Subversion Repositories Kolibri OS

Rev

Rev 3243 | Rev 3482 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3031 serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eugeni Dodonov 
25
 *
26
 */
27
 
28
#define iowrite32(v, addr)      writel((v), (addr))
29
#define ioread32(addr)          readl(addr)
30
 
31
//#include 
32
#include "i915_drv.h"
33
#include "intel_drv.h"
34
#include 
35
//#include "../../../platform/x86/intel_ips.h"
36
#include 
37
 
38
#define FORCEWAKE_ACK_TIMEOUT_MS 2
39
 
40
#define assert_spin_locked(x)
41
 
42
void getrawmonotonic(struct timespec *ts);
43
void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec);
44
 
45
static inline struct timespec timespec_sub(struct timespec lhs,
46
                                                struct timespec rhs)
47
{
48
    struct timespec ts_delta;
49
    set_normalized_timespec(&ts_delta, lhs.tv_sec - rhs.tv_sec,
50
                                lhs.tv_nsec - rhs.tv_nsec);
51
    return ts_delta;
52
}
53
 
54
 
55
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
56
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
57
 * during in-memory transfers and, therefore, reduce the power packet.
58
 *
59
 * The benefits of FBC are mostly visible with solid backgrounds and
60
 * variation-less patterns.
61
 *
62
 * FBC-related functionality can be enabled by the means of the
63
 * i915.i915_enable_fbc parameter
64
 */
65
 
3243 Serge 66
static bool intel_crtc_active(struct drm_crtc *crtc)
67
{
68
	/* Be paranoid as we can arrive here with only partial
69
	 * state retrieved from the hardware during setup.
70
	 */
71
	return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
72
}
73
 
3031 serge 74
static void i8xx_disable_fbc(struct drm_device *dev)
75
{
76
	struct drm_i915_private *dev_priv = dev->dev_private;
77
	u32 fbc_ctl;
78
 
79
	/* Disable compression */
80
	fbc_ctl = I915_READ(FBC_CONTROL);
81
	if ((fbc_ctl & FBC_CTL_EN) == 0)
82
		return;
83
 
84
	fbc_ctl &= ~FBC_CTL_EN;
85
	I915_WRITE(FBC_CONTROL, fbc_ctl);
86
 
87
	/* Wait for compressing bit to clear */
88
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
89
		DRM_DEBUG_KMS("FBC idle timed out\n");
90
		return;
91
	}
92
 
93
	DRM_DEBUG_KMS("disabled FBC\n");
94
}
95
 
96
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
97
{
98
	struct drm_device *dev = crtc->dev;
99
	struct drm_i915_private *dev_priv = dev->dev_private;
100
	struct drm_framebuffer *fb = crtc->fb;
101
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
102
	struct drm_i915_gem_object *obj = intel_fb->obj;
103
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
104
	int cfb_pitch;
105
	int plane, i;
106
	u32 fbc_ctl, fbc_ctl2;
107
 
108
	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
109
	if (fb->pitches[0] < cfb_pitch)
110
		cfb_pitch = fb->pitches[0];
111
 
112
	/* FBC_CTL wants 64B units */
113
	cfb_pitch = (cfb_pitch / 64) - 1;
114
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
115
 
116
	/* Clear old tags */
117
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
118
		I915_WRITE(FBC_TAG + (i * 4), 0);
119
 
120
	/* Set it up... */
121
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122
	fbc_ctl2 |= plane;
123
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124
	I915_WRITE(FBC_FENCE_OFF, crtc->y);
125
 
126
	/* enable it... */
127
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
128
	if (IS_I945GM(dev))
129
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
130
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
131
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
132
	fbc_ctl |= obj->fence_reg;
133
	I915_WRITE(FBC_CONTROL, fbc_ctl);
134
 
135
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
136
		      cfb_pitch, crtc->y, intel_crtc->plane);
137
}
138
 
139
static bool i8xx_fbc_enabled(struct drm_device *dev)
140
{
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142
 
143
	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
144
}
145
 
146
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
147
{
148
	struct drm_device *dev = crtc->dev;
149
	struct drm_i915_private *dev_priv = dev->dev_private;
150
	struct drm_framebuffer *fb = crtc->fb;
151
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
152
	struct drm_i915_gem_object *obj = intel_fb->obj;
153
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
154
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
155
	unsigned long stall_watermark = 200;
156
	u32 dpfc_ctl;
157
 
158
	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
159
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
160
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
161
 
162
	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
163
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
164
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
165
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
 
167
	/* enable it... */
168
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
169
 
170
	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
171
}
172
 
173
static void g4x_disable_fbc(struct drm_device *dev)
174
{
175
	struct drm_i915_private *dev_priv = dev->dev_private;
176
	u32 dpfc_ctl;
177
 
178
	/* Disable compression */
179
	dpfc_ctl = I915_READ(DPFC_CONTROL);
180
	if (dpfc_ctl & DPFC_CTL_EN) {
181
		dpfc_ctl &= ~DPFC_CTL_EN;
182
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
 
184
		DRM_DEBUG_KMS("disabled FBC\n");
185
	}
186
}
187
 
188
static bool g4x_fbc_enabled(struct drm_device *dev)
189
{
190
	struct drm_i915_private *dev_priv = dev->dev_private;
191
 
192
	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193
}
194
 
195
static void sandybridge_blit_fbc_update(struct drm_device *dev)
196
{
197
	struct drm_i915_private *dev_priv = dev->dev_private;
198
	u32 blt_ecoskpd;
199
 
200
	/* Make sure blitter notifies FBC of writes */
201
	gen6_gt_force_wake_get(dev_priv);
202
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
203
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
204
		GEN6_BLITTER_LOCK_SHIFT;
205
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
206
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
207
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
208
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
209
			 GEN6_BLITTER_LOCK_SHIFT);
210
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
211
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
212
	gen6_gt_force_wake_put(dev_priv);
213
}
214
 
215
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
216
{
217
	struct drm_device *dev = crtc->dev;
218
	struct drm_i915_private *dev_priv = dev->dev_private;
219
	struct drm_framebuffer *fb = crtc->fb;
220
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
221
	struct drm_i915_gem_object *obj = intel_fb->obj;
222
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
223
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
224
	unsigned long stall_watermark = 200;
225
	u32 dpfc_ctl;
226
 
227
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
228
	dpfc_ctl &= DPFC_RESERVED;
229
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
230
	/* Set persistent mode for front-buffer rendering, ala X. */
231
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
232
	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
233
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
234
 
235
	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
236
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
237
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
238
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
239
	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
240
	/* enable it... */
241
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
242
 
243
	if (IS_GEN6(dev)) {
244
		I915_WRITE(SNB_DPFC_CTL_SA,
245
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
246
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
247
		sandybridge_blit_fbc_update(dev);
248
	}
249
 
250
	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
251
}
252
 
253
static void ironlake_disable_fbc(struct drm_device *dev)
254
{
255
	struct drm_i915_private *dev_priv = dev->dev_private;
256
	u32 dpfc_ctl;
257
 
258
	/* Disable compression */
259
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
260
	if (dpfc_ctl & DPFC_CTL_EN) {
261
		dpfc_ctl &= ~DPFC_CTL_EN;
262
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
263
 
264
		DRM_DEBUG_KMS("disabled FBC\n");
265
	}
266
}
267
 
268
static bool ironlake_fbc_enabled(struct drm_device *dev)
269
{
270
	struct drm_i915_private *dev_priv = dev->dev_private;
271
 
272
	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
273
}
274
 
275
bool intel_fbc_enabled(struct drm_device *dev)
276
{
277
	struct drm_i915_private *dev_priv = dev->dev_private;
278
 
279
	if (!dev_priv->display.fbc_enabled)
280
		return false;
281
 
282
	return dev_priv->display.fbc_enabled(dev);
283
}
284
 
285
#if 0
286
static void intel_fbc_work_fn(struct work_struct *__work)
287
{
288
	struct intel_fbc_work *work =
289
		container_of(to_delayed_work(__work),
290
			     struct intel_fbc_work, work);
291
	struct drm_device *dev = work->crtc->dev;
292
	struct drm_i915_private *dev_priv = dev->dev_private;
293
 
294
	mutex_lock(&dev->struct_mutex);
295
	if (work == dev_priv->fbc_work) {
296
		/* Double check that we haven't switched fb without cancelling
297
		 * the prior work.
298
		 */
299
		if (work->crtc->fb == work->fb) {
300
			dev_priv->display.enable_fbc(work->crtc,
301
						     work->interval);
302
 
303
			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
304
			dev_priv->cfb_fb = work->crtc->fb->base.id;
305
			dev_priv->cfb_y = work->crtc->y;
306
		}
307
 
308
		dev_priv->fbc_work = NULL;
309
	}
310
	mutex_unlock(&dev->struct_mutex);
311
 
312
	kfree(work);
313
}
314
 
315
static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
316
{
317
	if (dev_priv->fbc_work == NULL)
318
		return;
319
 
320
	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
321
 
322
	/* Synchronisation is provided by struct_mutex and checking of
323
	 * dev_priv->fbc_work, so we can perform the cancellation
324
	 * entirely asynchronously.
325
	 */
326
	if (cancel_delayed_work(&dev_priv->fbc_work->work))
327
		/* tasklet was killed before being run, clean up */
328
		kfree(dev_priv->fbc_work);
329
 
330
	/* Mark the work as no longer wanted so that if it does
331
	 * wake-up (because the work was already running and waiting
332
	 * for our mutex), it will discover that is no longer
333
	 * necessary to run.
334
	 */
335
	dev_priv->fbc_work = NULL;
336
}
337
#endif
338
 
339
void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
340
{
341
	struct intel_fbc_work *work;
342
	struct drm_device *dev = crtc->dev;
343
	struct drm_i915_private *dev_priv = dev->dev_private;
344
 
345
//   if (!dev_priv->display.enable_fbc)
346
		return;
347
#if 0
348
	intel_cancel_fbc_work(dev_priv);
349
 
350
	work = kzalloc(sizeof *work, GFP_KERNEL);
351
	if (work == NULL) {
352
		dev_priv->display.enable_fbc(crtc, interval);
353
		return;
354
	}
355
 
356
	work->crtc = crtc;
357
	work->fb = crtc->fb;
358
	work->interval = interval;
359
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
360
 
361
	dev_priv->fbc_work = work;
362
 
363
	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
364
 
365
	/* Delay the actual enabling to let pageflipping cease and the
366
	 * display to settle before starting the compression. Note that
367
	 * this delay also serves a second purpose: it allows for a
368
	 * vblank to pass after disabling the FBC before we attempt
369
	 * to modify the control registers.
370
	 *
371
	 * A more complicated solution would involve tracking vblanks
372
	 * following the termination of the page-flipping sequence
373
	 * and indeed performing the enable as a co-routine and not
374
	 * waiting synchronously upon the vblank.
375
	 */
376
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
377
#endif
378
 
379
}
380
 
381
void intel_disable_fbc(struct drm_device *dev)
382
{
383
	struct drm_i915_private *dev_priv = dev->dev_private;
384
 
385
//   intel_cancel_fbc_work(dev_priv);
386
 
387
//   if (!dev_priv->display.disable_fbc)
388
//       return;
389
 
390
//   dev_priv->display.disable_fbc(dev);
391
	dev_priv->cfb_plane = -1;
392
}
393
 
394
/**
395
 * intel_update_fbc - enable/disable FBC as needed
396
 * @dev: the drm_device
397
 *
398
 * Set up the framebuffer compression hardware at mode set time.  We
399
 * enable it if possible:
400
 *   - plane A only (on pre-965)
401
 *   - no pixel mulitply/line duplication
402
 *   - no alpha buffer discard
403
 *   - no dual wide
404
 *   - framebuffer <= 2048 in width, 1536 in height
405
 *
406
 * We can't assume that any compression will take place (worst case),
407
 * so the compressed buffer has to be the same size as the uncompressed
408
 * one.  It also must reside (along with the line length buffer) in
409
 * stolen memory.
410
 *
411
 * We need to enable/disable FBC on a global basis.
412
 */
413
void intel_update_fbc(struct drm_device *dev)
414
{
415
	struct drm_i915_private *dev_priv = dev->dev_private;
416
	struct drm_crtc *crtc = NULL, *tmp_crtc;
417
	struct intel_crtc *intel_crtc;
418
	struct drm_framebuffer *fb;
419
	struct intel_framebuffer *intel_fb;
420
	struct drm_i915_gem_object *obj;
421
	int enable_fbc;
422
 
423
	if (!i915_powersave)
424
		return;
425
 
426
	if (!I915_HAS_FBC(dev))
427
		return;
428
 
429
	/*
430
	 * If FBC is already on, we just have to verify that we can
431
	 * keep it that way...
432
	 * Need to disable if:
433
	 *   - more than one pipe is active
434
	 *   - changing FBC params (stride, fence, mode)
435
	 *   - new fb is too large to fit in compressed buffer
436
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
437
	 */
438
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
3243 Serge 439
		if (intel_crtc_active(tmp_crtc) &&
440
		    !to_intel_crtc(tmp_crtc)->primary_disabled) {
3031 serge 441
			if (crtc) {
442
				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
443
				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
444
				goto out_disable;
445
			}
446
			crtc = tmp_crtc;
447
		}
448
	}
449
 
450
	if (!crtc || crtc->fb == NULL) {
451
		DRM_DEBUG_KMS("no output, disabling\n");
452
		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
453
		goto out_disable;
454
	}
455
 
456
	intel_crtc = to_intel_crtc(crtc);
457
	fb = crtc->fb;
458
	intel_fb = to_intel_framebuffer(fb);
459
	obj = intel_fb->obj;
460
 
461
	enable_fbc = i915_enable_fbc;
462
	if (enable_fbc < 0) {
463
		DRM_DEBUG_KMS("fbc set to per-chip default\n");
464
		enable_fbc = 1;
465
		if (INTEL_INFO(dev)->gen <= 6)
466
			enable_fbc = 0;
467
	}
468
	if (!enable_fbc) {
469
		DRM_DEBUG_KMS("fbc disabled per module param\n");
470
		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
471
		goto out_disable;
472
	}
473
	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
474
	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
475
		DRM_DEBUG_KMS("mode incompatible with compression, "
476
			      "disabling\n");
477
		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
478
		goto out_disable;
479
	}
480
	if ((crtc->mode.hdisplay > 2048) ||
481
	    (crtc->mode.vdisplay > 1536)) {
482
		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
483
		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
484
		goto out_disable;
485
	}
486
	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
487
		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
488
		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
489
		goto out_disable;
490
	}
491
 
492
	/* The use of a CPU fence is mandatory in order to detect writes
493
	 * by the CPU to the scanout and trigger updates to the FBC.
494
	 */
495
	if (obj->tiling_mode != I915_TILING_X ||
496
	    obj->fence_reg == I915_FENCE_REG_NONE) {
497
		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
498
		dev_priv->no_fbc_reason = FBC_NOT_TILED;
499
		goto out_disable;
500
	}
501
 
502
	/* If the kernel debugger is active, always disable compression */
503
	if (in_dbg_master())
504
		goto out_disable;
505
 
3480 Serge 506
	if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
507
		DRM_INFO("not enough stolen space for compressed buffer (need %zd bytes), disabling\n", intel_fb->obj->base.size);
508
		DRM_INFO("hint: you may be able to increase stolen memory size in the BIOS to avoid this\n");
509
		DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
510
		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
511
		goto out_disable;
512
	}
513
 
3031 serge 514
	/* If the scanout has not changed, don't modify the FBC settings.
515
	 * Note that we make the fundamental assumption that the fb->obj
516
	 * cannot be unpinned (and have its GTT offset and fence revoked)
517
	 * without first being decoupled from the scanout and FBC disabled.
518
	 */
519
	if (dev_priv->cfb_plane == intel_crtc->plane &&
520
	    dev_priv->cfb_fb == fb->base.id &&
521
	    dev_priv->cfb_y == crtc->y)
522
		return;
523
 
524
	if (intel_fbc_enabled(dev)) {
525
		/* We update FBC along two paths, after changing fb/crtc
526
		 * configuration (modeswitching) and after page-flipping
527
		 * finishes. For the latter, we know that not only did
528
		 * we disable the FBC at the start of the page-flip
529
		 * sequence, but also more than one vblank has passed.
530
		 *
531
		 * For the former case of modeswitching, it is possible
532
		 * to switch between two FBC valid configurations
533
		 * instantaneously so we do need to disable the FBC
534
		 * before we can modify its control registers. We also
535
		 * have to wait for the next vblank for that to take
536
		 * effect. However, since we delay enabling FBC we can
537
		 * assume that a vblank has passed since disabling and
538
		 * that we can safely alter the registers in the deferred
539
		 * callback.
540
		 *
541
		 * In the scenario that we go from a valid to invalid
542
		 * and then back to valid FBC configuration we have
543
		 * no strict enforcement that a vblank occurred since
544
		 * disabling the FBC. However, along all current pipe
545
		 * disabling paths we do need to wait for a vblank at
546
		 * some point. And we wait before enabling FBC anyway.
547
		 */
548
		DRM_DEBUG_KMS("disabling active FBC for update\n");
549
		intel_disable_fbc(dev);
550
	}
551
 
552
	intel_enable_fbc(crtc, 500);
553
	return;
554
 
555
out_disable:
556
	/* Multiple disables should be harmless */
557
	if (intel_fbc_enabled(dev)) {
558
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
559
		intel_disable_fbc(dev);
560
	}
3480 Serge 561
	i915_gem_stolen_cleanup_compression(dev);
3031 serge 562
}
563
 
564
static void i915_pineview_get_mem_freq(struct drm_device *dev)
565
{
566
	drm_i915_private_t *dev_priv = dev->dev_private;
567
	u32 tmp;
568
 
569
	tmp = I915_READ(CLKCFG);
570
 
571
	switch (tmp & CLKCFG_FSB_MASK) {
572
	case CLKCFG_FSB_533:
573
		dev_priv->fsb_freq = 533; /* 133*4 */
574
		break;
575
	case CLKCFG_FSB_800:
576
		dev_priv->fsb_freq = 800; /* 200*4 */
577
		break;
578
	case CLKCFG_FSB_667:
579
		dev_priv->fsb_freq =  667; /* 167*4 */
580
		break;
581
	case CLKCFG_FSB_400:
582
		dev_priv->fsb_freq = 400; /* 100*4 */
583
		break;
584
	}
585
 
586
	switch (tmp & CLKCFG_MEM_MASK) {
587
	case CLKCFG_MEM_533:
588
		dev_priv->mem_freq = 533;
589
		break;
590
	case CLKCFG_MEM_667:
591
		dev_priv->mem_freq = 667;
592
		break;
593
	case CLKCFG_MEM_800:
594
		dev_priv->mem_freq = 800;
595
		break;
596
	}
597
 
598
	/* detect pineview DDR3 setting */
599
	tmp = I915_READ(CSHRDDR3CTL);
600
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
601
}
602
 
603
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
604
{
605
	drm_i915_private_t *dev_priv = dev->dev_private;
606
	u16 ddrpll, csipll;
607
 
