Subversion Repositories Kolibri OS

Rev

Rev 3037 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
3031 serge 1
/*
2
 * Copyright © 2012 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eugeni Dodonov 
25
 *
26
 */
27
 
28
#define iowrite32(v, addr)      writel((v), (addr))
29
#define ioread32(addr)          readl(addr)
30
 
31
//#include 
32
#include "i915_drv.h"
33
#include "intel_drv.h"
34
#include 
35
//#include "../../../platform/x86/intel_ips.h"
36
#include 
37
 
38
#define FORCEWAKE_ACK_TIMEOUT_MS 2
39
 
40
#define assert_spin_locked(x)
41
 
42
void getrawmonotonic(struct timespec *ts);
43
void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec);
44
 
45
static inline struct timespec timespec_sub(struct timespec lhs,
46
                                                struct timespec rhs)
47
{
48
    struct timespec ts_delta;
49
    set_normalized_timespec(&ts_delta, lhs.tv_sec - rhs.tv_sec,
50
                                lhs.tv_nsec - rhs.tv_nsec);
51
    return ts_delta;
52
}
53
 
54
 
55
/* FBC, or Frame Buffer Compression, is a technique employed to compress the
56
 * framebuffer contents in-memory, aiming at reducing the required bandwidth
57
 * during in-memory transfers and, therefore, reduce the power packet.
58
 *
59
 * The benefits of FBC are mostly visible with solid backgrounds and
60
 * variation-less patterns.
61
 *
62
 * FBC-related functionality can be enabled by the means of the
63
 * i915.i915_enable_fbc parameter
64
 */
65
 
66
static void i8xx_disable_fbc(struct drm_device *dev)
67
{
68
	struct drm_i915_private *dev_priv = dev->dev_private;
69
	u32 fbc_ctl;
70
 
71
	/* Disable compression */
72
	fbc_ctl = I915_READ(FBC_CONTROL);
73
	if ((fbc_ctl & FBC_CTL_EN) == 0)
74
		return;
75
 
76
	fbc_ctl &= ~FBC_CTL_EN;
77
	I915_WRITE(FBC_CONTROL, fbc_ctl);
78
 
79
	/* Wait for compressing bit to clear */
80
	if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
81
		DRM_DEBUG_KMS("FBC idle timed out\n");
82
		return;
83
	}
84
 
85
	DRM_DEBUG_KMS("disabled FBC\n");
86
}
87
 
88
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
89
{
90
	struct drm_device *dev = crtc->dev;
91
	struct drm_i915_private *dev_priv = dev->dev_private;
92
	struct drm_framebuffer *fb = crtc->fb;
93
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
94
	struct drm_i915_gem_object *obj = intel_fb->obj;
95
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
96
	int cfb_pitch;
97
	int plane, i;
98
	u32 fbc_ctl, fbc_ctl2;
99
 
100
	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
101
	if (fb->pitches[0] < cfb_pitch)
102
		cfb_pitch = fb->pitches[0];
103
 
104
	/* FBC_CTL wants 64B units */
105
	cfb_pitch = (cfb_pitch / 64) - 1;
106
	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
107
 
108
	/* Clear old tags */
109
	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
110
		I915_WRITE(FBC_TAG + (i * 4), 0);
111
 
112
	/* Set it up... */
113
	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
114
	fbc_ctl2 |= plane;
115
	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
116
	I915_WRITE(FBC_FENCE_OFF, crtc->y);
117
 
118
	/* enable it... */
119
	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
120
	if (IS_I945GM(dev))
121
		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
122
	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
123
	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
124
	fbc_ctl |= obj->fence_reg;
125
	I915_WRITE(FBC_CONTROL, fbc_ctl);
126
 
127
	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
128
		      cfb_pitch, crtc->y, intel_crtc->plane);
129
}
130
 
131
static bool i8xx_fbc_enabled(struct drm_device *dev)
132
{
133
	struct drm_i915_private *dev_priv = dev->dev_private;
134
 
135
	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
136
}
137
 
138
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
139
{
140
	struct drm_device *dev = crtc->dev;
141
	struct drm_i915_private *dev_priv = dev->dev_private;
142
	struct drm_framebuffer *fb = crtc->fb;
143
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
144
	struct drm_i915_gem_object *obj = intel_fb->obj;
145
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
146
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
147
	unsigned long stall_watermark = 200;
148
	u32 dpfc_ctl;
149
 
150
	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
151
	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
152
	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
153
 
154
	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
155
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
156
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
157
	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
158
 
159
	/* enable it... */
160
	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
161
 
162
	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
163
}
164
 
165
static void g4x_disable_fbc(struct drm_device *dev)
166
{
167
	struct drm_i915_private *dev_priv = dev->dev_private;
168
	u32 dpfc_ctl;
169
 
170
	/* Disable compression */
171
	dpfc_ctl = I915_READ(DPFC_CONTROL);
172
	if (dpfc_ctl & DPFC_CTL_EN) {
173
		dpfc_ctl &= ~DPFC_CTL_EN;
174
		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
175
 
176
		DRM_DEBUG_KMS("disabled FBC\n");
177
	}
178
}
179
 
180
static bool g4x_fbc_enabled(struct drm_device *dev)
181
{
182
	struct drm_i915_private *dev_priv = dev->dev_private;
183
 
184
	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
185
}
186
 
187
static void sandybridge_blit_fbc_update(struct drm_device *dev)
188
{
189
	struct drm_i915_private *dev_priv = dev->dev_private;
190
	u32 blt_ecoskpd;
191
 
192
	/* Make sure blitter notifies FBC of writes */
193
	gen6_gt_force_wake_get(dev_priv);
194
	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
195
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
196
		GEN6_BLITTER_LOCK_SHIFT;
197
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
198
	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
199
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
200
	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
201
			 GEN6_BLITTER_LOCK_SHIFT);
202
	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
203
	POSTING_READ(GEN6_BLITTER_ECOSKPD);
204
	gen6_gt_force_wake_put(dev_priv);
205
}
206
 
207
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
208
{
209
	struct drm_device *dev = crtc->dev;
210
	struct drm_i915_private *dev_priv = dev->dev_private;
211
	struct drm_framebuffer *fb = crtc->fb;
212
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
213
	struct drm_i915_gem_object *obj = intel_fb->obj;
214
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
215
	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
216
	unsigned long stall_watermark = 200;
217
	u32 dpfc_ctl;
218
 
219
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
220
	dpfc_ctl &= DPFC_RESERVED;
221
	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
222
	/* Set persistent mode for front-buffer rendering, ala X. */
223
	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
224
	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
225
	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
226
 
227
	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
228
		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
229
		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
230
	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
231
	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
232
	/* enable it... */
233
	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
234
 
235
	if (IS_GEN6(dev)) {
236
		I915_WRITE(SNB_DPFC_CTL_SA,
237
			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
238
		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
239
		sandybridge_blit_fbc_update(dev);
240
	}
241
 
242
	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
243
}
244
 
245
static void ironlake_disable_fbc(struct drm_device *dev)
246
{
247
	struct drm_i915_private *dev_priv = dev->dev_private;
248
	u32 dpfc_ctl;
249
 
250
	/* Disable compression */
251
	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
252
	if (dpfc_ctl & DPFC_CTL_EN) {
253
		dpfc_ctl &= ~DPFC_CTL_EN;
254
		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
255
 
256
		DRM_DEBUG_KMS("disabled FBC\n");
257
	}
258
}
259
 
260
static bool ironlake_fbc_enabled(struct drm_device *dev)
261
{
262
	struct drm_i915_private *dev_priv = dev->dev_private;
263
 
264
	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
265
}
266
 
267
bool intel_fbc_enabled(struct drm_device *dev)
268
{
269
	struct drm_i915_private *dev_priv = dev->dev_private;
270
 
271
	if (!dev_priv->display.fbc_enabled)
272
		return false;
273
 
274
	return dev_priv->display.fbc_enabled(dev);
275
}
276
 
277
#if 0
278
static void intel_fbc_work_fn(struct work_struct *__work)
279
{
280
	struct intel_fbc_work *work =
281
		container_of(to_delayed_work(__work),
282
			     struct intel_fbc_work, work);
283
	struct drm_device *dev = work->crtc->dev;
284
	struct drm_i915_private *dev_priv = dev->dev_private;
285
 
286
	mutex_lock(&dev->struct_mutex);
287
	if (work == dev_priv->fbc_work) {
288
		/* Double check that we haven't switched fb without cancelling
289
		 * the prior work.
290
		 */
291
		if (work->crtc->fb == work->fb) {
292
			dev_priv->display.enable_fbc(work->crtc,
293
						     work->interval);
294
 
295
			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
296
			dev_priv->cfb_fb = work->crtc->fb->base.id;
297
			dev_priv->cfb_y = work->crtc->y;
298
		}
299
 
300
		dev_priv->fbc_work = NULL;
301
	}
302
	mutex_unlock(&dev->struct_mutex);
303
 
304
	kfree(work);
305
}
306
 
307
static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
308
{
309
	if (dev_priv->fbc_work == NULL)
310
		return;
311
 
312
	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
313
 
314
	/* Synchronisation is provided by struct_mutex and checking of
315
	 * dev_priv->fbc_work, so we can perform the cancellation
316
	 * entirely asynchronously.
317
	 */
318
	if (cancel_delayed_work(&dev_priv->fbc_work->work))
319
		/* tasklet was killed before being run, clean up */
320
		kfree(dev_priv->fbc_work);
321
 
322
	/* Mark the work as no longer wanted so that if it does
323
	 * wake-up (because the work was already running and waiting
324
	 * for our mutex), it will discover that is no longer
325
	 * necessary to run.
326
	 */
327
	dev_priv->fbc_work = NULL;
328
}
329
#endif
330
 
331
void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
332
{
333
	struct intel_fbc_work *work;
334
	struct drm_device *dev = crtc->dev;
335
	struct drm_i915_private *dev_priv = dev->dev_private;
336
 
337
//   if (!dev_priv->display.enable_fbc)
338
		return;
339
#if 0
340
	intel_cancel_fbc_work(dev_priv);
341
 
342
	work = kzalloc(sizeof *work, GFP_KERNEL);
343
	if (work == NULL) {
344
		dev_priv->display.enable_fbc(crtc, interval);
345
		return;
346
	}
347
 
348
	work->crtc = crtc;
349
	work->fb = crtc->fb;
350
	work->interval = interval;
351
	INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
352
 
353
	dev_priv->fbc_work = work;
354
 
355
	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
356
 
357
	/* Delay the actual enabling to let pageflipping cease and the
358
	 * display to settle before starting the compression. Note that
359
	 * this delay also serves a second purpose: it allows for a
360
	 * vblank to pass after disabling the FBC before we attempt
361
	 * to modify the control registers.
362
	 *
363
	 * A more complicated solution would involve tracking vblanks
364
	 * following the termination of the page-flipping sequence
365
	 * and indeed performing the enable as a co-routine and not
366
	 * waiting synchronously upon the vblank.
367
	 */
368
	schedule_delayed_work(&work->work, msecs_to_jiffies(50));
369
#endif
370
 
371
}
372
 
373
void intel_disable_fbc(struct drm_device *dev)
374
{
375
	struct drm_i915_private *dev_priv = dev->dev_private;
376
 
377
//   intel_cancel_fbc_work(dev_priv);
378
 
379
//   if (!dev_priv->display.disable_fbc)
380
//       return;
381
 
382
//   dev_priv->display.disable_fbc(dev);
383
	dev_priv->cfb_plane = -1;
384
}
385
 
386
/**
387
 * intel_update_fbc - enable/disable FBC as needed
388
 * @dev: the drm_device
389
 *
390
 * Set up the framebuffer compression hardware at mode set time.  We
391
 * enable it if possible:
392
 *   - plane A only (on pre-965)
393
 *   - no pixel mulitply/line duplication
394
 *   - no alpha buffer discard
395
 *   - no dual wide
396
 *   - framebuffer <= 2048 in width, 1536 in height
397
 *
398
 * We can't assume that any compression will take place (worst case),
399
 * so the compressed buffer has to be the same size as the uncompressed
400
 * one.  It also must reside (along with the line length buffer) in
401
 * stolen memory.
402
 *
403
 * We need to enable/disable FBC on a global basis.
404
 */
405
void intel_update_fbc(struct drm_device *dev)
406
{
407
	struct drm_i915_private *dev_priv = dev->dev_private;
408
	struct drm_crtc *crtc = NULL, *tmp_crtc;
409
	struct intel_crtc *intel_crtc;
410
	struct drm_framebuffer *fb;
411
	struct intel_framebuffer *intel_fb;
412
	struct drm_i915_gem_object *obj;
413
	int enable_fbc;
414
 
415
	if (!i915_powersave)
416
		return;
417
 
418
	if (!I915_HAS_FBC(dev))
419
		return;
420
 
421
	/*
422
	 * If FBC is already on, we just have to verify that we can
423
	 * keep it that way...
424
	 * Need to disable if:
425
	 *   - more than one pipe is active
426
	 *   - changing FBC params (stride, fence, mode)
427
	 *   - new fb is too large to fit in compressed buffer
428
	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
429
	 */
430
	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
431
		if (tmp_crtc->enabled &&
432
		    !to_intel_crtc(tmp_crtc)->primary_disabled &&
433
		    tmp_crtc->fb) {
434
			if (crtc) {
435
				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
436
				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
437
				goto out_disable;
438
			}
439
			crtc = tmp_crtc;
440
		}
441
	}
442
 
443
	if (!crtc || crtc->fb == NULL) {
444
		DRM_DEBUG_KMS("no output, disabling\n");
445
		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
446
		goto out_disable;
447
	}
448
 
449
	intel_crtc = to_intel_crtc(crtc);
450
	fb = crtc->fb;
451
	intel_fb = to_intel_framebuffer(fb);
452
	obj = intel_fb->obj;
453
 
454
	enable_fbc = i915_enable_fbc;
455
	if (enable_fbc < 0) {
456
		DRM_DEBUG_KMS("fbc set to per-chip default\n");
457
		enable_fbc = 1;
458
		if (INTEL_INFO(dev)->gen <= 6)
459
			enable_fbc = 0;
460
	}
461
	if (!enable_fbc) {
462
		DRM_DEBUG_KMS("fbc disabled per module param\n");
463
		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
464
		goto out_disable;
465
	}
466
	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
467
		DRM_DEBUG_KMS("framebuffer too large, disabling "
468
			      "compression\n");
469
		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
470
		goto out_disable;
471
	}
472
	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
473
	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
474
		DRM_DEBUG_KMS("mode incompatible with compression, "
475
			      "disabling\n");
476
		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
477
		goto out_disable;
478
	}
479
	if ((crtc->mode.hdisplay > 2048) ||
480
	    (crtc->mode.vdisplay > 1536)) {
481
		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
482
		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
483
		goto out_disable;
484
	}
485
	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
486
		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
487
		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
488
		goto out_disable;
489
	}
490
 
491
	/* The use of a CPU fence is mandatory in order to detect writes
492
	 * by the CPU to the scanout and trigger updates to the FBC.
493
	 */
494
	if (obj->tiling_mode != I915_TILING_X ||
495
	    obj->fence_reg == I915_FENCE_REG_NONE) {
496
		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
497
		dev_priv->no_fbc_reason = FBC_NOT_TILED;
498
		goto out_disable;
499
	}
500
 
501
	/* If the kernel debugger is active, always disable compression */
502
	if (in_dbg_master())
503
		goto out_disable;
504
 
505
	/* If the scanout has not changed, don't modify the FBC settings.
506
	 * Note that we make the fundamental assumption that the fb->obj
507
	 * cannot be unpinned (and have its GTT offset and fence revoked)
508
	 * without first being decoupled from the scanout and FBC disabled.
509
	 */
510
	if (dev_priv->cfb_plane == intel_crtc->plane &&
511
	    dev_priv->cfb_fb == fb->base.id &&
512
	    dev_priv->cfb_y == crtc->y)
513
		return;
514
 
515
	if (intel_fbc_enabled(dev)) {
516
		/* We update FBC along two paths, after changing fb/crtc
517
		 * configuration (modeswitching) and after page-flipping
518
		 * finishes. For the latter, we know that not only did
519
		 * we disable the FBC at the start of the page-flip
520
		 * sequence, but also more than one vblank has passed.
521
		 *
522
		 * For the former case of modeswitching, it is possible
523
		 * to switch between two FBC valid configurations
524
		 * instantaneously so we do need to disable the FBC
525
		 * before we can modify its control registers. We also
526
		 * have to wait for the next vblank for that to take
527
		 * effect. However, since we delay enabling FBC we can
528
		 * assume that a vblank has passed since disabling and
529
		 * that we can safely alter the registers in the deferred
530
		 * callback.
531
		 *
532
		 * In the scenario that we go from a valid to invalid
533
		 * and then back to valid FBC configuration we have
534
		 * no strict enforcement that a vblank occurred since
535
		 * disabling the FBC. However, along all current pipe
536
		 * disabling paths we do need to wait for a vblank at
537
		 * some point. And we wait before enabling FBC anyway.
538
		 */
539
		DRM_DEBUG_KMS("disabling active FBC for update\n");
540
		intel_disable_fbc(dev);
541
	}
542
 
