2492
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
4104 Serge 2493
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2494
 
4560 Serge 2495
	if (dirty & WM_DIRTY_DDB) {
2496
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4104 Serge 2497
		val = I915_READ(WM_MISC);
4560 Serge 2498
			if (results->partitioning == INTEL_DDB_PART_1_2)
4104 Serge 2499
			val &= ~WM_MISC_DATA_PARTITION_5_6;
2500
		else
2501
			val |= WM_MISC_DATA_PARTITION_5_6;
2502
		I915_WRITE(WM_MISC, val);
4560 Serge 2503
		} else {
2504
			val = I915_READ(DISP_ARB_CTL2);
2505
			if (results->partitioning == INTEL_DDB_PART_1_2)
2506
				val &= ~DISP_DATA_PARTITION_5_6;
2507
			else
2508
				val |= DISP_DATA_PARTITION_5_6;
2509
			I915_WRITE(DISP_ARB_CTL2, val);
2510
		}
4104 Serge 2511
	}
2512
 
4560 Serge 2513
	if (dirty & WM_DIRTY_FBC) {
4104 Serge 2514
		val = I915_READ(DISP_ARB_CTL);
2515
		if (results->enable_fbc_wm)
2516
			val &= ~DISP_FBC_WM_DIS;
2517
		else
2518
			val |= DISP_FBC_WM_DIS;
2519
		I915_WRITE(DISP_ARB_CTL, val);
2520
	}
2521
 
4560 Serge 2522
	if (dirty & WM_DIRTY_LP(1) &&
2523
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
4104 Serge 2524
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
4560 Serge 2525
 
2526
	if (INTEL_INFO(dev)->gen >= 7) {
2527
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
4104 Serge 2528
		I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
4560 Serge 2529
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
4104 Serge 2530
		I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
4560 Serge 2531
	}
4104 Serge 2532
 
4560 Serge 2533
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
4104 Serge 2534
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
4560 Serge 2535
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
4104 Serge 2536
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
4560 Serge 2537
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
4104 Serge 2538
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
4560 Serge 2539
 
2540
	dev_priv->wm.hw = *results;
3031 serge 2541
}
2542
 
4560 Serge 2543
static bool ilk_disable_lp_wm(struct drm_device *dev)
4104 Serge 2544
{
2545
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2546
 
2547
	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2548
}
2549
 
2550
static void ilk_update_wm(struct drm_crtc *crtc)
2551
{
2552
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2553
	struct drm_device *dev = crtc->dev;
2554
	struct drm_i915_private *dev_priv = dev->dev_private;
2555
	struct ilk_wm_maximums max;
2556
	struct ilk_pipe_wm_parameters params = {};
2557
	struct ilk_wm_values results = {};
4104 Serge 2558
	enum intel_ddb_partitioning partitioning;
4560 Serge 2559
	struct intel_pipe_wm pipe_wm = {};
2560
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2561
	struct intel_wm_config config = {};
4104 Serge 2562
 
4560 Serge 2563
	ilk_compute_wm_parameters(crtc, ¶ms, &config);
4104 Serge 2564
 
4560 Serge 2565
	intel_compute_pipe_wm(crtc, ¶ms, &pipe_wm);
2566
 
2567
	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2568
		return;
2569
 
2570
	intel_crtc->wm.active = pipe_wm;
2571
 
2572
	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2573
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2574
 
2575
	/* 5/6 split only in single pipe config on IVB+ */
2576
	if (INTEL_INFO(dev)->gen >= 7 &&
2577
	    config.num_pipes_active == 1 && config.sprites_enabled) {
2578
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2579
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2580
 
2581
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4104 Serge 2582
	} else {
4560 Serge 2583
		best_lp_wm = &lp_wm_1_2;
4104 Serge 2584
	}
2585
 
4560 Serge 2586
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
4104 Serge 2587
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2588
 
4560 Serge 2589
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2590
 
2591
	ilk_write_wm_values(dev_priv, &results);
4104 Serge 2592
}
2593
 
4560 Serge 2594
static void ilk_update_sprite_wm(struct drm_plane *plane,
4104 Serge 2595
				     struct drm_crtc *crtc,
2596
				     uint32_t sprite_width, int pixel_size,
2597
				     bool enabled, bool scaled)
2598
{
4560 Serge 2599
	struct drm_device *dev = plane->dev;
4104 Serge 2600
		struct intel_plane *intel_plane = to_intel_plane(plane);
2601
 
2602
	intel_plane->wm.enabled = enabled;
2603
	intel_plane->wm.scaled = scaled;
2604
	intel_plane->wm.horiz_pixels = sprite_width;
2605
			intel_plane->wm.bytes_per_pixel = pixel_size;
2606
 
4560 Serge 2607
	/*
2608
	 * IVB workaround: must disable low power watermarks for at least
2609
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
2610
	 * when scaling is disabled.
2611
	 *
2612
	 * WaCxSRDisabledForSpriteScaling:ivb
2613
	 */
2614
	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2615
		intel_wait_for_vblank(dev, intel_plane->pipe);
2616
 
2617
	ilk_update_wm(crtc);
4104 Serge 2618
}
2619
 
4560 Serge 2620
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3031 serge 2621
{
4560 Serge 2622
	struct drm_device *dev = crtc->dev;
2623
	struct drm_i915_private *dev_priv = dev->dev_private;
2624
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2625
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2626
	struct intel_pipe_wm *active = &intel_crtc->wm.active;
2627
	enum pipe pipe = intel_crtc->pipe;
2628
	static const unsigned int wm0_pipe_reg[] = {
2629
		[PIPE_A] = WM0_PIPEA_ILK,
2630
		[PIPE_B] = WM0_PIPEB_ILK,
2631
		[PIPE_C] = WM0_PIPEC_IVB,
2632
	};
3031 serge 2633
 
4560 Serge 2634
	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2635
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2636
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3031 serge 2637
 
4560 Serge 2638
	if (intel_crtc_active(crtc)) {
2639
		u32 tmp = hw->wm_pipe[pipe];
3031 serge 2640
 
4560 Serge 2641
		/*
2642
		 * For active pipes LP0 watermark is marked as
2643
		 * enabled, and LP1+ watermaks as disabled since
2644
		 * we can't really reverse compute them in case
2645
		 * multiple pipes are active.
2646
		 */
2647
		active->wm[0].enable = true;
2648
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2649
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2650
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2651
		active->linetime = hw->wm_linetime[pipe];
2652
	} else {
2653
		int level, max_level = ilk_wm_max_level(dev);
3031 serge 2654
 
4560 Serge 2655
		/*
2656
		 * For inactive pipes, all watermark levels
2657
		 * should be marked as enabled but zeroed,
2658
		 * which is what we'd compute them to.
2659
		 */
2660
		for (level = 0; level <= max_level; level++)
2661
			active->wm[level].enable = true;
3031 serge 2662
	}
2663
}
2664
 
4560 Serge 2665
void ilk_wm_get_hw_state(struct drm_device *dev)
3031 serge 2666
{
2667
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2668
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
2669
	struct drm_crtc *crtc;
3031 serge 2670
 
4560 Serge 2671
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2672
		ilk_pipe_wm_get_hw_state(crtc);
4104 Serge 2673
 
4560 Serge 2674
	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2675
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2676
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3031 serge 2677
 
4560 Serge 2678
	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2679
	hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2680
	hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3031 serge 2681
 
4560 Serge 2682
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2683
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2684
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2685
	else if (IS_IVYBRIDGE(dev))
2686
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2687
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3031 serge 2688
 
4560 Serge 2689
	hw->enable_fbc_wm =
2690
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3031 serge 2691
}
2692
 
2693
/**
2694
 * intel_update_watermarks - update FIFO watermark values based on current modes
2695
 *
2696
 * Calculate watermark values for the various WM regs based on current mode
2697
 * and plane configuration.
2698
 *
2699
 * There are several cases to deal with here:
2700
 *   - normal (i.e. non-self-refresh)
2701
 *   - self-refresh (SR) mode
2702
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
2703
 *   - lines are small relative to FIFO size (buffer can hold more than 2
2704
 *     lines), so need to account for TLB latency
2705
 *
2706
 *   The normal calculation is:
2707
 *     watermark = dotclock * bytes per pixel * latency
2708
 *   where latency is platform & configuration dependent (we assume pessimal
2709
 *   values here).
2710
 *
2711
 *   The SR calculation is:
2712
 *     watermark = (trunc(latency/line time)+1) * surface width *
2713
 *       bytes per pixel
2714
 *   where
2715
 *     line time = htotal / dotclock
2716
 *     surface width = hdisplay for normal plane and 64 for cursor
2717
 *   and latency is assumed to be high, as above.
2718
 *
2719
 * The final value programmed to the register should always be rounded up,
2720
 * and include an extra 2 entries to account for clock crossings.
2721
 *
2722
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
2723
 * to set the non-SR watermarks to 8.
2724
 */
4560 Serge 2725
void intel_update_watermarks(struct drm_crtc *crtc)
3031 serge 2726
{
4560 Serge 2727
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3031 serge 2728
 
2729
	if (dev_priv->display.update_wm)
4560 Serge 2730
		dev_priv->display.update_wm(crtc);
3031 serge 2731
}
2732
 
4104 Serge 2733
void intel_update_sprite_watermarks(struct drm_plane *plane,
2734
				    struct drm_crtc *crtc,
2735
				    uint32_t sprite_width, int pixel_size,
2736
				    bool enabled, bool scaled)
3031 serge 2737
{
4104 Serge 2738
	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3031 serge 2739
 
2740
	if (dev_priv->display.update_sprite_wm)
4104 Serge 2741
		dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2742
						   pixel_size, enabled, scaled);
3031 serge 2743
}
2744
 
2745
static struct drm_i915_gem_object *
2746
intel_alloc_context_page(struct drm_device *dev)
2747
{
2748
	struct drm_i915_gem_object *ctx;
2749
	int ret;
2750
 
2751
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2752
 
2753
	ctx = i915_gem_alloc_object(dev, 4096);
2754
	if (!ctx) {
2755
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2756
		return NULL;
2757
	}
2758
 
4104 Serge 2759
	ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
3031 serge 2760
	if (ret) {
2761
		DRM_ERROR("failed to pin power context: %d\n", ret);
2762
		goto err_unref;
2763
	}
2764
 
2765
	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2766
	if (ret) {
2767
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2768
		goto err_unpin;
2769
	}
2770
 
2771
	return ctx;
2772
 
2773
err_unpin:
2774
	i915_gem_object_unpin(ctx);
2775
err_unref:
2776
	drm_gem_object_unreference(&ctx->base);
2777
	return NULL;
2778
}
2779
 
2780
/**
2781
 * Lock protecting IPS related data structures
2782
 */
2783
DEFINE_SPINLOCK(mchdev_lock);
2784
 
2785
/* Global for IPS driver to get at the current i915 device. Protected by
2786
 * mchdev_lock. */
2787
static struct drm_i915_private *i915_mch_dev;
2788
 
2789
bool ironlake_set_drps(struct drm_device *dev, u8 val)
2790
{
2791
	struct drm_i915_private *dev_priv = dev->dev_private;
2792
	u16 rgvswctl;
2793
 
2794
	assert_spin_locked(&mchdev_lock);
2795
 
2796
	rgvswctl = I915_READ16(MEMSWCTL);
2797
	if (rgvswctl & MEMCTL_CMD_STS) {
2798
		DRM_DEBUG("gpu busy, RCS change rejected\n");
2799
		return false; /* still busy with another command */
2800
	}
2801
 
2802
	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2803
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2804
	I915_WRITE16(MEMSWCTL, rgvswctl);
2805
	POSTING_READ16(MEMSWCTL);
2806
 
2807
	rgvswctl |= MEMCTL_CMD_STS;
2808
	I915_WRITE16(MEMSWCTL, rgvswctl);
2809
 
2810
	return true;
2811
}
2812
 
2813
static void ironlake_enable_drps(struct drm_device *dev)
2814
{
2815
	struct drm_i915_private *dev_priv = dev->dev_private;
2816
	u32 rgvmodectl = I915_READ(MEMMODECTL);
2817
	u8 fmax, fmin, fstart, vstart;
2818
 
2819
	spin_lock_irq(&mchdev_lock);
2820
 
2821
	/* Enable temp reporting */
2822
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2823
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2824
 
2825
	/* 100ms RC evaluation intervals */
2826
	I915_WRITE(RCUPEI, 100000);
2827
	I915_WRITE(RCDNEI, 100000);
2828
 
2829
	/* Set max/min thresholds to 90ms and 80ms respectively */
2830
	I915_WRITE(RCBMAXAVG, 90000);
2831
	I915_WRITE(RCBMINAVG, 80000);
2832
 
2833
	I915_WRITE(MEMIHYST, 1);
2834
 
2835
	/* Set up min, max, and cur for interrupt handling */
2836
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2837
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2838
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2839
		MEMMODE_FSTART_SHIFT;
2840
 
2841
	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2842
		PXVFREQ_PX_SHIFT;
2843
 
2844
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2845
	dev_priv->ips.fstart = fstart;
2846
 
2847
	dev_priv->ips.max_delay = fstart;
2848
	dev_priv->ips.min_delay = fmin;
2849
	dev_priv->ips.cur_delay = fstart;
2850
 
2851
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2852
			 fmax, fmin, fstart);
2853
 
2854
	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2855
 
2856
	/*
2857
	 * Interrupts will be enabled in ironlake_irq_postinstall
2858
	 */
2859
 
2860
	I915_WRITE(VIDSTART, vstart);
2861
	POSTING_READ(VIDSTART);
2862
 
2863
	rgvmodectl |= MEMMODE_SWMODE_EN;
2864
	I915_WRITE(MEMMODECTL, rgvmodectl);
2865
 
2866
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2867
		DRM_ERROR("stuck trying to change perf mode\n");
2868
	mdelay(1);
2869
 
2870
	ironlake_set_drps(dev, fstart);
2871
 
2872
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2873
		I915_READ(0x112e0);
2874
    dev_priv->ips.last_time1 = jiffies_to_msecs(GetTimerTicks());
2875
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3482 Serge 2876
	getrawmonotonic(&dev_priv->ips.last_time2);
3031 serge 2877
 
2878
	spin_unlock_irq(&mchdev_lock);
2879
}
2880
 
2881
static void ironlake_disable_drps(struct drm_device *dev)
2882
{
2883
	struct drm_i915_private *dev_priv = dev->dev_private;
2884
	u16 rgvswctl;
2885
 