608
	ddrpll = I915_READ16(DDRMPLL1);
609
	csipll = I915_READ16(CSIPLL0);
610
 
611
	switch (ddrpll & 0xff) {
612
	case 0xc:
613
		dev_priv->mem_freq = 800;
614
		break;
615
	case 0x10:
616
		dev_priv->mem_freq = 1066;
617
		break;
618
	case 0x14:
619
		dev_priv->mem_freq = 1333;
620
		break;
621
	case 0x18:
622
		dev_priv->mem_freq = 1600;
623
		break;
624
	default:
625
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
626
				 ddrpll & 0xff);
627
		dev_priv->mem_freq = 0;
628
		break;
629
	}
630
 
631
	dev_priv->ips.r_t = dev_priv->mem_freq;
632
 
633
	switch (csipll & 0x3ff) {
634
	case 0x00c:
635
		dev_priv->fsb_freq = 3200;
636
		break;
637
	case 0x00e:
638
		dev_priv->fsb_freq = 3733;
639
		break;
640
	case 0x010:
641
		dev_priv->fsb_freq = 4266;
642
		break;
643
	case 0x012:
644
		dev_priv->fsb_freq = 4800;
645
		break;
646
	case 0x014:
647
		dev_priv->fsb_freq = 5333;
648
		break;
649
	case 0x016:
650
		dev_priv->fsb_freq = 5866;
651
		break;
652
	case 0x018:
653
		dev_priv->fsb_freq = 6400;
654
		break;
655
	default:
656
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
657
				 csipll & 0x3ff);
658
		dev_priv->fsb_freq = 0;
659
		break;
660
	}
661
 
662
	if (dev_priv->fsb_freq == 3200) {
663
		dev_priv->ips.c_m = 0;
664
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
665
		dev_priv->ips.c_m = 1;
666
	} else {
667
		dev_priv->ips.c_m = 2;
668
	}
669
}
670
 
671
static const struct cxsr_latency cxsr_latency_table[] = {
672
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
673
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
674
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
675
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
676
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
677
 
678
	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
679
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
680
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
681
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
682
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
683
 
684
	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
685
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
686
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
687
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
688
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
689
 
690
	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
691
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
692
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
693
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
694
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
695
 
696
	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
697
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
698
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
699
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
700
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
701
 
702
	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
703
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
704
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
705
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
706
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
707
};
708
 
709
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
710
							 int is_ddr3,
711
							 int fsb,
712
							 int mem)
713
{
714
	const struct cxsr_latency *latency;
715
	int i;
716
 
717
	if (fsb == 0 || mem == 0)
718
		return NULL;
719
 
720
	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
721
		latency = &cxsr_latency_table[i];
722
		if (is_desktop == latency->is_desktop &&
723
		    is_ddr3 == latency->is_ddr3 &&
724
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
725
			return latency;
726
	}
727
 
728
	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
729
 
730
	return NULL;
731
}
732
 
733
static void pineview_disable_cxsr(struct drm_device *dev)
734
{
735
	struct drm_i915_private *dev_priv = dev->dev_private;
736
 
737
	/* deactivate cxsr */
738
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
739
}
740
 
741
/*
742
 * Latency for FIFO fetches is dependent on several factors:
743
 *   - memory configuration (speed, channels)
744
 *   - chipset
745
 *   - current MCH state
746
 * It can be fairly high in some situations, so here we assume a fairly
747
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
748
 * set this value too high, the FIFO will fetch frequently to stay full)
749
 * and power consumption (set it too low to save power and we might see
750
 * FIFO underruns and display "flicker").
751
 *
752
 * A value of 5us seems to be a good balance; safe for very low end
753
 * platforms but not overly aggressive on lower latency configs.
754
 */
755
static const int latency_ns = 5000;
756
 
757
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
758
{
759
	struct drm_i915_private *dev_priv = dev->dev_private;
760
	uint32_t dsparb = I915_READ(DSPARB);
761
	int size;
762
 
763
	size = dsparb & 0x7f;
764
	if (plane)
765
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
766
 
767
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
768
		      plane ? "B" : "A", size);
769
 
770
	return size;
771
}
772
 
773
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
774
{
775
	struct drm_i915_private *dev_priv = dev->dev_private;
776
	uint32_t dsparb = I915_READ(DSPARB);
777
	int size;
778
 
779
	size = dsparb & 0x1ff;
780
	if (plane)
781
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
782
	size >>= 1; /* Convert to cachelines */
783
 
784
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
785
		      plane ? "B" : "A", size);
786
 
787
	return size;
788
}
789
 
790
static int i845_get_fifo_size(struct drm_device *dev, int plane)
791
{
792
	struct drm_i915_private *dev_priv = dev->dev_private;
793
	uint32_t dsparb = I915_READ(DSPARB);
794
	int size;
795
 
796
	size = dsparb & 0x7f;
797
	size >>= 2; /* Convert to cachelines */
798
 
799
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
800
		      plane ? "B" : "A",
801
		      size);
802
 
803
	return size;
804
}
805
 
806
static int i830_get_fifo_size(struct drm_device *dev, int plane)
807
{
808
	struct drm_i915_private *dev_priv = dev->dev_private;
809
	uint32_t dsparb = I915_READ(DSPARB);
810
	int size;
811
 
812
	size = dsparb & 0x7f;
813
	size >>= 1; /* Convert to cachelines */
814
 
815
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
816
		      plane ? "B" : "A", size);
817
 
818
	return size;
819
}
820
 
821
/* Pineview has different values for various configs */
822
static const struct intel_watermark_params pineview_display_wm = {
823
	PINEVIEW_DISPLAY_FIFO,
824
	PINEVIEW_MAX_WM,
825
	PINEVIEW_DFT_WM,
826
	PINEVIEW_GUARD_WM,
827
	PINEVIEW_FIFO_LINE_SIZE
828
};
829
static const struct intel_watermark_params pineview_display_hplloff_wm = {
830
	PINEVIEW_DISPLAY_FIFO,
831
	PINEVIEW_MAX_WM,
832
	PINEVIEW_DFT_HPLLOFF_WM,
833
	PINEVIEW_GUARD_WM,
834
	PINEVIEW_FIFO_LINE_SIZE
835
};
836
static const struct intel_watermark_params pineview_cursor_wm = {
837
	PINEVIEW_CURSOR_FIFO,
838
	PINEVIEW_CURSOR_MAX_WM,
839
	PINEVIEW_CURSOR_DFT_WM,
840
	PINEVIEW_CURSOR_GUARD_WM,
841
	PINEVIEW_FIFO_LINE_SIZE,
842
};
843
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
844
	PINEVIEW_CURSOR_FIFO,
845
	PINEVIEW_CURSOR_MAX_WM,
846
	PINEVIEW_CURSOR_DFT_WM,
847
	PINEVIEW_CURSOR_GUARD_WM,
848
	PINEVIEW_FIFO_LINE_SIZE
849
};
850
static const struct intel_watermark_params g4x_wm_info = {
851
	G4X_FIFO_SIZE,
852
	G4X_MAX_WM,
853
	G4X_MAX_WM,
854
	2,
855
	G4X_FIFO_LINE_SIZE,
856
};
857
static const struct intel_watermark_params g4x_cursor_wm_info = {
858
	I965_CURSOR_FIFO,
859
	I965_CURSOR_MAX_WM,
860
	I965_CURSOR_DFT_WM,
861
	2,
862
	G4X_FIFO_LINE_SIZE,
863
};
864
static const struct intel_watermark_params valleyview_wm_info = {
865
	VALLEYVIEW_FIFO_SIZE,
866
	VALLEYVIEW_MAX_WM,
867
	VALLEYVIEW_MAX_WM,
868
	2,
869
	G4X_FIFO_LINE_SIZE,
870
};
871
static const struct intel_watermark_params valleyview_cursor_wm_info = {
872
	I965_CURSOR_FIFO,
873
	VALLEYVIEW_CURSOR_MAX_WM,
874
	I965_CURSOR_DFT_WM,
875
	2,
876
	G4X_FIFO_LINE_SIZE,
877
};
878
static const struct intel_watermark_params i965_cursor_wm_info = {
879
	I965_CURSOR_FIFO,
880
	I965_CURSOR_MAX_WM,
881
	I965_CURSOR_DFT_WM,
882
	2,
883
	I915_FIFO_LINE_SIZE,
884
};
885
static const struct intel_watermark_params i945_wm_info = {
886
	I945_FIFO_SIZE,
887
	I915_MAX_WM,
888
	1,
889
	2,
890
	I915_FIFO_LINE_SIZE
891
};
892
static const struct intel_watermark_params i915_wm_info = {
893
	I915_FIFO_SIZE,
894
	I915_MAX_WM,
895
	1,
896
	2,
897
	I915_FIFO_LINE_SIZE
898
};
899
static const struct intel_watermark_params i855_wm_info = {
900
	I855GM_FIFO_SIZE,
901
	I915_MAX_WM,
902
	1,
903
	2,
904
	I830_FIFO_LINE_SIZE
905
};
906
static const struct intel_watermark_params i830_wm_info = {
907
	I830_FIFO_SIZE,
908
	I915_MAX_WM,
909
	1,
910
	2,
911
	I830_FIFO_LINE_SIZE
912
};
913
 
914
static const struct intel_watermark_params ironlake_display_wm_info = {
915
	ILK_DISPLAY_FIFO,
916
	ILK_DISPLAY_MAXWM,
917
	ILK_DISPLAY_DFTWM,
918
	2,
919
	ILK_FIFO_LINE_SIZE
920
};
921
static const struct intel_watermark_params ironlake_cursor_wm_info = {
922
	ILK_CURSOR_FIFO,
923
	ILK_CURSOR_MAXWM,
924
	ILK_CURSOR_DFTWM,
925
	2,
926
	ILK_FIFO_LINE_SIZE
927
};
928
static const struct intel_watermark_params ironlake_display_srwm_info = {
929
	ILK_DISPLAY_SR_FIFO,
930
	ILK_DISPLAY_MAX_SRWM,
931
	ILK_DISPLAY_DFT_SRWM,
932
	2,
933
	ILK_FIFO_LINE_SIZE
934
};
935
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
936
	ILK_CURSOR_SR_FIFO,
937
	ILK_CURSOR_MAX_SRWM,
938
	ILK_CURSOR_DFT_SRWM,
939
	2,
940
	ILK_FIFO_LINE_SIZE
941
};
942
 
943
static const struct intel_watermark_params sandybridge_display_wm_info = {
944
	SNB_DISPLAY_FIFO,
945
	SNB_DISPLAY_MAXWM,
946
	SNB_DISPLAY_DFTWM,
947
	2,
948
	SNB_FIFO_LINE_SIZE
949
};
950
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
951
	SNB_CURSOR_FIFO,
952
	SNB_CURSOR_MAXWM,
953
	SNB_CURSOR_DFTWM,
954
	2,
955
	SNB_FIFO_LINE_SIZE
956
};
957
static const struct intel_watermark_params sandybridge_display_srwm_info = {
958
	SNB_DISPLAY_SR_FIFO,
959
	SNB_DISPLAY_MAX_SRWM,
960
	SNB_DISPLAY_DFT_SRWM,
961
	2,
962
	SNB_FIFO_LINE_SIZE
963
};
964
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
965
	SNB_CURSOR_SR_FIFO,
966
	SNB_CURSOR_MAX_SRWM,
967
	SNB_CURSOR_DFT_SRWM,
968
	2,
969
	SNB_FIFO_LINE_SIZE
970
};
971
 
972
 
973
/**
974
 * intel_calculate_wm - calculate watermark level
975
 * @clock_in_khz: pixel clock
976
 * @wm: chip FIFO params
977
 * @pixel_size: display pixel size
978
 * @latency_ns: memory latency for the platform
979
 *
980
 * Calculate the watermark level (the level at which the display plane will
981
 * start fetching from memory again).  Each chip has a different display
982
 * FIFO size and allocation, so the caller needs to figure that out and pass
983
 * in the correct intel_watermark_params structure.
984
 *
985
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
986
 * on the pixel size.  When it reaches the watermark level, it'll start
987
 * fetching FIFO line sized based chunks from memory until the FIFO fills
988
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
989
 * will occur, and a display engine hang could result.
990
 */
991
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
992
					const struct intel_watermark_params *wm,
993
					int fifo_size,
994
					int pixel_size,
995
					unsigned long latency_ns)
996
{
997
	long entries_required, wm_size;
998
 
999
	/*
1000
	 * Note: we need to make sure we don't overflow for various clock &
1001
	 * latency values.
1002
	 * clocks go from a few thousand to several hundred thousand.
1003
	 * latency is usually a few thousand
1004
	 */
1005
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1006
		1000;
1007
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1008
 
1009
	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1010
 
1011
	wm_size = fifo_size - (entries_required + wm->guard_size);
1012
 
1013
	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1014
 
1015
	/* Don't promote wm_size to unsigned... */
1016
	if (wm_size > (long)wm->max_wm)
1017
		wm_size = wm->max_wm;
1018
	if (wm_size <= 0)
1019
		wm_size = wm->default_wm;
1020
	return wm_size;
1021
}
1022
 
1023
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1024
{
1025
	struct drm_crtc *crtc, *enabled = NULL;
1026
 
1027
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3243 Serge 1028
		if (intel_crtc_active(crtc)) {
3031 serge 1029
			if (enabled)
1030
				return NULL;
1031
			enabled = crtc;
1032
		}
1033
	}
1034
 
1035
	return enabled;
1036
}
1037
 
1038
static void pineview_update_wm(struct drm_device *dev)
1039
{
1040
	struct drm_i915_private *dev_priv = dev->dev_private;
1041
	struct drm_crtc *crtc;
1042
	const struct cxsr_latency *latency;
1043
	u32 reg;
1044
	unsigned long wm;
1045
 
1046
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1047
					 dev_priv->fsb_freq, dev_priv->mem_freq);
1048
	if (!latency) {
1049
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1050
		pineview_disable_cxsr(dev);
1051
		return;
1052
	}
1053
 
1054
	crtc = single_enabled_crtc(dev);
1055
	if (crtc) {
1056
		int clock = crtc->mode.clock;
1057
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1058
 
1059
		/* Display SR */
1060
		wm = intel_calculate_wm(clock, &pineview_display_wm,
1061
					pineview_display_wm.fifo_size,
1062
					pixel_size, latency->display_sr);
1063
		reg = I915_READ(DSPFW1);
1064
		reg &= ~DSPFW_SR_MASK;
1065
		reg |= wm << DSPFW_SR_SHIFT;
1066
		I915_WRITE(DSPFW1, reg);
1067
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1068
 
1069
		/* cursor SR */
1070
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1071
					pineview_display_wm.fifo_size,
1072
					pixel_size, latency->cursor_sr);
1073
		reg = I915_READ(DSPFW3);
1074
		reg &= ~DSPFW_CURSOR_SR_MASK;
1075
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1076
		I915_WRITE(DSPFW3, reg);
1077
 
1078
		/* Display HPLL off SR */
1079
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1080
					pineview_display_hplloff_wm.fifo_size,
1081
					pixel_size, latency->display_hpll_disable);
1082
		reg = I915_READ(DSPFW3);
1083
		reg &= ~DSPFW_HPLL_SR_MASK;
1084
		reg |= wm & DSPFW_HPLL_SR_MASK;
1085
		I915_WRITE(DSPFW3, reg);
1086
 
1087
		/* cursor HPLL off SR */
1088
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1089
					pineview_display_hplloff_wm.fifo_size,
1090
					pixel_size, latency->cursor_hpll_disable);
1091
		reg = I915_READ(DSPFW3);
1092
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1093
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1094
		I915_WRITE(DSPFW3, reg);
1095
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1096
 
1097
		/* activate cxsr */
1098
		I915_WRITE(DSPFW3,
1099
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1100
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1101
	} else {
1102
		pineview_disable_cxsr(dev);
1103
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1104
	}
1105
}
1106
 
1107
static bool g4x_compute_wm0(struct drm_device *dev,
1108
			    int plane,
1109
			    const struct intel_watermark_params *display,
1110
			    int display_latency_ns,
1111
			    const struct intel_watermark_params *cursor,
1112
			    int cursor_latency_ns,
1113
			    int *plane_wm,
1114
			    int *cursor_wm)
1115
{
1116
	struct drm_crtc *crtc;
1117
	int htotal, hdisplay, clock, pixel_size;
1118
	int line_time_us, line_count;
1119
	int entries, tlb_miss;
1120
 
1121
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 1122
	if (!intel_crtc_active(crtc)) {
3031 serge 1123
		*cursor_wm = cursor->guard_size;
1124
		*plane_wm = display->guard_size;
1125
        return false;
1126
	}
1127
 
1128
	htotal = crtc->mode.htotal;
1129
	hdisplay = crtc->mode.hdisplay;
1130
	clock = crtc->mode.clock;
1131
	pixel_size = crtc->fb->bits_per_pixel / 8;
1132
 
1133
	/* Use the small buffer method to calculate plane watermark */
1134
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1135
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1136
	if (tlb_miss > 0)
1137
		entries += tlb_miss;
1138
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1139
	*plane_wm = entries + display->guard_size;
1140
	if (*plane_wm > (int)display->max_wm)
1141
		*plane_wm = display->max_wm;
1142
 
1143
	/* Use the large buffer method to calculate cursor watermark */
1144
	line_time_us = ((htotal * 1000) / clock);
1145
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1146
	entries = line_count * 64 * pixel_size;
1147
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1148
	if (tlb_miss > 0)
1149
		entries += tlb_miss;
1150
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1151
	*cursor_wm = entries + cursor->guard_size;
1152
	if (*cursor_wm > (int)cursor->max_wm)
1153
		*cursor_wm = (int)cursor->max_wm;
1154
 
1155
	return true;
1156
}
1157
 
1158
/*
1159
 * Check the wm result.
1160
 *
1161
 * If any calculated watermark values is larger than the maximum value that
1162
 * can be programmed into the associated watermark register, that watermark
1163
 * must be disabled.
1164
 */
1165
static bool g4x_check_srwm(struct drm_device *dev,
1166
			   int display_wm, int cursor_wm,
1167
			   const struct intel_watermark_params *display,
1168
			   const struct intel_watermark_params *cursor)
1169
{
1170
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1171
		      display_wm, cursor_wm);
1172
 
1173
	if (display_wm > display->max_wm) {
1174
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1175
			      display_wm, display->max_wm);
1176
		return false;
1177
	}
1178
 
1179
	if (cursor_wm > cursor->max_wm) {
1180
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1181
			      cursor_wm, cursor->max_wm);
1182
		return false;
1183
	}
1184
 
1185
	if (!(display_wm || cursor_wm)) {
1186
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1187
		return false;
1188
	}
1189
 
1190
	return true;
1191
}
1192
 
1193
static bool g4x_compute_srwm(struct drm_device *dev,
1194
			     int plane,
1195
			     int latency_ns,
1196
			     const struct intel_watermark_params *display,
1197
			     const struct intel_watermark_params *cursor,
1198
			     int *display_wm, int *cursor_wm)
1199
{
1200
	struct drm_crtc *crtc;
1201
	int hdisplay, htotal, pixel_size, clock;
1202
	unsigned long line_time_us;
1203
	int line_count, line_size;
1204
	int small, large;
1205
	int entries;
1206
 