543
	intel_enable_fbc(crtc, 500);
544
	return;
545
 
546
out_disable:
547
	/* Multiple disables should be harmless */
548
	if (intel_fbc_enabled(dev)) {
549
		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
550
		intel_disable_fbc(dev);
551
	}
552
}
553
 
554
static void i915_pineview_get_mem_freq(struct drm_device *dev)
555
{
556
	drm_i915_private_t *dev_priv = dev->dev_private;
557
	u32 tmp;
558
 
559
	tmp = I915_READ(CLKCFG);
560
 
561
	switch (tmp & CLKCFG_FSB_MASK) {
562
	case CLKCFG_FSB_533:
563
		dev_priv->fsb_freq = 533; /* 133*4 */
564
		break;
565
	case CLKCFG_FSB_800:
566
		dev_priv->fsb_freq = 800; /* 200*4 */
567
		break;
568
	case CLKCFG_FSB_667:
569
		dev_priv->fsb_freq =  667; /* 167*4 */
570
		break;
571
	case CLKCFG_FSB_400:
572
		dev_priv->fsb_freq = 400; /* 100*4 */
573
		break;
574
	}
575
 
576
	switch (tmp & CLKCFG_MEM_MASK) {
577
	case CLKCFG_MEM_533:
578
		dev_priv->mem_freq = 533;
579
		break;
580
	case CLKCFG_MEM_667:
581
		dev_priv->mem_freq = 667;
582
		break;
583
	case CLKCFG_MEM_800:
584
		dev_priv->mem_freq = 800;
585
		break;
586
	}
587
 
588
	/* detect pineview DDR3 setting */
589
	tmp = I915_READ(CSHRDDR3CTL);
590
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
591
}
592
 
593
static void i915_ironlake_get_mem_freq(struct drm_device *dev)
594
{
595
	drm_i915_private_t *dev_priv = dev->dev_private;
596
	u16 ddrpll, csipll;
597
 
598
	ddrpll = I915_READ16(DDRMPLL1);
599
	csipll = I915_READ16(CSIPLL0);
600
 
601
	switch (ddrpll & 0xff) {
602
	case 0xc:
603
		dev_priv->mem_freq = 800;
604
		break;
605
	case 0x10:
606
		dev_priv->mem_freq = 1066;
607
		break;
608
	case 0x14:
609
		dev_priv->mem_freq = 1333;
610
		break;
611
	case 0x18:
612
		dev_priv->mem_freq = 1600;
613
		break;
614
	default:
615
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
616
				 ddrpll & 0xff);
617
		dev_priv->mem_freq = 0;
618
		break;
619
	}
620
 
621
	dev_priv->ips.r_t = dev_priv->mem_freq;
622
 
623
	switch (csipll & 0x3ff) {
624
	case 0x00c:
625
		dev_priv->fsb_freq = 3200;
626
		break;
627
	case 0x00e:
628
		dev_priv->fsb_freq = 3733;
629
		break;
630
	case 0x010:
631
		dev_priv->fsb_freq = 4266;
632
		break;
633
	case 0x012:
634
		dev_priv->fsb_freq = 4800;
635
		break;
636
	case 0x014:
637
		dev_priv->fsb_freq = 5333;
638
		break;
639
	case 0x016:
640
		dev_priv->fsb_freq = 5866;
641
		break;
642
	case 0x018:
643
		dev_priv->fsb_freq = 6400;
644
		break;
645
	default:
646
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
647
				 csipll & 0x3ff);
648
		dev_priv->fsb_freq = 0;
649
		break;
650
	}
651
 
652
	if (dev_priv->fsb_freq == 3200) {
653
		dev_priv->ips.c_m = 0;
654
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
655
		dev_priv->ips.c_m = 1;
656
	} else {
657
		dev_priv->ips.c_m = 2;
658
	}
659
}
660
 
661
static const struct cxsr_latency cxsr_latency_table[] = {
662
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
663
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
664
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
665
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
666
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
667
 
668
	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
669
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
670
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
671
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
672
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
673
 
674
	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
675
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
676
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
677
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
678
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
679
 
680
	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
681
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
682
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
683
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
684
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
685
 
686
	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
687
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
688
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
689
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
690
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
691
 
692
	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
693
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
694
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
695
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
696
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
697
};
698
 
699
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
700
							 int is_ddr3,
701
							 int fsb,
702
							 int mem)
703
{
704
	const struct cxsr_latency *latency;
705
	int i;
706
 
707
	if (fsb == 0 || mem == 0)
708
		return NULL;
709
 
710
	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
711
		latency = &cxsr_latency_table[i];
712
		if (is_desktop == latency->is_desktop &&
713
		    is_ddr3 == latency->is_ddr3 &&
714
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
715
			return latency;
716
	}
717
 
718
	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
719
 
720
	return NULL;
721
}
722
 
723
static void pineview_disable_cxsr(struct drm_device *dev)
724
{
725
	struct drm_i915_private *dev_priv = dev->dev_private;
726
 
727
	/* deactivate cxsr */
728
	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
729
}
730
 
731
/*
732
 * Latency for FIFO fetches is dependent on several factors:
733
 *   - memory configuration (speed, channels)
734
 *   - chipset
735
 *   - current MCH state
736
 * It can be fairly high in some situations, so here we assume a fairly
737
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
738
 * set this value too high, the FIFO will fetch frequently to stay full)
739
 * and power consumption (set it too low to save power and we might see
740
 * FIFO underruns and display "flicker").
741
 *
742
 * A value of 5us seems to be a good balance; safe for very low end
743
 * platforms but not overly aggressive on lower latency configs.
744
 */
745
static const int latency_ns = 5000;
746
 
747
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
748
{
749
	struct drm_i915_private *dev_priv = dev->dev_private;
750
	uint32_t dsparb = I915_READ(DSPARB);
751
	int size;
752
 
753
	size = dsparb & 0x7f;
754
	if (plane)
755
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
756
 
757
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
758
		      plane ? "B" : "A", size);
759
 
760
	return size;
761
}
762
 
763
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
764
{
765
	struct drm_i915_private *dev_priv = dev->dev_private;
766
	uint32_t dsparb = I915_READ(DSPARB);
767
	int size;
768
 
769
	size = dsparb & 0x1ff;
770
	if (plane)
771
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
772
	size >>= 1; /* Convert to cachelines */
773
 
774
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
775
		      plane ? "B" : "A", size);
776
 
777
	return size;
778
}
779
 
780
static int i845_get_fifo_size(struct drm_device *dev, int plane)
781
{
782
	struct drm_i915_private *dev_priv = dev->dev_private;
783
	uint32_t dsparb = I915_READ(DSPARB);
784
	int size;
785
 
786
	size = dsparb & 0x7f;
787
	size >>= 2; /* Convert to cachelines */
788
 
789
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
790
		      plane ? "B" : "A",
791
		      size);
792
 
793
	return size;
794
}
795
 
796
static int i830_get_fifo_size(struct drm_device *dev, int plane)
797
{
798
	struct drm_i915_private *dev_priv = dev->dev_private;
799
	uint32_t dsparb = I915_READ(DSPARB);
800
	int size;
801
 
802
	size = dsparb & 0x7f;
803
	size >>= 1; /* Convert to cachelines */
804
 
805
	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
806
		      plane ? "B" : "A", size);
807
 
808
	return size;
809
}
810
 
811
/* Pineview has different values for various configs */
812
static const struct intel_watermark_params pineview_display_wm = {
813
	PINEVIEW_DISPLAY_FIFO,
814
	PINEVIEW_MAX_WM,
815
	PINEVIEW_DFT_WM,
816
	PINEVIEW_GUARD_WM,
817
	PINEVIEW_FIFO_LINE_SIZE
818
};
819
static const struct intel_watermark_params pineview_display_hplloff_wm = {
820
	PINEVIEW_DISPLAY_FIFO,
821
	PINEVIEW_MAX_WM,
822
	PINEVIEW_DFT_HPLLOFF_WM,
823
	PINEVIEW_GUARD_WM,
824
	PINEVIEW_FIFO_LINE_SIZE
825
};
826
static const struct intel_watermark_params pineview_cursor_wm = {
827
	PINEVIEW_CURSOR_FIFO,
828
	PINEVIEW_CURSOR_MAX_WM,
829
	PINEVIEW_CURSOR_DFT_WM,
830
	PINEVIEW_CURSOR_GUARD_WM,
831
	PINEVIEW_FIFO_LINE_SIZE,
832
};
833
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
834
	PINEVIEW_CURSOR_FIFO,
835
	PINEVIEW_CURSOR_MAX_WM,
836
	PINEVIEW_CURSOR_DFT_WM,
837
	PINEVIEW_CURSOR_GUARD_WM,
838
	PINEVIEW_FIFO_LINE_SIZE
839
};
840
static const struct intel_watermark_params g4x_wm_info = {
841
	G4X_FIFO_SIZE,
842
	G4X_MAX_WM,
843
	G4X_MAX_WM,
844
	2,
845
	G4X_FIFO_LINE_SIZE,
846
};
847
static const struct intel_watermark_params g4x_cursor_wm_info = {
848
	I965_CURSOR_FIFO,
849
	I965_CURSOR_MAX_WM,
850
	I965_CURSOR_DFT_WM,
851
	2,
852
	G4X_FIFO_LINE_SIZE,
853
};
854
static const struct intel_watermark_params valleyview_wm_info = {
855
	VALLEYVIEW_FIFO_SIZE,
856
	VALLEYVIEW_MAX_WM,
857
	VALLEYVIEW_MAX_WM,
858
	2,
859
	G4X_FIFO_LINE_SIZE,
860
};
861
static const struct intel_watermark_params valleyview_cursor_wm_info = {
862
	I965_CURSOR_FIFO,
863
	VALLEYVIEW_CURSOR_MAX_WM,
864
	I965_CURSOR_DFT_WM,
865
	2,
866
	G4X_FIFO_LINE_SIZE,
867
};
868
static const struct intel_watermark_params i965_cursor_wm_info = {
869
	I965_CURSOR_FIFO,
870
	I965_CURSOR_MAX_WM,
871
	I965_CURSOR_DFT_WM,
872
	2,
873
	I915_FIFO_LINE_SIZE,
874
};
875
static const struct intel_watermark_params i945_wm_info = {
876
	I945_FIFO_SIZE,
877
	I915_MAX_WM,
878
	1,
879
	2,
880
	I915_FIFO_LINE_SIZE
881
};
882
static const struct intel_watermark_params i915_wm_info = {
883
	I915_FIFO_SIZE,
884
	I915_MAX_WM,
885
	1,
886
	2,
887
	I915_FIFO_LINE_SIZE
888
};
889
static const struct intel_watermark_params i855_wm_info = {
890
	I855GM_FIFO_SIZE,
891
	I915_MAX_WM,
892
	1,
893
	2,
894
	I830_FIFO_LINE_SIZE
895
};
896
static const struct intel_watermark_params i830_wm_info = {
897
	I830_FIFO_SIZE,
898
	I915_MAX_WM,
899
	1,
900
	2,
901
	I830_FIFO_LINE_SIZE
902
};
903
 
904
static const struct intel_watermark_params ironlake_display_wm_info = {
905
	ILK_DISPLAY_FIFO,
906
	ILK_DISPLAY_MAXWM,
907
	ILK_DISPLAY_DFTWM,
908
	2,
909
	ILK_FIFO_LINE_SIZE
910
};
911
static const struct intel_watermark_params ironlake_cursor_wm_info = {
912
	ILK_CURSOR_FIFO,
913
	ILK_CURSOR_MAXWM,
914
	ILK_CURSOR_DFTWM,
915
	2,
916
	ILK_FIFO_LINE_SIZE
917
};
918
static const struct intel_watermark_params ironlake_display_srwm_info = {
919
	ILK_DISPLAY_SR_FIFO,
920
	ILK_DISPLAY_MAX_SRWM,
921
	ILK_DISPLAY_DFT_SRWM,
922
	2,
923
	ILK_FIFO_LINE_SIZE
924
};
925
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
926
	ILK_CURSOR_SR_FIFO,
927
	ILK_CURSOR_MAX_SRWM,
928
	ILK_CURSOR_DFT_SRWM,
929
	2,
930
	ILK_FIFO_LINE_SIZE
931
};
932
 
933
static const struct intel_watermark_params sandybridge_display_wm_info = {
934
	SNB_DISPLAY_FIFO,
935
	SNB_DISPLAY_MAXWM,
936
	SNB_DISPLAY_DFTWM,
937
	2,
938
	SNB_FIFO_LINE_SIZE
939
};
940
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
941
	SNB_CURSOR_FIFO,
942
	SNB_CURSOR_MAXWM,
943
	SNB_CURSOR_DFTWM,
944
	2,
945
	SNB_FIFO_LINE_SIZE
946
};
947
static const struct intel_watermark_params sandybridge_display_srwm_info = {
948
	SNB_DISPLAY_SR_FIFO,
949
	SNB_DISPLAY_MAX_SRWM,
950
	SNB_DISPLAY_DFT_SRWM,
951
	2,
952
	SNB_FIFO_LINE_SIZE
953
};
954
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
955
	SNB_CURSOR_SR_FIFO,
956
	SNB_CURSOR_MAX_SRWM,
957
	SNB_CURSOR_DFT_SRWM,
958
	2,
959
	SNB_FIFO_LINE_SIZE
960
};
961
 
962
 
963
/**
964
 * intel_calculate_wm - calculate watermark level
965
 * @clock_in_khz: pixel clock
966
 * @wm: chip FIFO params
967
 * @pixel_size: display pixel size
968
 * @latency_ns: memory latency for the platform
969
 *
970
 * Calculate the watermark level (the level at which the display plane will
971
 * start fetching from memory again).  Each chip has a different display
972
 * FIFO size and allocation, so the caller needs to figure that out and pass
973
 * in the correct intel_watermark_params structure.
974
 *
975
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
976
 * on the pixel size.  When it reaches the watermark level, it'll start
977
 * fetching FIFO line sized based chunks from memory until the FIFO fills
978
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
979
 * will occur, and a display engine hang could result.
980
 */
981
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
982
					const struct intel_watermark_params *wm,
983
					int fifo_size,
984
					int pixel_size,
985
					unsigned long latency_ns)
986
{
987
	long entries_required, wm_size;
988
 
989
	/*
990
	 * Note: we need to make sure we don't overflow for various clock &
991
	 * latency values.
992
	 * clocks go from a few thousand to several hundred thousand.
993
	 * latency is usually a few thousand
994
	 */
995
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
996
		1000;
997
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
998
 
999
	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1000
 
1001
	wm_size = fifo_size - (entries_required + wm->guard_size);
1002
 
1003
	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1004
 
1005
	/* Don't promote wm_size to unsigned... */
1006
	if (wm_size > (long)wm->max_wm)
1007
		wm_size = wm->max_wm;
1008
	if (wm_size <= 0)
1009
		wm_size = wm->default_wm;
1010
	return wm_size;
1011
}
1012
 
1013
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1014
{
1015
	struct drm_crtc *crtc, *enabled = NULL;
1016
 
1017
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1018
		if (crtc->enabled && crtc->fb) {
1019
			if (enabled)
1020
				return NULL;
1021
			enabled = crtc;
1022
		}
1023
	}
1024
 
1025
	return enabled;
1026
}
1027
 
1028
static void pineview_update_wm(struct drm_device *dev)
1029
{
1030
	struct drm_i915_private *dev_priv = dev->dev_private;
1031
	struct drm_crtc *crtc;
1032
	const struct cxsr_latency *latency;
1033
	u32 reg;
1034
	unsigned long wm;
1035
 
1036
	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1037
					 dev_priv->fsb_freq, dev_priv->mem_freq);
1038
	if (!latency) {
1039
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1040
		pineview_disable_cxsr(dev);
1041
		return;
1042
	}
1043
 
1044
	crtc = single_enabled_crtc(dev);
1045
	if (crtc) {
1046
		int clock = crtc->mode.clock;
1047
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1048
 
1049
		/* Display SR */
1050
		wm = intel_calculate_wm(clock, &pineview_display_wm,
1051
					pineview_display_wm.fifo_size,
1052
					pixel_size, latency->display_sr);
1053
		reg = I915_READ(DSPFW1);
1054
		reg &= ~DSPFW_SR_MASK;
1055
		reg |= wm << DSPFW_SR_SHIFT;
1056
		I915_WRITE(DSPFW1, reg);
1057
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1058
 