2886
	spin_lock_irq(&mchdev_lock);
2887
 
2888
	rgvswctl = I915_READ16(MEMSWCTL);
2889
 
2890
	/* Ack interrupts, disable EFC interrupt */
2891
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2892
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2893
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2894
	I915_WRITE(DEIIR, DE_PCU_EVENT);
2895
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2896
 
2897
	/* Go back to the starting frequency */
2898
	ironlake_set_drps(dev, dev_priv->ips.fstart);
2899
	mdelay(1);
2900
	rgvswctl |= MEMCTL_CMD_STS;
2901
	I915_WRITE(MEMSWCTL, rgvswctl);
2902
	mdelay(1);
2903
 
2904
	spin_unlock_irq(&mchdev_lock);
2905
}
2906
 
2907
/* There's a funny hw issue where the hw returns all 0 when reading from
2908
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2909
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2910
 * all limits and the gpu stuck at whatever frequency it is at atm).
2911
 */
4560 Serge 2912
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3031 serge 2913
{
2914
	u32 limits;
2915
 
2916
	/* Only set the down limit when we've reached the lowest level to avoid
2917
	 * getting more interrupts, otherwise leave this clear. This prevents a
2918
	 * race in the hw when coming out of rc6: There's a tiny window where
2919
	 * the hw runs at the minimal clock before selecting the desired
2920
	 * frequency, if the down threshold expires in that window we will not
2921
	 * receive a down interrupt. */
4560 Serge 2922
	limits = dev_priv->rps.max_delay << 24;
2923
	if (val <= dev_priv->rps.min_delay)
3031 serge 2924
		limits |= dev_priv->rps.min_delay << 16;
2925
 
2926
	return limits;
2927
}
2928
 
4560 Serge 2929
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
2930
{
2931
	int new_power;
2932
 
2933
	new_power = dev_priv->rps.power;
2934
	switch (dev_priv->rps.power) {
2935
	case LOW_POWER:
2936
		if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
2937
			new_power = BETWEEN;
2938
		break;
2939
 
2940
	case BETWEEN:
2941
		if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
2942
			new_power = LOW_POWER;
2943
		else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
2944
			new_power = HIGH_POWER;
2945
		break;
2946
 
2947
	case HIGH_POWER:
2948
		if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
2949
			new_power = BETWEEN;
2950
		break;
2951
	}
2952
	/* Max/min bins are special */
2953
	if (val == dev_priv->rps.min_delay)
2954
		new_power = LOW_POWER;
2955
	if (val == dev_priv->rps.max_delay)
2956
		new_power = HIGH_POWER;
2957
	if (new_power == dev_priv->rps.power)
2958
		return;
2959
 
2960
	/* Note the units here are not exactly 1us, but 1280ns. */
2961
	switch (new_power) {
2962
	case LOW_POWER:
2963
		/* Upclock if more than 95% busy over 16ms */
2964
		I915_WRITE(GEN6_RP_UP_EI, 12500);
2965
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
2966
 
2967
		/* Downclock if less than 85% busy over 32ms */
2968
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2969
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
2970
 
2971
		I915_WRITE(GEN6_RP_CONTROL,
2972
			   GEN6_RP_MEDIA_TURBO |
2973
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2974
			   GEN6_RP_MEDIA_IS_GFX |
2975
			   GEN6_RP_ENABLE |
2976
			   GEN6_RP_UP_BUSY_AVG |
2977
			   GEN6_RP_DOWN_IDLE_AVG);
2978
		break;
2979
 
2980
	case BETWEEN:
2981
		/* Upclock if more than 90% busy over 13ms */
2982
		I915_WRITE(GEN6_RP_UP_EI, 10250);
2983
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
2984
 
2985
		/* Downclock if less than 75% busy over 32ms */
2986
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
2987
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
2988
 
2989
		I915_WRITE(GEN6_RP_CONTROL,
2990
			   GEN6_RP_MEDIA_TURBO |
2991
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2992
			   GEN6_RP_MEDIA_IS_GFX |
2993
			   GEN6_RP_ENABLE |
2994
			   GEN6_RP_UP_BUSY_AVG |
2995
			   GEN6_RP_DOWN_IDLE_AVG);
2996
		break;
2997
 
2998
	case HIGH_POWER:
2999
		/* Upclock if more than 85% busy over 10ms */
3000
		I915_WRITE(GEN6_RP_UP_EI, 8000);
3001
		I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3002
 
3003
		/* Downclock if less than 60% busy over 32ms */
3004
		I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3005
		I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3006
 
3007
		I915_WRITE(GEN6_RP_CONTROL,
3008
			   GEN6_RP_MEDIA_TURBO |
3009
			   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3010
			   GEN6_RP_MEDIA_IS_GFX |
3011
			   GEN6_RP_ENABLE |
3012
			   GEN6_RP_UP_BUSY_AVG |
3013
			   GEN6_RP_DOWN_IDLE_AVG);
3014
		break;
3015
	}
3016
 
3017
	dev_priv->rps.power = new_power;
3018
	dev_priv->rps.last_adj = 0;
3019
}
3020
 
3031 serge 3021
void gen6_set_rps(struct drm_device *dev, u8 val)
3022
{
3023
	struct drm_i915_private *dev_priv = dev->dev_private;
3024
 
3243 Serge 3025
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 3026
	WARN_ON(val > dev_priv->rps.max_delay);
3027
	WARN_ON(val < dev_priv->rps.min_delay);
3028
 
3029
	if (val == dev_priv->rps.cur_delay)
3030
		return;
3031
 
4560 Serge 3032
	gen6_set_rps_thresholds(dev_priv, val);
3033
 
3746 Serge 3034
	if (IS_HASWELL(dev))
3035
		I915_WRITE(GEN6_RPNSWREQ,
3036
			   HSW_FREQUENCY(val));
3037
	else
3031 serge 3038
	I915_WRITE(GEN6_RPNSWREQ,
3039
		   GEN6_FREQUENCY(val) |
3040
		   GEN6_OFFSET(0) |
3041
		   GEN6_AGGRESSIVE_TURBO);
3042
 
3043
	/* Make sure we continue to get interrupts
3044
	 * until we hit the minimum or maximum frequencies.
3045
	 */
4560 Serge 3046
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3047
		   gen6_rps_limits(dev_priv, val));
3031 serge 3048
 
3049
	POSTING_READ(GEN6_RPNSWREQ);
3050
 
3051
	dev_priv->rps.cur_delay = val;
3052
 
3053
	trace_intel_gpu_freq_change(val * 50);
3054
}
3055
 
4560 Serge 3056
void gen6_rps_idle(struct drm_i915_private *dev_priv)
3031 serge 3057
{
4560 Serge 3058
	struct drm_device *dev = dev_priv->dev;
4104 Serge 3059
 
4560 Serge 3060
	mutex_lock(&dev_priv->rps.hw_lock);
3061
	if (dev_priv->rps.enabled) {
3062
		if (IS_VALLEYVIEW(dev))
3063
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3064
		else
3065
			gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3066
		dev_priv->rps.last_adj = 0;
3067
	}
3068
	mutex_unlock(&dev_priv->rps.hw_lock);
3069
}
4104 Serge 3070
 
4560 Serge 3071
void gen6_rps_boost(struct drm_i915_private *dev_priv)
3072
{
3073
	struct drm_device *dev = dev_priv->dev;
4104 Serge 3074
 
4560 Serge 3075
	mutex_lock(&dev_priv->rps.hw_lock);
3076
	if (dev_priv->rps.enabled) {
3077
		if (IS_VALLEYVIEW(dev))
3078
			valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3079
		else
3080
			gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
3081
		dev_priv->rps.last_adj = 0;
3082
	}
3083
	mutex_unlock(&dev_priv->rps.hw_lock);
4104 Serge 3084
}
3085
 
3086
void valleyview_set_rps(struct drm_device *dev, u8 val)
3087
{
3031 serge 3088
	struct drm_i915_private *dev_priv = dev->dev_private;
3089
 
4104 Serge 3090
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3091
	WARN_ON(val > dev_priv->rps.max_delay);
3092
	WARN_ON(val < dev_priv->rps.min_delay);
3093
 
3094
	DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
4560 Serge 3095
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
4104 Serge 3096
			 dev_priv->rps.cur_delay,
4560 Serge 3097
			 vlv_gpu_freq(dev_priv, val), val);
4104 Serge 3098
 
3099
	if (val == dev_priv->rps.cur_delay)
3100
		return;
3101
 
3102
	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3103
 
3104
	dev_priv->rps.cur_delay = val;
3105
 
4560 Serge 3106
	trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
4104 Serge 3107
}
3108
 
3109
static void gen6_disable_rps_interrupts(struct drm_device *dev)
3110
{
3111
	struct drm_i915_private *dev_priv = dev->dev_private;
3112
 
3031 serge 3113
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4104 Serge 3114
	I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3031 serge 3115
	/* Complete PM interrupt masking here doesn't race with the rps work
3116
	 * item again unmasking PM interrupts because that is using a different
3117
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3118
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3119
 
4104 Serge 3120
	spin_lock_irq(&dev_priv->irq_lock);
3031 serge 3121
	dev_priv->rps.pm_iir = 0;
4104 Serge 3122
	spin_unlock_irq(&dev_priv->irq_lock);
3031 serge 3123
 
4104 Serge 3124
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3031 serge 3125
}
3126
 
4104 Serge 3127
static void gen6_disable_rps(struct drm_device *dev)
3128
{
3129
	struct drm_i915_private *dev_priv = dev->dev_private;
3130
 
3131
	I915_WRITE(GEN6_RC_CONTROL, 0);
3132
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3133
 
3134
	gen6_disable_rps_interrupts(dev);
3135
}
3136
 
3137
static void valleyview_disable_rps(struct drm_device *dev)
3138
{
3139
	struct drm_i915_private *dev_priv = dev->dev_private;
3140
 
3141
	I915_WRITE(GEN6_RC_CONTROL, 0);
3142
 
3143
	gen6_disable_rps_interrupts(dev);
3144
 
3145
	if (dev_priv->vlv_pctx) {
3146
		drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3147
		dev_priv->vlv_pctx = NULL;
3148
	}
3149
}
3150
 
4560 Serge 3151
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3152
{
3153
	if (IS_GEN6(dev))
3154
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3155
 
3156
	if (IS_HASWELL(dev))
3157
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3158
 
3159
	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3160
			(mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3161
			(mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3162
			(mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3163
}
3164
 
3031 serge 3165
int intel_enable_rc6(const struct drm_device *dev)
3166
{
4104 Serge 3167
	/* No RC6 before Ironlake */
3168
	if (INTEL_INFO(dev)->gen < 5)
3169
		return 0;
3170
 
3031 serge 3171
	/* Respect the kernel parameter if it is set */
3172
	if (i915_enable_rc6 >= 0)
3173
		return i915_enable_rc6;
3174
 
3120 serge 3175
	/* Disable RC6 on Ironlake */
3176
	if (INTEL_INFO(dev)->gen == 5)
3177
		return 0;
3031 serge 3178
 
4560 Serge 3179
	if (IS_HASWELL(dev))
3031 serge 3180
		return INTEL_RC6_ENABLE;
3181
 
3182
	/* snb/ivb have more than one rc6 state. */
4560 Serge 3183
	if (INTEL_INFO(dev)->gen == 6)
3031 serge 3184
		return INTEL_RC6_ENABLE;
3185
 
3186
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3187
}
3188
 
4104 Serge 3189
static void gen6_enable_rps_interrupts(struct drm_device *dev)
3190
{
3191
	struct drm_i915_private *dev_priv = dev->dev_private;
3192
	u32 enabled_intrs;
3193
 
3194
	spin_lock_irq(&dev_priv->irq_lock);
3195
	WARN_ON(dev_priv->rps.pm_iir);
3196
	snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
3197
	I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3198
	spin_unlock_irq(&dev_priv->irq_lock);
3199
 
3200
	/* only unmask PM interrupts we need. Mask all others. */
3201
	enabled_intrs = GEN6_PM_RPS_EVENTS;
3202
 
3203
	/* IVB and SNB hard hangs on looping batchbuffer
3204
	 * if GEN6_PM_UP_EI_EXPIRED is masked.
3205
	 */
3206
	if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3207
		enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
3208
 
3209
	I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
3210
}
3211
 
4560 Serge 3212
static void gen8_enable_rps(struct drm_device *dev)
3213
{
3214
	struct drm_i915_private *dev_priv = dev->dev_private;
3215
	struct intel_ring_buffer *ring;
3216
	uint32_t rc6_mask = 0, rp_state_cap;
3217
	int unused;
3218
 
3219
	/* 1a: Software RC state - RC0 */
3220
	I915_WRITE(GEN6_RC_STATE, 0);
3221
 
3222
	/* 1c & 1d: Get forcewake during program sequence. Although the driver
3223
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3224
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3225
 
3226
	/* 2a: Disable RC states. */
3227
	I915_WRITE(GEN6_RC_CONTROL, 0);
3228
 
3229
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3230
 
3231
	/* 2b: Program RC6 thresholds.*/
3232
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3233
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3234
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3235
	for_each_ring(ring, dev_priv, unused)
3236
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3237
	I915_WRITE(GEN6_RC_SLEEP, 0);
3238
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3239
 
3240
	/* 3: Enable RC6 */
3241
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3242
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3243
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
3244
	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3245
			GEN6_RC_CTL_EI_MODE(1) |
3246
			rc6_mask);
3247
 
3248
	/* 4 Program defaults and thresholds for RPS*/
3249
	I915_WRITE(GEN6_RPNSWREQ, HSW_FREQUENCY(10)); /* Request 500 MHz */
3250
	I915_WRITE(GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(12)); /* Request 600 MHz */
3251
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3252
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3253
 
3254
	/* Docs recommend 900MHz, and 300 MHz respectively */
3255
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3256
		   dev_priv->rps.max_delay << 24 |
3257
		   dev_priv->rps.min_delay << 16);
3258
 
3259
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3260
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3261
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3262
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3263
 
3264
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3265
 
3266
	/* 5: Enable RPS */
3267
	I915_WRITE(GEN6_RP_CONTROL,
3268
		   GEN6_RP_MEDIA_TURBO |
3269
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3270
		   GEN6_RP_MEDIA_IS_GFX |
3271
		   GEN6_RP_ENABLE |
3272
		   GEN6_RP_UP_BUSY_AVG |
3273
		   GEN6_RP_DOWN_IDLE_AVG);
3274
 