1207
	if (!latency_ns) {
1208
		*display_wm = *cursor_wm = 0;
1209
		return false;
1210
	}
1211
 
1212
	crtc = intel_get_crtc_for_plane(dev, plane);
1213
	hdisplay = crtc->mode.hdisplay;
1214
	htotal = crtc->mode.htotal;
1215
	clock = crtc->mode.clock;
1216
	pixel_size = crtc->fb->bits_per_pixel / 8;
1217
 
1218
	line_time_us = (htotal * 1000) / clock;
1219
	line_count = (latency_ns / line_time_us + 1000) / 1000;
1220
	line_size = hdisplay * pixel_size;
1221
 
1222
	/* Use the minimum of the small and large buffer method for primary */
1223
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1224
	large = line_count * line_size;
1225
 
1226
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1227
	*display_wm = entries + display->guard_size;
1228
 
1229
	/* calculate the self-refresh watermark for display cursor */
1230
	entries = line_count * pixel_size * 64;
1231
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1232
	*cursor_wm = entries + cursor->guard_size;
1233
 
1234
	return g4x_check_srwm(dev,
1235
			      *display_wm, *cursor_wm,
1236
			      display, cursor);
1237
}
1238
 
1239
static bool vlv_compute_drain_latency(struct drm_device *dev,
1240
				     int plane,
1241
				     int *plane_prec_mult,
1242
				     int *plane_dl,
1243
				     int *cursor_prec_mult,
1244
				     int *cursor_dl)
1245
{
1246
	struct drm_crtc *crtc;
1247
	int clock, pixel_size;
1248
	int entries;
1249
 
1250
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 1251
	if (!intel_crtc_active(crtc))
3031 serge 1252
		return false;
1253
 
1254
	clock = crtc->mode.clock;	/* VESA DOT Clock */
1255
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
1256
 
1257
	entries = (clock / 1000) * pixel_size;
1258
	*plane_prec_mult = (entries > 256) ?
1259
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1260
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1261
						     pixel_size);
1262
 
1263
	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1264
	*cursor_prec_mult = (entries > 256) ?
1265
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1266
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1267
 
1268
	return true;
1269
}
1270
 
1271
/*
1272
 * Update drain latency registers of memory arbiter
1273
 *
1274
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1275
 * to be programmed. Each plane has a drain latency multiplier and a drain
1276
 * latency value.
1277
 */
1278
 
1279
static void vlv_update_drain_latency(struct drm_device *dev)
1280
{
1281
	struct drm_i915_private *dev_priv = dev->dev_private;
1282
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1283
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1284
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1285
							either 16 or 32 */
1286
 
1287
	/* For plane A, Cursor A */
1288
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1289
				      &cursor_prec_mult, &cursora_dl)) {
1290
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1291
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1292
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1293
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1294
 
1295
		I915_WRITE(VLV_DDL1, cursora_prec |
1296
				(cursora_dl << DDL_CURSORA_SHIFT) |
1297
				planea_prec | planea_dl);
1298
	}
1299
 
1300
	/* For plane B, Cursor B */
1301
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1302
				      &cursor_prec_mult, &cursorb_dl)) {
1303
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1304
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1305
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1306
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1307
 
1308
		I915_WRITE(VLV_DDL2, cursorb_prec |
1309
				(cursorb_dl << DDL_CURSORB_SHIFT) |
1310
				planeb_prec | planeb_dl);
1311
	}
1312
}
1313
 
1314
#define single_plane_enabled(mask) is_power_of_2(mask)
1315
 
1316
static void valleyview_update_wm(struct drm_device *dev)
1317
{
1318
	static const int sr_latency_ns = 12000;
1319
	struct drm_i915_private *dev_priv = dev->dev_private;
1320
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1321
	int plane_sr, cursor_sr;
3243 Serge 1322
	int ignore_plane_sr, ignore_cursor_sr;
3031 serge 1323
	unsigned int enabled = 0;
1324
 
1325
	vlv_update_drain_latency(dev);
1326
 
1327
	if (g4x_compute_wm0(dev, 0,
1328
			    &valleyview_wm_info, latency_ns,
1329
			    &valleyview_cursor_wm_info, latency_ns,
1330
			    &planea_wm, &cursora_wm))
1331
		enabled |= 1;
1332
 
1333
	if (g4x_compute_wm0(dev, 1,
1334
			    &valleyview_wm_info, latency_ns,
1335
			    &valleyview_cursor_wm_info, latency_ns,
1336
			    &planeb_wm, &cursorb_wm))
1337
		enabled |= 2;
1338
 
1339
	if (single_plane_enabled(enabled) &&
1340
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1341
			     sr_latency_ns,
1342
			     &valleyview_wm_info,
1343
			     &valleyview_cursor_wm_info,
3243 Serge 1344
			     &plane_sr, &ignore_cursor_sr) &&
1345
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1346
			     2*sr_latency_ns,
1347
			     &valleyview_wm_info,
1348
			     &valleyview_cursor_wm_info,
1349
			     &ignore_plane_sr, &cursor_sr)) {
3031 serge 1350
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
3243 Serge 1351
	} else {
3031 serge 1352
		I915_WRITE(FW_BLC_SELF_VLV,
1353
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
3243 Serge 1354
		plane_sr = cursor_sr = 0;
1355
	}
3031 serge 1356
 
1357
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1358
		      planea_wm, cursora_wm,
1359
		      planeb_wm, cursorb_wm,
1360
		      plane_sr, cursor_sr);
1361
 
1362
	I915_WRITE(DSPFW1,
1363
		   (plane_sr << DSPFW_SR_SHIFT) |
1364
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1365
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1366
		   planea_wm);
1367
	I915_WRITE(DSPFW2,
3243 Serge 1368
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
3031 serge 1369
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1370
	I915_WRITE(DSPFW3,
3243 Serge 1371
		   (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1372
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3031 serge 1373
}
1374
 
1375
static void g4x_update_wm(struct drm_device *dev)
1376
{
1377
	static const int sr_latency_ns = 12000;
1378
	struct drm_i915_private *dev_priv = dev->dev_private;
1379
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1380
	int plane_sr, cursor_sr;
1381
	unsigned int enabled = 0;
1382
 
1383
	if (g4x_compute_wm0(dev, 0,
1384
			    &g4x_wm_info, latency_ns,
1385
			    &g4x_cursor_wm_info, latency_ns,
1386
			    &planea_wm, &cursora_wm))
1387
		enabled |= 1;
1388
 
1389
	if (g4x_compute_wm0(dev, 1,
1390
			    &g4x_wm_info, latency_ns,
1391
			    &g4x_cursor_wm_info, latency_ns,
1392
			    &planeb_wm, &cursorb_wm))
1393
		enabled |= 2;
1394
 
1395
	if (single_plane_enabled(enabled) &&
1396
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1397
			     sr_latency_ns,
1398
			     &g4x_wm_info,
1399
			     &g4x_cursor_wm_info,
3243 Serge 1400
			     &plane_sr, &cursor_sr)) {
3031 serge 1401
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3243 Serge 1402
	} else {
3031 serge 1403
		I915_WRITE(FW_BLC_SELF,
1404
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3243 Serge 1405
		plane_sr = cursor_sr = 0;
1406
	}
3031 serge 1407
 
1408
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1409
		      planea_wm, cursora_wm,
1410
		      planeb_wm, cursorb_wm,
1411
		      plane_sr, cursor_sr);
1412
 
1413
	I915_WRITE(DSPFW1,
1414
		   (plane_sr << DSPFW_SR_SHIFT) |
1415
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1416
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1417
		   planea_wm);
1418
	I915_WRITE(DSPFW2,
3243 Serge 1419
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
3031 serge 1420
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1421
	/* HPLL off in SR has some issues on G4x... disable it */
1422
	I915_WRITE(DSPFW3,
3243 Serge 1423
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
3031 serge 1424
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1425
}
1426
 
1427
static void i965_update_wm(struct drm_device *dev)
1428
{
1429
	struct drm_i915_private *dev_priv = dev->dev_private;
1430
	struct drm_crtc *crtc;
1431
	int srwm = 1;
1432
	int cursor_sr = 16;
1433
 
1434
	/* Calc sr entries for one plane configs */
1435
	crtc = single_enabled_crtc(dev);
1436
	if (crtc) {
1437
		/* self-refresh has much higher latency */
1438
		static const int sr_latency_ns = 12000;
1439
		int clock = crtc->mode.clock;
1440
		int htotal = crtc->mode.htotal;
1441
		int hdisplay = crtc->mode.hdisplay;
1442
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1443
		unsigned long line_time_us;
1444
		int entries;
1445
 
1446
		line_time_us = ((htotal * 1000) / clock);
1447
 
1448
		/* Use ns/us then divide to preserve precision */
1449
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450
			pixel_size * hdisplay;
1451
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1452
		srwm = I965_FIFO_SIZE - entries;
1453
		if (srwm < 0)
1454
			srwm = 1;
1455
		srwm &= 0x1ff;
1456
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1457
			      entries, srwm);
1458
 
1459
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1460
			pixel_size * 64;
1461
		entries = DIV_ROUND_UP(entries,
1462
					  i965_cursor_wm_info.cacheline_size);
1463
		cursor_sr = i965_cursor_wm_info.fifo_size -
1464
			(entries + i965_cursor_wm_info.guard_size);
1465
 
1466
		if (cursor_sr > i965_cursor_wm_info.max_wm)
1467
			cursor_sr = i965_cursor_wm_info.max_wm;
1468
 
1469
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1470
			      "cursor %d\n", srwm, cursor_sr);
1471
 
1472
		if (IS_CRESTLINE(dev))
1473
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1474
	} else {
1475
		/* Turn off self refresh if both pipes are enabled */
1476
		if (IS_CRESTLINE(dev))
1477
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1478
				   & ~FW_BLC_SELF_EN);
1479
	}
1480
 
1481
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1482
		      srwm);
1483
 
1484
	/* 965 has limitations... */
1485
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1486
		   (8 << 16) | (8 << 8) | (8 << 0));
1487
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1488
	/* update cursor SR watermark */
1489
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1490
}
1491
 
1492
static void i9xx_update_wm(struct drm_device *dev)
1493
{
1494
	struct drm_i915_private *dev_priv = dev->dev_private;
1495
	const struct intel_watermark_params *wm_info;
1496
	uint32_t fwater_lo;
1497
	uint32_t fwater_hi;
1498
	int cwm, srwm = 1;
1499
	int fifo_size;
1500
	int planea_wm, planeb_wm;
1501
	struct drm_crtc *crtc, *enabled = NULL;
1502
 
1503
	if (IS_I945GM(dev))
1504
		wm_info = &i945_wm_info;
1505
	else if (!IS_GEN2(dev))
1506
		wm_info = &i915_wm_info;
1507
	else
1508
		wm_info = &i855_wm_info;
1509
 
1510
	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1511
	crtc = intel_get_crtc_for_plane(dev, 0);
3243 Serge 1512
	if (intel_crtc_active(crtc)) {
1513
		int cpp = crtc->fb->bits_per_pixel / 8;
1514
		if (IS_GEN2(dev))
1515
			cpp = 4;
1516
 
3031 serge 1517
		planea_wm = intel_calculate_wm(crtc->mode.clock,
3243 Serge 1518
					       wm_info, fifo_size, cpp,
3031 serge 1519
					       latency_ns);
1520
		enabled = crtc;
1521
	} else
1522
		planea_wm = fifo_size - wm_info->guard_size;
1523
 
1524
	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1525
	crtc = intel_get_crtc_for_plane(dev, 1);
3243 Serge 1526
	if (intel_crtc_active(crtc)) {
1527
		int cpp = crtc->fb->bits_per_pixel / 8;
1528
		if (IS_GEN2(dev))
1529
			cpp = 4;
1530
 
3031 serge 1531
		planeb_wm = intel_calculate_wm(crtc->mode.clock,
3243 Serge 1532
					       wm_info, fifo_size, cpp,
3031 serge 1533
					       latency_ns);
1534
		if (enabled == NULL)
1535
			enabled = crtc;
1536
		else
1537
			enabled = NULL;
1538
	} else
1539
		planeb_wm = fifo_size - wm_info->guard_size;
1540
 
1541
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1542
 
1543
	/*
1544
	 * Overlay gets an aggressive default since video jitter is bad.
1545
	 */
1546
	cwm = 2;
1547
 
1548
	/* Play safe and disable self-refresh before adjusting watermarks. */
1549
	if (IS_I945G(dev) || IS_I945GM(dev))
1550
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1551
	else if (IS_I915GM(dev))
1552
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1553
 
1554
	/* Calc sr entries for one plane configs */
1555
	if (HAS_FW_BLC(dev) && enabled) {
1556
		/* self-refresh has much higher latency */
1557
		static const int sr_latency_ns = 6000;
1558
		int clock = enabled->mode.clock;
1559
		int htotal = enabled->mode.htotal;
1560
		int hdisplay = enabled->mode.hdisplay;
1561
		int pixel_size = enabled->fb->bits_per_pixel / 8;
1562
		unsigned long line_time_us;
1563
		int entries;
1564
 
1565
		line_time_us = (htotal * 1000) / clock;
1566
 
1567
		/* Use ns/us then divide to preserve precision */
1568
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1569
			pixel_size * hdisplay;
1570
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1571
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1572
		srwm = wm_info->fifo_size - entries;
1573
		if (srwm < 0)
1574
			srwm = 1;
1575
 
1576
		if (IS_I945G(dev) || IS_I945GM(dev))
1577
			I915_WRITE(FW_BLC_SELF,
1578
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1579
		else if (IS_I915GM(dev))
1580
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1581
	}
1582
 
1583
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1584
		      planea_wm, planeb_wm, cwm, srwm);
1585
 
1586
	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1587
	fwater_hi = (cwm & 0x1f);
1588
 
1589
	/* Set request length to 8 cachelines per fetch */
1590
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1591
	fwater_hi = fwater_hi | (1 << 8);
1592
 
1593
	I915_WRITE(FW_BLC, fwater_lo);
1594
	I915_WRITE(FW_BLC2, fwater_hi);
1595
 
1596
	if (HAS_FW_BLC(dev)) {
1597
		if (enabled) {
1598
			if (IS_I945G(dev) || IS_I945GM(dev))
1599
				I915_WRITE(FW_BLC_SELF,
1600
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1601
			else if (IS_I915GM(dev))
1602
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1603
			DRM_DEBUG_KMS("memory self refresh enabled\n");
1604
		} else
1605
			DRM_DEBUG_KMS("memory self refresh disabled\n");
1606
	}
1607
}
1608
 
1609
static void i830_update_wm(struct drm_device *dev)
1610
{
1611
	struct drm_i915_private *dev_priv = dev->dev_private;
1612
	struct drm_crtc *crtc;
1613
	uint32_t fwater_lo;
1614
	int planea_wm;
1615
 
1616
	crtc = single_enabled_crtc(dev);
1617
	if (crtc == NULL)
1618
		return;
1619
 
1620
	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1621
				       dev_priv->display.get_fifo_size(dev, 0),
3243 Serge 1622
				       4, latency_ns);
3031 serge 1623
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1624
	fwater_lo |= (3<<8) | planea_wm;
1625
 
1626
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1627
 
1628
	I915_WRITE(FW_BLC, fwater_lo);
1629
}
1630
 
1631
#define ILK_LP0_PLANE_LATENCY		700
1632
#define ILK_LP0_CURSOR_LATENCY		1300
1633
 
1634
/*
1635
 * Check the wm result.
1636
 *
1637
 * If any calculated watermark values is larger than the maximum value that
1638
 * can be programmed into the associated watermark register, that watermark
1639
 * must be disabled.
1640
 */
1641
static bool ironlake_check_srwm(struct drm_device *dev, int level,
1642
				int fbc_wm, int display_wm, int cursor_wm,
1643
				const struct intel_watermark_params *display,
1644
				const struct intel_watermark_params *cursor)
1645
{
1646
	struct drm_i915_private *dev_priv = dev->dev_private;
1647
 
1648
	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1649
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1650
 
1651
	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1652
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1653
			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1654
 
1655
		/* fbc has it's own way to disable FBC WM */
1656
		I915_WRITE(DISP_ARB_CTL,
1657
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1658
		return false;
1659
	}
1660
 
1661
	if (display_wm > display->max_wm) {
1662
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1663
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1664
		return false;
1665
	}
1666
 
1667
	if (cursor_wm > cursor->max_wm) {
1668
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1669
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1670
		return false;
1671
	}
1672
 
1673
	if (!(fbc_wm || display_wm || cursor_wm)) {
1674
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1675
		return false;
1676
	}
1677
 
1678
	return true;
1679
}
1680
 
1681
/*
1682
 * Compute watermark values of WM[1-3],
1683
 */
1684
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1685
				  int latency_ns,
1686
				  const struct intel_watermark_params *display,
1687
				  const struct intel_watermark_params *cursor,
1688
				  int *fbc_wm, int *display_wm, int *cursor_wm)
1689
{
1690
	struct drm_crtc *crtc;
1691
	unsigned long line_time_us;
1692
	int hdisplay, htotal, pixel_size, clock;
1693
	int line_count, line_size;
1694
	int small, large;
1695
	int entries;
1696
 
1697
	if (!latency_ns) {
1698
		*fbc_wm = *display_wm = *cursor_wm = 0;
1699
		return false;
1700
	}
1701
 
1702
	crtc = intel_get_crtc_for_plane(dev, plane);
1703
	hdisplay = crtc->mode.hdisplay;
1704
	htotal = crtc->mode.htotal;
1705
	clock = crtc->mode.clock;
1706
	pixel_size = crtc->fb->bits_per_pixel / 8;
1707
 
1708
	line_time_us = (htotal * 1000) / clock;
1709
	line_count = (latency_ns / line_time_us + 1000) / 1000;
1710
	line_size = hdisplay * pixel_size;
1711
 
1712
	/* Use the minimum of the small and large buffer method for primary */
1713
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1714
	large = line_count * line_size;
1715
 
1716
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1717
	*display_wm = entries + display->guard_size;
1718
 
1719
	/*
1720
	 * Spec says:
1721
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1722
	 */
1723
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1724
 
1725
	/* calculate the self-refresh watermark for display cursor */
1726
	entries = line_count * pixel_size * 64;
1727
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1728
	*cursor_wm = entries + cursor->guard_size;
1729
 
1730
	return ironlake_check_srwm(dev, level,
1731
				   *fbc_wm, *display_wm, *cursor_wm,
1732
				   display, cursor);
1733
}
1734
 
1735
static void ironlake_update_wm(struct drm_device *dev)
1736
{
1737
	struct drm_i915_private *dev_priv = dev->dev_private;
1738
	int fbc_wm, plane_wm, cursor_wm;
1739
	unsigned int enabled;
1740
 
1741
	enabled = 0;
1742
	if (g4x_compute_wm0(dev, 0,
1743
			    &ironlake_display_wm_info,
1744
			    ILK_LP0_PLANE_LATENCY,
1745
			    &ironlake_cursor_wm_info,
1746
			    ILK_LP0_CURSOR_LATENCY,
1747
			    &plane_wm, &cursor_wm)) {
1748
		I915_WRITE(WM0_PIPEA_ILK,
1749
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1750
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1751
			      " plane %d, " "cursor: %d\n",
1752
			      plane_wm, cursor_wm);
1753
		enabled |= 1;
1754
	}
1755
 