1059
		/* cursor SR */
1060
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1061
					pineview_display_wm.fifo_size,
1062
					pixel_size, latency->cursor_sr);
1063
		reg = I915_READ(DSPFW3);
1064
		reg &= ~DSPFW_CURSOR_SR_MASK;
1065
		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1066
		I915_WRITE(DSPFW3, reg);
1067
 
1068
		/* Display HPLL off SR */
1069
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1070
					pineview_display_hplloff_wm.fifo_size,
1071
					pixel_size, latency->display_hpll_disable);
1072
		reg = I915_READ(DSPFW3);
1073
		reg &= ~DSPFW_HPLL_SR_MASK;
1074
		reg |= wm & DSPFW_HPLL_SR_MASK;
1075
		I915_WRITE(DSPFW3, reg);
1076
 
1077
		/* cursor HPLL off SR */
1078
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1079
					pineview_display_hplloff_wm.fifo_size,
1080
					pixel_size, latency->cursor_hpll_disable);
1081
		reg = I915_READ(DSPFW3);
1082
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
1083
		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1084
		I915_WRITE(DSPFW3, reg);
1085
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1086
 
1087
		/* activate cxsr */
1088
		I915_WRITE(DSPFW3,
1089
			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1090
		DRM_DEBUG_KMS("Self-refresh is enabled\n");
1091
	} else {
1092
		pineview_disable_cxsr(dev);
1093
		DRM_DEBUG_KMS("Self-refresh is disabled\n");
1094
	}
1095
}
1096
 
1097
static bool g4x_compute_wm0(struct drm_device *dev,
1098
			    int plane,
1099
			    const struct intel_watermark_params *display,
1100
			    int display_latency_ns,
1101
			    const struct intel_watermark_params *cursor,
1102
			    int cursor_latency_ns,
1103
			    int *plane_wm,
1104
			    int *cursor_wm)
1105
{
1106
	struct drm_crtc *crtc;
1107
 
1108
	int htotal, hdisplay, clock, pixel_size;
1109
	int line_time_us, line_count;
1110
	int entries, tlb_miss;
1111
 
1112
//    ENTER();
1113
 
1114
//    dbgprintf("plane %d display %x cursor %x \n", plane, display, cursor);
1115
//    dbgprintf("plane_wm %x cursor_wm %x \n", plane_wm, cursor_wm);
1116
 
1117
	crtc = intel_get_crtc_for_plane(dev, plane);
1118
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1119
 
1120
//    dbgprintf("CRTC %d\n, fb %x, enabled %d\n",
1121
//               crtc->base.id, crtc->fb, crtc->enabled );
1122
 
1123
 
1124
 
1125
    if (crtc->fb == NULL || !crtc->enabled || !intel_crtc->active) {
1126
		*cursor_wm = cursor->guard_size;
1127
		*plane_wm = display->guard_size;
1128
        return false;
1129
	}
1130
 
1131
	htotal = crtc->mode.htotal;
1132
	hdisplay = crtc->mode.hdisplay;
1133
	clock = crtc->mode.clock;
1134
	pixel_size = crtc->fb->bits_per_pixel / 8;
1135
 
1136
//    dbgprintf("mark 1\n");
1137
 
1138
	/* Use the small buffer method to calculate plane watermark */
1139
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1140
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1141
	if (tlb_miss > 0)
1142
		entries += tlb_miss;
1143
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1144
	*plane_wm = entries + display->guard_size;
1145
	if (*plane_wm > (int)display->max_wm)
1146
		*plane_wm = display->max_wm;
1147
 
1148
//    dbgprintf("clock %d line_time_us %d\n",clock, line_time_us );
1149
 
1150
	/* Use the large buffer method to calculate cursor watermark */
1151
	line_time_us = ((htotal * 1000) / clock);
1152
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1153
 
1154
	entries = line_count * 64 * pixel_size;
1155
 
1156
//    dbgprintf("mark 3\n");
1157
 
1158
//    dbgprintf("fifo size %d line size %d\n",
1159
//               cursor->fifo_size, cursor->cacheline_size);
1160
 
1161
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1162
 
1163
	if (tlb_miss > 0)
1164
		entries += tlb_miss;
1165
 
1166
//    dbgprintf("mark 4\n");
1167
 
1168
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1169
 
1170
//    dbgprintf("entries %d \n",entries);
1171
 
1172
	*cursor_wm = entries + cursor->guard_size;
1173
 
1174
	if (*cursor_wm > (int)cursor->max_wm)
1175
		*cursor_wm = (int)cursor->max_wm;
1176
 
1177
//    LEAVE();
1178
 
1179
	return true;
1180
}
1181
 
1182
/*
1183
 * Check the wm result.
1184
 *
1185
 * If any calculated watermark values is larger than the maximum value that
1186
 * can be programmed into the associated watermark register, that watermark
1187
 * must be disabled.
1188
 */
1189
static bool g4x_check_srwm(struct drm_device *dev,
1190
			   int display_wm, int cursor_wm,
1191
			   const struct intel_watermark_params *display,
1192
			   const struct intel_watermark_params *cursor)
1193
{
1194
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1195
		      display_wm, cursor_wm);
1196
 
1197
	if (display_wm > display->max_wm) {
1198
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1199
			      display_wm, display->max_wm);
1200
		return false;
1201
	}
1202
 
1203
	if (cursor_wm > cursor->max_wm) {
1204
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1205
			      cursor_wm, cursor->max_wm);
1206
		return false;
1207
	}
1208
 
1209
	if (!(display_wm || cursor_wm)) {
1210
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1211
		return false;
1212
	}
1213
 
1214
	return true;
1215
}
1216
 
1217
static bool g4x_compute_srwm(struct drm_device *dev,
1218
			     int plane,
1219
			     int latency_ns,
1220
			     const struct intel_watermark_params *display,
1221
			     const struct intel_watermark_params *cursor,
1222
			     int *display_wm, int *cursor_wm)
1223
{
1224
	struct drm_crtc *crtc;
1225
	int hdisplay, htotal, pixel_size, clock;
1226
	unsigned long line_time_us;
1227
	int line_count, line_size;
1228
	int small, large;
1229
	int entries;
1230
 
1231
	if (!latency_ns) {
1232
		*display_wm = *cursor_wm = 0;
1233
		return false;
1234
	}
1235
 
1236
	crtc = intel_get_crtc_for_plane(dev, plane);
1237
	hdisplay = crtc->mode.hdisplay;
1238
	htotal = crtc->mode.htotal;
1239
	clock = crtc->mode.clock;
1240
	pixel_size = crtc->fb->bits_per_pixel / 8;
1241
 
1242
	line_time_us = (htotal * 1000) / clock;
1243
	line_count = (latency_ns / line_time_us + 1000) / 1000;
1244
	line_size = hdisplay * pixel_size;
1245
 
1246
	/* Use the minimum of the small and large buffer method for primary */
1247
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1248
	large = line_count * line_size;
1249
 
1250
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1251
	*display_wm = entries + display->guard_size;
1252
 
1253
	/* calculate the self-refresh watermark for display cursor */
1254
	entries = line_count * pixel_size * 64;
1255
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1256
	*cursor_wm = entries + cursor->guard_size;
1257
 
1258
	return g4x_check_srwm(dev,
1259
			      *display_wm, *cursor_wm,
1260
			      display, cursor);
1261
}
1262
 
1263
static bool vlv_compute_drain_latency(struct drm_device *dev,
1264
				     int plane,
1265
				     int *plane_prec_mult,
1266
				     int *plane_dl,
1267
				     int *cursor_prec_mult,
1268
				     int *cursor_dl)
1269
{
1270
	struct drm_crtc *crtc;
1271
	int clock, pixel_size;
1272
	int entries;
1273
 
1274
	crtc = intel_get_crtc_for_plane(dev, plane);
1275
	if (crtc->fb == NULL || !crtc->enabled)
1276
		return false;
1277
 
1278
	clock = crtc->mode.clock;	/* VESA DOT Clock */
1279
	pixel_size = crtc->fb->bits_per_pixel / 8;	/* BPP */
1280
 
1281
	entries = (clock / 1000) * pixel_size;
1282
	*plane_prec_mult = (entries > 256) ?
1283
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1284
	*plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1285
						     pixel_size);
1286
 
1287
	entries = (clock / 1000) * 4;	/* BPP is always 4 for cursor */
1288
	*cursor_prec_mult = (entries > 256) ?
1289
		DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1290
	*cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1291
 
1292
	return true;
1293
}
1294
 
1295
/*
1296
 * Update drain latency registers of memory arbiter
1297
 *
1298
 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1299
 * to be programmed. Each plane has a drain latency multiplier and a drain
1300
 * latency value.
1301
 */
1302
 
1303
static void vlv_update_drain_latency(struct drm_device *dev)
1304
{
1305
	struct drm_i915_private *dev_priv = dev->dev_private;
1306
	int planea_prec, planea_dl, planeb_prec, planeb_dl;
1307
	int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1308
	int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1309
							either 16 or 32 */
1310
 
1311
	/* For plane A, Cursor A */
1312
	if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1313
				      &cursor_prec_mult, &cursora_dl)) {
1314
		cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1315
			DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1316
		planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1317
			DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1318
 
1319
		I915_WRITE(VLV_DDL1, cursora_prec |
1320
				(cursora_dl << DDL_CURSORA_SHIFT) |
1321
				planea_prec | planea_dl);
1322
	}
1323
 
1324
	/* For plane B, Cursor B */
1325
	if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1326
				      &cursor_prec_mult, &cursorb_dl)) {
1327
		cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1328
			DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1329
		planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1330
			DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1331
 
1332
		I915_WRITE(VLV_DDL2, cursorb_prec |
1333
				(cursorb_dl << DDL_CURSORB_SHIFT) |
1334
				planeb_prec | planeb_dl);
1335
	}
1336
}
1337
 
1338
#define single_plane_enabled(mask) is_power_of_2(mask)
1339
 
1340
static void valleyview_update_wm(struct drm_device *dev)
1341
{
1342
	static const int sr_latency_ns = 12000;
1343
	struct drm_i915_private *dev_priv = dev->dev_private;
1344
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1345
	int plane_sr, cursor_sr;
1346
	unsigned int enabled = 0;
1347
 
1348
	vlv_update_drain_latency(dev);
1349
 
1350
	if (g4x_compute_wm0(dev, 0,
1351
			    &valleyview_wm_info, latency_ns,
1352
			    &valleyview_cursor_wm_info, latency_ns,
1353
			    &planea_wm, &cursora_wm))
1354
		enabled |= 1;
1355
 
1356
	if (g4x_compute_wm0(dev, 1,
1357
			    &valleyview_wm_info, latency_ns,
1358
			    &valleyview_cursor_wm_info, latency_ns,
1359
			    &planeb_wm, &cursorb_wm))
1360
		enabled |= 2;
1361
 
1362
	plane_sr = cursor_sr = 0;
1363
	if (single_plane_enabled(enabled) &&
1364
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1365
			     sr_latency_ns,
1366
			     &valleyview_wm_info,
1367
			     &valleyview_cursor_wm_info,
1368
			     &plane_sr, &cursor_sr))
1369
		I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1370
	else
1371
		I915_WRITE(FW_BLC_SELF_VLV,
1372
			   I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1373
 
1374
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1375
		      planea_wm, cursora_wm,
1376
		      planeb_wm, cursorb_wm,
1377
		      plane_sr, cursor_sr);
1378
 
1379
	I915_WRITE(DSPFW1,
1380
		   (plane_sr << DSPFW_SR_SHIFT) |
1381
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1382
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1383
		   planea_wm);
1384
	I915_WRITE(DSPFW2,
1385
		   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1386
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1387
	I915_WRITE(DSPFW3,
1388
		   (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
1389
}
1390
 
1391
static void g4x_update_wm(struct drm_device *dev)
1392
{
1393
	static const int sr_latency_ns = 12000;
1394
	struct drm_i915_private *dev_priv = dev->dev_private;
1395
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1396
	int plane_sr, cursor_sr;
1397
	unsigned int enabled = 0;
1398
 
1399
	if (g4x_compute_wm0(dev, 0,
1400
			    &g4x_wm_info, latency_ns,
1401
			    &g4x_cursor_wm_info, latency_ns,
1402
			    &planea_wm, &cursora_wm))
1403
		enabled |= 1;
1404
 
1405
	if (g4x_compute_wm0(dev, 1,
1406
			    &g4x_wm_info, latency_ns,
1407
			    &g4x_cursor_wm_info, latency_ns,
1408
			    &planeb_wm, &cursorb_wm))
1409
		enabled |= 2;
1410
 
1411
	plane_sr = cursor_sr = 0;
1412
	if (single_plane_enabled(enabled) &&
1413
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1414
			     sr_latency_ns,
1415
			     &g4x_wm_info,
1416
			     &g4x_cursor_wm_info,
1417
			     &plane_sr, &cursor_sr))
1418
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1419
	else
1420
		I915_WRITE(FW_BLC_SELF,
1421
			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1422
 
1423
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1424
		      planea_wm, cursora_wm,
1425
		      planeb_wm, cursorb_wm,
1426
		      plane_sr, cursor_sr);
1427
 
1428
	I915_WRITE(DSPFW1,
1429
		   (plane_sr << DSPFW_SR_SHIFT) |
1430
		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1431
		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
1432
		   planea_wm);
1433
	I915_WRITE(DSPFW2,
1434
		   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1435
		   (cursora_wm << DSPFW_CURSORA_SHIFT));
1436
	/* HPLL off in SR has some issues on G4x... disable it */
1437
	I915_WRITE(DSPFW3,
1438
		   (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1439
		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1440
}
1441
 
1442
static void i965_update_wm(struct drm_device *dev)
1443
{
1444
	struct drm_i915_private *dev_priv = dev->dev_private;
1445
	struct drm_crtc *crtc;
1446
	int srwm = 1;
1447
	int cursor_sr = 16;
1448
 
1449
	/* Calc sr entries for one plane configs */
1450
	crtc = single_enabled_crtc(dev);
1451
	if (crtc) {
1452
		/* self-refresh has much higher latency */
1453
		static const int sr_latency_ns = 12000;
1454
		int clock = crtc->mode.clock;
1455
		int htotal = crtc->mode.htotal;
1456
		int hdisplay = crtc->mode.hdisplay;
1457
		int pixel_size = crtc->fb->bits_per_pixel / 8;
1458
		unsigned long line_time_us;
1459
		int entries;
1460
 
1461
		line_time_us = ((htotal * 1000) / clock);
1462
 
1463
		/* Use ns/us then divide to preserve precision */
1464
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1465
			pixel_size * hdisplay;
1466
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1467
		srwm = I965_FIFO_SIZE - entries;
1468
		if (srwm < 0)
1469
			srwm = 1;
1470
		srwm &= 0x1ff;
1471
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1472
			      entries, srwm);
1473
 
1474
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1475
			pixel_size * 64;
1476
		entries = DIV_ROUND_UP(entries,
1477
					  i965_cursor_wm_info.cacheline_size);
1478
		cursor_sr = i965_cursor_wm_info.fifo_size -
1479
			(entries + i965_cursor_wm_info.guard_size);
1480
 
1481
		if (cursor_sr > i965_cursor_wm_info.max_wm)
1482
			cursor_sr = i965_cursor_wm_info.max_wm;
1483
 
1484
		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1485
			      "cursor %d\n", srwm, cursor_sr);
1486
 
1487
		if (IS_CRESTLINE(dev))
1488
			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1489
	} else {
1490
		/* Turn off self refresh if both pipes are enabled */
1491
		if (IS_CRESTLINE(dev))
1492
			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1493
				   & ~FW_BLC_SELF_EN);
1494
	}
1495
 
1496
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1497
		      srwm);
1498
 
1499
	/* 965 has limitations... */
1500
	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1501
		   (8 << 16) | (8 << 8) | (8 << 0));
1502
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1503
	/* update cursor SR watermark */
1504
	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1505
}
1506
 
1507
static void i9xx_update_wm(struct drm_device *dev)
1508
{
1509
	struct drm_i915_private *dev_priv = dev->dev_private;
1510
	const struct intel_watermark_params *wm_info;
1511
	uint32_t fwater_lo;
1512
	uint32_t fwater_hi;
1513
	int cwm, srwm = 1;
1514
	int fifo_size;
1515
	int planea_wm, planeb_wm;
1516
	struct drm_crtc *crtc, *enabled = NULL;
1517
 