3275
	/* 6: Ring frequency + overclocking (our driver does this later */
3276
 
3277
	gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3278
 
3279
	gen6_enable_rps_interrupts(dev);
3280
 
3281
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3282
}
3283
 
3031 serge 3284
static void gen6_enable_rps(struct drm_device *dev)
3285
{
3286
	struct drm_i915_private *dev_priv = dev->dev_private;
3287
	struct intel_ring_buffer *ring;
3288
	u32 rp_state_cap;
3289
	u32 gt_perf_status;
3243 Serge 3290
	u32 rc6vids, pcu_mbox, rc6_mask = 0;
3031 serge 3291
	u32 gtfifodbg;
3292
	int rc6_mode;
3243 Serge 3293
	int i, ret;
3031 serge 3294
 
3243 Serge 3295
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 3296
 
3297
	/* Here begins a magic sequence of register writes to enable
3298
	 * auto-downclocking.
3299
	 *
3300
	 * Perhaps there might be some value in exposing these to
3301
	 * userspace...
3302
	 */
3303
	I915_WRITE(GEN6_RC_STATE, 0);
3304
 
3305
	/* Clear the DBG now so we don't confuse earlier errors */
3306
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3307
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3308
		I915_WRITE(GTFIFODBG, gtfifodbg);
3309
	}
3310
 
4560 Serge 3311
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3031 serge 3312
 
3313
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3314
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3315
 
3746 Serge 3316
	/* In units of 50MHz */
3317
	dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
4560 Serge 3318
	dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
3319
	dev_priv->rps.rp1_delay = (rp_state_cap >>  8) & 0xff;
3320
	dev_priv->rps.rp0_delay = (rp_state_cap >>  0) & 0xff;
3321
	dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
3031 serge 3322
	dev_priv->rps.cur_delay = 0;
3323
 
3324
	/* disable the counters and set deterministic thresholds */
3325
	I915_WRITE(GEN6_RC_CONTROL, 0);
3326
 
3327
	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3328
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3329
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3330
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3331
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3332
 
3333
	for_each_ring(ring, dev_priv, i)
3334
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3335
 
3336
	I915_WRITE(GEN6_RC_SLEEP, 0);
3337
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4560 Serge 3338
	if (IS_IVYBRIDGE(dev))
4104 Serge 3339
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3340
	else
3031 serge 3341
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3480 Serge 3342
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3031 serge 3343
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3344
 
3345
	/* Check if we are enabling RC6 */
3346
	rc6_mode = intel_enable_rc6(dev_priv->dev);
3347
	if (rc6_mode & INTEL_RC6_ENABLE)
3348
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3349
 
3350
	/* We don't use those on Haswell */
3351
	if (!IS_HASWELL(dev)) {
3352
		if (rc6_mode & INTEL_RC6p_ENABLE)
3353
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3354
 
3355
		if (rc6_mode & INTEL_RC6pp_ENABLE)
3356
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3357
	}
3358
 
4560 Serge 3359
	intel_print_rc6_info(dev, rc6_mask);
3031 serge 3360
 
3361
	I915_WRITE(GEN6_RC_CONTROL,
3362
		   rc6_mask |
3363
		   GEN6_RC_CTL_EI_MODE(1) |
3364
		   GEN6_RC_CTL_HW_ENABLE);
3365
 
4560 Serge 3366
	/* Power down if completely idle for over 50ms */
3367
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3031 serge 3368
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3369
 
3243 Serge 3370
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3371
	if (!ret) {
3372
		pcu_mbox = 0;
3373
		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3746 Serge 3374
		if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3375
			DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3376
					 (dev_priv->rps.max_delay & 0xff) * 50,
3377
					 (pcu_mbox & 0xff) * 50);
3378
			dev_priv->rps.hw_max = pcu_mbox & 0xff;
3031 serge 3379
	}
3243 Serge 3380
	} else {
3381
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3382
	}
3031 serge 3383
 
4560 Serge 3384
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
3385
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
3031 serge 3386
 
4104 Serge 3387
	gen6_enable_rps_interrupts(dev);
3031 serge 3388
 
3243 Serge 3389
	rc6vids = 0;
3390
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3391
	if (IS_GEN6(dev) && ret) {
3392
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3393
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3394
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3395
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3396
		rc6vids &= 0xffff00;
3397
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
3398
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3399
		if (ret)
3400
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3401
	}
3402
 
4560 Serge 3403
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3031 serge 3404
}
3405
 
4104 Serge 3406
void gen6_update_ring_freq(struct drm_device *dev)
3031 serge 3407
{
3408
	struct drm_i915_private *dev_priv = dev->dev_private;
3409
	int min_freq = 15;
3746 Serge 3410
	unsigned int gpu_freq;
3411
	unsigned int max_ia_freq, min_ring_freq;
3031 serge 3412
	int scaling_factor = 180;
4560 Serge 3413
	struct cpufreq_policy *policy;
3031 serge 3414
 
3243 Serge 3415
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 3416
 
3417
	max_ia_freq = cpufreq_quick_get_max(0);
3418
	/*
3419
	 * Default to measured freq if none found, PCU will ensure we don't go
3420
	 * over
3421
	 */
3422
		max_ia_freq = tsc_khz;
3423
 
3424
	/* Convert from kHz to MHz */
3425
	max_ia_freq /= 1000;
3426
 
4560 Serge 3427
	min_ring_freq = I915_READ(DCLK) & 0xf;
3428
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
3429
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3746 Serge 3430
 
3031 serge 3431
	/*
3432
	 * For each potential GPU frequency, load a ring frequency we'd like
3433
	 * to use for memory access.  We do this by specifying the IA frequency
3434
	 * the PCU should use as a reference to determine the ring frequency.
3435
	 */
3436
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3437
	     gpu_freq--) {
3438
		int diff = dev_priv->rps.max_delay - gpu_freq;
3746 Serge 3439
		unsigned int ia_freq = 0, ring_freq = 0;
3031 serge 3440
 
4560 Serge 3441
		if (INTEL_INFO(dev)->gen >= 8) {
3442
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
3443
			ring_freq = max(min_ring_freq, gpu_freq);
3444
		} else if (IS_HASWELL(dev)) {
3445
			ring_freq = mult_frac(gpu_freq, 5, 4);
3746 Serge 3446
			ring_freq = max(min_ring_freq, ring_freq);
3447
			/* leave ia_freq as the default, chosen by cpufreq */
3448
		} else {
3449
			/* On older processors, there is no separate ring
3450
			 * clock domain, so in order to boost the bandwidth
3451
			 * of the ring, we need to upclock the CPU (ia_freq).
3452
			 *
3453
			 * For GPU frequencies less than 750MHz,
3454
			 * just use the lowest ring freq.
3031 serge 3455
		 */
3456
		if (gpu_freq < min_freq)
3457
			ia_freq = 800;
3458
		else
3459
			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3460
		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3746 Serge 3461
		}
3031 serge 3462
 
3243 Serge 3463
		sandybridge_pcode_write(dev_priv,
3464
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3746 Serge 3465
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3466
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3467
					gpu_freq);
3031 serge 3468
	}
3469
}
3470
 
4104 Serge 3471
int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3472
{
3473
	u32 val, rp0;
3474
 
3475
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3476
 
3477
	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3478
	/* Clamp to max */
3479
	rp0 = min_t(u32, rp0, 0xea);
3480
 
3481
	return rp0;
3482
}
3483
 
3484
static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3485
{
3486
	u32 val, rpe;
3487
 
3488
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3489
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3490
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3491
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3492
 
3493
	return rpe;
3494
}
3495
 
3496
int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3497
{
3498
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3499
}
3500
 
3501
static void valleyview_setup_pctx(struct drm_device *dev)
3502
{
3503
	struct drm_i915_private *dev_priv = dev->dev_private;
3504
	struct drm_i915_gem_object *pctx;
3505
	unsigned long pctx_paddr;
3506
	u32 pcbr;
3507
	int pctx_size = 24*1024;
3508
 
3509
	pcbr = I915_READ(VLV_PCBR);
3510
	if (pcbr) {
3511
		/* BIOS set it up already, grab the pre-alloc'd space */
3512
		int pcbr_offset;
3513
 
3514
		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3515
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3516
								      pcbr_offset,
3517
								      I915_GTT_OFFSET_NONE,
3518
								      pctx_size);
3519
		goto out;
3520
	}
3521
 
3522
	/*
3523
	 * From the Gunit register HAS:
3524
	 * The Gfx driver is expected to program this register and ensure
3525
	 * proper allocation within Gfx stolen memory.  For example, this
3526
	 * register should be programmed such than the PCBR range does not
3527
	 * overlap with other ranges, such as the frame buffer, protected
3528
	 * memory, or any other relevant ranges.
3529
	 */
3530
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
3531
	if (!pctx) {
3532
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3533
		return;
3534
	}
3535
 
3536
	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3537
	I915_WRITE(VLV_PCBR, pctx_paddr);
3538
 
3539
out:
3540
	dev_priv->vlv_pctx = pctx;
3541
}
3542
 
3543
static void valleyview_enable_rps(struct drm_device *dev)
3544
{
3545
	struct drm_i915_private *dev_priv = dev->dev_private;
3546
	struct intel_ring_buffer *ring;
4560 Serge 3547
	u32 gtfifodbg, val, rc6_mode = 0;
4104 Serge 3548
	int i;
3549
 
3550
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3551
 
3552
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4560 Serge 3553
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3554
				 gtfifodbg);
4104 Serge 3555
		I915_WRITE(GTFIFODBG, gtfifodbg);
3556
	}
3557
 
3558
	valleyview_setup_pctx(dev);
3559
 
4560 Serge 3560
	/* If VLV, Forcewake all wells, else re-direct to regular path */
3561
	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4104 Serge 3562
 
3563
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3564
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3565
	I915_WRITE(GEN6_RP_UP_EI, 66000);
3566
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3567
 
3568
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3569
 
3570
	I915_WRITE(GEN6_RP_CONTROL,
3571
		   GEN6_RP_MEDIA_TURBO |
3572
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
3573
		   GEN6_RP_MEDIA_IS_GFX |
3574
		   GEN6_RP_ENABLE |
3575
		   GEN6_RP_UP_BUSY_AVG |
3576
		   GEN6_RP_DOWN_IDLE_CONT);
3577
 
3578
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3579
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3580
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3581
 
3582
	for_each_ring(ring, dev_priv, i)
3583
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3584
 
4560 Serge 3585
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4104 Serge 3586
 
3587
	/* allows RC6 residency counter to work */
4560 Serge 3588
	I915_WRITE(VLV_COUNTER_CONTROL,
3589
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3590
				      VLV_MEDIA_RC6_COUNT_EN |
3591
				      VLV_RENDER_RC6_COUNT_EN));
3592
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3593
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4104 Serge 3594
 
4560 Serge 3595
	intel_print_rc6_info(dev, rc6_mode);
3596
 
3597
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3598
 
4104 Serge 3599
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3600
 
3601
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3602
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3603
 
3604
	dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3605
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4560 Serge 3606
			 vlv_gpu_freq(dev_priv, dev_priv->rps.cur_delay),
4104 Serge 3607
			 dev_priv->rps.cur_delay);
3608
 
3609
	dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3610
	dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3611
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4560 Serge 3612
			 vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay),
4104 Serge 3613
			 dev_priv->rps.max_delay);
3614
 
3615
	dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3616
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4560 Serge 3617
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4104 Serge 3618
			 dev_priv->rps.rpe_delay);
3619
 
3620
	dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3621
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4560 Serge 3622
			 vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay),
4104 Serge 3623
			 dev_priv->rps.min_delay);
3624
 
3625
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4560 Serge 3626
			 vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay),
4104 Serge 3627
			 dev_priv->rps.rpe_delay);
3628
 
3629
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3630
 
3631
	gen6_enable_rps_interrupts(dev);
3632
 
4560 Serge 3633
	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4104 Serge 3634
}
3635
 
3031 serge 3636
void ironlake_teardown_rc6(struct drm_device *dev)
3637
{
3638
	struct drm_i915_private *dev_priv = dev->dev_private;
3639
 
3243 Serge 3640
	if (dev_priv->ips.renderctx) {
3641
		i915_gem_object_unpin(dev_priv->ips.renderctx);
3642
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3643
		dev_priv->ips.renderctx = NULL;
3031 serge 3644
	}
3645
 
3243 Serge 3646
	if (dev_priv->ips.pwrctx) {
3647
		i915_gem_object_unpin(dev_priv->ips.pwrctx);
3648
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3649
		dev_priv->ips.pwrctx = NULL;
3031 serge 3650
	}
3651
}
3652
 
3653
static void ironlake_disable_rc6(struct drm_device *dev)
3654
{
3655
	struct drm_i915_private *dev_priv = dev->dev_private;
3656
 
3657
	if (I915_READ(PWRCTXA)) {
3658
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3659
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3660
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3661
			 50);
3662
 
3663
		I915_WRITE(PWRCTXA, 0);
3664
		POSTING_READ(PWRCTXA);
3665
 
3666
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3667
		POSTING_READ(RSTDBYCTL);
3668
	}
3669
}
3670
 
3671
static int ironlake_setup_rc6(struct drm_device *dev)
3672
{
3673
	struct drm_i915_private *dev_priv = dev->dev_private;
3674
 
3243 Serge 3675
	if (dev_priv->ips.renderctx == NULL)
3676
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3677
	if (!dev_priv->ips.renderctx)
3031 serge 3678
		return -ENOMEM;
3679
 
3243 Serge 3680
	if (dev_priv->ips.pwrctx == NULL)
3681
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3682
	if (!dev_priv->ips.pwrctx) {
3031 serge 3683
		ironlake_teardown_rc6(dev);
3684
		return -ENOMEM;
3685
	}
3686
 
3687
	return 0;
3688
}
3689
 
3690
static void ironlake_enable_rc6(struct drm_device *dev)
3691
{
3692
	struct drm_i915_private *dev_priv = dev->dev_private;
3693
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3243 Serge 3694
	bool was_interruptible;
3031 serge 3695
	int ret;
3696
 
3697
	/* rc6 disabled by default due to repeated reports of hanging during
3698
	 * boot and resume.
3699
	 */
3700
	if (!intel_enable_rc6(dev))
3701
		return;
3702
 
3703
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3704
 
3705
	ret = ironlake_setup_rc6(dev);
3706
	if (ret)
3707
		return;
3708
 
3243 Serge 3709
	was_interruptible = dev_priv->mm.interruptible;
3710
	dev_priv->mm.interruptible = false;
3711
 
3031 serge 3712
	/*
3713
	 * GPU can automatically power down the render unit if given a page
3714
	 * to save state.
3715
	 */
3716
	ret = intel_ring_begin(ring, 6);
3717
	if (ret) {
3718
		ironlake_teardown_rc6(dev);
3243 Serge 3719
		dev_priv->mm.interruptible = was_interruptible;
3031 serge 3720
		return;
3721
	}
3722
 