1756
	if (g4x_compute_wm0(dev, 1,
1757
			    &ironlake_display_wm_info,
1758
			    ILK_LP0_PLANE_LATENCY,
1759
			    &ironlake_cursor_wm_info,
1760
			    ILK_LP0_CURSOR_LATENCY,
1761
			    &plane_wm, &cursor_wm)) {
1762
		I915_WRITE(WM0_PIPEB_ILK,
1763
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1764
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1765
			      " plane %d, cursor: %d\n",
1766
			      plane_wm, cursor_wm);
1767
		enabled |= 2;
1768
	}
1769
 
1770
	/*
1771
	 * Calculate and update the self-refresh watermark only when one
1772
	 * display plane is used.
1773
	 */
1774
	I915_WRITE(WM3_LP_ILK, 0);
1775
	I915_WRITE(WM2_LP_ILK, 0);
1776
	I915_WRITE(WM1_LP_ILK, 0);
1777
 
1778
	if (!single_plane_enabled(enabled))
1779
		return;
1780
	enabled = ffs(enabled) - 1;
1781
 
1782
	/* WM1 */
1783
	if (!ironlake_compute_srwm(dev, 1, enabled,
1784
				   ILK_READ_WM1_LATENCY() * 500,
1785
				   &ironlake_display_srwm_info,
1786
				   &ironlake_cursor_srwm_info,
1787
				   &fbc_wm, &plane_wm, &cursor_wm))
1788
		return;
1789
 
1790
	I915_WRITE(WM1_LP_ILK,
1791
		   WM1_LP_SR_EN |
1792
		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1793
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1794
		   (plane_wm << WM1_LP_SR_SHIFT) |
1795
		   cursor_wm);
1796
 
1797
	/* WM2 */
1798
	if (!ironlake_compute_srwm(dev, 2, enabled,
1799
				   ILK_READ_WM2_LATENCY() * 500,
1800
				   &ironlake_display_srwm_info,
1801
				   &ironlake_cursor_srwm_info,
1802
				   &fbc_wm, &plane_wm, &cursor_wm))
1803
		return;
1804
 
1805
	I915_WRITE(WM2_LP_ILK,
1806
		   WM2_LP_EN |
1807
		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1808
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1809
		   (plane_wm << WM1_LP_SR_SHIFT) |
1810
		   cursor_wm);
1811
 
1812
	/*
1813
	 * WM3 is unsupported on ILK, probably because we don't have latency
1814
	 * data for that power state
1815
	 */
1816
}
1817
 
1818
static void sandybridge_update_wm(struct drm_device *dev)
1819
{
1820
	struct drm_i915_private *dev_priv = dev->dev_private;
1821
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1822
	u32 val;
1823
	int fbc_wm, plane_wm, cursor_wm;
1824
	unsigned int enabled;
1825
 
1826
	enabled = 0;
1827
	if (g4x_compute_wm0(dev, 0,
1828
			    &sandybridge_display_wm_info, latency,
1829
			    &sandybridge_cursor_wm_info, latency,
1830
			    &plane_wm, &cursor_wm)) {
1831
		val = I915_READ(WM0_PIPEA_ILK);
1832
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1833
		I915_WRITE(WM0_PIPEA_ILK, val |
1834
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1835
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1836
			      " plane %d, " "cursor: %d\n",
1837
			      plane_wm, cursor_wm);
1838
		enabled |= 1;
1839
	}
1840
 
1841
	if (g4x_compute_wm0(dev, 1,
1842
			    &sandybridge_display_wm_info, latency,
1843
			    &sandybridge_cursor_wm_info, latency,
1844
			    &plane_wm, &cursor_wm)) {
1845
		val = I915_READ(WM0_PIPEB_ILK);
1846
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1847
		I915_WRITE(WM0_PIPEB_ILK, val |
1848
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1849
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1850
			      " plane %d, cursor: %d\n",
1851
			      plane_wm, cursor_wm);
1852
		enabled |= 2;
1853
	}
1854
 
3243 Serge 1855
	/*
1856
	 * Calculate and update the self-refresh watermark only when one
1857
	 * display plane is used.
1858
	 *
1859
	 * SNB support 3 levels of watermark.
1860
	 *
1861
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1862
	 * and disabled in the descending order
1863
	 *
1864
	 */
1865
	I915_WRITE(WM3_LP_ILK, 0);
1866
	I915_WRITE(WM2_LP_ILK, 0);
1867
	I915_WRITE(WM1_LP_ILK, 0);
1868
 
1869
	if (!single_plane_enabled(enabled) ||
1870
	    dev_priv->sprite_scaling_enabled)
1871
		return;
1872
	enabled = ffs(enabled) - 1;
1873
 
1874
	/* WM1 */
1875
	if (!ironlake_compute_srwm(dev, 1, enabled,
1876
				   SNB_READ_WM1_LATENCY() * 500,
1877
				   &sandybridge_display_srwm_info,
1878
				   &sandybridge_cursor_srwm_info,
1879
				   &fbc_wm, &plane_wm, &cursor_wm))
1880
		return;
1881
 
1882
	I915_WRITE(WM1_LP_ILK,
1883
		   WM1_LP_SR_EN |
1884
		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1885
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1886
		   (plane_wm << WM1_LP_SR_SHIFT) |
1887
		   cursor_wm);
1888
 
1889
	/* WM2 */
1890
	if (!ironlake_compute_srwm(dev, 2, enabled,
1891
				   SNB_READ_WM2_LATENCY() * 500,
1892
				   &sandybridge_display_srwm_info,
1893
				   &sandybridge_cursor_srwm_info,
1894
				   &fbc_wm, &plane_wm, &cursor_wm))
1895
		return;
1896
 
1897
	I915_WRITE(WM2_LP_ILK,
1898
		   WM2_LP_EN |
1899
		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1900
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1901
		   (plane_wm << WM1_LP_SR_SHIFT) |
1902
		   cursor_wm);
1903
 
1904
	/* WM3 */
1905
	if (!ironlake_compute_srwm(dev, 3, enabled,
1906
				   SNB_READ_WM3_LATENCY() * 500,
1907
				   &sandybridge_display_srwm_info,
1908
				   &sandybridge_cursor_srwm_info,
1909
				   &fbc_wm, &plane_wm, &cursor_wm))
1910
		return;
1911
 
1912
	I915_WRITE(WM3_LP_ILK,
1913
		   WM3_LP_EN |
1914
		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1915
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1916
		   (plane_wm << WM1_LP_SR_SHIFT) |
1917
		   cursor_wm);
1918
}
1919
 
1920
static void ivybridge_update_wm(struct drm_device *dev)
1921
{
1922
	struct drm_i915_private *dev_priv = dev->dev_private;
1923
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1924
	u32 val;
1925
	int fbc_wm, plane_wm, cursor_wm;
1926
	int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1927
	unsigned int enabled;
1928
 
1929
	enabled = 0;
1930
	if (g4x_compute_wm0(dev, 0,
3031 serge 1931
			    &sandybridge_display_wm_info, latency,
1932
			    &sandybridge_cursor_wm_info, latency,
1933
			    &plane_wm, &cursor_wm)) {
3243 Serge 1934
		val = I915_READ(WM0_PIPEA_ILK);
1935
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1936
		I915_WRITE(WM0_PIPEA_ILK, val |
1937
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1938
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1939
			      " plane %d, " "cursor: %d\n",
1940
			      plane_wm, cursor_wm);
1941
		enabled |= 1;
1942
	}
1943
 
1944
	if (g4x_compute_wm0(dev, 1,
1945
			    &sandybridge_display_wm_info, latency,
1946
			    &sandybridge_cursor_wm_info, latency,
1947
			    &plane_wm, &cursor_wm)) {
1948
		val = I915_READ(WM0_PIPEB_ILK);
1949
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1950
		I915_WRITE(WM0_PIPEB_ILK, val |
1951
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1952
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1953
			      " plane %d, cursor: %d\n",
1954
			      plane_wm, cursor_wm);
1955
		enabled |= 2;
1956
	}
1957
 
1958
	if (g4x_compute_wm0(dev, 2,
1959
			    &sandybridge_display_wm_info, latency,
1960
			    &sandybridge_cursor_wm_info, latency,
1961
			    &plane_wm, &cursor_wm)) {
3031 serge 1962
		val = I915_READ(WM0_PIPEC_IVB);
1963
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1964
		I915_WRITE(WM0_PIPEC_IVB, val |
1965
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1966
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1967
			      " plane %d, cursor: %d\n",
1968
			      plane_wm, cursor_wm);
1969
		enabled |= 3;
1970
	}
1971
 
1972
	/*
1973
	 * Calculate and update the self-refresh watermark only when one
1974
	 * display plane is used.
1975
	 *
1976
	 * SNB support 3 levels of watermark.
1977
	 *
1978
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1979
	 * and disabled in the descending order
1980
	 *
1981
	 */
1982
	I915_WRITE(WM3_LP_ILK, 0);
1983
	I915_WRITE(WM2_LP_ILK, 0);
1984
	I915_WRITE(WM1_LP_ILK, 0);
1985
 
1986
	if (!single_plane_enabled(enabled) ||
1987
	    dev_priv->sprite_scaling_enabled)
1988
		return;
1989
	enabled = ffs(enabled) - 1;
1990
 
1991
	/* WM1 */
1992
	if (!ironlake_compute_srwm(dev, 1, enabled,
1993
				   SNB_READ_WM1_LATENCY() * 500,
1994
				   &sandybridge_display_srwm_info,
1995
				   &sandybridge_cursor_srwm_info,
1996
				   &fbc_wm, &plane_wm, &cursor_wm))
1997
		return;
1998
 
1999
	I915_WRITE(WM1_LP_ILK,
2000
		   WM1_LP_SR_EN |
2001
		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2002
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2003
		   (plane_wm << WM1_LP_SR_SHIFT) |
2004
		   cursor_wm);
2005
 
2006
	/* WM2 */
2007
	if (!ironlake_compute_srwm(dev, 2, enabled,
2008
				   SNB_READ_WM2_LATENCY() * 500,
2009
				   &sandybridge_display_srwm_info,
2010
				   &sandybridge_cursor_srwm_info,
2011
				   &fbc_wm, &plane_wm, &cursor_wm))
2012
		return;
2013
 
2014
	I915_WRITE(WM2_LP_ILK,
2015
		   WM2_LP_EN |
2016
		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2017
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2018
		   (plane_wm << WM1_LP_SR_SHIFT) |
2019
		   cursor_wm);
2020
 
3243 Serge 2021
	/* WM3, note we have to correct the cursor latency */
3031 serge 2022
	if (!ironlake_compute_srwm(dev, 3, enabled,
2023
				   SNB_READ_WM3_LATENCY() * 500,
2024
				   &sandybridge_display_srwm_info,
2025
				   &sandybridge_cursor_srwm_info,
3243 Serge 2026
				   &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2027
	    !ironlake_compute_srwm(dev, 3, enabled,
2028
				   2 * SNB_READ_WM3_LATENCY() * 500,
2029
				   &sandybridge_display_srwm_info,
2030
				   &sandybridge_cursor_srwm_info,
2031
				   &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
3031 serge 2032
		return;
2033
 
2034
	I915_WRITE(WM3_LP_ILK,
2035
		   WM3_LP_EN |
2036
		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2037
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
2038
		   (plane_wm << WM1_LP_SR_SHIFT) |
2039
		   cursor_wm);
2040
}
2041
 
2042
static void
2043
haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2044
				 struct drm_display_mode *mode)
2045
{
2046
	struct drm_i915_private *dev_priv = dev->dev_private;
2047
	u32 temp;
2048
 
2049
	temp = I915_READ(PIPE_WM_LINETIME(pipe));
2050
	temp &= ~PIPE_WM_LINETIME_MASK;
2051
 
2052
	/* The WM are computed with base on how long it takes to fill a single
2053
	 * row at the given clock rate, multiplied by 8.
2054
	 * */
2055
	temp |= PIPE_WM_LINETIME_TIME(
2056
		((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2057
 
2058
	/* IPS watermarks are only used by pipe A, and are ignored by
2059
	 * pipes B and C.  They are calculated similarly to the common
2060
	 * linetime values, except that we are using CD clock frequency
2061
	 * in MHz instead of pixel rate for the division.
2062
	 *
2063
	 * This is a placeholder for the IPS watermark calculation code.
2064
	 */
2065
 
2066
	I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2067
}
2068
 
2069
static bool
2070
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2071
			      uint32_t sprite_width, int pixel_size,
2072
			      const struct intel_watermark_params *display,
2073
			      int display_latency_ns, int *sprite_wm)
2074
{
2075
	struct drm_crtc *crtc;
2076
	int clock;
2077
	int entries, tlb_miss;
2078
 
2079
	crtc = intel_get_crtc_for_plane(dev, plane);
3243 Serge 2080
	if (!intel_crtc_active(crtc)) {
3031 serge 2081
		*sprite_wm = display->guard_size;
2082
		return false;
2083
	}
2084
 
2085
	clock = crtc->mode.clock;
2086
 
2087
	/* Use the small buffer method to calculate the sprite watermark */
2088
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2089
	tlb_miss = display->fifo_size*display->cacheline_size -
2090
		sprite_width * 8;
2091
	if (tlb_miss > 0)
2092
		entries += tlb_miss;
2093
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
2094
	*sprite_wm = entries + display->guard_size;
2095
	if (*sprite_wm > (int)display->max_wm)
2096
		*sprite_wm = display->max_wm;
2097
 
2098
	return true;
2099
}
2100
 
2101
static bool
2102
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2103
				uint32_t sprite_width, int pixel_size,
2104
				const struct intel_watermark_params *display,
2105
				int latency_ns, int *sprite_wm)
2106
{
2107
	struct drm_crtc *crtc;
2108
	unsigned long line_time_us;
2109
	int clock;
2110
	int line_count, line_size;
2111
	int small, large;
2112
	int entries;
2113
 
2114
	if (!latency_ns) {
2115
		*sprite_wm = 0;
2116
		return false;
2117
	}
2118
 
2119
	crtc = intel_get_crtc_for_plane(dev, plane);
2120
	clock = crtc->mode.clock;
2121
	if (!clock) {
2122
		*sprite_wm = 0;
2123
		return false;
2124
	}
2125
 
2126
	line_time_us = (sprite_width * 1000) / clock;
2127
	if (!line_time_us) {
2128
		*sprite_wm = 0;
2129
		return false;
2130
	}
2131
 
2132
	line_count = (latency_ns / line_time_us + 1000) / 1000;
2133
	line_size = sprite_width * pixel_size;
2134
 
2135
	/* Use the minimum of the small and large buffer method for primary */
2136
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2137
	large = line_count * line_size;
2138
 
2139
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2140
	*sprite_wm = entries + display->guard_size;
2141
 
2142
	return *sprite_wm > 0x3ff ? false : true;
2143
}
2144
 
2145
static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2146
					 uint32_t sprite_width, int pixel_size)
2147
{
2148
	struct drm_i915_private *dev_priv = dev->dev_private;
2149
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
2150
	u32 val;
2151
	int sprite_wm, reg;
2152
	int ret;
2153
 
2154
	switch (pipe) {
2155
	case 0:
2156
		reg = WM0_PIPEA_ILK;
2157
		break;
2158
	case 1:
2159
		reg = WM0_PIPEB_ILK;
2160
		break;
2161
	case 2:
2162
		reg = WM0_PIPEC_IVB;
2163
		break;
2164
	default:
2165
		return; /* bad pipe */
2166
	}
2167
 
2168
	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2169
					    &sandybridge_display_wm_info,
2170
					    latency, &sprite_wm);
2171
	if (!ret) {
2172
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2173
			      pipe);
2174
		return;
2175
	}
2176
 
2177
	val = I915_READ(reg);
2178
	val &= ~WM0_PIPE_SPRITE_MASK;
2179
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2180
	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2181
 
2182
 
2183
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2184
					      pixel_size,
2185
					      &sandybridge_display_srwm_info,
2186
					      SNB_READ_WM1_LATENCY() * 500,
2187
					      &sprite_wm);
2188
	if (!ret) {
2189
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2190
			      pipe);
2191
		return;
2192
	}
2193
	I915_WRITE(WM1S_LP_ILK, sprite_wm);
2194
 
2195
	/* Only IVB has two more LP watermarks for sprite */
2196
	if (!IS_IVYBRIDGE(dev))
2197
		return;
2198
 
2199
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2200
					      pixel_size,
2201
					      &sandybridge_display_srwm_info,
2202
					      SNB_READ_WM2_LATENCY() * 500,
2203
					      &sprite_wm);
2204
	if (!ret) {
2205
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2206
			      pipe);
2207
		return;
2208
	}
2209
	I915_WRITE(WM2S_LP_IVB, sprite_wm);
2210
 
2211
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2212
					      pixel_size,
2213
					      &sandybridge_display_srwm_info,
2214
					      SNB_READ_WM3_LATENCY() * 500,
2215
					      &sprite_wm);
2216
	if (!ret) {
2217
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2218
			      pipe);
2219
		return;
2220
	}
2221
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
2222
}
2223
 
2224
/**
2225
 * intel_update_watermarks - update FIFO watermark values based on current modes
2226
 *
2227
 * Calculate watermark values for the various WM regs based on current mode
2228
 * and plane configuration.
2229
 *
2230
 * There are several cases to deal with here:
2231
 *   - normal (i.e. non-self-refresh)
2232
 *   - self-refresh (SR) mode
2233
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
2234
 *   - lines are small relative to FIFO size (buffer can hold more than 2
2235
 *     lines), so need to account for TLB latency
2236
 *
2237
 *   The normal calculation is:
2238
 *     watermark = dotclock * bytes per pixel * latency
2239
 *   where latency is platform & configuration dependent (we assume pessimal
2240
 *   values here).
2241
 *
2242
 *   The SR calculation is:
2243
 *     watermark = (trunc(latency/line time)+1) * surface width *
2244
 *       bytes per pixel
2245
 *   where
2246
 *     line time = htotal / dotclock
2247
 *     surface width = hdisplay for normal plane and 64 for cursor
2248
 *   and latency is assumed to be high, as above.
2249
 *
2250
 * The final value programmed to the register should always be rounded up,
2251
 * and include an extra 2 entries to account for clock crossings.
2252
 *
2253
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
2254
 * to set the non-SR watermarks to 8.
2255
 */
2256
void intel_update_watermarks(struct drm_device *dev)
2257
{
2258
	struct drm_i915_private *dev_priv = dev->dev_private;
2259
 
2260
	if (dev_priv->display.update_wm)
2261
		dev_priv->display.update_wm(dev);
2262
}
2263
 
2264
void intel_update_linetime_watermarks(struct drm_device *dev,
2265
		int pipe, struct drm_display_mode *mode)
2266
{
2267
	struct drm_i915_private *dev_priv = dev->dev_private;
2268
 
2269
	if (dev_priv->display.update_linetime_wm)
2270
		dev_priv->display.update_linetime_wm(dev, pipe, mode);
2271
}
2272
 