1518
	if (IS_I945GM(dev))
1519
		wm_info = &i945_wm_info;
1520
	else if (!IS_GEN2(dev))
1521
		wm_info = &i915_wm_info;
1522
	else
1523
		wm_info = &i855_wm_info;
1524
 
1525
	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1526
	crtc = intel_get_crtc_for_plane(dev, 0);
1527
	if (crtc->enabled && crtc->fb) {
1528
		planea_wm = intel_calculate_wm(crtc->mode.clock,
1529
					       wm_info, fifo_size,
1530
					       crtc->fb->bits_per_pixel / 8,
1531
					       latency_ns);
1532
		enabled = crtc;
1533
	} else
1534
		planea_wm = fifo_size - wm_info->guard_size;
1535
 
1536
	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1537
	crtc = intel_get_crtc_for_plane(dev, 1);
1538
	if (crtc->enabled && crtc->fb) {
1539
		planeb_wm = intel_calculate_wm(crtc->mode.clock,
1540
					       wm_info, fifo_size,
1541
					       crtc->fb->bits_per_pixel / 8,
1542
					       latency_ns);
1543
		if (enabled == NULL)
1544
			enabled = crtc;
1545
		else
1546
			enabled = NULL;
1547
	} else
1548
		planeb_wm = fifo_size - wm_info->guard_size;
1549
 
1550
	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1551
 
1552
	/*
1553
	 * Overlay gets an aggressive default since video jitter is bad.
1554
	 */
1555
	cwm = 2;
1556
 
1557
	/* Play safe and disable self-refresh before adjusting watermarks. */
1558
	if (IS_I945G(dev) || IS_I945GM(dev))
1559
		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1560
	else if (IS_I915GM(dev))
1561
		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1562
 
1563
	/* Calc sr entries for one plane configs */
1564
	if (HAS_FW_BLC(dev) && enabled) {
1565
		/* self-refresh has much higher latency */
1566
		static const int sr_latency_ns = 6000;
1567
		int clock = enabled->mode.clock;
1568
		int htotal = enabled->mode.htotal;
1569
		int hdisplay = enabled->mode.hdisplay;
1570
		int pixel_size = enabled->fb->bits_per_pixel / 8;
1571
		unsigned long line_time_us;
1572
		int entries;
1573
 
1574
		line_time_us = (htotal * 1000) / clock;
1575
 
1576
		/* Use ns/us then divide to preserve precision */
1577
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1578
			pixel_size * hdisplay;
1579
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1580
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1581
		srwm = wm_info->fifo_size - entries;
1582
		if (srwm < 0)
1583
			srwm = 1;
1584
 
1585
		if (IS_I945G(dev) || IS_I945GM(dev))
1586
			I915_WRITE(FW_BLC_SELF,
1587
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1588
		else if (IS_I915GM(dev))
1589
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1590
	}
1591
 
1592
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1593
		      planea_wm, planeb_wm, cwm, srwm);
1594
 
1595
	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1596
	fwater_hi = (cwm & 0x1f);
1597
 
1598
	/* Set request length to 8 cachelines per fetch */
1599
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1600
	fwater_hi = fwater_hi | (1 << 8);
1601
 
1602
	I915_WRITE(FW_BLC, fwater_lo);
1603
	I915_WRITE(FW_BLC2, fwater_hi);
1604
 
1605
	if (HAS_FW_BLC(dev)) {
1606
		if (enabled) {
1607
			if (IS_I945G(dev) || IS_I945GM(dev))
1608
				I915_WRITE(FW_BLC_SELF,
1609
					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1610
			else if (IS_I915GM(dev))
1611
				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1612
			DRM_DEBUG_KMS("memory self refresh enabled\n");
1613
		} else
1614
			DRM_DEBUG_KMS("memory self refresh disabled\n");
1615
	}
1616
}
1617
 
1618
static void i830_update_wm(struct drm_device *dev)
1619
{
1620
	struct drm_i915_private *dev_priv = dev->dev_private;
1621
	struct drm_crtc *crtc;
1622
	uint32_t fwater_lo;
1623
	int planea_wm;
1624
 
1625
	crtc = single_enabled_crtc(dev);
1626
	if (crtc == NULL)
1627
		return;
1628
 
1629
	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1630
				       dev_priv->display.get_fifo_size(dev, 0),
1631
				       crtc->fb->bits_per_pixel / 8,
1632
				       latency_ns);
1633
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1634
	fwater_lo |= (3<<8) | planea_wm;
1635
 
1636
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1637
 
1638
	I915_WRITE(FW_BLC, fwater_lo);
1639
}
1640
 
1641
#define ILK_LP0_PLANE_LATENCY		700
1642
#define ILK_LP0_CURSOR_LATENCY		1300
1643
 
1644
/*
1645
 * Check the wm result.
1646
 *
1647
 * If any calculated watermark values is larger than the maximum value that
1648
 * can be programmed into the associated watermark register, that watermark
1649
 * must be disabled.
1650
 */
1651
static bool ironlake_check_srwm(struct drm_device *dev, int level,
1652
				int fbc_wm, int display_wm, int cursor_wm,
1653
				const struct intel_watermark_params *display,
1654
				const struct intel_watermark_params *cursor)
1655
{
1656
	struct drm_i915_private *dev_priv = dev->dev_private;
1657
 
1658
	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1659
		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1660
 
1661
	if (fbc_wm > SNB_FBC_MAX_SRWM) {
1662
		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1663
			      fbc_wm, SNB_FBC_MAX_SRWM, level);
1664
 
1665
		/* fbc has it's own way to disable FBC WM */
1666
		I915_WRITE(DISP_ARB_CTL,
1667
			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1668
		return false;
1669
	}
1670
 
1671
	if (display_wm > display->max_wm) {
1672
		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1673
			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
1674
		return false;
1675
	}
1676
 
1677
	if (cursor_wm > cursor->max_wm) {
1678
		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1679
			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1680
		return false;
1681
	}
1682
 
1683
	if (!(fbc_wm || display_wm || cursor_wm)) {
1684
		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1685
		return false;
1686
	}
1687
 
1688
	return true;
1689
}
1690
 
1691
/*
1692
 * Compute watermark values of WM[1-3],
1693
 */
1694
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1695
				  int latency_ns,
1696
				  const struct intel_watermark_params *display,
1697
				  const struct intel_watermark_params *cursor,
1698
				  int *fbc_wm, int *display_wm, int *cursor_wm)
1699
{
1700
	struct drm_crtc *crtc;
1701
	unsigned long line_time_us;
1702
	int hdisplay, htotal, pixel_size, clock;
1703
	int line_count, line_size;
1704
	int small, large;
1705
	int entries;
1706
 
1707
	if (!latency_ns) {
1708
		*fbc_wm = *display_wm = *cursor_wm = 0;
1709
		return false;
1710
	}
1711
 
1712
	crtc = intel_get_crtc_for_plane(dev, plane);
1713
	hdisplay = crtc->mode.hdisplay;
1714
	htotal = crtc->mode.htotal;
1715
	clock = crtc->mode.clock;
1716
	pixel_size = crtc->fb->bits_per_pixel / 8;
1717
 
1718
	line_time_us = (htotal * 1000) / clock;
1719
	line_count = (latency_ns / line_time_us + 1000) / 1000;
1720
	line_size = hdisplay * pixel_size;
1721
 
1722
	/* Use the minimum of the small and large buffer method for primary */
1723
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1724
	large = line_count * line_size;
1725
 
1726
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1727
	*display_wm = entries + display->guard_size;
1728
 
1729
	/*
1730
	 * Spec says:
1731
	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1732
	 */
1733
	*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1734
 
1735
	/* calculate the self-refresh watermark for display cursor */
1736
	entries = line_count * pixel_size * 64;
1737
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1738
	*cursor_wm = entries + cursor->guard_size;
1739
 
1740
	return ironlake_check_srwm(dev, level,
1741
				   *fbc_wm, *display_wm, *cursor_wm,
1742
				   display, cursor);
1743
}
1744
 
1745
static void ironlake_update_wm(struct drm_device *dev)
1746
{
1747
	struct drm_i915_private *dev_priv = dev->dev_private;
1748
	int fbc_wm, plane_wm, cursor_wm;
1749
	unsigned int enabled;
1750
 
1751
	enabled = 0;
1752
	if (g4x_compute_wm0(dev, 0,
1753
			    &ironlake_display_wm_info,
1754
			    ILK_LP0_PLANE_LATENCY,
1755
			    &ironlake_cursor_wm_info,
1756
			    ILK_LP0_CURSOR_LATENCY,
1757
			    &plane_wm, &cursor_wm)) {
1758
		I915_WRITE(WM0_PIPEA_ILK,
1759
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1760
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1761
			      " plane %d, " "cursor: %d\n",
1762
			      plane_wm, cursor_wm);
1763
		enabled |= 1;
1764
	}
1765
 
1766
	if (g4x_compute_wm0(dev, 1,
1767
			    &ironlake_display_wm_info,
1768
			    ILK_LP0_PLANE_LATENCY,
1769
			    &ironlake_cursor_wm_info,
1770
			    ILK_LP0_CURSOR_LATENCY,
1771
			    &plane_wm, &cursor_wm)) {
1772
		I915_WRITE(WM0_PIPEB_ILK,
1773
			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1774
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1775
			      " plane %d, cursor: %d\n",
1776
			      plane_wm, cursor_wm);
1777
		enabled |= 2;
1778
	}
1779
 
1780
	/*
1781
	 * Calculate and update the self-refresh watermark only when one
1782
	 * display plane is used.
1783
	 */
1784
	I915_WRITE(WM3_LP_ILK, 0);
1785
	I915_WRITE(WM2_LP_ILK, 0);
1786
	I915_WRITE(WM1_LP_ILK, 0);
1787
 
1788
	if (!single_plane_enabled(enabled))
1789
		return;
1790
	enabled = ffs(enabled) - 1;
1791
 
1792
	/* WM1 */
1793
	if (!ironlake_compute_srwm(dev, 1, enabled,
1794
				   ILK_READ_WM1_LATENCY() * 500,
1795
				   &ironlake_display_srwm_info,
1796
				   &ironlake_cursor_srwm_info,
1797
				   &fbc_wm, &plane_wm, &cursor_wm))
1798
		return;
1799
 
1800
	I915_WRITE(WM1_LP_ILK,
1801
		   WM1_LP_SR_EN |
1802
		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1803
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1804
		   (plane_wm << WM1_LP_SR_SHIFT) |
1805
		   cursor_wm);
1806
 
1807
	/* WM2 */
1808
	if (!ironlake_compute_srwm(dev, 2, enabled,
1809
				   ILK_READ_WM2_LATENCY() * 500,
1810
				   &ironlake_display_srwm_info,
1811
				   &ironlake_cursor_srwm_info,
1812
				   &fbc_wm, &plane_wm, &cursor_wm))
1813
		return;
1814
 
1815
	I915_WRITE(WM2_LP_ILK,
1816
		   WM2_LP_EN |
1817
		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1818
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1819
		   (plane_wm << WM1_LP_SR_SHIFT) |
1820
		   cursor_wm);
1821
 
1822
	/*
1823
	 * WM3 is unsupported on ILK, probably because we don't have latency
1824
	 * data for that power state
1825
	 */
1826
}
1827
 
1828
static void sandybridge_update_wm(struct drm_device *dev)
1829
{
1830
	struct drm_i915_private *dev_priv = dev->dev_private;
1831
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
1832
	u32 val;
1833
	int fbc_wm, plane_wm, cursor_wm;
1834
	unsigned int enabled;
1835
 
1836
	enabled = 0;
1837
	if (g4x_compute_wm0(dev, 0,
1838
			    &sandybridge_display_wm_info, latency,
1839
			    &sandybridge_cursor_wm_info, latency,
1840
			    &plane_wm, &cursor_wm)) {
1841
		val = I915_READ(WM0_PIPEA_ILK);
1842
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1843
		I915_WRITE(WM0_PIPEA_ILK, val |
1844
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1845
		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1846
			      " plane %d, " "cursor: %d\n",
1847
			      plane_wm, cursor_wm);
1848
		enabled |= 1;
1849
	}
1850
 
1851
	if (g4x_compute_wm0(dev, 1,
1852
			    &sandybridge_display_wm_info, latency,
1853
			    &sandybridge_cursor_wm_info, latency,
1854
			    &plane_wm, &cursor_wm)) {
1855
		val = I915_READ(WM0_PIPEB_ILK);
1856
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1857
		I915_WRITE(WM0_PIPEB_ILK, val |
1858
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1859
		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1860
			      " plane %d, cursor: %d\n",
1861
			      plane_wm, cursor_wm);
1862
		enabled |= 2;
1863
	}
1864
 
1865
	if ((dev_priv->num_pipe == 3) &&
1866
	    g4x_compute_wm0(dev, 2,
1867
			    &sandybridge_display_wm_info, latency,
1868
			    &sandybridge_cursor_wm_info, latency,
1869
			    &plane_wm, &cursor_wm)) {
1870
		val = I915_READ(WM0_PIPEC_IVB);
1871
		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1872
		I915_WRITE(WM0_PIPEC_IVB, val |
1873
			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1874
		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1875
			      " plane %d, cursor: %d\n",
1876
			      plane_wm, cursor_wm);
1877
		enabled |= 3;
1878
	}
1879
 
1880
	/*
1881
	 * Calculate and update the self-refresh watermark only when one
1882
	 * display plane is used.
1883
	 *
1884
	 * SNB support 3 levels of watermark.
1885
	 *
1886
	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1887
	 * and disabled in the descending order
1888
	 *
1889
	 */
1890
	I915_WRITE(WM3_LP_ILK, 0);
1891
	I915_WRITE(WM2_LP_ILK, 0);
1892
	I915_WRITE(WM1_LP_ILK, 0);
1893
 
1894
	if (!single_plane_enabled(enabled) ||
1895
	    dev_priv->sprite_scaling_enabled)
1896
		return;
1897
	enabled = ffs(enabled) - 1;
1898
 
1899
	/* WM1 */
1900
	if (!ironlake_compute_srwm(dev, 1, enabled,
1901
				   SNB_READ_WM1_LATENCY() * 500,
1902
				   &sandybridge_display_srwm_info,
1903
				   &sandybridge_cursor_srwm_info,
1904
				   &fbc_wm, &plane_wm, &cursor_wm))
1905
		return;
1906
 
1907
	I915_WRITE(WM1_LP_ILK,
1908
		   WM1_LP_SR_EN |
1909
		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1910
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1911
		   (plane_wm << WM1_LP_SR_SHIFT) |
1912
		   cursor_wm);
1913
 
1914
	/* WM2 */
1915
	if (!ironlake_compute_srwm(dev, 2, enabled,
1916
				   SNB_READ_WM2_LATENCY() * 500,
1917
				   &sandybridge_display_srwm_info,
1918
				   &sandybridge_cursor_srwm_info,
1919
				   &fbc_wm, &plane_wm, &cursor_wm))
1920
		return;
1921
 
1922
	I915_WRITE(WM2_LP_ILK,
1923
		   WM2_LP_EN |
1924
		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1925
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1926
		   (plane_wm << WM1_LP_SR_SHIFT) |
1927
		   cursor_wm);
1928
 
1929
	/* WM3 */
1930
	if (!ironlake_compute_srwm(dev, 3, enabled,
1931
				   SNB_READ_WM3_LATENCY() * 500,
1932
				   &sandybridge_display_srwm_info,
1933
				   &sandybridge_cursor_srwm_info,
1934
				   &fbc_wm, &plane_wm, &cursor_wm))
1935
		return;
1936
 
1937
	I915_WRITE(WM3_LP_ILK,
1938
		   WM3_LP_EN |
1939
		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1940
		   (fbc_wm << WM1_LP_FBC_SHIFT) |
1941
		   (plane_wm << WM1_LP_SR_SHIFT) |
1942
		   cursor_wm);
1943
 
1944
}
1945
 
1946
static void
1947
haswell_update_linetime_wm(struct drm_device *dev, int pipe,
1948
				 struct drm_display_mode *mode)
1949
{
1950
	struct drm_i915_private *dev_priv = dev->dev_private;
1951
	u32 temp;
1952
 
1953
	temp = I915_READ(PIPE_WM_LINETIME(pipe));
1954
	temp &= ~PIPE_WM_LINETIME_MASK;
1955
 
1956
	/* The WM are computed with base on how long it takes to fill a single
1957
	 * row at the given clock rate, multiplied by 8.
1958
	 * */
1959
	temp |= PIPE_WM_LINETIME_TIME(
1960
		((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
1961
 
1962
	/* IPS watermarks are only used by pipe A, and are ignored by
1963
	 * pipes B and C.  They are calculated similarly to the common
1964
	 * linetime values, except that we are using CD clock frequency
1965
	 * in MHz instead of pixel rate for the division.
1966
	 *
1967
	 * This is a placeholder for the IPS watermark calculation code.
1968
	 */
1969
 