3723
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3724
	intel_ring_emit(ring, MI_SET_CONTEXT);
4104 Serge 3725
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
3031 serge 3726
			MI_MM_SPACE_GTT |
3727
			MI_SAVE_EXT_STATE_EN |
3728
			MI_RESTORE_EXT_STATE_EN |
3729
			MI_RESTORE_INHIBIT);
3730
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3731
	intel_ring_emit(ring, MI_NOOP);
3732
	intel_ring_emit(ring, MI_FLUSH);
3733
	intel_ring_advance(ring);
3734
 
3735
	/*
3736
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3737
	 * does an implicit flush, combined with MI_FLUSH above, it should be
3738
	 * safe to assume that renderctx is valid
3739
	 */
3243 Serge 3740
	ret = intel_ring_idle(ring);
3741
	dev_priv->mm.interruptible = was_interruptible;
3031 serge 3742
	if (ret) {
3746 Serge 3743
		DRM_ERROR("failed to enable ironlake power savings\n");
3031 serge 3744
		ironlake_teardown_rc6(dev);
3745
		return;
3746
	}
3747
 
4104 Serge 3748
	I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
3031 serge 3749
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4560 Serge 3750
 
3751
	intel_print_rc6_info(dev, INTEL_RC6_ENABLE);
3031 serge 3752
}
3753
 
3754
static unsigned long intel_pxfreq(u32 vidfreq)
3755
{
3756
	unsigned long freq;
3757
	int div = (vidfreq & 0x3f0000) >> 16;
3758
	int post = (vidfreq & 0x3000) >> 12;
3759
	int pre = (vidfreq & 0x7);
3760
 
3761
	if (!pre)
3762
		return 0;
3763
 
3764
	freq = ((div * 133333) / ((1<
3765
 
3766
	return freq;
3767
}
3768
 
3769
static const struct cparams {
3770
	u16 i;
3771
	u16 t;
3772
	u16 m;
3773
	u16 c;
3774
} cparams[] = {
3775
	{ 1, 1333, 301, 28664 },
3776
	{ 1, 1066, 294, 24460 },
3777
	{ 1, 800, 294, 25192 },
3778
	{ 0, 1333, 276, 27605 },
3779
	{ 0, 1066, 276, 27605 },
3780
	{ 0, 800, 231, 23784 },
3781
};
3782
 
3783
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3784
{
3785
	u64 total_count, diff, ret;
3786
	u32 count1, count2, count3, m = 0, c = 0;
3787
    unsigned long now = jiffies_to_msecs(GetTimerTicks()), diff1;
3788
	int i;
3789
 
3790
	assert_spin_locked(&mchdev_lock);
3791
 
3792
	diff1 = now - dev_priv->ips.last_time1;
3793
 
3794
	/* Prevent division-by-zero if we are asking too fast.
3795
	 * Also, we don't get interesting results if we are polling
3796
	 * faster than once in 10ms, so just return the saved value
3797
	 * in such cases.
3798
	 */
3799
	if (diff1 <= 10)
3800
		return dev_priv->ips.chipset_power;
3801
 
3802
	count1 = I915_READ(DMIEC);
3803
	count2 = I915_READ(DDREC);
3804
	count3 = I915_READ(CSIEC);
3805
 
3806
	total_count = count1 + count2 + count3;
3807
 
3808
	/* FIXME: handle per-counter overflow */
3809
	if (total_count < dev_priv->ips.last_count1) {
3810
		diff = ~0UL - dev_priv->ips.last_count1;
3811
		diff += total_count;
3812
	} else {
3813
		diff = total_count - dev_priv->ips.last_count1;
3814
	}
3815
 
3816
	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3817
		if (cparams[i].i == dev_priv->ips.c_m &&
3818
		    cparams[i].t == dev_priv->ips.r_t) {
3819
			m = cparams[i].m;
3820
			c = cparams[i].c;
3821
			break;
3822
		}
3823
	}
3824
 
3825
	diff = div_u64(diff, diff1);
3826
	ret = ((m * diff) + c);
3827
	ret = div_u64(ret, 10);
3828
 
3829
	dev_priv->ips.last_count1 = total_count;
3830
	dev_priv->ips.last_time1 = now;
3831
 
3832
	dev_priv->ips.chipset_power = ret;
3833
 
3834
	return ret;
3835
}
3836
 
3837
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3838
{
3839
	unsigned long val;
3840
 
3841
	if (dev_priv->info->gen != 5)
3842
		return 0;
3843
 
3844
	spin_lock_irq(&mchdev_lock);
3845
 
3846
	val = __i915_chipset_val(dev_priv);
3847
 
3848
	spin_unlock_irq(&mchdev_lock);
3849
 
3850
	return val;
3851
}
3852
 
3853
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3854
{
3855
	unsigned long m, x, b;
3856
	u32 tsfs;
3857
 
3858
	tsfs = I915_READ(TSFS);
3859
 
3860
	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3861
	x = I915_READ8(TR1);
3862
 
3863
	b = tsfs & TSFS_INTR_MASK;
3864
 
3865
	return ((m * x) / 127) - b;
3866
}
3867
 
3868
static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3869
{
3870
	static const struct v_table {
3871
		u16 vd; /* in .1 mil */
3872
		u16 vm; /* in .1 mil */
3873
	} v_table[] = {
3874
		{ 0, 0, },
3875
		{ 375, 0, },
3876
		{ 500, 0, },
3877
		{ 625, 0, },
3878
		{ 750, 0, },
3879
		{ 875, 0, },
3880
		{ 1000, 0, },
3881
		{ 1125, 0, },
3882
		{ 4125, 3000, },
3883
		{ 4125, 3000, },
3884
		{ 4125, 3000, },
3885
		{ 4125, 3000, },
3886
		{ 4125, 3000, },
3887
		{ 4125, 3000, },
3888
		{ 4125, 3000, },
3889
		{ 4125, 3000, },
3890
		{ 4125, 3000, },
3891
		{ 4125, 3000, },
3892
		{ 4125, 3000, },
3893
		{ 4125, 3000, },
3894
		{ 4125, 3000, },
3895
		{ 4125, 3000, },
3896
		{ 4125, 3000, },
3897
		{ 4125, 3000, },
3898
		{ 4125, 3000, },
3899
		{ 4125, 3000, },
3900
		{ 4125, 3000, },
3901
		{ 4125, 3000, },
3902
		{ 4125, 3000, },
3903
		{ 4125, 3000, },
3904
		{ 4125, 3000, },
3905
		{ 4125, 3000, },
3906
		{ 4250, 3125, },
3907
		{ 4375, 3250, },
3908
		{ 4500, 3375, },
3909
		{ 4625, 3500, },
3910
		{ 4750, 3625, },
3911
		{ 4875, 3750, },
3912
		{ 5000, 3875, },
3913
		{ 5125, 4000, },
3914
		{ 5250, 4125, },
3915
		{ 5375, 4250, },
3916
		{ 5500, 4375, },
3917
		{ 5625, 4500, },
3918
		{ 5750, 4625, },
3919
		{ 5875, 4750, },
3920
		{ 6000, 4875, },
3921
		{ 6125, 5000, },
3922
		{ 6250, 5125, },
3923
		{ 6375, 5250, },
3924
		{ 6500, 5375, },
3925
		{ 6625, 5500, },
3926
		{ 6750, 5625, },
3927
		{ 6875, 5750, },
3928
		{ 7000, 5875, },
3929
		{ 7125, 6000, },
3930
		{ 7250, 6125, },
3931
		{ 7375, 6250, },
3932
		{ 7500, 6375, },
3933
		{ 7625, 6500, },
3934
		{ 7750, 6625, },
3935
		{ 7875, 6750, },
3936
		{ 8000, 6875, },
3937
		{ 8125, 7000, },
3938
		{ 8250, 7125, },
3939
		{ 8375, 7250, },
3940
		{ 8500, 7375, },
3941
		{ 8625, 7500, },
3942
		{ 8750, 7625, },
3943
		{ 8875, 7750, },
3944
		{ 9000, 7875, },
3945
		{ 9125, 8000, },
3946
		{ 9250, 8125, },
3947
		{ 9375, 8250, },
3948
		{ 9500, 8375, },
3949
		{ 9625, 8500, },
3950
		{ 9750, 8625, },
3951
		{ 9875, 8750, },
3952
		{ 10000, 8875, },
3953
		{ 10125, 9000, },
3954
		{ 10250, 9125, },
3955
		{ 10375, 9250, },
3956
		{ 10500, 9375, },
3957
		{ 10625, 9500, },
3958
		{ 10750, 9625, },
3959
		{ 10875, 9750, },
3960
		{ 11000, 9875, },
3961
		{ 11125, 10000, },
3962
		{ 11250, 10125, },
3963
		{ 11375, 10250, },
3964
		{ 11500, 10375, },
3965
		{ 11625, 10500, },
3966
		{ 11750, 10625, },
3967
		{ 11875, 10750, },
3968
		{ 12000, 10875, },
3969
		{ 12125, 11000, },
3970
		{ 12250, 11125, },
3971
		{ 12375, 11250, },
3972
		{ 12500, 11375, },
3973
		{ 12625, 11500, },
3974
		{ 12750, 11625, },
3975
		{ 12875, 11750, },
3976
		{ 13000, 11875, },
3977
		{ 13125, 12000, },
3978
		{ 13250, 12125, },
3979
		{ 13375, 12250, },
3980
		{ 13500, 12375, },
3981
		{ 13625, 12500, },
3982
		{ 13750, 12625, },
3983
		{ 13875, 12750, },
3984
		{ 14000, 12875, },
3985
		{ 14125, 13000, },
3986
		{ 14250, 13125, },
3987
		{ 14375, 13250, },
3988
		{ 14500, 13375, },
3989
		{ 14625, 13500, },
3990
		{ 14750, 13625, },
3991
		{ 14875, 13750, },
3992
		{ 15000, 13875, },
3993
		{ 15125, 14000, },
3994
		{ 15250, 14125, },
3995
		{ 15375, 14250, },
3996
		{ 15500, 14375, },
3997
		{ 15625, 14500, },
3998
		{ 15750, 14625, },
3999
		{ 15875, 14750, },
4000
		{ 16000, 14875, },
4001
		{ 16125, 15000, },
4002
	};
4003
	if (dev_priv->info->is_mobile)
4004
		return v_table[pxvid].vm;
4005
	else
4006
		return v_table[pxvid].vd;
4007
}
4008
 
4009
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4010
{
4011
	struct timespec now, diff1;
4012
	u64 diff;
4013
	unsigned long diffms;
4014
	u32 count;
4015
 
4016
	assert_spin_locked(&mchdev_lock);
4017
 
4018
	getrawmonotonic(&now);
4019
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4020
 
4021
	/* Don't divide by 0 */
4022
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4023
	if (!diffms)
4024
		return;
4025
 
4026
	count = I915_READ(GFXEC);
4027
 
4028
	if (count < dev_priv->ips.last_count2) {
4029
		diff = ~0UL - dev_priv->ips.last_count2;
4030
		diff += count;
4031
	} else {
4032
		diff = count - dev_priv->ips.last_count2;
4033
	}
4034
 
4035
	dev_priv->ips.last_count2 = count;
4036
	dev_priv->ips.last_time2 = now;
4037
 
4038
	/* More magic constants... */
4039
	diff = diff * 1181;
4040
	diff = div_u64(diff, diffms * 10);
4041
	dev_priv->ips.gfx_power = diff;
4042
}
4043
 
4044
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4045
{
4046
	if (dev_priv->info->gen != 5)
4047
		return;
4048
 
4049
	spin_lock_irq(&mchdev_lock);
4050
 
4051
	__i915_update_gfx_val(dev_priv);
4052
 
4053
	spin_unlock_irq(&mchdev_lock);
4054
}
4055
 
4056
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4057
{
4058
	unsigned long t, corr, state1, corr2, state2;
4059
	u32 pxvid, ext_v;
4060
 
4061
	assert_spin_locked(&mchdev_lock);
4062
 
4063
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4064
	pxvid = (pxvid >> 24) & 0x7f;
4065
	ext_v = pvid_to_extvid(dev_priv, pxvid);
4066
 
4067
	state1 = ext_v;
4068
 
4069
	t = i915_mch_val(dev_priv);
4070
 
4071
	/* Revel in the empirically derived constants */
4072
 
4073
	/* Correction factor in 1/100000 units */
4074
	if (t > 80)
4075
		corr = ((t * 2349) + 135940);
4076
	else if (t >= 50)
4077
		corr = ((t * 964) + 29317);
4078
	else /* < 50 */
4079
		corr = ((t * 301) + 1004);
4080
 
4081
	corr = corr * ((150142 * state1) / 10000 - 78642);
4082
	corr /= 100000;
4083
	corr2 = (corr * dev_priv->ips.corr);
4084
 
4085
	state2 = (corr2 * state1) / 10000;
4086
	state2 /= 100; /* convert to mW */
4087
 
4088
	__i915_update_gfx_val(dev_priv);
4089
 
4090
	return dev_priv->ips.gfx_power + state2;
4091
}
4092
 
4093
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4094
{
4095
	unsigned long val;
4096
 
4097
	if (dev_priv->info->gen != 5)
4098
		return 0;
4099
 
4100
	spin_lock_irq(&mchdev_lock);
4101
 
4102
	val = __i915_gfx_val(dev_priv);
4103
 
4104
	spin_unlock_irq(&mchdev_lock);
4105
 
4106
	return val;
4107
}
4108
 
4109
/**
4110
 * i915_read_mch_val - return value for IPS use
4111
 *
4112
 * Calculate and return a value for the IPS driver to use when deciding whether
4113
 * we have thermal and power headroom to increase CPU or GPU power budget.
4114
 */
4115
unsigned long i915_read_mch_val(void)
4116
{
4117
	struct drm_i915_private *dev_priv;
4118
	unsigned long chipset_val, graphics_val, ret = 0;
4119
 
4120
	spin_lock_irq(&mchdev_lock);
4121
	if (!i915_mch_dev)
4122
		goto out_unlock;
4123
	dev_priv = i915_mch_dev;
4124
 
4125
	chipset_val = __i915_chipset_val(dev_priv);
4126
	graphics_val = __i915_gfx_val(dev_priv);
4127
 