2273
void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2274
				    uint32_t sprite_width, int pixel_size)
2275
{
2276
	struct drm_i915_private *dev_priv = dev->dev_private;
2277
 
2278
	if (dev_priv->display.update_sprite_wm)
2279
		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2280
						   pixel_size);
2281
}
2282
 
2283
static struct drm_i915_gem_object *
2284
intel_alloc_context_page(struct drm_device *dev)
2285
{
2286
	struct drm_i915_gem_object *ctx;
2287
	int ret;
2288
 
2289
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2290
 
2291
	ctx = i915_gem_alloc_object(dev, 4096);
2292
	if (!ctx) {
2293
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2294
		return NULL;
2295
	}
2296
 
2297
	ret = i915_gem_object_pin(ctx, 4096, true, false);
2298
	if (ret) {
2299
		DRM_ERROR("failed to pin power context: %d\n", ret);
2300
		goto err_unref;
2301
	}
2302
 
2303
	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2304
	if (ret) {
2305
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2306
		goto err_unpin;
2307
	}
2308
 
2309
	return ctx;
2310
 
2311
err_unpin:
2312
	i915_gem_object_unpin(ctx);
2313
err_unref:
2314
	drm_gem_object_unreference(&ctx->base);
2315
	return NULL;
2316
}
2317
 
2318
/**
2319
 * Lock protecting IPS related data structures
2320
 */
2321
DEFINE_SPINLOCK(mchdev_lock);
2322
 
2323
/* Global for IPS driver to get at the current i915 device. Protected by
2324
 * mchdev_lock. */
2325
static struct drm_i915_private *i915_mch_dev;
2326
 
2327
bool ironlake_set_drps(struct drm_device *dev, u8 val)
2328
{
2329
	struct drm_i915_private *dev_priv = dev->dev_private;
2330
	u16 rgvswctl;
2331
 
2332
	assert_spin_locked(&mchdev_lock);
2333
 
2334
	rgvswctl = I915_READ16(MEMSWCTL);
2335
	if (rgvswctl & MEMCTL_CMD_STS) {
2336
		DRM_DEBUG("gpu busy, RCS change rejected\n");
2337
		return false; /* still busy with another command */
2338
	}
2339
 
2340
	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2341
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2342
	I915_WRITE16(MEMSWCTL, rgvswctl);
2343
	POSTING_READ16(MEMSWCTL);
2344
 
2345
	rgvswctl |= MEMCTL_CMD_STS;
2346
	I915_WRITE16(MEMSWCTL, rgvswctl);
2347
 
2348
	return true;
2349
}
2350
 
2351
static void ironlake_enable_drps(struct drm_device *dev)
2352
{
2353
	struct drm_i915_private *dev_priv = dev->dev_private;
2354
	u32 rgvmodectl = I915_READ(MEMMODECTL);
2355
	u8 fmax, fmin, fstart, vstart;
2356
 
2357
	spin_lock_irq(&mchdev_lock);
2358
 
2359
	/* Enable temp reporting */
2360
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2361
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2362
 
2363
	/* 100ms RC evaluation intervals */
2364
	I915_WRITE(RCUPEI, 100000);
2365
	I915_WRITE(RCDNEI, 100000);
2366
 
2367
	/* Set max/min thresholds to 90ms and 80ms respectively */
2368
	I915_WRITE(RCBMAXAVG, 90000);
2369
	I915_WRITE(RCBMINAVG, 80000);
2370
 
2371
	I915_WRITE(MEMIHYST, 1);
2372
 
2373
	/* Set up min, max, and cur for interrupt handling */
2374
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2375
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2376
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2377
		MEMMODE_FSTART_SHIFT;
2378
 
2379
	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2380
		PXVFREQ_PX_SHIFT;
2381
 
2382
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2383
	dev_priv->ips.fstart = fstart;
2384
 
2385
	dev_priv->ips.max_delay = fstart;
2386
	dev_priv->ips.min_delay = fmin;
2387
	dev_priv->ips.cur_delay = fstart;
2388
 
2389
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2390
			 fmax, fmin, fstart);
2391
 
2392
	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2393
 
2394
	/*
2395
	 * Interrupts will be enabled in ironlake_irq_postinstall
2396
	 */
2397
 
2398
	I915_WRITE(VIDSTART, vstart);
2399
	POSTING_READ(VIDSTART);
2400
 
2401
	rgvmodectl |= MEMMODE_SWMODE_EN;
2402
	I915_WRITE(MEMMODECTL, rgvmodectl);
2403
 
2404
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2405
		DRM_ERROR("stuck trying to change perf mode\n");
2406
	mdelay(1);
2407
 
2408
	ironlake_set_drps(dev, fstart);
2409
 
2410
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2411
		I915_READ(0x112e0);
2412
    dev_priv->ips.last_time1 = jiffies_to_msecs(GetTimerTicks());
2413
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
2414
//   getrawmonotonic(&dev_priv->ips.last_time2);
2415
 
2416
	spin_unlock_irq(&mchdev_lock);
2417
}
2418
 
2419
static void ironlake_disable_drps(struct drm_device *dev)
2420
{
2421
	struct drm_i915_private *dev_priv = dev->dev_private;
2422
	u16 rgvswctl;
2423
 
2424
	spin_lock_irq(&mchdev_lock);
2425
 
2426
	rgvswctl = I915_READ16(MEMSWCTL);
2427
 
2428
	/* Ack interrupts, disable EFC interrupt */
2429
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2430
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2431
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2432
	I915_WRITE(DEIIR, DE_PCU_EVENT);
2433
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2434
 
2435
	/* Go back to the starting frequency */
2436
	ironlake_set_drps(dev, dev_priv->ips.fstart);
2437
	mdelay(1);
2438
	rgvswctl |= MEMCTL_CMD_STS;
2439
	I915_WRITE(MEMSWCTL, rgvswctl);
2440
	mdelay(1);
2441
 
2442
	spin_unlock_irq(&mchdev_lock);
2443
}
2444
 
2445
/* There's a funny hw issue where the hw returns all 0 when reading from
2446
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2447
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2448
 * all limits and the gpu stuck at whatever frequency it is at atm).
2449
 */
2450
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2451
{
2452
	u32 limits;
2453
 
2454
	limits = 0;
2455
 
2456
	if (*val >= dev_priv->rps.max_delay)
2457
		*val = dev_priv->rps.max_delay;
2458
	limits |= dev_priv->rps.max_delay << 24;
2459
 
2460
	/* Only set the down limit when we've reached the lowest level to avoid
2461
	 * getting more interrupts, otherwise leave this clear. This prevents a
2462
	 * race in the hw when coming out of rc6: There's a tiny window where
2463
	 * the hw runs at the minimal clock before selecting the desired
2464
	 * frequency, if the down threshold expires in that window we will not
2465
	 * receive a down interrupt. */
2466
	if (*val <= dev_priv->rps.min_delay) {
2467
		*val = dev_priv->rps.min_delay;
2468
		limits |= dev_priv->rps.min_delay << 16;
2469
	}
2470
 
2471
	return limits;
2472
}
2473
 
2474
void gen6_set_rps(struct drm_device *dev, u8 val)
2475
{
2476
	struct drm_i915_private *dev_priv = dev->dev_private;
2477
	u32 limits = gen6_rps_limits(dev_priv, &val);
2478
 
3243 Serge 2479
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 2480
	WARN_ON(val > dev_priv->rps.max_delay);
2481
	WARN_ON(val < dev_priv->rps.min_delay);
2482
 
2483
	if (val == dev_priv->rps.cur_delay)
2484
		return;
2485
 
2486
	I915_WRITE(GEN6_RPNSWREQ,
2487
		   GEN6_FREQUENCY(val) |
2488
		   GEN6_OFFSET(0) |
2489
		   GEN6_AGGRESSIVE_TURBO);
2490
 
2491
	/* Make sure we continue to get interrupts
2492
	 * until we hit the minimum or maximum frequencies.
2493
	 */
2494
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2495
 
2496
	POSTING_READ(GEN6_RPNSWREQ);
2497
 
2498
	dev_priv->rps.cur_delay = val;
2499
 
2500
	trace_intel_gpu_freq_change(val * 50);
2501
}
2502
 
2503
static void gen6_disable_rps(struct drm_device *dev)
2504
{
2505
	struct drm_i915_private *dev_priv = dev->dev_private;
2506
 
2507
	I915_WRITE(GEN6_RC_CONTROL, 0);
2508
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2509
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2510
	I915_WRITE(GEN6_PMIER, 0);
2511
	/* Complete PM interrupt masking here doesn't race with the rps work
2512
	 * item again unmasking PM interrupts because that is using a different
2513
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2514
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2515
 
2516
	spin_lock_irq(&dev_priv->rps.lock);
2517
	dev_priv->rps.pm_iir = 0;
2518
	spin_unlock_irq(&dev_priv->rps.lock);
2519
 
2520
	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2521
}
2522
 
2523
int intel_enable_rc6(const struct drm_device *dev)
2524
{
2525
	/* Respect the kernel parameter if it is set */
2526
	if (i915_enable_rc6 >= 0)
2527
		return i915_enable_rc6;
2528
 
3120 serge 2529
	/* Disable RC6 on Ironlake */
2530
	if (INTEL_INFO(dev)->gen == 5)
2531
		return 0;
3031 serge 2532
 
2533
	if (IS_HASWELL(dev)) {
2534
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2535
		return INTEL_RC6_ENABLE;
2536
	}
2537
 
2538
	/* snb/ivb have more than one rc6 state. */
2539
	if (INTEL_INFO(dev)->gen == 6) {
2540
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2541
		return INTEL_RC6_ENABLE;
2542
	}
2543
 
2544
	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2545
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2546
}
2547
 
2548
static void gen6_enable_rps(struct drm_device *dev)
2549
{
2550
	struct drm_i915_private *dev_priv = dev->dev_private;
2551
	struct intel_ring_buffer *ring;
2552
	u32 rp_state_cap;
2553
	u32 gt_perf_status;
3243 Serge 2554
	u32 rc6vids, pcu_mbox, rc6_mask = 0;
3031 serge 2555
	u32 gtfifodbg;
2556
	int rc6_mode;
3243 Serge 2557
	int i, ret;
3031 serge 2558
 
3243 Serge 2559
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 2560
 
2561
	/* Here begins a magic sequence of register writes to enable
2562
	 * auto-downclocking.
2563
	 *
2564
	 * Perhaps there might be some value in exposing these to
2565
	 * userspace...
2566
	 */
2567
	I915_WRITE(GEN6_RC_STATE, 0);
2568
 
2569
	/* Clear the DBG now so we don't confuse earlier errors */
2570
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2571
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2572
		I915_WRITE(GTFIFODBG, gtfifodbg);
2573
	}
2574
 
2575
	gen6_gt_force_wake_get(dev_priv);
2576
 
2577
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2578
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2579
 
2580
	/* In units of 100MHz */
2581
	dev_priv->rps.max_delay = rp_state_cap & 0xff;
2582
	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2583
	dev_priv->rps.cur_delay = 0;
2584
 
2585
	/* disable the counters and set deterministic thresholds */
2586
	I915_WRITE(GEN6_RC_CONTROL, 0);
2587
 
2588
	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2589
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2590
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2591
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2592
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2593
 
2594
	for_each_ring(ring, dev_priv, i)
2595
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2596
 
2597
	I915_WRITE(GEN6_RC_SLEEP, 0);
2598
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2599
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3480 Serge 2600
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3031 serge 2601
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2602
 
2603
	/* Check if we are enabling RC6 */
2604
	rc6_mode = intel_enable_rc6(dev_priv->dev);
2605
	if (rc6_mode & INTEL_RC6_ENABLE)
2606
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2607
 
2608
	/* We don't use those on Haswell */
2609
	if (!IS_HASWELL(dev)) {
2610
		if (rc6_mode & INTEL_RC6p_ENABLE)
2611
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2612
 
2613
		if (rc6_mode & INTEL_RC6pp_ENABLE)
2614
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2615
	}
2616
 
2617
	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2618
			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2619
			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2620
			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2621
 
2622
	I915_WRITE(GEN6_RC_CONTROL,
2623
		   rc6_mask |
2624
		   GEN6_RC_CTL_EI_MODE(1) |
2625
		   GEN6_RC_CTL_HW_ENABLE);
2626
 
2627
	I915_WRITE(GEN6_RPNSWREQ,
2628
		   GEN6_FREQUENCY(10) |
2629
		   GEN6_OFFSET(0) |
2630
		   GEN6_AGGRESSIVE_TURBO);
2631
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
2632
		   GEN6_FREQUENCY(12));
2633
 
2634
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2635
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2636
		   dev_priv->rps.max_delay << 24 |
2637
		   dev_priv->rps.min_delay << 16);
2638
 
2639
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2640
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2641
	I915_WRITE(GEN6_RP_UP_EI, 66000);
2642
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2643
 
2644
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2645
	I915_WRITE(GEN6_RP_CONTROL,
2646
		   GEN6_RP_MEDIA_TURBO |
2647
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2648
		   GEN6_RP_MEDIA_IS_GFX |
2649
		   GEN6_RP_ENABLE |
2650
		   GEN6_RP_UP_BUSY_AVG |
2651
		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2652
 
3243 Serge 2653
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2654
	if (!ret) {
2655
		pcu_mbox = 0;
2656
		ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2657
		if (ret && pcu_mbox & (1<<31)) { /* OC supported */
3031 serge 2658
		dev_priv->rps.max_delay = pcu_mbox & 0xff;
2659
		DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2660
	}
3243 Serge 2661
	} else {
2662
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2663
	}
3031 serge 2664
 
2665
	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2666
 
2667
	/* requires MSI enabled */
2668
	I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2669
	spin_lock_irq(&dev_priv->rps.lock);
2670
	WARN_ON(dev_priv->rps.pm_iir != 0);
2671
	I915_WRITE(GEN6_PMIMR, 0);
2672
	spin_unlock_irq(&dev_priv->rps.lock);
2673
	/* enable all PM interrupts */
2674
	I915_WRITE(GEN6_PMINTRMSK, 0);
2675
 
3243 Serge 2676
	rc6vids = 0;
2677
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2678
	if (IS_GEN6(dev) && ret) {
2679
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2680
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2681
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2682
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2683
		rc6vids &= 0xffff00;
2684
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
2685
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2686
		if (ret)
2687
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2688
	}
2689
 
3031 serge 2690
	gen6_gt_force_wake_put(dev_priv);
2691
}
2692
 
2693
#if 0
2694
static void gen6_update_ring_freq(struct drm_device *dev)
2695
{
2696
	struct drm_i915_private *dev_priv = dev->dev_private;
2697
	int min_freq = 15;
3243 Serge 2698
	int gpu_freq;
2699
	unsigned int ia_freq, max_ia_freq;
3031 serge 2700
	int scaling_factor = 180;
2701
 
3243 Serge 2702
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 2703
 
2704
	max_ia_freq = cpufreq_quick_get_max(0);
2705
	/*
2706
	 * Default to measured freq if none found, PCU will ensure we don't go
2707
	 * over
2708
	 */
2709
	if (!max_ia_freq)
2710
		max_ia_freq = tsc_khz;
2711
 
2712
	/* Convert from kHz to MHz */
2713
	max_ia_freq /= 1000;
2714
 
2715
	/*
2716
	 * For each potential GPU frequency, load a ring frequency we'd like
2717
	 * to use for memory access.  We do this by specifying the IA frequency
2718
	 * the PCU should use as a reference to determine the ring frequency.
2719
	 */
2720
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2721
	     gpu_freq--) {
2722
		int diff = dev_priv->rps.max_delay - gpu_freq;
2723
 
2724
		/*
2725
		 * For GPU frequencies less than 750MHz, just use the lowest
2726
		 * ring freq.
2727
		 */
2728
		if (gpu_freq < min_freq)
2729
			ia_freq = 800;
2730
		else
2731
			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2732
		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3243 Serge 2733
		ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
3031 serge 2734
 
3243 Serge 2735
		sandybridge_pcode_write(dev_priv,
2736
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2737
					ia_freq | gpu_freq);
3031 serge 2738
	}
2739
}
2740
#endif
2741
 
2742
void ironlake_teardown_rc6(struct drm_device *dev)
2743
{
2744
	struct drm_i915_private *dev_priv = dev->dev_private;
2745
 
3243 Serge 2746
	if (dev_priv->ips.renderctx) {
2747
		i915_gem_object_unpin(dev_priv->ips.renderctx);
2748
		drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2749
		dev_priv->ips.renderctx = NULL;
3031 serge 2750
	}
2751
 
3243 Serge 2752
	if (dev_priv->ips.pwrctx) {
2753
		i915_gem_object_unpin(dev_priv->ips.pwrctx);
2754
		drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2755
		dev_priv->ips.pwrctx = NULL;
3031 serge 2756
	}
2757
}
2758
 
2759
static void ironlake_disable_rc6(struct drm_device *dev)
2760
{
2761
	struct drm_i915_private *dev_priv = dev->dev_private;
2762
 
2763
	if (I915_READ(PWRCTXA)) {
2764
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2765
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2766
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2767
			 50);
2768
 
2769
		I915_WRITE(PWRCTXA, 0);
2770
		POSTING_READ(PWRCTXA);
2771
 
2772
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2773
		POSTING_READ(RSTDBYCTL);
2774
	}
2775
}
2776
 
2777
static int ironlake_setup_rc6(struct drm_device *dev)
2778
{
2779
	struct drm_i915_private *dev_priv = dev->dev_private;
2780
 
3243 Serge 2781
	if (dev_priv->ips.renderctx == NULL)
2782
		dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2783
	if (!dev_priv->ips.renderctx)
3031 serge 2784
		return -ENOMEM;
2785
 
3243 Serge 2786
	if (dev_priv->ips.pwrctx == NULL)
2787
		dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2788
	if (!dev_priv->ips.pwrctx) {
3031 serge 2789
		ironlake_teardown_rc6(dev);
2790
		return -ENOMEM;
2791
	}
2792
 
2793
	return 0;
2794
}
2795
 
2796
static void ironlake_enable_rc6(struct drm_device *dev)
2797
{
2798
	struct drm_i915_private *dev_priv = dev->dev_private;
2799
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3243 Serge 2800
	bool was_interruptible;
3031 serge 2801
	int ret;
2802
 
2803
	/* rc6 disabled by default due to repeated reports of hanging during
2804
	 * boot and resume.
2805
	 */
2806
	if (!intel_enable_rc6(dev))
2807
		return;
2808
 
2809
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2810
 
2811
	ret = ironlake_setup_rc6(dev);
2812
	if (ret)
2813
		return;
2814
 
3243 Serge 2815
	was_interruptible = dev_priv->mm.interruptible;
2816
	dev_priv->mm.interruptible = false;
2817
 
3031 serge 2818
	/*
2819
	 * GPU can automatically power down the render unit if given a page
2820
	 * to save state.
2821
	 */
2822
	ret = intel_ring_begin(ring, 6);
2823
	if (ret) {
2824
		ironlake_teardown_rc6(dev);
3243 Serge 2825
		dev_priv->mm.interruptible = was_interruptible;
3031 serge 2826
		return;
2827
	}
2828
 