1970
	I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
1971
}
1972
 
1973
static bool
1974
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1975
			      uint32_t sprite_width, int pixel_size,
1976
			      const struct intel_watermark_params *display,
1977
			      int display_latency_ns, int *sprite_wm)
1978
{
1979
	struct drm_crtc *crtc;
1980
	int clock;
1981
	int entries, tlb_miss;
1982
 
1983
	crtc = intel_get_crtc_for_plane(dev, plane);
1984
	if (crtc->fb == NULL || !crtc->enabled) {
1985
		*sprite_wm = display->guard_size;
1986
		return false;
1987
	}
1988
 
1989
	clock = crtc->mode.clock;
1990
 
1991
	/* Use the small buffer method to calculate the sprite watermark */
1992
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1993
	tlb_miss = display->fifo_size*display->cacheline_size -
1994
		sprite_width * 8;
1995
	if (tlb_miss > 0)
1996
		entries += tlb_miss;
1997
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
1998
	*sprite_wm = entries + display->guard_size;
1999
	if (*sprite_wm > (int)display->max_wm)
2000
		*sprite_wm = display->max_wm;
2001
 
2002
	return true;
2003
}
2004
 
2005
static bool
2006
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2007
				uint32_t sprite_width, int pixel_size,
2008
				const struct intel_watermark_params *display,
2009
				int latency_ns, int *sprite_wm)
2010
{
2011
	struct drm_crtc *crtc;
2012
	unsigned long line_time_us;
2013
	int clock;
2014
	int line_count, line_size;
2015
	int small, large;
2016
	int entries;
2017
 
2018
	if (!latency_ns) {
2019
		*sprite_wm = 0;
2020
		return false;
2021
	}
2022
 
2023
	crtc = intel_get_crtc_for_plane(dev, plane);
2024
	clock = crtc->mode.clock;
2025
	if (!clock) {
2026
		*sprite_wm = 0;
2027
		return false;
2028
	}
2029
 
2030
	line_time_us = (sprite_width * 1000) / clock;
2031
	if (!line_time_us) {
2032
		*sprite_wm = 0;
2033
		return false;
2034
	}
2035
 
2036
	line_count = (latency_ns / line_time_us + 1000) / 1000;
2037
	line_size = sprite_width * pixel_size;
2038
 
2039
	/* Use the minimum of the small and large buffer method for primary */
2040
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2041
	large = line_count * line_size;
2042
 
2043
	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2044
	*sprite_wm = entries + display->guard_size;
2045
 
2046
	return *sprite_wm > 0x3ff ? false : true;
2047
}
2048
 
2049
static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2050
					 uint32_t sprite_width, int pixel_size)
2051
{
2052
	struct drm_i915_private *dev_priv = dev->dev_private;
2053
	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
2054
	u32 val;
2055
	int sprite_wm, reg;
2056
	int ret;
2057
 
2058
	switch (pipe) {
2059
	case 0:
2060
		reg = WM0_PIPEA_ILK;
2061
		break;
2062
	case 1:
2063
		reg = WM0_PIPEB_ILK;
2064
		break;
2065
	case 2:
2066
		reg = WM0_PIPEC_IVB;
2067
		break;
2068
	default:
2069
		return; /* bad pipe */
2070
	}
2071
 
2072
	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2073
					    &sandybridge_display_wm_info,
2074
					    latency, &sprite_wm);
2075
	if (!ret) {
2076
		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2077
			      pipe);
2078
		return;
2079
	}
2080
 
2081
	val = I915_READ(reg);
2082
	val &= ~WM0_PIPE_SPRITE_MASK;
2083
	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2084
	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2085
 
2086
 
2087
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2088
					      pixel_size,
2089
					      &sandybridge_display_srwm_info,
2090
					      SNB_READ_WM1_LATENCY() * 500,
2091
					      &sprite_wm);
2092
	if (!ret) {
2093
		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2094
			      pipe);
2095
		return;
2096
	}
2097
	I915_WRITE(WM1S_LP_ILK, sprite_wm);
2098
 
2099
	/* Only IVB has two more LP watermarks for sprite */
2100
	if (!IS_IVYBRIDGE(dev))
2101
		return;
2102
 
2103
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2104
					      pixel_size,
2105
					      &sandybridge_display_srwm_info,
2106
					      SNB_READ_WM2_LATENCY() * 500,
2107
					      &sprite_wm);
2108
	if (!ret) {
2109
		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2110
			      pipe);
2111
		return;
2112
	}
2113
	I915_WRITE(WM2S_LP_IVB, sprite_wm);
2114
 
2115
	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2116
					      pixel_size,
2117
					      &sandybridge_display_srwm_info,
2118
					      SNB_READ_WM3_LATENCY() * 500,
2119
					      &sprite_wm);
2120
	if (!ret) {
2121
		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2122
			      pipe);
2123
		return;
2124
	}
2125
	I915_WRITE(WM3S_LP_IVB, sprite_wm);
2126
}
2127
 
2128
/**
2129
 * intel_update_watermarks - update FIFO watermark values based on current modes
2130
 *
2131
 * Calculate watermark values for the various WM regs based on current mode
2132
 * and plane configuration.
2133
 *
2134
 * There are several cases to deal with here:
2135
 *   - normal (i.e. non-self-refresh)
2136
 *   - self-refresh (SR) mode
2137
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
2138
 *   - lines are small relative to FIFO size (buffer can hold more than 2
2139
 *     lines), so need to account for TLB latency
2140
 *
2141
 *   The normal calculation is:
2142
 *     watermark = dotclock * bytes per pixel * latency
2143
 *   where latency is platform & configuration dependent (we assume pessimal
2144
 *   values here).
2145
 *
2146
 *   The SR calculation is:
2147
 *     watermark = (trunc(latency/line time)+1) * surface width *
2148
 *       bytes per pixel
2149
 *   where
2150
 *     line time = htotal / dotclock
2151
 *     surface width = hdisplay for normal plane and 64 for cursor
2152
 *   and latency is assumed to be high, as above.
2153
 *
2154
 * The final value programmed to the register should always be rounded up,
2155
 * and include an extra 2 entries to account for clock crossings.
2156
 *
2157
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
2158
 * to set the non-SR watermarks to 8.
2159
 */
2160
void intel_update_watermarks(struct drm_device *dev)
2161
{
2162
	struct drm_i915_private *dev_priv = dev->dev_private;
2163
 
2164
	if (dev_priv->display.update_wm)
2165
		dev_priv->display.update_wm(dev);
2166
 
2167
}
2168
 
2169
void intel_update_linetime_watermarks(struct drm_device *dev,
2170
		int pipe, struct drm_display_mode *mode)
2171
{
2172
	struct drm_i915_private *dev_priv = dev->dev_private;
2173
 
2174
	if (dev_priv->display.update_linetime_wm)
2175
		dev_priv->display.update_linetime_wm(dev, pipe, mode);
2176
}
2177
 
2178
void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2179
				    uint32_t sprite_width, int pixel_size)
2180
{
2181
	struct drm_i915_private *dev_priv = dev->dev_private;
2182
 
2183
	if (dev_priv->display.update_sprite_wm)
2184
		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2185
						   pixel_size);
2186
}
2187
 
2188
static struct drm_i915_gem_object *
2189
intel_alloc_context_page(struct drm_device *dev)
2190
{
2191
	struct drm_i915_gem_object *ctx;
2192
	int ret;
2193
 
2194
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2195
 
2196
	ctx = i915_gem_alloc_object(dev, 4096);
2197
	if (!ctx) {
2198
		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2199
		return NULL;
2200
	}
2201
 
2202
	ret = i915_gem_object_pin(ctx, 4096, true, false);
2203
	if (ret) {
2204
		DRM_ERROR("failed to pin power context: %d\n", ret);
2205
		goto err_unref;
2206
	}
2207
 
2208
	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2209
	if (ret) {
2210
		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2211
		goto err_unpin;
2212
	}
2213
 
2214
	return ctx;
2215
 
2216
err_unpin:
2217
	i915_gem_object_unpin(ctx);
2218
err_unref:
2219
	drm_gem_object_unreference(&ctx->base);
2220
	mutex_unlock(&dev->struct_mutex);
2221
	return NULL;
2222
}
2223
 
2224
/**
2225
 * Lock protecting IPS related data structures
2226
 */
2227
DEFINE_SPINLOCK(mchdev_lock);
2228
 
2229
/* Global for IPS driver to get at the current i915 device. Protected by
2230
 * mchdev_lock. */
2231
static struct drm_i915_private *i915_mch_dev;
2232
 
2233
bool ironlake_set_drps(struct drm_device *dev, u8 val)
2234
{
2235
	struct drm_i915_private *dev_priv = dev->dev_private;
2236
	u16 rgvswctl;
2237
 
2238
	assert_spin_locked(&mchdev_lock);
2239
 
2240
	rgvswctl = I915_READ16(MEMSWCTL);
2241
	if (rgvswctl & MEMCTL_CMD_STS) {
2242
		DRM_DEBUG("gpu busy, RCS change rejected\n");
2243
		return false; /* still busy with another command */
2244
	}
2245
 
2246
	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2247
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2248
	I915_WRITE16(MEMSWCTL, rgvswctl);
2249
	POSTING_READ16(MEMSWCTL);
2250
 
2251
	rgvswctl |= MEMCTL_CMD_STS;
2252
	I915_WRITE16(MEMSWCTL, rgvswctl);
2253
 
2254
	return true;
2255
}
2256
 
2257
static void ironlake_enable_drps(struct drm_device *dev)
2258
{
2259
	struct drm_i915_private *dev_priv = dev->dev_private;
2260
	u32 rgvmodectl = I915_READ(MEMMODECTL);
2261
	u8 fmax, fmin, fstart, vstart;
2262
 
2263
	spin_lock_irq(&mchdev_lock);
2264
 
2265
	/* Enable temp reporting */
2266
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2267
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2268
 
2269
	/* 100ms RC evaluation intervals */
2270
	I915_WRITE(RCUPEI, 100000);
2271
	I915_WRITE(RCDNEI, 100000);
2272
 
2273
	/* Set max/min thresholds to 90ms and 80ms respectively */
2274
	I915_WRITE(RCBMAXAVG, 90000);
2275
	I915_WRITE(RCBMINAVG, 80000);
2276
 
2277
	I915_WRITE(MEMIHYST, 1);
2278
 
2279
	/* Set up min, max, and cur for interrupt handling */
2280
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2281
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2282
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2283
		MEMMODE_FSTART_SHIFT;
2284
 
2285
	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2286
		PXVFREQ_PX_SHIFT;
2287
 
2288
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2289
	dev_priv->ips.fstart = fstart;
2290
 
2291
	dev_priv->ips.max_delay = fstart;
2292
	dev_priv->ips.min_delay = fmin;
2293
	dev_priv->ips.cur_delay = fstart;
2294
 
2295
	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2296
			 fmax, fmin, fstart);
2297
 
2298
	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2299
 
2300
	/*
2301
	 * Interrupts will be enabled in ironlake_irq_postinstall
2302
	 */
2303
 
2304
	I915_WRITE(VIDSTART, vstart);
2305
	POSTING_READ(VIDSTART);
2306
 
2307
	rgvmodectl |= MEMMODE_SWMODE_EN;
2308
	I915_WRITE(MEMMODECTL, rgvmodectl);
2309
 
2310
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2311
		DRM_ERROR("stuck trying to change perf mode\n");
2312
	mdelay(1);
2313
 
2314
	ironlake_set_drps(dev, fstart);
2315
 
2316
	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2317
		I915_READ(0x112e0);
2318
    dev_priv->ips.last_time1 = jiffies_to_msecs(GetTimerTicks());
2319
	dev_priv->ips.last_count2 = I915_READ(0x112f4);
2320
//   getrawmonotonic(&dev_priv->ips.last_time2);
2321
 
2322
	spin_unlock_irq(&mchdev_lock);
2323
}
2324
 
2325
static void ironlake_disable_drps(struct drm_device *dev)
2326
{
2327
	struct drm_i915_private *dev_priv = dev->dev_private;
2328
	u16 rgvswctl;
2329
 
2330
	spin_lock_irq(&mchdev_lock);
2331
 
2332
	rgvswctl = I915_READ16(MEMSWCTL);
2333
 
2334
	/* Ack interrupts, disable EFC interrupt */
2335
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2336
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2337
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2338
	I915_WRITE(DEIIR, DE_PCU_EVENT);
2339
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2340
 
2341
	/* Go back to the starting frequency */
2342
	ironlake_set_drps(dev, dev_priv->ips.fstart);
2343
	mdelay(1);
2344
	rgvswctl |= MEMCTL_CMD_STS;
2345
	I915_WRITE(MEMSWCTL, rgvswctl);
2346
	mdelay(1);
2347
 
2348
	spin_unlock_irq(&mchdev_lock);
2349
}
2350
 
2351
/* There's a funny hw issue where the hw returns all 0 when reading from
2352
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2353
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2354
 * all limits and the gpu stuck at whatever frequency it is at atm).
2355
 */
2356
static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2357
{
2358
	u32 limits;
2359
 
2360
	limits = 0;
2361
 
2362
	if (*val >= dev_priv->rps.max_delay)
2363
		*val = dev_priv->rps.max_delay;
2364
	limits |= dev_priv->rps.max_delay << 24;
2365
 
2366
	/* Only set the down limit when we've reached the lowest level to avoid
2367
	 * getting more interrupts, otherwise leave this clear. This prevents a
2368
	 * race in the hw when coming out of rc6: There's a tiny window where
2369
	 * the hw runs at the minimal clock before selecting the desired
2370
	 * frequency, if the down threshold expires in that window we will not
2371
	 * receive a down interrupt. */
2372
	if (*val <= dev_priv->rps.min_delay) {
2373
		*val = dev_priv->rps.min_delay;
2374
		limits |= dev_priv->rps.min_delay << 16;
2375
	}
2376
 
2377
	return limits;
2378
}
2379
 
2380
void gen6_set_rps(struct drm_device *dev, u8 val)
2381
{
2382
	struct drm_i915_private *dev_priv = dev->dev_private;
2383
	u32 limits = gen6_rps_limits(dev_priv, &val);
2384
 
2385
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2386
	WARN_ON(val > dev_priv->rps.max_delay);
2387
	WARN_ON(val < dev_priv->rps.min_delay);
2388
 
2389
	if (val == dev_priv->rps.cur_delay)
2390
		return;
2391
 
2392
	I915_WRITE(GEN6_RPNSWREQ,
2393
		   GEN6_FREQUENCY(val) |
2394
		   GEN6_OFFSET(0) |
2395
		   GEN6_AGGRESSIVE_TURBO);
2396
 
2397
	/* Make sure we continue to get interrupts
2398
	 * until we hit the minimum or maximum frequencies.
2399
	 */
2400
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2401
 
2402
	POSTING_READ(GEN6_RPNSWREQ);
2403
 
2404
	dev_priv->rps.cur_delay = val;
2405
 
2406
	trace_intel_gpu_freq_change(val * 50);
2407
}
2408
 
2409
static void gen6_disable_rps(struct drm_device *dev)
2410
{
2411
	struct drm_i915_private *dev_priv = dev->dev_private;
2412
 
2413
	I915_WRITE(GEN6_RC_CONTROL, 0);
2414
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2415
	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2416
	I915_WRITE(GEN6_PMIER, 0);
2417
	/* Complete PM interrupt masking here doesn't race with the rps work
2418
	 * item again unmasking PM interrupts because that is using a different
2419
	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2420
	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2421
 
2422
	spin_lock_irq(&dev_priv->rps.lock);
2423
	dev_priv->rps.pm_iir = 0;
2424
	spin_unlock_irq(&dev_priv->rps.lock);
2425
 
2426
	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2427
}
2428
 
2429
int intel_enable_rc6(const struct drm_device *dev)
2430
{
2431
	/* Respect the kernel parameter if it is set */
2432
	if (i915_enable_rc6 >= 0)
2433
		return i915_enable_rc6;
2434
 
2435
	if (INTEL_INFO(dev)->gen == 5) {
2436
#ifdef CONFIG_INTEL_IOMMU
2437
		/* Disable rc6 on ilk if VT-d is on. */
2438
		if (intel_iommu_gfx_mapped)
2439
			return false;
2440
#endif
2441
		DRM_DEBUG_DRIVER("Ironlake: only RC6 available\n");
2442
		return INTEL_RC6_ENABLE;
2443
	}
2444
 
2445
	if (IS_HASWELL(dev)) {
2446
		DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2447
		return INTEL_RC6_ENABLE;
2448
	}
2449
 