4128
	ret = chipset_val + graphics_val;
4129
 
4130
out_unlock:
4131
	spin_unlock_irq(&mchdev_lock);
4132
 
4133
	return ret;
4134
}
4135
EXPORT_SYMBOL_GPL(i915_read_mch_val);
4136
 
4137
/**
4138
 * i915_gpu_raise - raise GPU frequency limit
4139
 *
4140
 * Raise the limit; IPS indicates we have thermal headroom.
4141
 */
4142
bool i915_gpu_raise(void)
4143
{
4144
	struct drm_i915_private *dev_priv;
4145
	bool ret = true;
4146
 
4147
	spin_lock_irq(&mchdev_lock);
4148
	if (!i915_mch_dev) {
4149
		ret = false;
4150
		goto out_unlock;
4151
	}
4152
	dev_priv = i915_mch_dev;
4153
 
4154
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4155
		dev_priv->ips.max_delay--;
4156
 
4157
out_unlock:
4158
	spin_unlock_irq(&mchdev_lock);
4159
 
4160
	return ret;
4161
}
4162
EXPORT_SYMBOL_GPL(i915_gpu_raise);
4163
 
4164
/**
4165
 * i915_gpu_lower - lower GPU frequency limit
4166
 *
4167
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
4168
 * frequency maximum.
4169
 */
4170
bool i915_gpu_lower(void)
4171
{
4172
	struct drm_i915_private *dev_priv;
4173
	bool ret = true;
4174
 
4175
	spin_lock_irq(&mchdev_lock);
4176
	if (!i915_mch_dev) {
4177
		ret = false;
4178
		goto out_unlock;
4179
	}
4180
	dev_priv = i915_mch_dev;
4181
 
4182
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4183
		dev_priv->ips.max_delay++;
4184
 
4185
out_unlock:
4186
	spin_unlock_irq(&mchdev_lock);
4187
 
4188
	return ret;
4189
}
4190
EXPORT_SYMBOL_GPL(i915_gpu_lower);
4191
 
4192
/**
4193
 * i915_gpu_busy - indicate GPU business to IPS
4194
 *
4195
 * Tell the IPS driver whether or not the GPU is busy.
4196
 */
4197
bool i915_gpu_busy(void)
4198
{
4199
	struct drm_i915_private *dev_priv;
4200
	struct intel_ring_buffer *ring;
4201
	bool ret = false;
4202
	int i;
4203
 
4204
	spin_lock_irq(&mchdev_lock);
4205
	if (!i915_mch_dev)
4206
		goto out_unlock;
4207
	dev_priv = i915_mch_dev;
4208
 
4209
	for_each_ring(ring, dev_priv, i)
4210
		ret |= !list_empty(&ring->request_list);
4211
 
4212
out_unlock:
4213
	spin_unlock_irq(&mchdev_lock);
4214
 
4215
	return ret;
4216
}
4217
EXPORT_SYMBOL_GPL(i915_gpu_busy);
4218
 
4219
/**
4220
 * i915_gpu_turbo_disable - disable graphics turbo
4221
 *
4222
 * Disable graphics turbo by resetting the max frequency and setting the
4223
 * current frequency to the default.
4224
 */
4225
bool i915_gpu_turbo_disable(void)
4226
{
4227
	struct drm_i915_private *dev_priv;
4228
	bool ret = true;
4229
 
4230
	spin_lock_irq(&mchdev_lock);
4231
	if (!i915_mch_dev) {
4232
		ret = false;
4233
		goto out_unlock;
4234
	}
4235
	dev_priv = i915_mch_dev;
4236
 
4237
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
4238
 
4239
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4240
		ret = false;
4241
 
4242
out_unlock:
4243
	spin_unlock_irq(&mchdev_lock);
4244
 
4245
	return ret;
4246
}
4247
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4248
 
4249
/**
4250
 * Tells the intel_ips driver that the i915 driver is now loaded, if
4251
 * IPS got loaded first.
4252
 *
4253
 * This awkward dance is so that neither module has to depend on the
4254
 * other in order for IPS to do the appropriate communication of
4255
 * GPU turbo limits to i915.
4256
 */
4257
static void
4258
ips_ping_for_i915_load(void)
4259
{
4260
	void (*link)(void);
4261
 
4262
//   link = symbol_get(ips_link_to_i915_driver);
4263
//   if (link) {
4264
//       link();
4265
//       symbol_put(ips_link_to_i915_driver);
4266
//   }
4267
}
4268
 
4269
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4270
{
4271
	/* We only register the i915 ips part with intel-ips once everything is
4272
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
4273
	spin_lock_irq(&mchdev_lock);
4274
	i915_mch_dev = dev_priv;
4275
	spin_unlock_irq(&mchdev_lock);
4276
 
4277
	ips_ping_for_i915_load();
4278
}
4279
 
4280
void intel_gpu_ips_teardown(void)
4281
{
4282
	spin_lock_irq(&mchdev_lock);
4283
	i915_mch_dev = NULL;
4284
	spin_unlock_irq(&mchdev_lock);
4285
}
4286
static void intel_init_emon(struct drm_device *dev)
4287
{
4288
	struct drm_i915_private *dev_priv = dev->dev_private;
4289
	u32 lcfuse;
4290
	u8 pxw[16];
4291
	int i;
4292
 
4293
	/* Disable to program */
4294
	I915_WRITE(ECR, 0);
4295
	POSTING_READ(ECR);
4296
 
4297
	/* Program energy weights for various events */
4298
	I915_WRITE(SDEW, 0x15040d00);
4299
	I915_WRITE(CSIEW0, 0x007f0000);
4300
	I915_WRITE(CSIEW1, 0x1e220004);
4301
	I915_WRITE(CSIEW2, 0x04000004);
4302
 
4303
	for (i = 0; i < 5; i++)
4304
		I915_WRITE(PEW + (i * 4), 0);
4305
	for (i = 0; i < 3; i++)
4306
		I915_WRITE(DEW + (i * 4), 0);
4307
 
4308
	/* Program P-state weights to account for frequency power adjustment */
4309
	for (i = 0; i < 16; i++) {
4310
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4311
		unsigned long freq = intel_pxfreq(pxvidfreq);
4312
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4313
			PXVFREQ_PX_SHIFT;
4314
		unsigned long val;
4315
 
4316
		val = vid * vid;
4317
		val *= (freq / 1000);
4318
		val *= 255;
4319
		val /= (127*127*900);
4320
		if (val > 0xff)
4321
			DRM_ERROR("bad pxval: %ld\n", val);
4322
		pxw[i] = val;
4323
	}
4324
	/* Render standby states get 0 weight */
4325
	pxw[14] = 0;
4326
	pxw[15] = 0;
4327
 
4328
	for (i = 0; i < 4; i++) {
4329
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4330
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4331
		I915_WRITE(PXW + (i * 4), val);
4332
	}
4333
 
4334
	/* Adjust magic regs to magic values (more experimental results) */
4335
	I915_WRITE(OGW0, 0);
4336
	I915_WRITE(OGW1, 0);
4337
	I915_WRITE(EG0, 0x00007f00);
4338
	I915_WRITE(EG1, 0x0000000e);
4339
	I915_WRITE(EG2, 0x000e0000);
4340
	I915_WRITE(EG3, 0x68000300);
4341
	I915_WRITE(EG4, 0x42000000);
4342
	I915_WRITE(EG5, 0x00140031);
4343
	I915_WRITE(EG6, 0);
4344
	I915_WRITE(EG7, 0);
4345
 
4346
	for (i = 0; i < 8; i++)
4347
		I915_WRITE(PXWL + (i * 4), 0);
4348
 
4349
	/* Enable PMON + select events */
4350
	I915_WRITE(ECR, 0x80000019);
4351
 
4352
	lcfuse = I915_READ(LCFUSE02);
4353
 
4354
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4355
}
4356
 
4357
void intel_disable_gt_powersave(struct drm_device *dev)
4358
{
3243 Serge 4359
	struct drm_i915_private *dev_priv = dev->dev_private;
4360
 
4104 Serge 4361
	/* Interrupts should be disabled already to avoid re-arming. */
4362
	WARN_ON(dev->irq_enabled);
4363
 
3031 serge 4364
	if (IS_IRONLAKE_M(dev)) {
4365
		ironlake_disable_drps(dev);
4366
		ironlake_disable_rc6(dev);
4293 Serge 4367
	} else if (INTEL_INFO(dev)->gen >= 6) {
4368
		cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4369
		cancel_work_sync(&dev_priv->rps.work);
3482 Serge 4370
		mutex_lock(&dev_priv->rps.hw_lock);
4104 Serge 4371
		if (IS_VALLEYVIEW(dev))
4372
			valleyview_disable_rps(dev);
4373
		else
3031 serge 4374
		gen6_disable_rps(dev);
4560 Serge 4375
		dev_priv->rps.enabled = false;
3480 Serge 4376
		mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 4377
	}
4378
}
4379
 
3482 Serge 4380
static void intel_gen6_powersave_work(struct work_struct *work)
4381
{
4382
	struct drm_i915_private *dev_priv =
4383
		container_of(work, struct drm_i915_private,
4384
			     rps.delayed_resume_work.work);
4385
	struct drm_device *dev = dev_priv->dev;
4386
 
4387
	mutex_lock(&dev_priv->rps.hw_lock);
4104 Serge 4388
 
4389
	if (IS_VALLEYVIEW(dev)) {
4390
		valleyview_enable_rps(dev);
4560 Serge 4391
	} else if (IS_BROADWELL(dev)) {
4392
		gen8_enable_rps(dev);
4393
		gen6_update_ring_freq(dev);
4104 Serge 4394
	} else {
3482 Serge 4395
	gen6_enable_rps(dev);
4396
	gen6_update_ring_freq(dev);
4104 Serge 4397
	}
4560 Serge 4398
	dev_priv->rps.enabled = true;
3482 Serge 4399
	mutex_unlock(&dev_priv->rps.hw_lock);
4400
}
4401
 
3031 serge 4402
void intel_enable_gt_powersave(struct drm_device *dev)
4403
{
3243 Serge 4404
	struct drm_i915_private *dev_priv = dev->dev_private;
4405
 
3031 serge 4406
	if (IS_IRONLAKE_M(dev)) {
4407
		ironlake_enable_drps(dev);
4408
		ironlake_enable_rc6(dev);
4409
		intel_init_emon(dev);
4104 Serge 4410
	} else if (IS_GEN6(dev) || IS_GEN7(dev)) {
3243 Serge 4411
		/*
4412
		 * PCU communication is slow and this doesn't need to be
4413
		 * done at any specific time, so do this out of our fast path
4414
		 * to make resume and init faster.
4415
		 */
3482 Serge 4416
		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4417
				      round_jiffies_up_relative(HZ));
3031 serge 4418
	}
4419
}
4420
 
3243 Serge 4421
static void ibx_init_clock_gating(struct drm_device *dev)
4422
{
4423
	struct drm_i915_private *dev_priv = dev->dev_private;
4424
 
4425
	/*
4426
	 * On Ibex Peak and Cougar Point, we need to disable clock
4427
	 * gating for the panel power sequencer or it will fail to
4428
	 * start up when no ports are active.
4429
	 */
4430
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4431
}
4432
 
4104 Serge 4433
static void g4x_disable_trickle_feed(struct drm_device *dev)
4434
{
4435
	struct drm_i915_private *dev_priv = dev->dev_private;
4436
	int pipe;
4437
 
4438
	for_each_pipe(pipe) {
4439
		I915_WRITE(DSPCNTR(pipe),
4440
			   I915_READ(DSPCNTR(pipe)) |
4441
			   DISPPLANE_TRICKLE_FEED_DISABLE);
4560 Serge 4442
		intel_flush_primary_plane(dev_priv, pipe);
4104 Serge 4443
	}
4444
}
4445
 
4560 Serge 4446
static void ilk_init_lp_watermarks(struct drm_device *dev)
4447
{
4448
	struct drm_i915_private *dev_priv = dev->dev_private;
4449
 
4450
	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4451
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4452
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4453
 
4454
	/*
4455
	 * Don't touch WM1S_LP_EN here.
4456
	 * Doing so could cause underruns.
4457
	 */
4458
}
4459
 
3031 serge 4460
static void ironlake_init_clock_gating(struct drm_device *dev)
4461
{
4462
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 4463
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 4464
 
4104 Serge 4465
	/*
4466
	 * Required for FBC
4467
	 * WaFbcDisableDpfcClockGating:ilk
4468
	 */
3243 Serge 4469
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4470
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4471
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3031 serge 4472
 
4473
	I915_WRITE(PCH_3DCGDIS0,
4474
		   MARIUNIT_CLOCK_GATE_DISABLE |
4475
		   SVSMUNIT_CLOCK_GATE_DISABLE);
4476
	I915_WRITE(PCH_3DCGDIS1,
4477
		   VFMUNIT_CLOCK_GATE_DISABLE);
4478
 
4479
	/*
4480
	 * According to the spec the following bits should be set in
4481
	 * order to enable memory self-refresh
4482
	 * The bit 22/21 of 0x42004
4483
	 * The bit 5 of 0x42020
4484
	 * The bit 15 of 0x45000
4485
	 */
4486
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4487
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
4488
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3243 Serge 4489
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3031 serge 4490
	I915_WRITE(DISP_ARB_CTL,
4491
		   (I915_READ(DISP_ARB_CTL) |
4492
		    DISP_FBC_WM_DIS));
4493
 
4560 Serge 4494
	ilk_init_lp_watermarks(dev);
4495
 
3031 serge 4496
	/*
4497
	 * Based on the document from hardware guys the following bits
4498
	 * should be set unconditionally in order to enable FBC.
4499
	 * The bit 22 of 0x42000
4500
	 * The bit 22 of 0x42004
4501
	 * The bit 7,8,9 of 0x42020.
4502
	 */
4503
	if (IS_IRONLAKE_M(dev)) {
4104 Serge 4504
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
3031 serge 4505
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
4506
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
4507
			   ILK_FBCQ_DIS);
4508
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
4509
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
4510
			   ILK_DPARB_GATE);
4511
	}
4512
 
3243 Serge 4513
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4514
 
3031 serge 4515
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4516
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4517
		   ILK_ELPIN_409_SELECT);
4518
	I915_WRITE(_3D_CHICKEN2,
4519
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4520
		   _3D_CHICKEN2_WM_READ_PIPELINED);
3243 Serge 4521
 
4104 Serge 4522
	/* WaDisableRenderCachePipelinedFlush:ilk */
3243 Serge 4523
	I915_WRITE(CACHE_MODE_0,
4524
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4525
 