2829
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2830
	intel_ring_emit(ring, MI_SET_CONTEXT);
3243 Serge 2831
	intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
3031 serge 2832
			MI_MM_SPACE_GTT |
2833
			MI_SAVE_EXT_STATE_EN |
2834
			MI_RESTORE_EXT_STATE_EN |
2835
			MI_RESTORE_INHIBIT);
2836
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2837
	intel_ring_emit(ring, MI_NOOP);
2838
	intel_ring_emit(ring, MI_FLUSH);
2839
	intel_ring_advance(ring);
2840
 
2841
	/*
2842
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2843
	 * does an implicit flush, combined with MI_FLUSH above, it should be
2844
	 * safe to assume that renderctx is valid
2845
	 */
3243 Serge 2846
	ret = intel_ring_idle(ring);
2847
	dev_priv->mm.interruptible = was_interruptible;
3031 serge 2848
	if (ret) {
2849
		DRM_ERROR("failed to enable ironlake power power savings\n");
2850
		ironlake_teardown_rc6(dev);
2851
		return;
2852
	}
2853
 
3243 Serge 2854
	I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
3031 serge 2855
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2856
}
2857
 
2858
static unsigned long intel_pxfreq(u32 vidfreq)
2859
{
2860
	unsigned long freq;
2861
	int div = (vidfreq & 0x3f0000) >> 16;
2862
	int post = (vidfreq & 0x3000) >> 12;
2863
	int pre = (vidfreq & 0x7);
2864
 
2865
	if (!pre)
2866
		return 0;
2867
 
2868
	freq = ((div * 133333) / ((1<
2869
 
2870
	return freq;
2871
}
2872
 
2873
static const struct cparams {
2874
	u16 i;
2875
	u16 t;
2876
	u16 m;
2877
	u16 c;
2878
} cparams[] = {
2879
	{ 1, 1333, 301, 28664 },
2880
	{ 1, 1066, 294, 24460 },
2881
	{ 1, 800, 294, 25192 },
2882
	{ 0, 1333, 276, 27605 },
2883
	{ 0, 1066, 276, 27605 },
2884
	{ 0, 800, 231, 23784 },
2885
};
2886
 
2887
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2888
{
2889
	u64 total_count, diff, ret;
2890
	u32 count1, count2, count3, m = 0, c = 0;
2891
    unsigned long now = jiffies_to_msecs(GetTimerTicks()), diff1;
2892
	int i;
2893
 
2894
	assert_spin_locked(&mchdev_lock);
2895
 
2896
	diff1 = now - dev_priv->ips.last_time1;
2897
 
2898
	/* Prevent division-by-zero if we are asking too fast.
2899
	 * Also, we don't get interesting results if we are polling
2900
	 * faster than once in 10ms, so just return the saved value
2901
	 * in such cases.
2902
	 */
2903
	if (diff1 <= 10)
2904
		return dev_priv->ips.chipset_power;
2905
 
2906
	count1 = I915_READ(DMIEC);
2907
	count2 = I915_READ(DDREC);
2908
	count3 = I915_READ(CSIEC);
2909
 
2910
	total_count = count1 + count2 + count3;
2911
 
2912
	/* FIXME: handle per-counter overflow */
2913
	if (total_count < dev_priv->ips.last_count1) {
2914
		diff = ~0UL - dev_priv->ips.last_count1;
2915
		diff += total_count;
2916
	} else {
2917
		diff = total_count - dev_priv->ips.last_count1;
2918
	}
2919
 
2920
	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2921
		if (cparams[i].i == dev_priv->ips.c_m &&
2922
		    cparams[i].t == dev_priv->ips.r_t) {
2923
			m = cparams[i].m;
2924
			c = cparams[i].c;
2925
			break;
2926
		}
2927
	}
2928
 
2929
	diff = div_u64(diff, diff1);
2930
	ret = ((m * diff) + c);
2931
	ret = div_u64(ret, 10);
2932
 
2933
	dev_priv->ips.last_count1 = total_count;
2934
	dev_priv->ips.last_time1 = now;
2935
 
2936
	dev_priv->ips.chipset_power = ret;
2937
 
2938
	return ret;
2939
}
2940
 
2941
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2942
{
2943
	unsigned long val;
2944
 
2945
	if (dev_priv->info->gen != 5)
2946
		return 0;
2947
 
2948
	spin_lock_irq(&mchdev_lock);
2949
 
2950
	val = __i915_chipset_val(dev_priv);
2951
 
2952
	spin_unlock_irq(&mchdev_lock);
2953
 
2954
	return val;
2955
}
2956
 
2957
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2958
{
2959
	unsigned long m, x, b;
2960
	u32 tsfs;
2961
 
2962
	tsfs = I915_READ(TSFS);
2963
 
2964
	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2965
	x = I915_READ8(TR1);
2966
 
2967
	b = tsfs & TSFS_INTR_MASK;
2968
 
2969
	return ((m * x) / 127) - b;
2970
}
2971
 
2972
static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2973
{
2974
	static const struct v_table {
2975
		u16 vd; /* in .1 mil */
2976
		u16 vm; /* in .1 mil */
2977
	} v_table[] = {
2978
		{ 0, 0, },
2979
		{ 375, 0, },
2980
		{ 500, 0, },
2981
		{ 625, 0, },
2982
		{ 750, 0, },
2983
		{ 875, 0, },
2984
		{ 1000, 0, },
2985
		{ 1125, 0, },
2986
		{ 4125, 3000, },
2987
		{ 4125, 3000, },
2988
		{ 4125, 3000, },
2989
		{ 4125, 3000, },
2990
		{ 4125, 3000, },
2991
		{ 4125, 3000, },
2992
		{ 4125, 3000, },
2993
		{ 4125, 3000, },
2994
		{ 4125, 3000, },
2995
		{ 4125, 3000, },
2996
		{ 4125, 3000, },
2997
		{ 4125, 3000, },
2998
		{ 4125, 3000, },
2999
		{ 4125, 3000, },
3000
		{ 4125, 3000, },
3001
		{ 4125, 3000, },
3002
		{ 4125, 3000, },
3003
		{ 4125, 3000, },
3004
		{ 4125, 3000, },
3005
		{ 4125, 3000, },
3006
		{ 4125, 3000, },
3007
		{ 4125, 3000, },
3008
		{ 4125, 3000, },
3009
		{ 4125, 3000, },
3010
		{ 4250, 3125, },
3011
		{ 4375, 3250, },
3012
		{ 4500, 3375, },
3013
		{ 4625, 3500, },
3014
		{ 4750, 3625, },
3015
		{ 4875, 3750, },
3016
		{ 5000, 3875, },
3017
		{ 5125, 4000, },
3018
		{ 5250, 4125, },
3019
		{ 5375, 4250, },
3020
		{ 5500, 4375, },
3021
		{ 5625, 4500, },
3022
		{ 5750, 4625, },
3023
		{ 5875, 4750, },
3024
		{ 6000, 4875, },
3025
		{ 6125, 5000, },
3026
		{ 6250, 5125, },
3027
		{ 6375, 5250, },
3028
		{ 6500, 5375, },
3029
		{ 6625, 5500, },
3030
		{ 6750, 5625, },
3031
		{ 6875, 5750, },
3032
		{ 7000, 5875, },
3033
		{ 7125, 6000, },
3034
		{ 7250, 6125, },
3035
		{ 7375, 6250, },
3036
		{ 7500, 6375, },
3037
		{ 7625, 6500, },
3038
		{ 7750, 6625, },
3039
		{ 7875, 6750, },
3040
		{ 8000, 6875, },
3041
		{ 8125, 7000, },
3042
		{ 8250, 7125, },
3043
		{ 8375, 7250, },
3044
		{ 8500, 7375, },
3045
		{ 8625, 7500, },
3046
		{ 8750, 7625, },
3047
		{ 8875, 7750, },
3048
		{ 9000, 7875, },
3049
		{ 9125, 8000, },
3050
		{ 9250, 8125, },
3051
		{ 9375, 8250, },
3052
		{ 9500, 8375, },
3053
		{ 9625, 8500, },
3054
		{ 9750, 8625, },
3055
		{ 9875, 8750, },
3056
		{ 10000, 8875, },
3057
		{ 10125, 9000, },
3058
		{ 10250, 9125, },
3059
		{ 10375, 9250, },
3060
		{ 10500, 9375, },
3061
		{ 10625, 9500, },
3062
		{ 10750, 9625, },
3063
		{ 10875, 9750, },
3064
		{ 11000, 9875, },
3065
		{ 11125, 10000, },
3066
		{ 11250, 10125, },
3067
		{ 11375, 10250, },
3068
		{ 11500, 10375, },
3069
		{ 11625, 10500, },
3070
		{ 11750, 10625, },
3071
		{ 11875, 10750, },
3072
		{ 12000, 10875, },
3073
		{ 12125, 11000, },
3074
		{ 12250, 11125, },
3075
		{ 12375, 11250, },
3076
		{ 12500, 11375, },
3077
		{ 12625, 11500, },
3078
		{ 12750, 11625, },
3079
		{ 12875, 11750, },
3080
		{ 13000, 11875, },
3081
		{ 13125, 12000, },
3082
		{ 13250, 12125, },
3083
		{ 13375, 12250, },
3084
		{ 13500, 12375, },
3085
		{ 13625, 12500, },
3086
		{ 13750, 12625, },
3087
		{ 13875, 12750, },
3088
		{ 14000, 12875, },
3089
		{ 14125, 13000, },
3090
		{ 14250, 13125, },
3091
		{ 14375, 13250, },
3092
		{ 14500, 13375, },
3093
		{ 14625, 13500, },
3094
		{ 14750, 13625, },
3095
		{ 14875, 13750, },
3096
		{ 15000, 13875, },
3097
		{ 15125, 14000, },
3098
		{ 15250, 14125, },
3099
		{ 15375, 14250, },
3100
		{ 15500, 14375, },
3101
		{ 15625, 14500, },
3102
		{ 15750, 14625, },
3103
		{ 15875, 14750, },
3104
		{ 16000, 14875, },
3105
		{ 16125, 15000, },
3106
	};
3107
	if (dev_priv->info->is_mobile)
3108
		return v_table[pxvid].vm;
3109
	else
3110
		return v_table[pxvid].vd;
3111
}
3112
 
3113
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3114
{
3115
	struct timespec now, diff1;
3116
	u64 diff;
3117
	unsigned long diffms;
3118
	u32 count;
3119
 
3120
	assert_spin_locked(&mchdev_lock);
3121
 
3122
	getrawmonotonic(&now);
3123
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3124
 
3125
	/* Don't divide by 0 */
3126
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3127
	if (!diffms)
3128
		return;
3129
 
3130
	count = I915_READ(GFXEC);
3131
 
3132
	if (count < dev_priv->ips.last_count2) {
3133
		diff = ~0UL - dev_priv->ips.last_count2;
3134
		diff += count;
3135
	} else {
3136
		diff = count - dev_priv->ips.last_count2;
3137
	}
3138
 
3139
	dev_priv->ips.last_count2 = count;
3140
	dev_priv->ips.last_time2 = now;
3141
 
3142
	/* More magic constants... */
3143
	diff = diff * 1181;
3144
	diff = div_u64(diff, diffms * 10);
3145
	dev_priv->ips.gfx_power = diff;
3146
}
3147
 
3148
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3149
{
3150
	if (dev_priv->info->gen != 5)
3151
		return;
3152
 
3153
	spin_lock_irq(&mchdev_lock);
3154
 
3155
	__i915_update_gfx_val(dev_priv);
3156
 
3157
	spin_unlock_irq(&mchdev_lock);
3158
}
3159
 
3160
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3161
{
3162
	unsigned long t, corr, state1, corr2, state2;
3163
	u32 pxvid, ext_v;
3164
 
3165
	assert_spin_locked(&mchdev_lock);
3166
 
3167
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3168
	pxvid = (pxvid >> 24) & 0x7f;
3169
	ext_v = pvid_to_extvid(dev_priv, pxvid);
3170
 
3171
	state1 = ext_v;
3172
 
3173
	t = i915_mch_val(dev_priv);
3174
 
3175
	/* Revel in the empirically derived constants */
3176
 
3177
	/* Correction factor in 1/100000 units */
3178
	if (t > 80)
3179
		corr = ((t * 2349) + 135940);
3180
	else if (t >= 50)
3181
		corr = ((t * 964) + 29317);
3182
	else /* < 50 */
3183
		corr = ((t * 301) + 1004);
3184
 
3185
	corr = corr * ((150142 * state1) / 10000 - 78642);
3186
	corr /= 100000;
3187
	corr2 = (corr * dev_priv->ips.corr);
3188
 
3189
	state2 = (corr2 * state1) / 10000;
3190
	state2 /= 100; /* convert to mW */
3191
 
3192
	__i915_update_gfx_val(dev_priv);
3193
 
3194
	return dev_priv->ips.gfx_power + state2;
3195
}
3196
 
3197
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3198
{
3199
	unsigned long val;
3200
 
3201
	if (dev_priv->info->gen != 5)
3202
		return 0;
3203
 
3204
	spin_lock_irq(&mchdev_lock);
3205
 
3206
	val = __i915_gfx_val(dev_priv);
3207
 
3208
	spin_unlock_irq(&mchdev_lock);
3209
 
3210
	return val;
3211
}
3212
 
3213
/**
3214
 * i915_read_mch_val - return value for IPS use
3215
 *
3216
 * Calculate and return a value for the IPS driver to use when deciding whether
3217
 * we have thermal and power headroom to increase CPU or GPU power budget.
3218
 */
3219
unsigned long i915_read_mch_val(void)
3220
{
3221
	struct drm_i915_private *dev_priv;
3222
	unsigned long chipset_val, graphics_val, ret = 0;
3223
 
3224
	spin_lock_irq(&mchdev_lock);
3225
	if (!i915_mch_dev)
3226
		goto out_unlock;
3227
	dev_priv = i915_mch_dev;
3228
 
3229
	chipset_val = __i915_chipset_val(dev_priv);
3230
	graphics_val = __i915_gfx_val(dev_priv);
3231
 
3232
	ret = chipset_val + graphics_val;
3233
 
3234
out_unlock:
3235
	spin_unlock_irq(&mchdev_lock);
3236
 
3237
	return ret;
3238
}
3239
EXPORT_SYMBOL_GPL(i915_read_mch_val);
3240
 
3241
/**
3242
 * i915_gpu_raise - raise GPU frequency limit
3243
 *
3244
 * Raise the limit; IPS indicates we have thermal headroom.
3245
 */
3246
bool i915_gpu_raise(void)
3247
{
3248
	struct drm_i915_private *dev_priv;
3249
	bool ret = true;
3250
 
3251
	spin_lock_irq(&mchdev_lock);
3252
	if (!i915_mch_dev) {
3253
		ret = false;
3254
		goto out_unlock;
3255
	}
3256
	dev_priv = i915_mch_dev;
3257
 
3258
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3259
		dev_priv->ips.max_delay--;
3260
 
3261
out_unlock:
3262
	spin_unlock_irq(&mchdev_lock);
3263
 
3264
	return ret;
3265
}
3266
EXPORT_SYMBOL_GPL(i915_gpu_raise);
3267
 
3268
/**
3269
 * i915_gpu_lower - lower GPU frequency limit
3270
 *
3271
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3272
 * frequency maximum.
3273
 */
3274
bool i915_gpu_lower(void)
3275
{
3276
	struct drm_i915_private *dev_priv;
3277
	bool ret = true;
3278
 
3279
	spin_lock_irq(&mchdev_lock);
3280
	if (!i915_mch_dev) {
3281
		ret = false;
3282
		goto out_unlock;
3283
	}
3284
	dev_priv = i915_mch_dev;
3285
 
3286
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3287
		dev_priv->ips.max_delay++;
3288
 
3289
out_unlock:
3290
	spin_unlock_irq(&mchdev_lock);
3291
 
3292
	return ret;
3293
}
3294
EXPORT_SYMBOL_GPL(i915_gpu_lower);
3295
 
3296
/**
3297
 * i915_gpu_busy - indicate GPU business to IPS
3298
 *
3299
 * Tell the IPS driver whether or not the GPU is busy.
3300
 */
3301
bool i915_gpu_busy(void)
3302
{
3303
	struct drm_i915_private *dev_priv;
3304
	struct intel_ring_buffer *ring;
3305
	bool ret = false;
3306
	int i;
3307
 
3308
	spin_lock_irq(&mchdev_lock);
3309
	if (!i915_mch_dev)
3310
		goto out_unlock;
3311
	dev_priv = i915_mch_dev;
3312
 
3313
	for_each_ring(ring, dev_priv, i)
3314
		ret |= !list_empty(&ring->request_list);
3315
 
3316
out_unlock:
3317
	spin_unlock_irq(&mchdev_lock);
3318
 
3319
	return ret;
3320
}
3321
EXPORT_SYMBOL_GPL(i915_gpu_busy);
3322
 
3323
/**
3324
 * i915_gpu_turbo_disable - disable graphics turbo
3325
 *
3326
 * Disable graphics turbo by resetting the max frequency and setting the
3327
 * current frequency to the default.
3328
 */
3329
bool i915_gpu_turbo_disable(void)
3330
{
3331
	struct drm_i915_private *dev_priv;
3332
	bool ret = true;
3333
 
3334
	spin_lock_irq(&mchdev_lock);
3335
	if (!i915_mch_dev) {
3336
		ret = false;
3337
		goto out_unlock;
3338
	}
3339
	dev_priv = i915_mch_dev;
3340
 
3341
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
3342
 
3343
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3344
		ret = false;
3345
 
3346
out_unlock:
3347
	spin_unlock_irq(&mchdev_lock);
3348
 
3349
	return ret;
3350
}
3351
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3352
 
3353
/**
3354
 * Tells the intel_ips driver that the i915 driver is now loaded, if
3355
 * IPS got loaded first.
3356
 *
3357
 * This awkward dance is so that neither module has to depend on the
3358
 * other in order for IPS to do the appropriate communication of
3359
 * GPU turbo limits to i915.
3360
 */
3361
static void
3362
ips_ping_for_i915_load(void)
3363
{
3364
	void (*link)(void);
3365
 
3366
//   link = symbol_get(ips_link_to_i915_driver);
3367
//   if (link) {
3368
//       link();
3369
//       symbol_put(ips_link_to_i915_driver);
3370
//   }
3371
}
3372
 
3373
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3374
{
3375
	/* We only register the i915 ips part with intel-ips once everything is
3376
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3377
	spin_lock_irq(&mchdev_lock);
3378
	i915_mch_dev = dev_priv;
3379
	spin_unlock_irq(&mchdev_lock);
3380
 
3381
	ips_ping_for_i915_load();
3382
}
3383
 
3384
void intel_gpu_ips_teardown(void)
3385
{
3386
	spin_lock_irq(&mchdev_lock);
3387
	i915_mch_dev = NULL;
3388
	spin_unlock_irq(&mchdev_lock);
3389
}
3390
static void intel_init_emon(struct drm_device *dev)
3391
{
3392
	struct drm_i915_private *dev_priv = dev->dev_private;
3393
	u32 lcfuse;
3394
	u8 pxw[16];
3395
	int i;
3396
 