2450
	/* snb/ivb have more than one rc6 state. */
2451
	if (INTEL_INFO(dev)->gen == 6) {
2452
		DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2453
		return INTEL_RC6_ENABLE;
2454
	}
2455
 
2456
	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2457
	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2458
}
2459
 
2460
static void gen6_enable_rps(struct drm_device *dev)
2461
{
2462
	struct drm_i915_private *dev_priv = dev->dev_private;
2463
	struct intel_ring_buffer *ring;
2464
	u32 rp_state_cap;
2465
	u32 gt_perf_status;
2466
	u32 pcu_mbox, rc6_mask = 0;
2467
	u32 gtfifodbg;
2468
	int rc6_mode;
2469
	int i;
2470
 
2471
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2472
 
2473
	/* Here begins a magic sequence of register writes to enable
2474
	 * auto-downclocking.
2475
	 *
2476
	 * Perhaps there might be some value in exposing these to
2477
	 * userspace...
2478
	 */
2479
	I915_WRITE(GEN6_RC_STATE, 0);
2480
 
2481
	/* Clear the DBG now so we don't confuse earlier errors */
2482
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2483
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2484
		I915_WRITE(GTFIFODBG, gtfifodbg);
2485
	}
2486
 
2487
	gen6_gt_force_wake_get(dev_priv);
2488
 
2489
	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2490
	gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2491
 
2492
	/* In units of 100MHz */
2493
	dev_priv->rps.max_delay = rp_state_cap & 0xff;
2494
	dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2495
	dev_priv->rps.cur_delay = 0;
2496
 
2497
	/* disable the counters and set deterministic thresholds */
2498
	I915_WRITE(GEN6_RC_CONTROL, 0);
2499
 
2500
	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2501
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2502
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2503
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2504
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2505
 
2506
	for_each_ring(ring, dev_priv, i)
2507
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2508
 
2509
	I915_WRITE(GEN6_RC_SLEEP, 0);
2510
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2511
	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2512
	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2513
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2514
 
2515
	/* Check if we are enabling RC6 */
2516
	rc6_mode = intel_enable_rc6(dev_priv->dev);
2517
	if (rc6_mode & INTEL_RC6_ENABLE)
2518
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2519
 
2520
	/* We don't use those on Haswell */
2521
	if (!IS_HASWELL(dev)) {
2522
		if (rc6_mode & INTEL_RC6p_ENABLE)
2523
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2524
 
2525
		if (rc6_mode & INTEL_RC6pp_ENABLE)
2526
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2527
	}
2528
 
2529
	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2530
			(rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2531
			(rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2532
			(rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2533
 
2534
	I915_WRITE(GEN6_RC_CONTROL,
2535
		   rc6_mask |
2536
		   GEN6_RC_CTL_EI_MODE(1) |
2537
		   GEN6_RC_CTL_HW_ENABLE);
2538
 
2539
	I915_WRITE(GEN6_RPNSWREQ,
2540
		   GEN6_FREQUENCY(10) |
2541
		   GEN6_OFFSET(0) |
2542
		   GEN6_AGGRESSIVE_TURBO);
2543
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
2544
		   GEN6_FREQUENCY(12));
2545
 
2546
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2547
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2548
		   dev_priv->rps.max_delay << 24 |
2549
		   dev_priv->rps.min_delay << 16);
2550
 
2551
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2552
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2553
	I915_WRITE(GEN6_RP_UP_EI, 66000);
2554
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2555
 
2556
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2557
	I915_WRITE(GEN6_RP_CONTROL,
2558
		   GEN6_RP_MEDIA_TURBO |
2559
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
2560
		   GEN6_RP_MEDIA_IS_GFX |
2561
		   GEN6_RP_ENABLE |
2562
		   GEN6_RP_UP_BUSY_AVG |
2563
		   (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2564
 
2565
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2566
		     500))
2567
		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2568
 
2569
	I915_WRITE(GEN6_PCODE_DATA, 0);
2570
	I915_WRITE(GEN6_PCODE_MAILBOX,
2571
		   GEN6_PCODE_READY |
2572
		   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2573
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2574
		     500))
2575
		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2576
 
2577
	/* Check for overclock support */
2578
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2579
		     500))
2580
		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
2581
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
2582
	pcu_mbox = I915_READ(GEN6_PCODE_DATA);
2583
	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
2584
		     500))
2585
		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
2586
	if (pcu_mbox & (1<<31)) { /* OC supported */
2587
		dev_priv->rps.max_delay = pcu_mbox & 0xff;
2588
		DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2589
	}
2590
 
2591
	gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2592
 
2593
	/* requires MSI enabled */
2594
	I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2595
	spin_lock_irq(&dev_priv->rps.lock);
2596
	WARN_ON(dev_priv->rps.pm_iir != 0);
2597
	I915_WRITE(GEN6_PMIMR, 0);
2598
	spin_unlock_irq(&dev_priv->rps.lock);
2599
	/* enable all PM interrupts */
2600
	I915_WRITE(GEN6_PMINTRMSK, 0);
2601
 
2602
	gen6_gt_force_wake_put(dev_priv);
2603
}
2604
 
2605
#if 0
2606
static void gen6_update_ring_freq(struct drm_device *dev)
2607
{
2608
	struct drm_i915_private *dev_priv = dev->dev_private;
2609
	int min_freq = 15;
2610
	int gpu_freq, ia_freq, max_ia_freq;
2611
	int scaling_factor = 180;
2612
 
2613
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2614
 
2615
	max_ia_freq = cpufreq_quick_get_max(0);
2616
	/*
2617
	 * Default to measured freq if none found, PCU will ensure we don't go
2618
	 * over
2619
	 */
2620
	if (!max_ia_freq)
2621
		max_ia_freq = tsc_khz;
2622
 
2623
	/* Convert from kHz to MHz */
2624
	max_ia_freq /= 1000;
2625
 
2626
	/*
2627
	 * For each potential GPU frequency, load a ring frequency we'd like
2628
	 * to use for memory access.  We do this by specifying the IA frequency
2629
	 * the PCU should use as a reference to determine the ring frequency.
2630
	 */
2631
	for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2632
	     gpu_freq--) {
2633
		int diff = dev_priv->rps.max_delay - gpu_freq;
2634
 
2635
		/*
2636
		 * For GPU frequencies less than 750MHz, just use the lowest
2637
		 * ring freq.
2638
		 */
2639
		if (gpu_freq < min_freq)
2640
			ia_freq = 800;
2641
		else
2642
			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2643
		ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2644
 
2645
		I915_WRITE(GEN6_PCODE_DATA,
2646
			   (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
2647
			   gpu_freq);
2648
		I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
2649
			   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
2650
		if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
2651
			      GEN6_PCODE_READY) == 0, 10)) {
2652
			DRM_ERROR("pcode write of freq table timed out\n");
2653
			continue;
2654
		}
2655
	}
2656
}
2657
#endif
2658
 
2659
void ironlake_teardown_rc6(struct drm_device *dev)
2660
{
2661
	struct drm_i915_private *dev_priv = dev->dev_private;
2662
 
2663
	if (dev_priv->renderctx) {
2664
		i915_gem_object_unpin(dev_priv->renderctx);
2665
		drm_gem_object_unreference(&dev_priv->renderctx->base);
2666
		dev_priv->renderctx = NULL;
2667
	}
2668
 
2669
	if (dev_priv->pwrctx) {
2670
		i915_gem_object_unpin(dev_priv->pwrctx);
2671
		drm_gem_object_unreference(&dev_priv->pwrctx->base);
2672
		dev_priv->pwrctx = NULL;
2673
	}
2674
}
2675
 
2676
static void ironlake_disable_rc6(struct drm_device *dev)
2677
{
2678
	struct drm_i915_private *dev_priv = dev->dev_private;
2679
 
2680
	if (I915_READ(PWRCTXA)) {
2681
		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2682
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2683
		wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2684
			 50);
2685
 
2686
		I915_WRITE(PWRCTXA, 0);
2687
		POSTING_READ(PWRCTXA);
2688
 
2689
		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2690
		POSTING_READ(RSTDBYCTL);
2691
	}
2692
}
2693
 
2694
static int ironlake_setup_rc6(struct drm_device *dev)
2695
{
2696
	struct drm_i915_private *dev_priv = dev->dev_private;
2697
 
2698
	if (dev_priv->renderctx == NULL)
2699
		dev_priv->renderctx = intel_alloc_context_page(dev);
2700
	if (!dev_priv->renderctx)
2701
		return -ENOMEM;
2702
 
2703
	if (dev_priv->pwrctx == NULL)
2704
		dev_priv->pwrctx = intel_alloc_context_page(dev);
2705
	if (!dev_priv->pwrctx) {
2706
		ironlake_teardown_rc6(dev);
2707
		return -ENOMEM;
2708
	}
2709
 
2710
	return 0;
2711
}
2712
 
2713
static void ironlake_enable_rc6(struct drm_device *dev)
2714
{
2715
	struct drm_i915_private *dev_priv = dev->dev_private;
2716
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2717
	int ret;
2718
 
2719
	/* rc6 disabled by default due to repeated reports of hanging during
2720
	 * boot and resume.
2721
	 */
2722
	if (!intel_enable_rc6(dev))
2723
		return;
2724
 
2725
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2726
 
2727
	ret = ironlake_setup_rc6(dev);
2728
	if (ret)
2729
		return;
2730
 
2731
	/*
2732
	 * GPU can automatically power down the render unit if given a page
2733
	 * to save state.
2734
	 */
2735
	ret = intel_ring_begin(ring, 6);
2736
	if (ret) {
2737
		ironlake_teardown_rc6(dev);
2738
		return;
2739
	}
2740
 
2741
	intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2742
	intel_ring_emit(ring, MI_SET_CONTEXT);
2743
	intel_ring_emit(ring, dev_priv->renderctx->gtt_offset |
2744
			MI_MM_SPACE_GTT |
2745
			MI_SAVE_EXT_STATE_EN |
2746
			MI_RESTORE_EXT_STATE_EN |
2747
			MI_RESTORE_INHIBIT);
2748
	intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2749
	intel_ring_emit(ring, MI_NOOP);
2750
	intel_ring_emit(ring, MI_FLUSH);
2751
	intel_ring_advance(ring);
2752
 
2753
	/*
2754
	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2755
	 * does an implicit flush, combined with MI_FLUSH above, it should be
2756
	 * safe to assume that renderctx is valid
2757
	 */
2758
	ret = intel_wait_ring_idle(ring);
2759
	if (ret) {
2760
		DRM_ERROR("failed to enable ironlake power power savings\n");
2761
		ironlake_teardown_rc6(dev);
2762
		return;
2763
	}
2764
 
2765
	I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
2766
	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2767
}
2768
 
2769
static unsigned long intel_pxfreq(u32 vidfreq)
2770
{
2771
	unsigned long freq;
2772
	int div = (vidfreq & 0x3f0000) >> 16;
2773
	int post = (vidfreq & 0x3000) >> 12;
2774
	int pre = (vidfreq & 0x7);
2775
 
2776
	if (!pre)
2777
		return 0;
2778
 
2779
	freq = ((div * 133333) / ((1<
2780
 
2781
	return freq;
2782
}
2783
 
2784
static const struct cparams {
2785
	u16 i;
2786
	u16 t;
2787
	u16 m;
2788
	u16 c;
2789
} cparams[] = {
2790
	{ 1, 1333, 301, 28664 },
2791
	{ 1, 1066, 294, 24460 },
2792
	{ 1, 800, 294, 25192 },
2793
	{ 0, 1333, 276, 27605 },
2794
	{ 0, 1066, 276, 27605 },
2795
	{ 0, 800, 231, 23784 },
2796
};
2797
 
2798
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2799
{
2800
	u64 total_count, diff, ret;
2801
	u32 count1, count2, count3, m = 0, c = 0;
2802
    unsigned long now = jiffies_to_msecs(GetTimerTicks()), diff1;
2803
	int i;
2804
 
2805
	assert_spin_locked(&mchdev_lock);
2806
 
2807
	diff1 = now - dev_priv->ips.last_time1;
2808
 
2809
	/* Prevent division-by-zero if we are asking too fast.
2810
	 * Also, we don't get interesting results if we are polling
2811
	 * faster than once in 10ms, so just return the saved value
2812
	 * in such cases.
2813
	 */
2814
	if (diff1 <= 10)
2815
		return dev_priv->ips.chipset_power;
2816
 
2817
	count1 = I915_READ(DMIEC);
2818
	count2 = I915_READ(DDREC);
2819
	count3 = I915_READ(CSIEC);
2820
 
2821
	total_count = count1 + count2 + count3;
2822
 
2823
	/* FIXME: handle per-counter overflow */
2824
	if (total_count < dev_priv->ips.last_count1) {
2825
		diff = ~0UL - dev_priv->ips.last_count1;
2826
		diff += total_count;
2827
	} else {
2828
		diff = total_count - dev_priv->ips.last_count1;
2829
	}
2830
 
2831
	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2832
		if (cparams[i].i == dev_priv->ips.c_m &&
2833
		    cparams[i].t == dev_priv->ips.r_t) {
2834
			m = cparams[i].m;
2835
			c = cparams[i].c;
2836
			break;
2837
		}
2838
	}
2839
 
2840
	diff = div_u64(diff, diff1);
2841
	ret = ((m * diff) + c);
2842
	ret = div_u64(ret, 10);
2843
 
2844
	dev_priv->ips.last_count1 = total_count;
2845
	dev_priv->ips.last_time1 = now;
2846
 
2847
	dev_priv->ips.chipset_power = ret;
2848
 
2849
	return ret;
2850
}
2851
 
2852
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2853
{
2854
	unsigned long val;
2855
 
2856
	if (dev_priv->info->gen != 5)
2857
		return 0;
2858
 
2859
	spin_lock_irq(&mchdev_lock);
2860
 
2861
	val = __i915_chipset_val(dev_priv);
2862
 
2863
	spin_unlock_irq(&mchdev_lock);
2864
 
2865
	return val;
2866
}
2867
 
2868
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2869
{
2870
	unsigned long m, x, b;
2871
	u32 tsfs;
2872
 
2873
	tsfs = I915_READ(TSFS);
2874
 
2875
	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2876
	x = I915_READ8(TR1);
2877
 