4104 Serge 4526
	g4x_disable_trickle_feed(dev);
4527
 
3243 Serge 4528
	ibx_init_clock_gating(dev);
3031 serge 4529
}
4530
 
3243 Serge 4531
static void cpt_init_clock_gating(struct drm_device *dev)
4532
{
4533
	struct drm_i915_private *dev_priv = dev->dev_private;
4534
	int pipe;
3746 Serge 4535
	uint32_t val;
3243 Serge 4536
 
4537
	/*
4538
	 * On Ibex Peak and Cougar Point, we need to disable clock
4539
	 * gating for the panel power sequencer or it will fail to
4540
	 * start up when no ports are active.
4541
	 */
4280 Serge 4542
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4543
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4544
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
3243 Serge 4545
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4546
		   DPLS_EDP_PPS_FIX_DIS);
4547
	/* The below fixes the weird display corruption, a few pixels shifted
4548
	 * downward, on (only) LVDS of some HP laptops with IVY.
4549
	 */
3746 Serge 4550
	for_each_pipe(pipe) {
4551
		val = I915_READ(TRANS_CHICKEN2(pipe));
4552
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4553
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4104 Serge 4554
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
3746 Serge 4555
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4556
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4557
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4558
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4559
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
4560
	}
3243 Serge 4561
	/* WADP0ClockGatingDisable */
4562
	for_each_pipe(pipe) {
4563
		I915_WRITE(TRANS_CHICKEN1(pipe),
4564
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4565
	}
4566
}
4567
 
3480 Serge 4568
static void gen6_check_mch_setup(struct drm_device *dev)
4569
{
4570
	struct drm_i915_private *dev_priv = dev->dev_private;
4571
	uint32_t tmp;
4572
 
4573
	tmp = I915_READ(MCH_SSKPD);
4574
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4575
		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4576
		DRM_INFO("This can cause pipe underruns and display issues.\n");
4577
		DRM_INFO("Please upgrade your BIOS to fix this.\n");
4578
	}
4579
}
4580
 
3031 serge 4581
static void gen6_init_clock_gating(struct drm_device *dev)
4582
{
4583
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 4584
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 4585
 
3243 Serge 4586
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3031 serge 4587
 
4588
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4589
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4590
		   ILK_ELPIN_409_SELECT);
4591
 
4104 Serge 4592
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
3243 Serge 4593
	I915_WRITE(_3D_CHICKEN,
4594
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4595
 
4104 Serge 4596
	/* WaSetupGtModeTdRowDispatch:snb */
3243 Serge 4597
	if (IS_SNB_GT1(dev))
4598
		I915_WRITE(GEN6_GT_MODE,
4599
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4600
 
4560 Serge 4601
	ilk_init_lp_watermarks(dev);
3031 serge 4602
 
4603
	I915_WRITE(CACHE_MODE_0,
4604
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4605
 
4606
	I915_WRITE(GEN6_UCGCTL1,
4607
		   I915_READ(GEN6_UCGCTL1) |
4608
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4609
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4610
 
4611
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4612
	 * gating disable must be set.  Failure to set it results in
4613
	 * flickering pixels due to Z write ordering failures after
4614
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
4615
	 * Sanctuary and Tropics, and apparently anything else with
4616
	 * alpha test or pixel discard.
4617
	 *
4618
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
4619
	 * but we didn't debug actual testcases to find it out.
4620
	 *
4104 Serge 4621
	 * Also apply WaDisableVDSUnitClockGating:snb and
4622
	 * WaDisableRCPBUnitClockGating:snb.
3031 serge 4623
	 */
4624
	I915_WRITE(GEN6_UCGCTL2,
4625
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4626
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4627
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4628
 
4629
	/* Bspec says we need to always set all mask bits. */
4630
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4631
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4632
 
4633
	/*
4634
	 * According to the spec the following bits should be
4635
	 * set in order to enable memory self-refresh and fbc:
4636
	 * The bit21 and bit22 of 0x42000
4637
	 * The bit21 and bit22 of 0x42004
4638
	 * The bit5 and bit7 of 0x42020
4639
	 * The bit14 of 0x70180
4640
	 * The bit14 of 0x71180
4104 Serge 4641
	 *
4642
	 * WaFbcAsynchFlipDisableFbcQueue:snb
3031 serge 4643
	 */
4644
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
4645
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
4646
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4647
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
4648
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
4649
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3243 Serge 4650
	I915_WRITE(ILK_DSPCLK_GATE_D,
4651
		   I915_READ(ILK_DSPCLK_GATE_D) |
4652
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4653
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3031 serge 4654
 
4104 Serge 4655
	g4x_disable_trickle_feed(dev);
3031 serge 4656
 
4657
	/* The default value should be 0x200 according to docs, but the two
4658
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4659
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4660
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3243 Serge 4661
 
4662
	cpt_init_clock_gating(dev);
3480 Serge 4663
 
4664
	gen6_check_mch_setup(dev);
3031 serge 4665
}
4666
 
4667
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4668
{
4669
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4670
 
4671
	reg &= ~GEN7_FF_SCHED_MASK;
4672
	reg |= GEN7_FF_TS_SCHED_HW;
4673
	reg |= GEN7_FF_VS_SCHED_HW;
4674
	reg |= GEN7_FF_DS_SCHED_HW;
4675
 
3480 Serge 4676
	if (IS_HASWELL(dev_priv->dev))
4677
		reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4678
 
3031 serge 4679
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4680
}
4681
 
3243 Serge 4682
static void lpt_init_clock_gating(struct drm_device *dev)
4683
{
4684
	struct drm_i915_private *dev_priv = dev->dev_private;
4685
 
4686
	/*
4687
	 * TODO: this bit should only be enabled when really needed, then
4688
	 * disabled when not needed anymore in order to save power.
4689
	 */
4690
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4691
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
4692
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
4693
			   PCH_LP_PARTITION_LEVEL_DISABLE);
4104 Serge 4694
 
4695
	/* WADPOClockGatingDisable:hsw */
4696
	I915_WRITE(_TRANSA_CHICKEN1,
4697
		   I915_READ(_TRANSA_CHICKEN1) |
4698
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3243 Serge 4699
}
4700
 
4104 Serge 4701
static void lpt_suspend_hw(struct drm_device *dev)
4702
{
4703
	struct drm_i915_private *dev_priv = dev->dev_private;
4704
 
4705
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4706
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4707
 
4708
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4709
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4710
	}
4711
}
4712
 
4560 Serge 4713
static void gen8_init_clock_gating(struct drm_device *dev)
3031 serge 4714
{
4715
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4716
	enum pipe i;
3031 serge 4717
 
4718
	I915_WRITE(WM3_LP_ILK, 0);
4719
	I915_WRITE(WM2_LP_ILK, 0);
4720
	I915_WRITE(WM1_LP_ILK, 0);
4721
 
4560 Serge 4722
	/* FIXME(BDW): Check all the w/a, some might only apply to
4723
	 * pre-production hw. */
4724
 
4725
	WARN(!i915_preliminary_hw_support,
4726
	     "GEN8_CENTROID_PIXEL_OPT_DIS not be needed for production\n");
4727
	I915_WRITE(HALF_SLICE_CHICKEN3,
4728
		   _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
4729
	I915_WRITE(HALF_SLICE_CHICKEN3,
4730
		   _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
4731
	I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
4732
 
4733
	I915_WRITE(_3D_CHICKEN3,
4734
		   _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
4735
 
4736
	I915_WRITE(COMMON_SLICE_CHICKEN2,
4737
		   _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
4738
 
4739
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4740
		   _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
4741
 
4742
	/* WaSwitchSolVfFArbitrationPriority:bdw */
4743
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4744
 
4745
	/* WaPsrDPAMaskVBlankInSRD:bdw */
4746
	I915_WRITE(CHICKEN_PAR1_1,
4747
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
4748
 
4749
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
4750
	for_each_pipe(i) {
4751
		I915_WRITE(CHICKEN_PIPESL_1(i),
4752
			   I915_READ(CHICKEN_PIPESL_1(i) |
4753
				     DPRS_MASK_VBLANK_SRD));
4754
	}
4755
 
4756
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
4757
	 * workaround for for a possible hang in the unlikely event a TLB
4758
	 * invalidation occurs during a PSD flush.
4759
	 */
4760
	I915_WRITE(HDC_CHICKEN0,
4761
		   I915_READ(HDC_CHICKEN0) |
4762
		   _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
4763
 
4764
	/* WaVSRefCountFullforceMissDisable:bdw */
4765
	/* WaDSRefCountFullforceMissDisable:bdw */
4766
	I915_WRITE(GEN7_FF_THREAD_MODE,
4767
		   I915_READ(GEN7_FF_THREAD_MODE) &
4768
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
4769
}
4770
 
4771
static void haswell_init_clock_gating(struct drm_device *dev)
4772
{
4773
	struct drm_i915_private *dev_priv = dev->dev_private;
4774
 
4775
	ilk_init_lp_watermarks(dev);
4776
 
3031 serge 4777
	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 4778
	 * This implements the WaDisableRCZUnitClockGating:hsw workaround.
3031 serge 4779
	 */
4780
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4781
 
4104 Serge 4782
	/* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
3031 serge 4783
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4784
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4785
 
4104 Serge 4786
	/* WaApplyL3ControlAndL3ChickenMode:hsw */
3031 serge 4787
	I915_WRITE(GEN7_L3CNTLREG1,
4788
			GEN7_WA_FOR_GEN7_L3_CONTROL);
4789
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4790
			GEN7_WA_L3_CHICKEN_MODE);
4791
 
4104 Serge 4792
	/* L3 caching of data atomics doesn't work -- disable it. */
4793
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
4794
	I915_WRITE(HSW_ROW_CHICKEN3,
4795
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
4796
 
4797
	/* This is required by WaCatErrorRejectionIssue:hsw */
3031 serge 4798
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4799
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4800
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4801
 
4104 Serge 4802
	/* WaVSRefCountFullforceMissDisable:hsw */
3031 serge 4803
	gen7_setup_fixed_func_scheduler(dev_priv);
4804
 
4104 Serge 4805
	/* WaDisable4x2SubspanOptimization:hsw */
3031 serge 4806
	I915_WRITE(CACHE_MODE_1,
4807
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4808
 
4104 Serge 4809
	/* WaSwitchSolVfFArbitrationPriority:hsw */
3746 Serge 4810
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4811
 
4104 Serge 4812
	/* WaRsPkgCStateDisplayPMReq:hsw */
4813
	I915_WRITE(CHICKEN_PAR1_1,
4814
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
3031 serge 4815
 
3243 Serge 4816
	lpt_init_clock_gating(dev);
3031 serge 4817
}
4818
 
4819
static void ivybridge_init_clock_gating(struct drm_device *dev)
4820
{
4821
	struct drm_i915_private *dev_priv = dev->dev_private;
4822
	uint32_t snpcr;
4823
 
4560 Serge 4824
	ilk_init_lp_watermarks(dev);
3031 serge 4825
 
3243 Serge 4826
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 4827
 
4104 Serge 4828
	/* WaDisableEarlyCull:ivb */
3243 Serge 4829
	I915_WRITE(_3D_CHICKEN3,
4830
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4831
 
4104 Serge 4832
	/* WaDisableBackToBackFlipFix:ivb */
3031 serge 4833
	I915_WRITE(IVB_CHICKEN3,
4834
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4835
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
4836
 
4104 Serge 4837
	/* WaDisablePSDDualDispatchEnable:ivb */
3243 Serge 4838
	if (IS_IVB_GT1(dev))
4839
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4840
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4841
	else
4842
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4843
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4844
 
4104 Serge 4845
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
3031 serge 4846
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4847
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4848
 
4104 Serge 4849
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
3031 serge 4850
	I915_WRITE(GEN7_L3CNTLREG1,
4851
			GEN7_WA_FOR_GEN7_L3_CONTROL);
4852
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4853
			GEN7_WA_L3_CHICKEN_MODE);
3243 Serge 4854
	if (IS_IVB_GT1(dev))
4855
		I915_WRITE(GEN7_ROW_CHICKEN2,
4856
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4857
	else
4858
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4859
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3031 serge 4860
 
3243 Serge 4861
 
4104 Serge 4862
	/* WaForceL3Serialization:ivb */
3243 Serge 4863
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4864
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4865
 
3031 serge 4866
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4867
	 * gating disable must be set.  Failure to set it results in
4868
	 * flickering pixels due to Z write ordering failures after
4869
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
4870
	 * Sanctuary and Tropics, and apparently anything else with
4871
	 * alpha test or pixel discard.
4872
	 *
4873
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
4874
	 * but we didn't debug actual testcases to find it out.
4875
	 *
4876
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 4877
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
3031 serge 4878
	 */
4879
	I915_WRITE(GEN6_UCGCTL2,
4880
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4881
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4882
 
4104 Serge 4883
	/* This is required by WaCatErrorRejectionIssue:ivb */
3031 serge 4884
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4885
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4886
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4887
 
4104 Serge 4888
	g4x_disable_trickle_feed(dev);
3031 serge 4889
 
4104 Serge 4890
	/* WaVSRefCountFullforceMissDisable:ivb */
3031 serge 4891
	gen7_setup_fixed_func_scheduler(dev_priv);
4892
 
4104 Serge 4893
	/* WaDisable4x2SubspanOptimization:ivb */
3031 serge 4894
	I915_WRITE(CACHE_MODE_1,
4895
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4896
 
4897
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4898
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
4899
	snpcr |= GEN6_MBC_SNPCR_MED;
4900
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3243 Serge 4901
 
3746 Serge 4902
	if (!HAS_PCH_NOP(dev))
3243 Serge 4903
	cpt_init_clock_gating(dev);
3480 Serge 4904
 
4905
	gen6_check_mch_setup(dev);
3031 serge 4906
}
4907
 
4908
static void valleyview_init_clock_gating(struct drm_device *dev)
4909
{
4910
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4911
	u32 val;
3031 serge 4912
 
4560 Serge 4913
	mutex_lock(&dev_priv->rps.hw_lock);
4914
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4915
	mutex_unlock(&dev_priv->rps.hw_lock);
4916
	switch ((val >> 6) & 3) {
4917
	case 0:
4918
		dev_priv->mem_freq = 800;
4919
		break;
4920
	case 1:
4921
		dev_priv->mem_freq = 1066;
4922
		break;
4923
	case 2:
4924
		dev_priv->mem_freq = 1333;
4925
		break;
4926
	case 3:
4927
		dev_priv->mem_freq = 1333;
4928
		break;
4929
	}
4930
	DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
4931
 
4104 Serge 4932
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 4933
 
4104 Serge 4934
	/* WaDisableEarlyCull:vlv */
3243 Serge 4935
	I915_WRITE(_3D_CHICKEN3,
4936
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4937
 