3397
	/* Disable to program */
3398
	I915_WRITE(ECR, 0);
3399
	POSTING_READ(ECR);
3400
 
3401
	/* Program energy weights for various events */
3402
	I915_WRITE(SDEW, 0x15040d00);
3403
	I915_WRITE(CSIEW0, 0x007f0000);
3404
	I915_WRITE(CSIEW1, 0x1e220004);
3405
	I915_WRITE(CSIEW2, 0x04000004);
3406
 
3407
	for (i = 0; i < 5; i++)
3408
		I915_WRITE(PEW + (i * 4), 0);
3409
	for (i = 0; i < 3; i++)
3410
		I915_WRITE(DEW + (i * 4), 0);
3411
 
3412
	/* Program P-state weights to account for frequency power adjustment */
3413
	for (i = 0; i < 16; i++) {
3414
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3415
		unsigned long freq = intel_pxfreq(pxvidfreq);
3416
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3417
			PXVFREQ_PX_SHIFT;
3418
		unsigned long val;
3419
 
3420
		val = vid * vid;
3421
		val *= (freq / 1000);
3422
		val *= 255;
3423
		val /= (127*127*900);
3424
		if (val > 0xff)
3425
			DRM_ERROR("bad pxval: %ld\n", val);
3426
		pxw[i] = val;
3427
	}
3428
	/* Render standby states get 0 weight */
3429
	pxw[14] = 0;
3430
	pxw[15] = 0;
3431
 
3432
	for (i = 0; i < 4; i++) {
3433
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3434
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3435
		I915_WRITE(PXW + (i * 4), val);
3436
	}
3437
 
3438
	/* Adjust magic regs to magic values (more experimental results) */
3439
	I915_WRITE(OGW0, 0);
3440
	I915_WRITE(OGW1, 0);
3441
	I915_WRITE(EG0, 0x00007f00);
3442
	I915_WRITE(EG1, 0x0000000e);
3443
	I915_WRITE(EG2, 0x000e0000);
3444
	I915_WRITE(EG3, 0x68000300);
3445
	I915_WRITE(EG4, 0x42000000);
3446
	I915_WRITE(EG5, 0x00140031);
3447
	I915_WRITE(EG6, 0);
3448
	I915_WRITE(EG7, 0);
3449
 
3450
	for (i = 0; i < 8; i++)
3451
		I915_WRITE(PXWL + (i * 4), 0);
3452
 
3453
	/* Enable PMON + select events */
3454
	I915_WRITE(ECR, 0x80000019);
3455
 
3456
	lcfuse = I915_READ(LCFUSE02);
3457
 
3458
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3459
}
3460
 
3461
void intel_disable_gt_powersave(struct drm_device *dev)
3462
{
3243 Serge 3463
	struct drm_i915_private *dev_priv = dev->dev_private;
3464
 
3031 serge 3465
	if (IS_IRONLAKE_M(dev)) {
3466
		ironlake_disable_drps(dev);
3467
		ironlake_disable_rc6(dev);
3468
	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3469
		gen6_disable_rps(dev);
3480 Serge 3470
		mutex_unlock(&dev_priv->rps.hw_lock);
3031 serge 3471
	}
3472
}
3473
 
3474
void intel_enable_gt_powersave(struct drm_device *dev)
3475
{
3243 Serge 3476
	struct drm_i915_private *dev_priv = dev->dev_private;
3477
 
3031 serge 3478
	if (IS_IRONLAKE_M(dev)) {
3479
		ironlake_enable_drps(dev);
3480
		ironlake_enable_rc6(dev);
3481
		intel_init_emon(dev);
3482
	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3243 Serge 3483
		/*
3484
		 * PCU communication is slow and this doesn't need to be
3485
		 * done at any specific time, so do this out of our fast path
3486
		 * to make resume and init faster.
3487
		 */
3488
//		schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3489
//				      round_jiffies_up_relative(HZ));
3031 serge 3490
	}
3491
}
3492
 
3243 Serge 3493
static void ibx_init_clock_gating(struct drm_device *dev)
3494
{
3495
	struct drm_i915_private *dev_priv = dev->dev_private;
3496
 
3497
	/*
3498
	 * On Ibex Peak and Cougar Point, we need to disable clock
3499
	 * gating for the panel power sequencer or it will fail to
3500
	 * start up when no ports are active.
3501
	 */
3502
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3503
}
3504
 
3031 serge 3505
static void ironlake_init_clock_gating(struct drm_device *dev)
3506
{
3507
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 3508
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 3509
 
3510
	/* Required for FBC */
3243 Serge 3511
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3512
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3513
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3031 serge 3514
 
3515
	I915_WRITE(PCH_3DCGDIS0,
3516
		   MARIUNIT_CLOCK_GATE_DISABLE |
3517
		   SVSMUNIT_CLOCK_GATE_DISABLE);
3518
	I915_WRITE(PCH_3DCGDIS1,
3519
		   VFMUNIT_CLOCK_GATE_DISABLE);
3520
 
3521
	/*
3522
	 * According to the spec the following bits should be set in
3523
	 * order to enable memory self-refresh
3524
	 * The bit 22/21 of 0x42004
3525
	 * The bit 5 of 0x42020
3526
	 * The bit 15 of 0x45000
3527
	 */
3528
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3529
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
3530
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3243 Serge 3531
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3031 serge 3532
	I915_WRITE(DISP_ARB_CTL,
3533
		   (I915_READ(DISP_ARB_CTL) |
3534
		    DISP_FBC_WM_DIS));
3535
	I915_WRITE(WM3_LP_ILK, 0);
3536
	I915_WRITE(WM2_LP_ILK, 0);
3537
	I915_WRITE(WM1_LP_ILK, 0);
3538
 
3539
	/*
3540
	 * Based on the document from hardware guys the following bits
3541
	 * should be set unconditionally in order to enable FBC.
3542
	 * The bit 22 of 0x42000
3543
	 * The bit 22 of 0x42004
3544
	 * The bit 7,8,9 of 0x42020.
3545
	 */
3546
	if (IS_IRONLAKE_M(dev)) {
3547
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
3548
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
3549
			   ILK_FBCQ_DIS);
3550
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
3551
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
3552
			   ILK_DPARB_GATE);
3553
	}
3554
 
3243 Serge 3555
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3556
 
3031 serge 3557
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3558
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3559
		   ILK_ELPIN_409_SELECT);
3560
	I915_WRITE(_3D_CHICKEN2,
3561
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3562
		   _3D_CHICKEN2_WM_READ_PIPELINED);
3243 Serge 3563
 
3564
	/* WaDisableRenderCachePipelinedFlush */
3565
	I915_WRITE(CACHE_MODE_0,
3566
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3567
 
3568
	ibx_init_clock_gating(dev);
3031 serge 3569
}
3570
 
3243 Serge 3571
static void cpt_init_clock_gating(struct drm_device *dev)
3572
{
3573
	struct drm_i915_private *dev_priv = dev->dev_private;
3574
	int pipe;
3575
 
3576
	/*
3577
	 * On Ibex Peak and Cougar Point, we need to disable clock
3578
	 * gating for the panel power sequencer or it will fail to
3579
	 * start up when no ports are active.
3580
	 */
3581
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3582
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3583
		   DPLS_EDP_PPS_FIX_DIS);
3584
	/* The below fixes the weird display corruption, a few pixels shifted
3585
	 * downward, on (only) LVDS of some HP laptops with IVY.
3586
	 */
3587
	for_each_pipe(pipe)
3588
		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
3589
	/* WADP0ClockGatingDisable */
3590
	for_each_pipe(pipe) {
3591
		I915_WRITE(TRANS_CHICKEN1(pipe),
3592
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3593
	}
3594
}
3595
 
3480 Serge 3596
static void gen6_check_mch_setup(struct drm_device *dev)
3597
{
3598
	struct drm_i915_private *dev_priv = dev->dev_private;
3599
	uint32_t tmp;
3600
 
3601
	tmp = I915_READ(MCH_SSKPD);
3602
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
3603
		DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
3604
		DRM_INFO("This can cause pipe underruns and display issues.\n");
3605
		DRM_INFO("Please upgrade your BIOS to fix this.\n");
3606
	}
3607
}
3608
 
3031 serge 3609
static void gen6_init_clock_gating(struct drm_device *dev)
3610
{
3611
	struct drm_i915_private *dev_priv = dev->dev_private;
3612
	int pipe;
3243 Serge 3613
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3031 serge 3614
 
3243 Serge 3615
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3031 serge 3616
 
3617
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3618
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3619
		   ILK_ELPIN_409_SELECT);
3620
 
3243 Serge 3621
	/* WaDisableHiZPlanesWhenMSAAEnabled */
3622
	I915_WRITE(_3D_CHICKEN,
3623
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3624
 
3625
	/* WaSetupGtModeTdRowDispatch */
3626
	if (IS_SNB_GT1(dev))
3627
		I915_WRITE(GEN6_GT_MODE,
3628
			   _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3629
 
3031 serge 3630
	I915_WRITE(WM3_LP_ILK, 0);
3631
	I915_WRITE(WM2_LP_ILK, 0);
3632
	I915_WRITE(WM1_LP_ILK, 0);
3633
 
3634
	I915_WRITE(CACHE_MODE_0,
3635
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3636
 
3637
	I915_WRITE(GEN6_UCGCTL1,
3638
		   I915_READ(GEN6_UCGCTL1) |
3639
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3640
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3641
 
3642
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3643
	 * gating disable must be set.  Failure to set it results in
3644
	 * flickering pixels due to Z write ordering failures after
3645
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3646
	 * Sanctuary and Tropics, and apparently anything else with
3647
	 * alpha test or pixel discard.
3648
	 *
3649
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3650
	 * but we didn't debug actual testcases to find it out.
3651
	 *
3652
	 * Also apply WaDisableVDSUnitClockGating and
3653
	 * WaDisableRCPBUnitClockGating.
3654
	 */
3655
	I915_WRITE(GEN6_UCGCTL2,
3656
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3657
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3658
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3659
 
3660
	/* Bspec says we need to always set all mask bits. */
3661
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3662
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3663
 
3664
	/*
3665
	 * According to the spec the following bits should be
3666
	 * set in order to enable memory self-refresh and fbc:
3667
	 * The bit21 and bit22 of 0x42000
3668
	 * The bit21 and bit22 of 0x42004
3669
	 * The bit5 and bit7 of 0x42020
3670
	 * The bit14 of 0x70180
3671
	 * The bit14 of 0x71180
3672
	 */
3673
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
3674
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
3675
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3676
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3677
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3678
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3243 Serge 3679
	I915_WRITE(ILK_DSPCLK_GATE_D,
3680
		   I915_READ(ILK_DSPCLK_GATE_D) |
3681
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3682
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3031 serge 3683
 
3243 Serge 3684
	/* WaMbcDriverBootEnable */
3031 serge 3685
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3686
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3687
 
3688
	for_each_pipe(pipe) {
3689
		I915_WRITE(DSPCNTR(pipe),
3690
			   I915_READ(DSPCNTR(pipe)) |
3691
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3692
		intel_flush_display_plane(dev_priv, pipe);
3693
	}
3694
 
3695
	/* The default value should be 0x200 according to docs, but the two
3696
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3697
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3698
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3243 Serge 3699
 
3700
	cpt_init_clock_gating(dev);
3480 Serge 3701
 
3702
	gen6_check_mch_setup(dev);
3031 serge 3703
}
3704
 
3705
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3706
{
3707
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3708
 
3709
	reg &= ~GEN7_FF_SCHED_MASK;
3710
	reg |= GEN7_FF_TS_SCHED_HW;
3711
	reg |= GEN7_FF_VS_SCHED_HW;
3712
	reg |= GEN7_FF_DS_SCHED_HW;
3713
 
3480 Serge 3714
	/* WaVSRefCountFullforceMissDisable */
3715
	if (IS_HASWELL(dev_priv->dev))
3716
		reg &= ~GEN7_FF_VS_REF_CNT_FFME;
3717
 
3031 serge 3718
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3719
}
3720
 
3243 Serge 3721
static void lpt_init_clock_gating(struct drm_device *dev)
3722
{
3723
	struct drm_i915_private *dev_priv = dev->dev_private;
3724
 
3725
	/*
3726
	 * TODO: this bit should only be enabled when really needed, then
3727
	 * disabled when not needed anymore in order to save power.
3728
	 */
3729
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3730
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
3731
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
3732
			   PCH_LP_PARTITION_LEVEL_DISABLE);
3733
}
3734
 
3031 serge 3735
static void haswell_init_clock_gating(struct drm_device *dev)
3736
{
3737
	struct drm_i915_private *dev_priv = dev->dev_private;
3738
	int pipe;
3739
 
3740
	I915_WRITE(WM3_LP_ILK, 0);
3741
	I915_WRITE(WM2_LP_ILK, 0);
3742
	I915_WRITE(WM1_LP_ILK, 0);
3743
 
3744
	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3745
	 * This implements the WaDisableRCZUnitClockGating workaround.
3746
	 */
3747
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3748
 
3749
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3750
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3751
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3752
 
3753
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3754
	I915_WRITE(GEN7_L3CNTLREG1,
3755
			GEN7_WA_FOR_GEN7_L3_CONTROL);
3756
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3757
			GEN7_WA_L3_CHICKEN_MODE);
3758
 
3759
	/* This is required by WaCatErrorRejectionIssue */
3760
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3761
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3762
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3763
 
3764
	for_each_pipe(pipe) {
3765
		I915_WRITE(DSPCNTR(pipe),
3766
			   I915_READ(DSPCNTR(pipe)) |
3767
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3768
		intel_flush_display_plane(dev_priv, pipe);
3769
	}
3770
 
3771
	gen7_setup_fixed_func_scheduler(dev_priv);
3772
 
3773
	/* WaDisable4x2SubspanOptimization */
3774
	I915_WRITE(CACHE_MODE_1,
3775
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3776
 
3243 Serge 3777
	/* WaMbcDriverBootEnable */
3778
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3779
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3780
 
3031 serge 3781
	/* XXX: This is a workaround for early silicon revisions and should be
3782
	 * removed later.
3783
	 */
3784
	I915_WRITE(WM_DBG,
3785
			I915_READ(WM_DBG) |
3786
			WM_DBG_DISALLOW_MULTIPLE_LP |
3787
			WM_DBG_DISALLOW_SPRITE |
3788
			WM_DBG_DISALLOW_MAXFIFO);
3789
 
3243 Serge 3790
	lpt_init_clock_gating(dev);
3031 serge 3791
}
3792
 
3793
static void ivybridge_init_clock_gating(struct drm_device *dev)
3794
{
3795
	struct drm_i915_private *dev_priv = dev->dev_private;
3796
	int pipe;
3797
	uint32_t snpcr;
3798
 
3799
	I915_WRITE(WM3_LP_ILK, 0);
3800
	I915_WRITE(WM2_LP_ILK, 0);
3801
	I915_WRITE(WM1_LP_ILK, 0);
3802
 
3243 Serge 3803
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 3804
 
3243 Serge 3805
	/* WaDisableEarlyCull */
3806
	I915_WRITE(_3D_CHICKEN3,
3807
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3808
 
3809
	/* WaDisableBackToBackFlipFix */
3031 serge 3810
	I915_WRITE(IVB_CHICKEN3,
3811
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3812
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3813
 
3243 Serge 3814
	/* WaDisablePSDDualDispatchEnable */
3815
	if (IS_IVB_GT1(dev))
3816
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3817
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3818
	else
3819
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3820
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3821
 
3031 serge 3822
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3823
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3824
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3825
 
3826
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3827
	I915_WRITE(GEN7_L3CNTLREG1,
3828
			GEN7_WA_FOR_GEN7_L3_CONTROL);
3829
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3830
			GEN7_WA_L3_CHICKEN_MODE);
3243 Serge 3831
	if (IS_IVB_GT1(dev))
3832
		I915_WRITE(GEN7_ROW_CHICKEN2,
3833
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3834
	else
3835
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3836
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3031 serge 3837
 
3243 Serge 3838
 
3839
	/* WaForceL3Serialization */
3840
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3841
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3842
 
3031 serge 3843
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3844
	 * gating disable must be set.  Failure to set it results in
3845
	 * flickering pixels due to Z write ordering failures after
3846
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3847
	 * Sanctuary and Tropics, and apparently anything else with
3848
	 * alpha test or pixel discard.
3849
	 *
3850
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3851
	 * but we didn't debug actual testcases to find it out.
3852
	 *
3853
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3854
	 * This implements the WaDisableRCZUnitClockGating workaround.
3855
	 */
3856
	I915_WRITE(GEN6_UCGCTL2,
3857
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3858
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3859
 
3860
	/* This is required by WaCatErrorRejectionIssue */
3861
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3862
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3863
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3864
 
3865
	for_each_pipe(pipe) {
3866
		I915_WRITE(DSPCNTR(pipe),
3867
			   I915_READ(DSPCNTR(pipe)) |
3868
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3869
		intel_flush_display_plane(dev_priv, pipe);
3870
	}
3871
 
3243 Serge 3872
	/* WaMbcDriverBootEnable */
3031 serge 3873
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3874
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3875
 
3876
	gen7_setup_fixed_func_scheduler(dev_priv);
3877
 
3878
	/* WaDisable4x2SubspanOptimization */
3879
	I915_WRITE(CACHE_MODE_1,
3880
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3881
 
3882
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3883
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
3884
	snpcr |= GEN6_MBC_SNPCR_MED;
3885
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3243 Serge 3886
 
3887
	cpt_init_clock_gating(dev);
3480 Serge 3888
 
3889
	gen6_check_mch_setup(dev);
3031 serge 3890
}
3891
 
3892
static void valleyview_init_clock_gating(struct drm_device *dev)
3893
{
3894
	struct drm_i915_private *dev_priv = dev->dev_private;
3895
	int pipe;
3896
 
3897
	I915_WRITE(WM3_LP_ILK, 0);
3898
	I915_WRITE(WM2_LP_ILK, 0);
3899
	I915_WRITE(WM1_LP_ILK, 0);
3900
 
3243 Serge 3901
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3031 serge 3902
 
3243 Serge 3903
	/* WaDisableEarlyCull */
3904
	I915_WRITE(_3D_CHICKEN3,
3905
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3906
 
3907
	/* WaDisableBackToBackFlipFix */
3031 serge 3908
	I915_WRITE(IVB_CHICKEN3,
3909
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3910
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3911
 
3243 Serge 3912
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3913
		   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3914
 
3031 serge 3915
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3916
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3917
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3918
 
3919
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3243 Serge 3920
	I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3031 serge 3921
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3922
 
3243 Serge 3923
	/* WaForceL3Serialization */
3924
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3925
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3926
 
3927
	/* WaDisableDopClockGating */
3928
	I915_WRITE(GEN7_ROW_CHICKEN2,
3929
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3930
 
3931
	/* WaForceL3Serialization */
3932
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3933
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3934
 
3031 serge 3935
	/* This is required by WaCatErrorRejectionIssue */
3936
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3937
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3938
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3939
 
3243 Serge 3940
	/* WaMbcDriverBootEnable */
3031 serge 3941
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3942
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3943
 