2878
	b = tsfs & TSFS_INTR_MASK;
2879
 
2880
	return ((m * x) / 127) - b;
2881
}
2882
 
2883
static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2884
{
2885
	static const struct v_table {
2886
		u16 vd; /* in .1 mil */
2887
		u16 vm; /* in .1 mil */
2888
	} v_table[] = {
2889
		{ 0, 0, },
2890
		{ 375, 0, },
2891
		{ 500, 0, },
2892
		{ 625, 0, },
2893
		{ 750, 0, },
2894
		{ 875, 0, },
2895
		{ 1000, 0, },
2896
		{ 1125, 0, },
2897
		{ 4125, 3000, },
2898
		{ 4125, 3000, },
2899
		{ 4125, 3000, },
2900
		{ 4125, 3000, },
2901
		{ 4125, 3000, },
2902
		{ 4125, 3000, },
2903
		{ 4125, 3000, },
2904
		{ 4125, 3000, },
2905
		{ 4125, 3000, },
2906
		{ 4125, 3000, },
2907
		{ 4125, 3000, },
2908
		{ 4125, 3000, },
2909
		{ 4125, 3000, },
2910
		{ 4125, 3000, },
2911
		{ 4125, 3000, },
2912
		{ 4125, 3000, },
2913
		{ 4125, 3000, },
2914
		{ 4125, 3000, },
2915
		{ 4125, 3000, },
2916
		{ 4125, 3000, },
2917
		{ 4125, 3000, },
2918
		{ 4125, 3000, },
2919
		{ 4125, 3000, },
2920
		{ 4125, 3000, },
2921
		{ 4250, 3125, },
2922
		{ 4375, 3250, },
2923
		{ 4500, 3375, },
2924
		{ 4625, 3500, },
2925
		{ 4750, 3625, },
2926
		{ 4875, 3750, },
2927
		{ 5000, 3875, },
2928
		{ 5125, 4000, },
2929
		{ 5250, 4125, },
2930
		{ 5375, 4250, },
2931
		{ 5500, 4375, },
2932
		{ 5625, 4500, },
2933
		{ 5750, 4625, },
2934
		{ 5875, 4750, },
2935
		{ 6000, 4875, },
2936
		{ 6125, 5000, },
2937
		{ 6250, 5125, },
2938
		{ 6375, 5250, },
2939
		{ 6500, 5375, },
2940
		{ 6625, 5500, },
2941
		{ 6750, 5625, },
2942
		{ 6875, 5750, },
2943
		{ 7000, 5875, },
2944
		{ 7125, 6000, },
2945
		{ 7250, 6125, },
2946
		{ 7375, 6250, },
2947
		{ 7500, 6375, },
2948
		{ 7625, 6500, },
2949
		{ 7750, 6625, },
2950
		{ 7875, 6750, },
2951
		{ 8000, 6875, },
2952
		{ 8125, 7000, },
2953
		{ 8250, 7125, },
2954
		{ 8375, 7250, },
2955
		{ 8500, 7375, },
2956
		{ 8625, 7500, },
2957
		{ 8750, 7625, },
2958
		{ 8875, 7750, },
2959
		{ 9000, 7875, },
2960
		{ 9125, 8000, },
2961
		{ 9250, 8125, },
2962
		{ 9375, 8250, },
2963
		{ 9500, 8375, },
2964
		{ 9625, 8500, },
2965
		{ 9750, 8625, },
2966
		{ 9875, 8750, },
2967
		{ 10000, 8875, },
2968
		{ 10125, 9000, },
2969
		{ 10250, 9125, },
2970
		{ 10375, 9250, },
2971
		{ 10500, 9375, },
2972
		{ 10625, 9500, },
2973
		{ 10750, 9625, },
2974
		{ 10875, 9750, },
2975
		{ 11000, 9875, },
2976
		{ 11125, 10000, },
2977
		{ 11250, 10125, },
2978
		{ 11375, 10250, },
2979
		{ 11500, 10375, },
2980
		{ 11625, 10500, },
2981
		{ 11750, 10625, },
2982
		{ 11875, 10750, },
2983
		{ 12000, 10875, },
2984
		{ 12125, 11000, },
2985
		{ 12250, 11125, },
2986
		{ 12375, 11250, },
2987
		{ 12500, 11375, },
2988
		{ 12625, 11500, },
2989
		{ 12750, 11625, },
2990
		{ 12875, 11750, },
2991
		{ 13000, 11875, },
2992
		{ 13125, 12000, },
2993
		{ 13250, 12125, },
2994
		{ 13375, 12250, },
2995
		{ 13500, 12375, },
2996
		{ 13625, 12500, },
2997
		{ 13750, 12625, },
2998
		{ 13875, 12750, },
2999
		{ 14000, 12875, },
3000
		{ 14125, 13000, },
3001
		{ 14250, 13125, },
3002
		{ 14375, 13250, },
3003
		{ 14500, 13375, },
3004
		{ 14625, 13500, },
3005
		{ 14750, 13625, },
3006
		{ 14875, 13750, },
3007
		{ 15000, 13875, },
3008
		{ 15125, 14000, },
3009
		{ 15250, 14125, },
3010
		{ 15375, 14250, },
3011
		{ 15500, 14375, },
3012
		{ 15625, 14500, },
3013
		{ 15750, 14625, },
3014
		{ 15875, 14750, },
3015
		{ 16000, 14875, },
3016
		{ 16125, 15000, },
3017
	};
3018
	if (dev_priv->info->is_mobile)
3019
		return v_table[pxvid].vm;
3020
	else
3021
		return v_table[pxvid].vd;
3022
}
3023
 
3024
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3025
{
3026
	struct timespec now, diff1;
3027
	u64 diff;
3028
	unsigned long diffms;
3029
	u32 count;
3030
 
3031
	assert_spin_locked(&mchdev_lock);
3032
 
3033
	getrawmonotonic(&now);
3034
	diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3035
 
3036
	/* Don't divide by 0 */
3037
	diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3038
	if (!diffms)
3039
		return;
3040
 
3041
	count = I915_READ(GFXEC);
3042
 
3043
	if (count < dev_priv->ips.last_count2) {
3044
		diff = ~0UL - dev_priv->ips.last_count2;
3045
		diff += count;
3046
	} else {
3047
		diff = count - dev_priv->ips.last_count2;
3048
	}
3049
 
3050
	dev_priv->ips.last_count2 = count;
3051
	dev_priv->ips.last_time2 = now;
3052
 
3053
	/* More magic constants... */
3054
	diff = diff * 1181;
3055
	diff = div_u64(diff, diffms * 10);
3056
	dev_priv->ips.gfx_power = diff;
3057
}
3058
 
3059
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3060
{
3061
	if (dev_priv->info->gen != 5)
3062
		return;
3063
 
3064
	spin_lock_irq(&mchdev_lock);
3065
 
3066
	__i915_update_gfx_val(dev_priv);
3067
 
3068
	spin_unlock_irq(&mchdev_lock);
3069
}
3070
 
3071
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3072
{
3073
	unsigned long t, corr, state1, corr2, state2;
3074
	u32 pxvid, ext_v;
3075
 
3076
	assert_spin_locked(&mchdev_lock);
3077
 
3078
	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3079
	pxvid = (pxvid >> 24) & 0x7f;
3080
	ext_v = pvid_to_extvid(dev_priv, pxvid);
3081
 
3082
	state1 = ext_v;
3083
 
3084
	t = i915_mch_val(dev_priv);
3085
 
3086
	/* Revel in the empirically derived constants */
3087
 
3088
	/* Correction factor in 1/100000 units */
3089
	if (t > 80)
3090
		corr = ((t * 2349) + 135940);
3091
	else if (t >= 50)
3092
		corr = ((t * 964) + 29317);
3093
	else /* < 50 */
3094
		corr = ((t * 301) + 1004);
3095
 
3096
	corr = corr * ((150142 * state1) / 10000 - 78642);
3097
	corr /= 100000;
3098
	corr2 = (corr * dev_priv->ips.corr);
3099
 
3100
	state2 = (corr2 * state1) / 10000;
3101
	state2 /= 100; /* convert to mW */
3102
 
3103
	__i915_update_gfx_val(dev_priv);
3104
 
3105
	return dev_priv->ips.gfx_power + state2;
3106
}
3107
 
3108
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3109
{
3110
	unsigned long val;
3111
 
3112
	if (dev_priv->info->gen != 5)
3113
		return 0;
3114
 
3115
	spin_lock_irq(&mchdev_lock);
3116
 
3117
	val = __i915_gfx_val(dev_priv);
3118
 
3119
	spin_unlock_irq(&mchdev_lock);
3120
 
3121
	return val;
3122
}
3123
 
3124
/**
3125
 * i915_read_mch_val - return value for IPS use
3126
 *
3127
 * Calculate and return a value for the IPS driver to use when deciding whether
3128
 * we have thermal and power headroom to increase CPU or GPU power budget.
3129
 */
3130
unsigned long i915_read_mch_val(void)
3131
{
3132
	struct drm_i915_private *dev_priv;
3133
	unsigned long chipset_val, graphics_val, ret = 0;
3134
 
3135
	spin_lock_irq(&mchdev_lock);
3136
	if (!i915_mch_dev)
3137
		goto out_unlock;
3138
	dev_priv = i915_mch_dev;
3139
 
3140
	chipset_val = __i915_chipset_val(dev_priv);
3141
	graphics_val = __i915_gfx_val(dev_priv);
3142
 
3143
	ret = chipset_val + graphics_val;
3144
 
3145
out_unlock:
3146
	spin_unlock_irq(&mchdev_lock);
3147
 
3148
	return ret;
3149
}
3150
EXPORT_SYMBOL_GPL(i915_read_mch_val);
3151
 
3152
/**
3153
 * i915_gpu_raise - raise GPU frequency limit
3154
 *
3155
 * Raise the limit; IPS indicates we have thermal headroom.
3156
 */
3157
bool i915_gpu_raise(void)
3158
{
3159
	struct drm_i915_private *dev_priv;
3160
	bool ret = true;
3161
 
3162
	spin_lock_irq(&mchdev_lock);
3163
	if (!i915_mch_dev) {
3164
		ret = false;
3165
		goto out_unlock;
3166
	}
3167
	dev_priv = i915_mch_dev;
3168
 
3169
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3170
		dev_priv->ips.max_delay--;
3171
 
3172
out_unlock:
3173
	spin_unlock_irq(&mchdev_lock);
3174
 
3175
	return ret;
3176
}
3177
EXPORT_SYMBOL_GPL(i915_gpu_raise);
3178
 
3179
/**
3180
 * i915_gpu_lower - lower GPU frequency limit
3181
 *
3182
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3183
 * frequency maximum.
3184
 */
3185
bool i915_gpu_lower(void)
3186
{
3187
	struct drm_i915_private *dev_priv;
3188
	bool ret = true;
3189
 
3190
	spin_lock_irq(&mchdev_lock);
3191
	if (!i915_mch_dev) {
3192
		ret = false;
3193
		goto out_unlock;
3194
	}
3195
	dev_priv = i915_mch_dev;
3196
 
3197
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3198
		dev_priv->ips.max_delay++;
3199
 
3200
out_unlock:
3201
	spin_unlock_irq(&mchdev_lock);
3202
 
3203
	return ret;
3204
}
3205
EXPORT_SYMBOL_GPL(i915_gpu_lower);
3206
 
3207
/**
3208
 * i915_gpu_busy - indicate GPU business to IPS
3209
 *
3210
 * Tell the IPS driver whether or not the GPU is busy.
3211
 */
3212
bool i915_gpu_busy(void)
3213
{
3214
	struct drm_i915_private *dev_priv;
3215
	struct intel_ring_buffer *ring;
3216
	bool ret = false;
3217
	int i;
3218
 
3219
	spin_lock_irq(&mchdev_lock);
3220
	if (!i915_mch_dev)
3221
		goto out_unlock;
3222
	dev_priv = i915_mch_dev;
3223
 
3224
	for_each_ring(ring, dev_priv, i)
3225
		ret |= !list_empty(&ring->request_list);
3226
 
3227
out_unlock:
3228
	spin_unlock_irq(&mchdev_lock);
3229
 
3230
	return ret;
3231
}
3232
EXPORT_SYMBOL_GPL(i915_gpu_busy);
3233
 
3234
/**
3235
 * i915_gpu_turbo_disable - disable graphics turbo
3236
 *
3237
 * Disable graphics turbo by resetting the max frequency and setting the
3238
 * current frequency to the default.
3239
 */
3240
bool i915_gpu_turbo_disable(void)
3241
{
3242
	struct drm_i915_private *dev_priv;
3243
	bool ret = true;
3244
 
3245
	spin_lock_irq(&mchdev_lock);
3246
	if (!i915_mch_dev) {
3247
		ret = false;
3248
		goto out_unlock;
3249
	}
3250
	dev_priv = i915_mch_dev;
3251
 
3252
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
3253
 
3254
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3255
		ret = false;
3256
 
3257
out_unlock:
3258
	spin_unlock_irq(&mchdev_lock);
3259
 
3260
	return ret;
3261
}
3262
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3263
 
3264
/**
3265
 * Tells the intel_ips driver that the i915 driver is now loaded, if
3266
 * IPS got loaded first.
3267
 *
3268
 * This awkward dance is so that neither module has to depend on the
3269
 * other in order for IPS to do the appropriate communication of
3270
 * GPU turbo limits to i915.
3271
 */
3272
static void
3273
ips_ping_for_i915_load(void)
3274
{
3275
	void (*link)(void);
3276
 
3277
//   link = symbol_get(ips_link_to_i915_driver);
3278
//   if (link) {
3279
//       link();
3280
//       symbol_put(ips_link_to_i915_driver);
3281
//   }
3282
}
3283
 
3284
void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3285
{
3286
	/* We only register the i915 ips part with intel-ips once everything is
3287
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3288
	spin_lock_irq(&mchdev_lock);
3289
	i915_mch_dev = dev_priv;
3290
	spin_unlock_irq(&mchdev_lock);
3291
 
3292
	ips_ping_for_i915_load();
3293
}
3294
 
3295
void intel_gpu_ips_teardown(void)
3296
{
3297
	spin_lock_irq(&mchdev_lock);
3298
	i915_mch_dev = NULL;
3299
	spin_unlock_irq(&mchdev_lock);
3300
}
3301
static void intel_init_emon(struct drm_device *dev)
3302
{
3303
	struct drm_i915_private *dev_priv = dev->dev_private;
3304
	u32 lcfuse;
3305
	u8 pxw[16];
3306
	int i;
3307
 
3308
	/* Disable to program */
3309
	I915_WRITE(ECR, 0);
3310
	POSTING_READ(ECR);
3311
 
3312
	/* Program energy weights for various events */
3313
	I915_WRITE(SDEW, 0x15040d00);
3314
	I915_WRITE(CSIEW0, 0x007f0000);
3315
	I915_WRITE(CSIEW1, 0x1e220004);
3316
	I915_WRITE(CSIEW2, 0x04000004);
3317
 
3318
	for (i = 0; i < 5; i++)
3319
		I915_WRITE(PEW + (i * 4), 0);
3320
	for (i = 0; i < 3; i++)
3321
		I915_WRITE(DEW + (i * 4), 0);
3322
 
3323
	/* Program P-state weights to account for frequency power adjustment */
3324
	for (i = 0; i < 16; i++) {
3325
		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3326
		unsigned long freq = intel_pxfreq(pxvidfreq);
3327
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3328
			PXVFREQ_PX_SHIFT;
3329
		unsigned long val;
3330
 
3331
		val = vid * vid;
3332
		val *= (freq / 1000);
3333
		val *= 255;
3334
		val /= (127*127*900);
3335
		if (val > 0xff)
3336
			DRM_ERROR("bad pxval: %ld\n", val);
3337
		pxw[i] = val;
3338
	}
3339
	/* Render standby states get 0 weight */
3340
	pxw[14] = 0;
3341
	pxw[15] = 0;
3342
 
3343
	for (i = 0; i < 4; i++) {
3344
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3345
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3346
		I915_WRITE(PXW + (i * 4), val);
3347
	}
3348
 
3349
	/* Adjust magic regs to magic values (more experimental results) */
3350
	I915_WRITE(OGW0, 0);
3351
	I915_WRITE(OGW1, 0);
3352
	I915_WRITE(EG0, 0x00007f00);
3353
	I915_WRITE(EG1, 0x0000000e);
3354
	I915_WRITE(EG2, 0x000e0000);
3355
	I915_WRITE(EG3, 0x68000300);
3356
	I915_WRITE(EG4, 0x42000000);
3357
	I915_WRITE(EG5, 0x00140031);
3358
	I915_WRITE(EG6, 0);
3359
	I915_WRITE(EG7, 0);
3360
 
3361
	for (i = 0; i < 8; i++)
3362
		I915_WRITE(PXWL + (i * 4), 0);
3363
 
3364
	/* Enable PMON + select events */
3365
	I915_WRITE(ECR, 0x80000019);
3366
 
3367
	lcfuse = I915_READ(LCFUSE02);
3368
 
3369
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3370
}
3371
 
3372
void intel_disable_gt_powersave(struct drm_device *dev)
3373
{
3374
	if (IS_IRONLAKE_M(dev)) {
3375
		ironlake_disable_drps(dev);
3376
		ironlake_disable_rc6(dev);
3377
	} else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3378
		gen6_disable_rps(dev);
3379
	}
3380
}
3381
 
3382
void intel_enable_gt_powersave(struct drm_device *dev)
3383
{
3384
	if (IS_IRONLAKE_M(dev)) {
3385
		ironlake_enable_drps(dev);
3386
		ironlake_enable_rc6(dev);
3387
		intel_init_emon(dev);
3388
	} else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3389
//       gen6_enable_rps(dev);
3390
//       gen6_update_ring_freq(dev);
3391
	}
3392
}
3393
 
3394
static void ironlake_init_clock_gating(struct drm_device *dev)
3395
{
3396
	struct drm_i915_private *dev_priv = dev->dev_private;
3397
	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3398
 
3399
	/* Required for FBC */
3400
	dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
3401
		DPFCRUNIT_CLOCK_GATE_DISABLE |
3402
		DPFDUNIT_CLOCK_GATE_DISABLE;
3403
	/* Required for CxSR */
3404
	dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
3405
 
3406
	I915_WRITE(PCH_3DCGDIS0,
3407
		   MARIUNIT_CLOCK_GATE_DISABLE |
3408
		   SVSMUNIT_CLOCK_GATE_DISABLE);
3409
	I915_WRITE(PCH_3DCGDIS1,
3410
		   VFMUNIT_CLOCK_GATE_DISABLE);
3411
 
3412
	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3413
 
3414
	/*
3415
	 * According to the spec the following bits should be set in
3416
	 * order to enable memory self-refresh
3417
	 * The bit 22/21 of 0x42004
3418
	 * The bit 5 of 0x42020
3419
	 * The bit 15 of 0x45000
3420
	 */
3421
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3422
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
3423
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3424
	I915_WRITE(ILK_DSPCLK_GATE,
3425
		   (I915_READ(ILK_DSPCLK_GATE) |
3426
		    ILK_DPARB_CLK_GATE));
3427
	I915_WRITE(DISP_ARB_CTL,
3428
		   (I915_READ(DISP_ARB_CTL) |
3429
		    DISP_FBC_WM_DIS));
3430
	I915_WRITE(WM3_LP_ILK, 0);
3431
	I915_WRITE(WM2_LP_ILK, 0);
3432
	I915_WRITE(WM1_LP_ILK, 0);
3433
 