4104 Serge 4938
	/* WaDisableBackToBackFlipFix:vlv */
3031 serge 4939
	I915_WRITE(IVB_CHICKEN3,
4940
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4941
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
4942
 
4104 Serge 4943
	/* WaDisablePSDDualDispatchEnable:vlv */
3243 Serge 4944
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3746 Serge 4945
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4946
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3243 Serge 4947
 
4104 Serge 4948
	/* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
3031 serge 4949
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4950
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4951
 
4104 Serge 4952
	/* WaApplyL3ControlAndL3ChickenMode:vlv */
3243 Serge 4953
	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3031 serge 4954
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4955
 
4104 Serge 4956
	/* WaForceL3Serialization:vlv */
3243 Serge 4957
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4958
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4959
 
4104 Serge 4960
	/* WaDisableDopClockGating:vlv */
3243 Serge 4961
	I915_WRITE(GEN7_ROW_CHICKEN2,
4962
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4963
 
4104 Serge 4964
	/* This is required by WaCatErrorRejectionIssue:vlv */
3031 serge 4965
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4966
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4967
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4968
 
4969
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4970
	 * gating disable must be set.  Failure to set it results in
4971
	 * flickering pixels due to Z write ordering failures after
4972
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
4973
	 * Sanctuary and Tropics, and apparently anything else with
4974
	 * alpha test or pixel discard.
4975
	 *
4976
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
4977
	 * but we didn't debug actual testcases to find it out.
4978
	 *
4979
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4104 Serge 4980
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
3031 serge 4981
	 *
4104 Serge 4982
	 * Also apply WaDisableVDSUnitClockGating:vlv and
4983
	 * WaDisableRCPBUnitClockGating:vlv.
3031 serge 4984
	 */
4985
	I915_WRITE(GEN6_UCGCTL2,
4986
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4987
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4988
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4989
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4990
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4991
 
4992
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4993
 
4104 Serge 4994
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
3031 serge 4995
 
4996
	I915_WRITE(CACHE_MODE_1,
4997
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4998
 
4999
	/*
4104 Serge 5000
	 * WaDisableVLVClockGating_VBIIssue:vlv
3243 Serge 5001
	 * Disable clock gating on th GCFG unit to prevent a delay
5002
	 * in the reporting of vblank events.
5003
	 */
3746 Serge 5004
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
5005
 
5006
	/* Conservative clock gating settings for now */
5007
	I915_WRITE(0x9400, 0xffffffff);
5008
	I915_WRITE(0x9404, 0xffffffff);
5009
	I915_WRITE(0x9408, 0xffffffff);
5010
	I915_WRITE(0x940c, 0xffffffff);
5011
	I915_WRITE(0x9410, 0xffffffff);
5012
	I915_WRITE(0x9414, 0xffffffff);
5013
	I915_WRITE(0x9418, 0xffffffff);
3031 serge 5014
}
5015
 
5016
static void g4x_init_clock_gating(struct drm_device *dev)
5017
{
5018
	struct drm_i915_private *dev_priv = dev->dev_private;
5019
	uint32_t dspclk_gate;
5020
 
5021
	I915_WRITE(RENCLK_GATE_D1, 0);
5022
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5023
		   GS_UNIT_CLOCK_GATE_DISABLE |
5024
		   CL_UNIT_CLOCK_GATE_DISABLE);
5025
	I915_WRITE(RAMCLK_GATE_D, 0);
5026
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5027
		OVRUNIT_CLOCK_GATE_DISABLE |
5028
		OVCUNIT_CLOCK_GATE_DISABLE;
5029
	if (IS_GM45(dev))
5030
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5031
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3243 Serge 5032
 
5033
	/* WaDisableRenderCachePipelinedFlush */
5034
	I915_WRITE(CACHE_MODE_0,
5035
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4104 Serge 5036
 
5037
	g4x_disable_trickle_feed(dev);
3031 serge 5038
}
5039
 
5040
static void crestline_init_clock_gating(struct drm_device *dev)
5041
{
5042
	struct drm_i915_private *dev_priv = dev->dev_private;
5043
 
5044
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5045
	I915_WRITE(RENCLK_GATE_D2, 0);
5046
	I915_WRITE(DSPCLK_GATE_D, 0);
5047
	I915_WRITE(RAMCLK_GATE_D, 0);
5048
	I915_WRITE16(DEUC, 0);
4104 Serge 5049
	I915_WRITE(MI_ARB_STATE,
5050
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 5051
}
5052
 
5053
static void broadwater_init_clock_gating(struct drm_device *dev)
5054
{
5055
	struct drm_i915_private *dev_priv = dev->dev_private;
5056
 
5057
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5058
		   I965_RCC_CLOCK_GATE_DISABLE |
5059
		   I965_RCPB_CLOCK_GATE_DISABLE |
5060
		   I965_ISC_CLOCK_GATE_DISABLE |
5061
		   I965_FBC_CLOCK_GATE_DISABLE);
5062
	I915_WRITE(RENCLK_GATE_D2, 0);
4104 Serge 5063
	I915_WRITE(MI_ARB_STATE,
5064
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
3031 serge 5065
}
5066
 
5067
static void gen3_init_clock_gating(struct drm_device *dev)
5068
{
5069
	struct drm_i915_private *dev_priv = dev->dev_private;
5070
	u32 dstate = I915_READ(D_STATE);
5071
 
5072
	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5073
		DSTATE_DOT_CLOCK_GATING;
5074
	I915_WRITE(D_STATE, dstate);
5075
 
5076
	if (IS_PINEVIEW(dev))
5077
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5078
 
5079
	/* IIR "flip pending" means done if this bit is set */
5080
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5081
}
5082
 
5083
static void i85x_init_clock_gating(struct drm_device *dev)
5084
{
5085
	struct drm_i915_private *dev_priv = dev->dev_private;
5086
 
5087
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5088
}
5089
 
5090
static void i830_init_clock_gating(struct drm_device *dev)
5091
{
5092
	struct drm_i915_private *dev_priv = dev->dev_private;
5093
 
5094
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5095
}
5096
 
5097
void intel_init_clock_gating(struct drm_device *dev)
5098
{
5099
	struct drm_i915_private *dev_priv = dev->dev_private;
5100
 
5101
	dev_priv->display.init_clock_gating(dev);
5102
}
5103
 
4104 Serge 5104
void intel_suspend_hw(struct drm_device *dev)
5105
{
5106
	if (HAS_PCH_LPT(dev))
5107
		lpt_suspend_hw(dev);
5108
}
5109
 
4560 Serge 5110
#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
5111
	for (i = 0;							\
5112
	     i < (power_domains)->power_well_count &&			\
5113
		 ((power_well) = &(power_domains)->power_wells[i]);	\
5114
	     i++)							\
5115
		if ((power_well)->domains & (domain_mask))
5116
 
5117
#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5118
	for (i = (power_domains)->power_well_count - 1;			 \
5119
	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5120
	     i--)							 \
5121
		if ((power_well)->domains & (domain_mask))
5122
 
3746 Serge 5123
/**
5124
 * We should only use the power well if we explicitly asked the hardware to
5125
 * enable it, so check if it's enabled and also check if we've requested it to
5126
 * be enabled.
5127
 */
4560 Serge 5128
static bool hsw_power_well_enabled(struct drm_device *dev,
5129
				   struct i915_power_well *power_well)
5130
{
5131
	struct drm_i915_private *dev_priv = dev->dev_private;
5132
 
5133
	return I915_READ(HSW_PWR_WELL_DRIVER) ==
5134
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5135
}
5136
 
5137
bool intel_display_power_enabled_sw(struct drm_device *dev,
5138
				    enum intel_display_power_domain domain)
5139
{
5140
	struct drm_i915_private *dev_priv = dev->dev_private;
5141
	struct i915_power_domains *power_domains;
5142
 
5143
	power_domains = &dev_priv->power_domains;
5144
 
5145
	return power_domains->domain_use_count[domain];
5146
}
5147
 
4104 Serge 5148
bool intel_display_power_enabled(struct drm_device *dev,
5149
				 enum intel_display_power_domain domain)
3746 Serge 5150
{
5151
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 5152
	struct i915_power_domains *power_domains;
5153
	struct i915_power_well *power_well;
5154
	bool is_enabled;
5155
	int i;
3746 Serge 5156
 
4560 Serge 5157
	power_domains = &dev_priv->power_domains;
4104 Serge 5158
 
4560 Serge 5159
	is_enabled = true;
5160
 
5161
	mutex_lock(&power_domains->lock);
5162
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5163
		if (power_well->always_on)
5164
			continue;
5165
 
5166
		if (!power_well->is_enabled(dev, power_well)) {
5167
			is_enabled = false;
5168
			break;
5169
		}
4104 Serge 5170
	}
4560 Serge 5171
	mutex_unlock(&power_domains->lock);
5172
 
5173
	return is_enabled;
3746 Serge 5174
}
5175
 
4560 Serge 5176
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
3031 serge 5177
{
4560 Serge 5178
	struct drm_device *dev = dev_priv->dev;
5179
	unsigned long irqflags;
5180
 
5181
	/*
5182
	 * After we re-enable the power well, if we touch VGA register 0x3d5
5183
	 * we'll get unclaimed register interrupts. This stops after we write
5184
	 * anything to the VGA MSR register. The vgacon module uses this
5185
	 * register all the time, so if we unbind our driver and, as a
5186
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
5187
	 * console_unlock(). So make here we touch the VGA MSR register, making
5188
	 * sure vgacon can keep working normally without triggering interrupts
5189
	 * and error messages.
5190
	 */
5191
//   vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5192
    outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5193
//   vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5194
 
5195
	if (IS_BROADWELL(dev)) {
5196
		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5197
		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5198
			   dev_priv->de_irq_mask[PIPE_B]);
5199
		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5200
			   ~dev_priv->de_irq_mask[PIPE_B] |
5201
			   GEN8_PIPE_VBLANK);
5202
		I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5203
			   dev_priv->de_irq_mask[PIPE_C]);
5204
		I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5205
			   ~dev_priv->de_irq_mask[PIPE_C] |
5206
			   GEN8_PIPE_VBLANK);
5207
		POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5208
		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5209
	}
5210
}
5211
 
5212
static void hsw_power_well_post_disable(struct drm_i915_private *dev_priv)
5213
{
5214
	struct drm_device *dev = dev_priv->dev;
5215
	enum pipe p;
5216
	unsigned long irqflags;
5217
 
5218
	/*
5219
	 * After this, the registers on the pipes that are part of the power
5220
	 * well will become zero, so we have to adjust our counters according to
5221
	 * that.
5222
	 *
5223
	 * FIXME: Should we do this in general in drm_vblank_post_modeset?
5224
	 */
5225
//   spin_lock_irqsave(&dev->vbl_lock, irqflags);
5226
//   for_each_pipe(p)
5227
//       if (p != PIPE_A)
5228
//           dev->vblank[p].last = 0;
5229
//   spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
5230
}
5231
 
5232
static void hsw_set_power_well(struct drm_device *dev,
5233
			       struct i915_power_well *power_well, bool enable)
5234
{
3031 serge 5235
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 5236
	bool is_enabled, enable_requested;
5237
	uint32_t tmp;
3031 serge 5238
 
4560 Serge 5239
	WARN_ON(dev_priv->pc8.enabled);
5240
 
3480 Serge 5241
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4104 Serge 5242
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5243
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
3031 serge 5244
 
3480 Serge 5245
	if (enable) {
5246
		if (!enable_requested)
4104 Serge 5247
			I915_WRITE(HSW_PWR_WELL_DRIVER,
5248
				   HSW_PWR_WELL_ENABLE_REQUEST);
3031 serge 5249
 
3480 Serge 5250
		if (!is_enabled) {
5251
			DRM_DEBUG_KMS("Enabling power well\n");
5252
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4104 Serge 5253
				      HSW_PWR_WELL_STATE_ENABLED), 20))
3480 Serge 5254
				DRM_ERROR("Timeout enabling power well\n");
3031 serge 5255
		}
4560 Serge 5256
 
5257
		hsw_power_well_post_enable(dev_priv);
3480 Serge 5258
	} else {
5259
		if (enable_requested) {
5260
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4104 Serge 5261
			POSTING_READ(HSW_PWR_WELL_DRIVER);
3480 Serge 5262
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
4104 Serge 5263
 
4560 Serge 5264
			hsw_power_well_post_disable(dev_priv);
4104 Serge 5265
		}
5266
		}
5267
}
5268
 
4560 Serge 5269
static void __intel_power_well_get(struct drm_device *dev,
5270
				   struct i915_power_well *power_well)
5271
{
5272
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 5273
 
4560 Serge 5274
	if (!power_well->count++ && power_well->set) {
5275
		hsw_disable_package_c8(dev_priv);
5276
		power_well->set(dev, power_well, true);
5277
		}
5278
}
5279
 
5280
static void __intel_power_well_put(struct drm_device *dev,
5281
				   struct i915_power_well *power_well)
5282
{
5283
	struct drm_i915_private *dev_priv = dev->dev_private;
5284
 
5285
	WARN_ON(!power_well->count);
5286
 
5287
	if (!--power_well->count && power_well->set &&
5288
	    i915_disable_power_well) {
5289
		power_well->set(dev, power_well, false);
5290
		hsw_enable_package_c8(dev_priv);
5291
	}
5292
}
5293
 
5294
void intel_display_power_get(struct drm_device *dev,
5295
			     enum intel_display_power_domain domain)
5296
{
5297
	struct drm_i915_private *dev_priv = dev->dev_private;
5298
	struct i915_power_domains *power_domains;
5299
	struct i915_power_well *power_well;
5300
	int i;
5301
 
5302
	power_domains = &dev_priv->power_domains;
5303
 
5304
	mutex_lock(&power_domains->lock);
5305
 
5306
	for_each_power_well(i, power_well, BIT(domain), power_domains)
5307
		__intel_power_well_get(dev, power_well);
5308
 
5309
	power_domains->domain_use_count[domain]++;
5310
 
5311
	mutex_unlock(&power_domains->lock);
5312
}
5313
 
5314
void intel_display_power_put(struct drm_device *dev,
5315
			     enum intel_display_power_domain domain)
5316
{
5317
	struct drm_i915_private *dev_priv = dev->dev_private;
5318
	struct i915_power_domains *power_domains;
5319
	struct i915_power_well *power_well;
5320
	int i;
5321
 