3944
 
3945
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3946
	 * gating disable must be set.  Failure to set it results in
3947
	 * flickering pixels due to Z write ordering failures after
3948
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3949
	 * Sanctuary and Tropics, and apparently anything else with
3950
	 * alpha test or pixel discard.
3951
	 *
3952
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3953
	 * but we didn't debug actual testcases to find it out.
3954
	 *
3955
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3956
	 * This implements the WaDisableRCZUnitClockGating workaround.
3957
	 *
3958
	 * Also apply WaDisableVDSUnitClockGating and
3959
	 * WaDisableRCPBUnitClockGating.
3960
	 */
3961
	I915_WRITE(GEN6_UCGCTL2,
3962
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3963
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3964
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3965
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3966
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3967
 
3968
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3969
 
3970
	for_each_pipe(pipe) {
3971
		I915_WRITE(DSPCNTR(pipe),
3972
			   I915_READ(DSPCNTR(pipe)) |
3973
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3974
		intel_flush_display_plane(dev_priv, pipe);
3975
	}
3976
 
3977
	I915_WRITE(CACHE_MODE_1,
3978
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3979
 
3980
	/*
3981
	 * On ValleyView, the GUnit needs to signal the GT
3982
	 * when flip and other events complete.  So enable
3983
	 * all the GUnit->GT interrupts here
3984
	 */
3985
	I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3986
		   PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3987
		   SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3988
		   PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3989
		   PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3990
		   SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3991
		   PLANEA_FLIPDONE_INT_EN);
3243 Serge 3992
 
3993
	/*
3994
	 * WaDisableVLVClockGating_VBIIssue
3995
	 * Disable clock gating on th GCFG unit to prevent a delay
3996
	 * in the reporting of vblank events.
3997
	 */
3998
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
3031 serge 3999
}
4000
 
4001
static void g4x_init_clock_gating(struct drm_device *dev)
4002
{
4003
	struct drm_i915_private *dev_priv = dev->dev_private;
4004
	uint32_t dspclk_gate;
4005
 
4006
	I915_WRITE(RENCLK_GATE_D1, 0);
4007
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4008
		   GS_UNIT_CLOCK_GATE_DISABLE |
4009
		   CL_UNIT_CLOCK_GATE_DISABLE);
4010
	I915_WRITE(RAMCLK_GATE_D, 0);
4011
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4012
		OVRUNIT_CLOCK_GATE_DISABLE |
4013
		OVCUNIT_CLOCK_GATE_DISABLE;
4014
	if (IS_GM45(dev))
4015
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4016
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3243 Serge 4017
 
4018
	/* WaDisableRenderCachePipelinedFlush */
4019
	I915_WRITE(CACHE_MODE_0,
4020
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3031 serge 4021
}
4022
 
4023
static void crestline_init_clock_gating(struct drm_device *dev)
4024
{
4025
	struct drm_i915_private *dev_priv = dev->dev_private;
4026
 
4027
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4028
	I915_WRITE(RENCLK_GATE_D2, 0);
4029
	I915_WRITE(DSPCLK_GATE_D, 0);
4030
	I915_WRITE(RAMCLK_GATE_D, 0);
4031
	I915_WRITE16(DEUC, 0);
4032
}
4033
 
4034
static void broadwater_init_clock_gating(struct drm_device *dev)
4035
{
4036
	struct drm_i915_private *dev_priv = dev->dev_private;
4037
 
4038
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4039
		   I965_RCC_CLOCK_GATE_DISABLE |
4040
		   I965_RCPB_CLOCK_GATE_DISABLE |
4041
		   I965_ISC_CLOCK_GATE_DISABLE |
4042
		   I965_FBC_CLOCK_GATE_DISABLE);
4043
	I915_WRITE(RENCLK_GATE_D2, 0);
4044
}
4045
 
4046
static void gen3_init_clock_gating(struct drm_device *dev)
4047
{
4048
	struct drm_i915_private *dev_priv = dev->dev_private;
4049
	u32 dstate = I915_READ(D_STATE);
4050
 
4051
	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4052
		DSTATE_DOT_CLOCK_GATING;
4053
	I915_WRITE(D_STATE, dstate);
4054
 
4055
	if (IS_PINEVIEW(dev))
4056
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4057
 
4058
	/* IIR "flip pending" means done if this bit is set */
4059
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4060
}
4061
 
4062
static void i85x_init_clock_gating(struct drm_device *dev)
4063
{
4064
	struct drm_i915_private *dev_priv = dev->dev_private;
4065
 
4066
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4067
}
4068
 
4069
static void i830_init_clock_gating(struct drm_device *dev)
4070
{
4071
	struct drm_i915_private *dev_priv = dev->dev_private;
4072
 
4073
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4074
}
4075
 
4076
void intel_init_clock_gating(struct drm_device *dev)
4077
{
4078
	struct drm_i915_private *dev_priv = dev->dev_private;
4079
 
4080
	dev_priv->display.init_clock_gating(dev);
4081
}
4082
 
3480 Serge 4083
void intel_set_power_well(struct drm_device *dev, bool enable)
3031 serge 4084
{
4085
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 4086
	bool is_enabled, enable_requested;
4087
	uint32_t tmp;
3031 serge 4088
 
4089
	if (!IS_HASWELL(dev))
4090
		return;
4091
 
3480 Serge 4092
	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4093
	is_enabled = tmp & HSW_PWR_WELL_STATE;
4094
	enable_requested = tmp & HSW_PWR_WELL_ENABLE;
3031 serge 4095
 
3480 Serge 4096
	if (enable) {
4097
		if (!enable_requested)
4098
			I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
3031 serge 4099
 
3480 Serge 4100
		if (!is_enabled) {
4101
			DRM_DEBUG_KMS("Enabling power well\n");
4102
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4103
				      HSW_PWR_WELL_STATE), 20))
4104
				DRM_ERROR("Timeout enabling power well\n");
3031 serge 4105
		}
3480 Serge 4106
	} else {
4107
		if (enable_requested) {
4108
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4109
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
3031 serge 4110
	}
3480 Serge 4111
	}
4112
}
3031 serge 4113
 
3480 Serge 4114
/*
4115
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
4116
 * when not needed anymore. We have 4 registers that can request the power well
4117
 * to be enabled, and it will only be disabled if none of the registers is
4118
 * requesting it to be enabled.
4119
 */
4120
void intel_init_power_well(struct drm_device *dev)
4121
{
4122
	struct drm_i915_private *dev_priv = dev->dev_private;
4123
 
4124
	if (!IS_HASWELL(dev))
4125
		return;
4126
 
4127
	/* For now, we need the power well to be always enabled. */
4128
	intel_set_power_well(dev, true);
4129
 
4130
	/* We're taking over the BIOS, so clear any requests made by it since
4131
	 * the driver is in charge now. */
4132
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
4133
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
3031 serge 4134
}
4135
 
4136
/* Set up chip specific power management-related functions */
4137
void intel_init_pm(struct drm_device *dev)
4138
{
4139
	struct drm_i915_private *dev_priv = dev->dev_private;
4140
 
4141
	if (I915_HAS_FBC(dev)) {
4142
		if (HAS_PCH_SPLIT(dev)) {
4143
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4144
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
4145
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
4146
		} else if (IS_GM45(dev)) {
4147
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4148
			dev_priv->display.enable_fbc = g4x_enable_fbc;
4149
			dev_priv->display.disable_fbc = g4x_disable_fbc;
4150
		} else if (IS_CRESTLINE(dev)) {
4151
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4152
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
4153
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
4154
		}
4155
		/* 855GM needs testing */
4156
	}
4157
 
4158
	/* For cxsr */
4159
	if (IS_PINEVIEW(dev))
4160
		i915_pineview_get_mem_freq(dev);
4161
	else if (IS_GEN5(dev))
4162
		i915_ironlake_get_mem_freq(dev);
4163
 
4164
	/* For FIFO watermark updates */
4165
	if (HAS_PCH_SPLIT(dev)) {
4166
		if (IS_GEN5(dev)) {
4167
			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4168
				dev_priv->display.update_wm = ironlake_update_wm;
4169
			else {
4170
				DRM_DEBUG_KMS("Failed to get proper latency. "
4171
					      "Disable CxSR\n");
4172
				dev_priv->display.update_wm = NULL;
4173
			}
4174
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4175
		} else if (IS_GEN6(dev)) {
4176
			if (SNB_READ_WM0_LATENCY()) {
4177
				dev_priv->display.update_wm = sandybridge_update_wm;
4178
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4179
			} else {
4180
				DRM_DEBUG_KMS("Failed to read display plane latency. "
4181
					      "Disable CxSR\n");
4182
				dev_priv->display.update_wm = NULL;
4183
			}
4184
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4185
		} else if (IS_IVYBRIDGE(dev)) {
4186
			/* FIXME: detect B0+ stepping and use auto training */
4187
			if (SNB_READ_WM0_LATENCY()) {
3243 Serge 4188
				dev_priv->display.update_wm = ivybridge_update_wm;
3031 serge 4189
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4190
			} else {
4191
				DRM_DEBUG_KMS("Failed to read display plane latency. "
4192
					      "Disable CxSR\n");
4193
				dev_priv->display.update_wm = NULL;
4194
			}
4195
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4196
		} else if (IS_HASWELL(dev)) {
4197
			if (SNB_READ_WM0_LATENCY()) {
4198
				dev_priv->display.update_wm = sandybridge_update_wm;
4199
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4200
				dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4201
			} else {
4202
				DRM_DEBUG_KMS("Failed to read display plane latency. "
4203
					      "Disable CxSR\n");
4204
				dev_priv->display.update_wm = NULL;
4205
			}
4206
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4207
		} else
4208
			dev_priv->display.update_wm = NULL;
4209
	} else if (IS_VALLEYVIEW(dev)) {
4210
		dev_priv->display.update_wm = valleyview_update_wm;
4211
		dev_priv->display.init_clock_gating =
4212
			valleyview_init_clock_gating;
4213
	} else if (IS_PINEVIEW(dev)) {
4214
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4215
					    dev_priv->is_ddr3,
4216
					    dev_priv->fsb_freq,
4217
					    dev_priv->mem_freq)) {
4218
			DRM_INFO("failed to find known CxSR latency "
4219
				 "(found ddr%s fsb freq %d, mem freq %d), "
4220
				 "disabling CxSR\n",
4221
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4222
				 dev_priv->fsb_freq, dev_priv->mem_freq);
4223
			/* Disable CxSR and never update its watermark again */
4224
			pineview_disable_cxsr(dev);
4225
			dev_priv->display.update_wm = NULL;
4226
		} else
4227
			dev_priv->display.update_wm = pineview_update_wm;
4228
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4229
	} else if (IS_G4X(dev)) {
4230
		dev_priv->display.update_wm = g4x_update_wm;
4231
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4232
	} else if (IS_GEN4(dev)) {
4233
		dev_priv->display.update_wm = i965_update_wm;
4234
		if (IS_CRESTLINE(dev))
4235
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4236
		else if (IS_BROADWATER(dev))
4237
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4238
	} else if (IS_GEN3(dev)) {
4239
		dev_priv->display.update_wm = i9xx_update_wm;
4240
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4241
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4242
	} else if (IS_I865G(dev)) {
4243
		dev_priv->display.update_wm = i830_update_wm;
4244
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4245
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
4246
	} else if (IS_I85X(dev)) {
4247
		dev_priv->display.update_wm = i9xx_update_wm;
4248
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4249
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4250
	} else {
4251
		dev_priv->display.update_wm = i830_update_wm;
4252
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
4253
		if (IS_845G(dev))
4254
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
4255
		else
4256
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4257
	}
4258
}
4259
 
4260
static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4261
{
4262
	u32 gt_thread_status_mask;
4263
 
4264
	if (IS_HASWELL(dev_priv->dev))
4265
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4266
	else
4267
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4268
 
4269
	/* w/a for a sporadic read returning 0 by waiting for the GT
4270
	 * thread to wake up.
4271
	 */
4272
	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4273
		DRM_ERROR("GT thread status wait timed out\n");
4274
}
4275
 
3243 Serge 4276
static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4277
{
4278
	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4279
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4280
}
4281
 
3031 serge 4282
static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4283
{
4284
	u32 forcewake_ack;
4285
 
4286
	if (IS_HASWELL(dev_priv->dev))
4287
		forcewake_ack = FORCEWAKE_ACK_HSW;
4288
	else
4289
		forcewake_ack = FORCEWAKE_ACK;
4290
 
4291
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4292
			    FORCEWAKE_ACK_TIMEOUT_MS))
4293
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4294
 
3243 Serge 4295
	I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
3031 serge 4296
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4297
 
4298
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4299
			    FORCEWAKE_ACK_TIMEOUT_MS))
4300
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4301
 
4302
	__gen6_gt_wait_for_thread_c0(dev_priv);
4303
}
4304
 
3243 Serge 4305
static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4306
{
4307
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4308
	/* something from same cacheline, but !FORCEWAKE_MT */
4309
	POSTING_READ(ECOBUS);
4310
}
4311
 
3031 serge 4312
static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4313
{
4314
	u32 forcewake_ack;
4315
 
4316
	if (IS_HASWELL(dev_priv->dev))
4317
		forcewake_ack = FORCEWAKE_ACK_HSW;
4318
	else
4319
		forcewake_ack = FORCEWAKE_MT_ACK;
4320
 
4321
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4322
			    FORCEWAKE_ACK_TIMEOUT_MS))
4323
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4324
 
3243 Serge 4325
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4326
	/* something from same cacheline, but !FORCEWAKE_MT */
4327
	POSTING_READ(ECOBUS);
3031 serge 4328
 
4329
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4330
			    FORCEWAKE_ACK_TIMEOUT_MS))
4331
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4332
 
4333
	__gen6_gt_wait_for_thread_c0(dev_priv);
4334
}
4335
 
4336
/*
4337
 * Generally this is called implicitly by the register read function. However,
4338
 * if some sequence requires the GT to not power down then this function should
4339
 * be called at the beginning of the sequence followed by a call to
4340
 * gen6_gt_force_wake_put() at the end of the sequence.
4341
 */
4342
void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4343
{
4344
	unsigned long irqflags;
4345
 
4346
	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4347
	if (dev_priv->forcewake_count++ == 0)
4348
		dev_priv->gt.force_wake_get(dev_priv);
4349
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4350
}
4351
 
4352
void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4353
{
4354
	u32 gtfifodbg;
4355
	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4356
	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4357
	     "MMIO read or write has been dropped %x\n", gtfifodbg))
4358
		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4359
}
4360
 
4361
static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4362
{
4363
	I915_WRITE_NOTRACE(FORCEWAKE, 0);
3243 Serge 4364
	/* something from same cacheline, but !FORCEWAKE */
4365
	POSTING_READ(ECOBUS);
3031 serge 4366
	gen6_gt_check_fifodbg(dev_priv);
4367
}
4368
 
4369
static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4370
{
3243 Serge 4371
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4372
	/* something from same cacheline, but !FORCEWAKE_MT */
4373
	POSTING_READ(ECOBUS);
3031 serge 4374
	gen6_gt_check_fifodbg(dev_priv);
4375
}
4376
 
4377
/*
4378
 * see gen6_gt_force_wake_get()
4379
 */
4380
void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4381
{
4382
	unsigned long irqflags;
4383
 
4384
	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4385
	if (--dev_priv->forcewake_count == 0)
4386
		dev_priv->gt.force_wake_put(dev_priv);
4387
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4388
}
4389
 
4390
int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4391
{
4392
	int ret = 0;
4393
 
4394
	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4395
		int loop = 500;
4396
		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4397
		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4398
			udelay(10);
4399
			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4400
		}
4401
		if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4402
			++ret;
4403
		dev_priv->gt_fifo_count = fifo;
4404
	}
4405
	dev_priv->gt_fifo_count--;
4406
 
4407
	return ret;
4408
}
4409
 
3243 Serge 4410
static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4411
{
4412
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4413
	/* something from same cacheline, but !FORCEWAKE_VLV */
4414
	POSTING_READ(FORCEWAKE_ACK_VLV);
4415
}
4416
 
3031 serge 4417
static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4418
{
4419
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4420
			    FORCEWAKE_ACK_TIMEOUT_MS))
4421
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4422
 
3243 Serge 4423
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
3031 serge 4424
 
4425
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4426
			    FORCEWAKE_ACK_TIMEOUT_MS))
4427
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4428
 
4429
	__gen6_gt_wait_for_thread_c0(dev_priv);
4430
}
4431
 
4432
static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4433
{
3243 Serge 4434
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4435
	/* something from same cacheline, but !FORCEWAKE_VLV */
4436
	POSTING_READ(FORCEWAKE_ACK_VLV);
3031 serge 4437
	gen6_gt_check_fifodbg(dev_priv);
4438
}
4439
 
3243 Serge 4440
void intel_gt_reset(struct drm_device *dev)
4441
{
4442
	struct drm_i915_private *dev_priv = dev->dev_private;
4443
 
4444
	if (IS_VALLEYVIEW(dev)) {
4445
		vlv_force_wake_reset(dev_priv);
4446
	} else if (INTEL_INFO(dev)->gen >= 6) {
4447
		__gen6_gt_force_wake_reset(dev_priv);
4448
		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4449
			__gen6_gt_force_wake_mt_reset(dev_priv);
4450
	}
4451
}
4452
 
3031 serge 4453
void intel_gt_init(struct drm_device *dev)
4454
{
4455
	struct drm_i915_private *dev_priv = dev->dev_private;
4456
 
4457
	spin_lock_init(&dev_priv->gt_lock);
4458
 
3243 Serge 4459
	intel_gt_reset(dev);
4460
 
3031 serge 4461
	if (IS_VALLEYVIEW(dev)) {
4462
		dev_priv->gt.force_wake_get = vlv_force_wake_get;
4463
		dev_priv->gt.force_wake_put = vlv_force_wake_put;
3243 Serge 4464
	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4465
		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4466
		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4467
	} else if (IS_GEN6(dev)) {
3031 serge 4468
		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4469
		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
3243 Serge 4470
	}
4471
}
3031 serge 4472
 
3243 Serge 4473
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4474
{
4475
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3031 serge 4476
 
3243 Serge 4477
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4478
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4479
		return -EAGAIN;
4480
	}
3031 serge 4481
 
3243 Serge 4482
	I915_WRITE(GEN6_PCODE_DATA, *val);
4483
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4484
 
4485
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4486
		     500)) {
4487
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4488
		return -ETIMEDOUT;
3031 serge 4489
			}
3243 Serge 4490
 
4491
	*val = I915_READ(GEN6_PCODE_DATA);
4492
	I915_WRITE(GEN6_PCODE_DATA, 0);
4493
 
4494
	return 0;
4495
}
4496
 
4497
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4498
{
4499
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4500
 
4501
	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4502
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4503
		return -EAGAIN;
3031 serge 4504
		}
3243 Serge 4505
 
4506
	I915_WRITE(GEN6_PCODE_DATA, val);
4507
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4508
 
4509
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4510
		     500)) {
4511
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4512
		return -ETIMEDOUT;
3031 serge 4513
	}
3243 Serge 4514
 
4515
	I915_WRITE(GEN6_PCODE_DATA, 0);
4516
 
4517
	return 0;
3031 serge 4518
}