5322
	power_domains = &dev_priv->power_domains;
5323
 
5324
	mutex_lock(&power_domains->lock);
5325
 
5326
	WARN_ON(!power_domains->domain_use_count[domain]);
5327
	power_domains->domain_use_count[domain]--;
5328
 
5329
	for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
5330
		__intel_power_well_put(dev, power_well);
5331
 
5332
	mutex_unlock(&power_domains->lock);
5333
}
5334
 
5335
static struct i915_power_domains *hsw_pwr;
5336
 
4104 Serge 5337
/* Display audio driver power well request */
5338
void i915_request_power_well(void)
5339
{
4560 Serge 5340
	struct drm_i915_private *dev_priv;
5341
 
4104 Serge 5342
	if (WARN_ON(!hsw_pwr))
5343
		return;
5344
 
4560 Serge 5345
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5346
				power_domains);
5347
	intel_display_power_get(dev_priv->dev, POWER_DOMAIN_AUDIO);
4104 Serge 5348
}
5349
EXPORT_SYMBOL_GPL(i915_request_power_well);
5350
 
5351
/* Display audio driver power well release */
5352
void i915_release_power_well(void)
5353
{
4560 Serge 5354
	struct drm_i915_private *dev_priv;
5355
 
4104 Serge 5356
	if (WARN_ON(!hsw_pwr))
5357
		return;
5358
 
4560 Serge 5359
	dev_priv = container_of(hsw_pwr, struct drm_i915_private,
5360
				power_domains);
5361
	intel_display_power_put(dev_priv->dev, POWER_DOMAIN_AUDIO);
4104 Serge 5362
}
5363
EXPORT_SYMBOL_GPL(i915_release_power_well);
5364
 
4560 Serge 5365
static struct i915_power_well i9xx_always_on_power_well[] = {
5366
	{
5367
		.name = "always-on",
5368
		.always_on = 1,
5369
		.domains = POWER_DOMAIN_MASK,
5370
	},
5371
};
5372
 
5373
static struct i915_power_well hsw_power_wells[] = {
5374
	{
5375
		.name = "always-on",
5376
		.always_on = 1,
5377
		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
5378
	},
5379
	{
5380
		.name = "display",
5381
		.domains = POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS,
5382
		.is_enabled = hsw_power_well_enabled,
5383
		.set = hsw_set_power_well,
5384
	},
5385
};
5386
 
5387
static struct i915_power_well bdw_power_wells[] = {
5388
	{
5389
		.name = "always-on",
5390
		.always_on = 1,
5391
		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
5392
	},
5393
	{
5394
		.name = "display",
5395
		.domains = POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS,
5396
		.is_enabled = hsw_power_well_enabled,
5397
		.set = hsw_set_power_well,
5398
	},
5399
};
5400
 
5401
#define set_power_wells(power_domains, __power_wells) ({		\
5402
	(power_domains)->power_wells = (__power_wells);			\
5403
	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
5404
})
5405
 
5406
int intel_power_domains_init(struct drm_device *dev)
4104 Serge 5407
{
5408
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 5409
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
4104 Serge 5410
 
4560 Serge 5411
	mutex_init(&power_domains->lock);
4104 Serge 5412
 
4560 Serge 5413
	/*
5414
	 * The enabling order will be from lower to higher indexed wells,
5415
	 * the disabling order is reversed.
5416
	 */
5417
	if (IS_HASWELL(dev)) {
5418
		set_power_wells(power_domains, hsw_power_wells);
5419
		hsw_pwr = power_domains;
5420
	} else if (IS_BROADWELL(dev)) {
5421
		set_power_wells(power_domains, bdw_power_wells);
5422
		hsw_pwr = power_domains;
5423
	} else {
5424
		set_power_wells(power_domains, i9xx_always_on_power_well);
5425
	}
4104 Serge 5426
 
5427
	return 0;
5428
}
5429
 
4560 Serge 5430
void intel_power_domains_remove(struct drm_device *dev)
4104 Serge 5431
{
5432
	hsw_pwr = NULL;
5433
}
5434
 
4560 Serge 5435
static void intel_power_domains_resume(struct drm_device *dev)
4104 Serge 5436
{
5437
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 5438
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
5439
	struct i915_power_well *power_well;
5440
	int i;
4104 Serge 5441
 
4560 Serge 5442
	mutex_lock(&power_domains->lock);
5443
	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
5444
		if (power_well->set)
5445
			power_well->set(dev, power_well, power_well->count > 0);
3031 serge 5446
	}
4560 Serge 5447
	mutex_unlock(&power_domains->lock);
3480 Serge 5448
}
3031 serge 5449
 
3480 Serge 5450
/*
5451
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
5452
 * when not needed anymore. We have 4 registers that can request the power well
5453
 * to be enabled, and it will only be disabled if none of the registers is
5454
 * requesting it to be enabled.
5455
 */
4560 Serge 5456
void intel_power_domains_init_hw(struct drm_device *dev)
3480 Serge 5457
{
5458
	struct drm_i915_private *dev_priv = dev->dev_private;
5459
 
4560 Serge 5460
	/* For now, we need the power well to be always enabled. */
5461
	intel_display_set_init_power(dev, true);
5462
	intel_power_domains_resume(dev);
5463
 
5464
	if (!(IS_HASWELL(dev) || IS_BROADWELL(dev)))
3480 Serge 5465
		return;
5466
 
5467
	/* We're taking over the BIOS, so clear any requests made by it since
5468
	 * the driver is in charge now. */
4104 Serge 5469
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
3480 Serge 5470
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
3031 serge 5471
}
5472
 
4104 Serge 5473
/* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
5474
void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
5475
{
5476
	hsw_disable_package_c8(dev_priv);
5477
}
5478
 
5479
void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
5480
{
5481
	hsw_enable_package_c8(dev_priv);
5482
}
5483
 
4560 Serge 5484
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
5485
{
5486
	struct drm_device *dev = dev_priv->dev;
5487
	struct device *device = &dev->pdev->dev;
5488
 
5489
    return;
5490
}
5491
 
5492
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
5493
{
5494
	struct drm_device *dev = dev_priv->dev;
5495
	struct device *device = &dev->pdev->dev;
5496
 
5497
    return;
5498
 
5499
}
5500
 
5501
void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
5502
{
5503
	struct drm_device *dev = dev_priv->dev;
5504
	struct device *device = &dev->pdev->dev;
5505
 
5506
	dev_priv->pm.suspended = false;
5507
 
5508
    return;
5509
 
5510
}
5511
 
5512
void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
5513
{
5514
	struct drm_device *dev = dev_priv->dev;
5515
	struct device *device = &dev->pdev->dev;
5516
 
5517
    return;
5518
 
5519
}
5520
 
3031 serge 5521
/* Set up chip specific power management-related functions */
5522
void intel_init_pm(struct drm_device *dev)
5523
{
5524
	struct drm_i915_private *dev_priv = dev->dev_private;
5525
 
4560 Serge 5526
	if (HAS_FBC(dev)) {
5527
		if (INTEL_INFO(dev)->gen >= 7) {
3031 serge 5528
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4560 Serge 5529
			dev_priv->display.enable_fbc = gen7_enable_fbc;
3031 serge 5530
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
4560 Serge 5531
		} else if (INTEL_INFO(dev)->gen >= 5) {
5532
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5533
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
5534
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
3031 serge 5535
		} else if (IS_GM45(dev)) {
5536
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5537
			dev_priv->display.enable_fbc = g4x_enable_fbc;
5538
			dev_priv->display.disable_fbc = g4x_disable_fbc;
4560 Serge 5539
		} else {
3031 serge 5540
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5541
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
5542
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
4560 Serge 5543
 
5544
			/* This value was pulled out of someone's hat */
5545
			I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
3031 serge 5546
		}
5547
	}
5548
 
5549
	/* For cxsr */
5550
	if (IS_PINEVIEW(dev))
5551
		i915_pineview_get_mem_freq(dev);
5552
	else if (IS_GEN5(dev))
5553
		i915_ironlake_get_mem_freq(dev);
5554
 
5555
	/* For FIFO watermark updates */
5556
	if (HAS_PCH_SPLIT(dev)) {
4104 Serge 5557
		intel_setup_wm_latency(dev);
5558
 
4560 Serge 5559
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
5560
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
5561
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
5562
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
5563
			dev_priv->display.update_wm = ilk_update_wm;
5564
			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
3031 serge 5565
			} else {
5566
				DRM_DEBUG_KMS("Failed to read display plane latency. "
5567
					      "Disable CxSR\n");
5568
			}
4560 Serge 5569
 
5570
		if (IS_GEN5(dev))
5571
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5572
		else if (IS_GEN6(dev))
3031 serge 5573
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4560 Serge 5574
		else if (IS_IVYBRIDGE(dev))
3031 serge 5575
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4560 Serge 5576
		else if (IS_HASWELL(dev))
3031 serge 5577
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4560 Serge 5578
		else if (INTEL_INFO(dev)->gen == 8)
5579
			dev_priv->display.init_clock_gating = gen8_init_clock_gating;
3031 serge 5580
	} else if (IS_VALLEYVIEW(dev)) {
5581
		dev_priv->display.update_wm = valleyview_update_wm;
5582
		dev_priv->display.init_clock_gating =
5583
			valleyview_init_clock_gating;
5584
	} else if (IS_PINEVIEW(dev)) {
5585
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5586
					    dev_priv->is_ddr3,
5587
					    dev_priv->fsb_freq,
5588
					    dev_priv->mem_freq)) {
5589
			DRM_INFO("failed to find known CxSR latency "
5590
				 "(found ddr%s fsb freq %d, mem freq %d), "
5591
				 "disabling CxSR\n",
5592
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
5593
				 dev_priv->fsb_freq, dev_priv->mem_freq);
5594
			/* Disable CxSR and never update its watermark again */
5595
			pineview_disable_cxsr(dev);
5596
			dev_priv->display.update_wm = NULL;
5597
		} else
5598
			dev_priv->display.update_wm = pineview_update_wm;
5599
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5600
	} else if (IS_G4X(dev)) {
5601
		dev_priv->display.update_wm = g4x_update_wm;
5602
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5603
	} else if (IS_GEN4(dev)) {
5604
		dev_priv->display.update_wm = i965_update_wm;
5605
		if (IS_CRESTLINE(dev))
5606
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5607
		else if (IS_BROADWATER(dev))
5608
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5609
	} else if (IS_GEN3(dev)) {
5610
		dev_priv->display.update_wm = i9xx_update_wm;
5611
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5612
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4560 Serge 5613
	} else if (IS_GEN2(dev)) {
5614
		if (INTEL_INFO(dev)->num_pipes == 1) {
5615
			dev_priv->display.update_wm = i845_update_wm;
5616
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
5617
		} else {
5618
			dev_priv->display.update_wm = i9xx_update_wm;
3031 serge 5619
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
4560 Serge 5620
		}
5621
 
5622
		if (IS_I85X(dev) || IS_I865G(dev))
3031 serge 5623
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4560 Serge 5624
		else
5625
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
3031 serge 5626
	} else {
4560 Serge 5627
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
3031 serge 5628
	}
5629
}
5630
 
3243 Serge 5631
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5632
{
5633
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 5634
 
3243 Serge 5635
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5636
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5637
		return -EAGAIN;
5638
	}
3031 serge 5639
 
3243 Serge 5640
	I915_WRITE(GEN6_PCODE_DATA, *val);
5641
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5642
 
5643
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5644
		     500)) {
5645
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5646
		return -ETIMEDOUT;
3031 serge 5647
			}
3243 Serge 5648
 
5649
	*val = I915_READ(GEN6_PCODE_DATA);
5650
	I915_WRITE(GEN6_PCODE_DATA, 0);
5651
 
5652
	return 0;
5653
}
5654
 
5655
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5656
{
5657
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5658
 
5659
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5660
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5661
		return -EAGAIN;
3031 serge 5662
		}
3243 Serge 5663
 
5664
	I915_WRITE(GEN6_PCODE_DATA, val);
5665
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5666
 
5667
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5668
		     500)) {
5669
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5670
		return -ETIMEDOUT;
3031 serge 5671
	}
3243 Serge 5672
 
5673
	I915_WRITE(GEN6_PCODE_DATA, 0);
5674
 
5675
	return 0;
3031 serge 5676
}
3746 Serge 5677
 
4560 Serge 5678
int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
3746 Serge 5679
{
4560 Serge 5680
	int div;
3746 Serge 5681
 
4560 Serge 5682
	/* 4 x czclk */
5683
	switch (dev_priv->mem_freq) {
4104 Serge 5684
	case 800:
4560 Serge 5685
		div = 10;
4104 Serge 5686
		break;
5687
	case 1066:
4560 Serge 5688
		div = 12;
4104 Serge 5689
		break;
5690
	case 1333:
4560 Serge 5691
		div = 16;
4104 Serge 5692
		break;
5693
	default:
5694
		return -1;
5695
	}
3746 Serge 5696
 
4560 Serge 5697
	return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
4104 Serge 5698
}
3746 Serge 5699
 
4560 Serge 5700
int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
4104 Serge 5701
{
4560 Serge 5702
	int mul;
3746 Serge 5703
 
4560 Serge 5704
	/* 4 x czclk */
5705
	switch (dev_priv->mem_freq) {
4104 Serge 5706
	case 800:
4560 Serge 5707
		mul = 10;
4104 Serge 5708
		break;
5709
	case 1066:
4560 Serge 5710
		mul = 12;
4104 Serge 5711
		break;
5712
	case 1333:
4560 Serge 5713
		mul = 16;
4104 Serge 5714
		break;
5715
	default:
5716
		return -1;
3746 Serge 5717
	}
5718
 
4560 Serge 5719
	return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
3746 Serge 5720
}
5721
 
4560 Serge 5722
void intel_pm_setup(struct drm_device *dev)
3746 Serge 5723
{
4104 Serge 5724
	struct drm_i915_private *dev_priv = dev->dev_private;
5725
 
4560 Serge 5726
	mutex_init(&dev_priv->rps.hw_lock);
5727
 
5728
	mutex_init(&dev_priv->pc8.lock);
5729
	dev_priv->pc8.requirements_met = false;
5730
	dev_priv->pc8.gpu_idle = false;
5731
	dev_priv->pc8.irqs_disabled = false;
5732
	dev_priv->pc8.enabled = false;
5733
	dev_priv->pc8.disable_count = 2; /* requirements_met + gpu_idle */
5734
	INIT_DELAYED_WORK(&dev_priv->pc8.enable_work, hsw_enable_pc8_work);
4104 Serge 5735
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5736
			  intel_gen6_powersave_work);
3746 Serge 5737
}