3434
	/*
3435
	 * Based on the document from hardware guys the following bits
3436
	 * should be set unconditionally in order to enable FBC.
3437
	 * The bit 22 of 0x42000
3438
	 * The bit 22 of 0x42004
3439
	 * The bit 7,8,9 of 0x42020.
3440
	 */
3441
	if (IS_IRONLAKE_M(dev)) {
3442
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
3443
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
3444
			   ILK_FBCQ_DIS);
3445
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
3446
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
3447
			   ILK_DPARB_GATE);
3448
		I915_WRITE(ILK_DSPCLK_GATE,
3449
			   I915_READ(ILK_DSPCLK_GATE) |
3450
			   ILK_DPFC_DIS1 |
3451
			   ILK_DPFC_DIS2 |
3452
			   ILK_CLK_FBC);
3453
	}
3454
 
3455
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3456
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3457
		   ILK_ELPIN_409_SELECT);
3458
	I915_WRITE(_3D_CHICKEN2,
3459
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3460
		   _3D_CHICKEN2_WM_READ_PIPELINED);
3461
}
3462
 
3463
static void gen6_init_clock_gating(struct drm_device *dev)
3464
{
3465
	struct drm_i915_private *dev_priv = dev->dev_private;
3466
	int pipe;
3467
	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3468
 
3469
	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3470
 
3471
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3472
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3473
		   ILK_ELPIN_409_SELECT);
3474
 
3475
	I915_WRITE(WM3_LP_ILK, 0);
3476
	I915_WRITE(WM2_LP_ILK, 0);
3477
	I915_WRITE(WM1_LP_ILK, 0);
3478
 
3479
	I915_WRITE(CACHE_MODE_0,
3480
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3481
 
3482
	I915_WRITE(GEN6_UCGCTL1,
3483
		   I915_READ(GEN6_UCGCTL1) |
3484
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3485
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3486
 
3487
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3488
	 * gating disable must be set.  Failure to set it results in
3489
	 * flickering pixels due to Z write ordering failures after
3490
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3491
	 * Sanctuary and Tropics, and apparently anything else with
3492
	 * alpha test or pixel discard.
3493
	 *
3494
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3495
	 * but we didn't debug actual testcases to find it out.
3496
	 *
3497
	 * Also apply WaDisableVDSUnitClockGating and
3498
	 * WaDisableRCPBUnitClockGating.
3499
	 */
3500
	I915_WRITE(GEN6_UCGCTL2,
3501
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3502
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3503
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3504
 
3505
	/* Bspec says we need to always set all mask bits. */
3506
	I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3507
		   _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3508
 
3509
	/*
3510
	 * According to the spec the following bits should be
3511
	 * set in order to enable memory self-refresh and fbc:
3512
	 * The bit21 and bit22 of 0x42000
3513
	 * The bit21 and bit22 of 0x42004
3514
	 * The bit5 and bit7 of 0x42020
3515
	 * The bit14 of 0x70180
3516
	 * The bit14 of 0x71180
3517
	 */
3518
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
3519
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
3520
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3521
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
3522
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
3523
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3524
	I915_WRITE(ILK_DSPCLK_GATE,
3525
		   I915_READ(ILK_DSPCLK_GATE) |
3526
		   ILK_DPARB_CLK_GATE  |
3527
		   ILK_DPFD_CLK_GATE);
3528
 
3529
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3530
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3531
 
3532
	for_each_pipe(pipe) {
3533
		I915_WRITE(DSPCNTR(pipe),
3534
			   I915_READ(DSPCNTR(pipe)) |
3535
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3536
		intel_flush_display_plane(dev_priv, pipe);
3537
	}
3538
 
3539
	/* The default value should be 0x200 according to docs, but the two
3540
	 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3541
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3542
	I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3543
}
3544
 
3545
static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3546
{
3547
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3548
 
3549
	reg &= ~GEN7_FF_SCHED_MASK;
3550
	reg |= GEN7_FF_TS_SCHED_HW;
3551
	reg |= GEN7_FF_VS_SCHED_HW;
3552
	reg |= GEN7_FF_DS_SCHED_HW;
3553
 
3554
	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3555
}
3556
 
3557
static void haswell_init_clock_gating(struct drm_device *dev)
3558
{
3559
	struct drm_i915_private *dev_priv = dev->dev_private;
3560
	int pipe;
3561
	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3562
 
3563
	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3564
 
3565
	I915_WRITE(WM3_LP_ILK, 0);
3566
	I915_WRITE(WM2_LP_ILK, 0);
3567
	I915_WRITE(WM1_LP_ILK, 0);
3568
 
3569
	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3570
	 * This implements the WaDisableRCZUnitClockGating workaround.
3571
	 */
3572
	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3573
 
3574
	I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3575
 
3576
	I915_WRITE(IVB_CHICKEN3,
3577
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3578
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3579
 
3580
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3581
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3582
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3583
 
3584
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3585
	I915_WRITE(GEN7_L3CNTLREG1,
3586
			GEN7_WA_FOR_GEN7_L3_CONTROL);
3587
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3588
			GEN7_WA_L3_CHICKEN_MODE);
3589
 
3590
	/* This is required by WaCatErrorRejectionIssue */
3591
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3592
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3593
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3594
 
3595
	for_each_pipe(pipe) {
3596
		I915_WRITE(DSPCNTR(pipe),
3597
			   I915_READ(DSPCNTR(pipe)) |
3598
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3599
		intel_flush_display_plane(dev_priv, pipe);
3600
	}
3601
 
3602
	gen7_setup_fixed_func_scheduler(dev_priv);
3603
 
3604
	/* WaDisable4x2SubspanOptimization */
3605
	I915_WRITE(CACHE_MODE_1,
3606
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3607
 
3608
	/* XXX: This is a workaround for early silicon revisions and should be
3609
	 * removed later.
3610
	 */
3611
	I915_WRITE(WM_DBG,
3612
			I915_READ(WM_DBG) |
3613
			WM_DBG_DISALLOW_MULTIPLE_LP |
3614
			WM_DBG_DISALLOW_SPRITE |
3615
			WM_DBG_DISALLOW_MAXFIFO);
3616
 
3617
}
3618
 
3619
static void ivybridge_init_clock_gating(struct drm_device *dev)
3620
{
3621
	struct drm_i915_private *dev_priv = dev->dev_private;
3622
	int pipe;
3623
	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3624
	uint32_t snpcr;
3625
 
3626
	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3627
 
3628
	I915_WRITE(WM3_LP_ILK, 0);
3629
	I915_WRITE(WM2_LP_ILK, 0);
3630
	I915_WRITE(WM1_LP_ILK, 0);
3631
 
3632
	I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3633
 
3634
	I915_WRITE(IVB_CHICKEN3,
3635
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3636
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3637
 
3638
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3639
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3640
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3641
 
3642
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3643
	I915_WRITE(GEN7_L3CNTLREG1,
3644
			GEN7_WA_FOR_GEN7_L3_CONTROL);
3645
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3646
			GEN7_WA_L3_CHICKEN_MODE);
3647
 
3648
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3649
	 * gating disable must be set.  Failure to set it results in
3650
	 * flickering pixels due to Z write ordering failures after
3651
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3652
	 * Sanctuary and Tropics, and apparently anything else with
3653
	 * alpha test or pixel discard.
3654
	 *
3655
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3656
	 * but we didn't debug actual testcases to find it out.
3657
	 *
3658
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3659
	 * This implements the WaDisableRCZUnitClockGating workaround.
3660
	 */
3661
	I915_WRITE(GEN6_UCGCTL2,
3662
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3663
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3664
 
3665
	/* This is required by WaCatErrorRejectionIssue */
3666
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3667
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3668
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3669
 
3670
	for_each_pipe(pipe) {
3671
		I915_WRITE(DSPCNTR(pipe),
3672
			   I915_READ(DSPCNTR(pipe)) |
3673
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3674
		intel_flush_display_plane(dev_priv, pipe);
3675
	}
3676
 
3677
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3678
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3679
 
3680
	gen7_setup_fixed_func_scheduler(dev_priv);
3681
 
3682
	/* WaDisable4x2SubspanOptimization */
3683
	I915_WRITE(CACHE_MODE_1,
3684
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3685
 
3686
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3687
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
3688
	snpcr |= GEN6_MBC_SNPCR_MED;
3689
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3690
}
3691
 
3692
static void valleyview_init_clock_gating(struct drm_device *dev)
3693
{
3694
	struct drm_i915_private *dev_priv = dev->dev_private;
3695
	int pipe;
3696
	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
3697
 
3698
	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
3699
 
3700
	I915_WRITE(WM3_LP_ILK, 0);
3701
	I915_WRITE(WM2_LP_ILK, 0);
3702
	I915_WRITE(WM1_LP_ILK, 0);
3703
 
3704
	I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
3705
 
3706
	I915_WRITE(IVB_CHICKEN3,
3707
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3708
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
3709
 
3710
	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3711
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3712
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3713
 
3714
	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3715
	I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
3716
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3717
 
3718
	/* This is required by WaCatErrorRejectionIssue */
3719
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3720
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3721
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3722
 
3723
	I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3724
		   GEN6_MBCTL_ENABLE_BOOT_FETCH);
3725
 
3726
 
3727
	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3728
	 * gating disable must be set.  Failure to set it results in
3729
	 * flickering pixels due to Z write ordering failures after
3730
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
3731
	 * Sanctuary and Tropics, and apparently anything else with
3732
	 * alpha test or pixel discard.
3733
	 *
3734
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
3735
	 * but we didn't debug actual testcases to find it out.
3736
	 *
3737
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3738
	 * This implements the WaDisableRCZUnitClockGating workaround.
3739
	 *
3740
	 * Also apply WaDisableVDSUnitClockGating and
3741
	 * WaDisableRCPBUnitClockGating.
3742
	 */
3743
	I915_WRITE(GEN6_UCGCTL2,
3744
		   GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3745
		   GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3746
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3747
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3748
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3749
 
3750
	I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3751
 
3752
	for_each_pipe(pipe) {
3753
		I915_WRITE(DSPCNTR(pipe),
3754
			   I915_READ(DSPCNTR(pipe)) |
3755
			   DISPPLANE_TRICKLE_FEED_DISABLE);
3756
		intel_flush_display_plane(dev_priv, pipe);
3757
	}
3758
 
3759
	I915_WRITE(CACHE_MODE_1,
3760
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3761
 
3762
	/*
3763
	 * On ValleyView, the GUnit needs to signal the GT
3764
	 * when flip and other events complete.  So enable
3765
	 * all the GUnit->GT interrupts here
3766
	 */
3767
	I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3768
		   PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3769
		   SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3770
		   PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3771
		   PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3772
		   SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3773
		   PLANEA_FLIPDONE_INT_EN);
3774
}
3775
 
3776
static void g4x_init_clock_gating(struct drm_device *dev)
3777
{
3778
	struct drm_i915_private *dev_priv = dev->dev_private;
3779
	uint32_t dspclk_gate;
3780
 
3781
	I915_WRITE(RENCLK_GATE_D1, 0);
3782
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3783
		   GS_UNIT_CLOCK_GATE_DISABLE |
3784
		   CL_UNIT_CLOCK_GATE_DISABLE);
3785
	I915_WRITE(RAMCLK_GATE_D, 0);
3786
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3787
		OVRUNIT_CLOCK_GATE_DISABLE |
3788
		OVCUNIT_CLOCK_GATE_DISABLE;
3789
	if (IS_GM45(dev))
3790
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3791
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3792
}
3793
 
3794
static void crestline_init_clock_gating(struct drm_device *dev)
3795
{
3796
	struct drm_i915_private *dev_priv = dev->dev_private;
3797
 
3798
	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3799
	I915_WRITE(RENCLK_GATE_D2, 0);
3800
	I915_WRITE(DSPCLK_GATE_D, 0);
3801
	I915_WRITE(RAMCLK_GATE_D, 0);
3802
	I915_WRITE16(DEUC, 0);
3803
}
3804
 
3805
static void broadwater_init_clock_gating(struct drm_device *dev)
3806
{
3807
	struct drm_i915_private *dev_priv = dev->dev_private;
3808
 
3809
	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3810
		   I965_RCC_CLOCK_GATE_DISABLE |
3811
		   I965_RCPB_CLOCK_GATE_DISABLE |
3812
		   I965_ISC_CLOCK_GATE_DISABLE |
3813
		   I965_FBC_CLOCK_GATE_DISABLE);
3814
	I915_WRITE(RENCLK_GATE_D2, 0);
3815
}
3816
 
3817
static void gen3_init_clock_gating(struct drm_device *dev)
3818
{
3819
	struct drm_i915_private *dev_priv = dev->dev_private;
3820
	u32 dstate = I915_READ(D_STATE);
3821
 
3822
	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3823
		DSTATE_DOT_CLOCK_GATING;
3824
	I915_WRITE(D_STATE, dstate);
3825
 
3826
	if (IS_PINEVIEW(dev))
3827
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3828
 
3829
	/* IIR "flip pending" means done if this bit is set */
3830
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
3831
}
3832
 
3833
static void i85x_init_clock_gating(struct drm_device *dev)
3834
{
3835
	struct drm_i915_private *dev_priv = dev->dev_private;
3836
 
3837
	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3838
}
3839
 
3840
static void i830_init_clock_gating(struct drm_device *dev)
3841
{
3842
	struct drm_i915_private *dev_priv = dev->dev_private;
3843
 
3844
	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3845
}
3846
 
3847
static void ibx_init_clock_gating(struct drm_device *dev)
3848
{
3849
	struct drm_i915_private *dev_priv = dev->dev_private;
3850
 
3851
	/*
3852
	 * On Ibex Peak and Cougar Point, we need to disable clock
3853
	 * gating for the panel power sequencer or it will fail to
3854
	 * start up when no ports are active.
3855
	 */
3856
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3857
}
3858
 
3859
static void cpt_init_clock_gating(struct drm_device *dev)
3860
{
3861
	struct drm_i915_private *dev_priv = dev->dev_private;
3862
	int pipe;
3863
 
3864
	/*
3865
	 * On Ibex Peak and Cougar Point, we need to disable clock
3866
	 * gating for the panel power sequencer or it will fail to
3867
	 * start up when no ports are active.
3868
	 */
3869
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3870
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3871
		   DPLS_EDP_PPS_FIX_DIS);
3872
	/* Without this, mode sets may fail silently on FDI */
3873
	for_each_pipe(pipe)
3874
		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
3875
}
3876
 
3877
void intel_init_clock_gating(struct drm_device *dev)
3878
{
3879
	struct drm_i915_private *dev_priv = dev->dev_private;
3880
 
3881
	dev_priv->display.init_clock_gating(dev);
3882
 
3883
	if (dev_priv->display.init_pch_clock_gating)
3884
		dev_priv->display.init_pch_clock_gating(dev);
3885
}
3886
 
3887
/* Starting with Haswell, we have different power wells for
3888
 * different parts of the GPU. This attempts to enable them all.
3889
 */
3890
void intel_init_power_wells(struct drm_device *dev)
3891
{
3892
	struct drm_i915_private *dev_priv = dev->dev_private;
3893
	unsigned long power_wells[] = {
3894
		HSW_PWR_WELL_CTL1,
3895
		HSW_PWR_WELL_CTL2,
3896
		HSW_PWR_WELL_CTL4
3897
	};
3898
	int i;
3899
 
3900
	if (!IS_HASWELL(dev))
3901
		return;
3902
 
3903
	mutex_lock(&dev->struct_mutex);
3904
 
3905
	for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
3906
		int well = I915_READ(power_wells[i]);
3907
 
3908
		if ((well & HSW_PWR_WELL_STATE) == 0) {
3909
			I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
3910
			if (wait_for(I915_READ(power_wells[i] & HSW_PWR_WELL_STATE), 20))
3911
				DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
3912
		}
3913
	}
3914
 
3915
	mutex_unlock(&dev->struct_mutex);
3916
}
3917
 
3918
/* Set up chip specific power management-related functions */
3919
void intel_init_pm(struct drm_device *dev)
3920
{
3921
	struct drm_i915_private *dev_priv = dev->dev_private;
3922
 
3923
	if (I915_HAS_FBC(dev)) {
3924
		if (HAS_PCH_SPLIT(dev)) {
3925
			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
3926
			dev_priv->display.enable_fbc = ironlake_enable_fbc;
3927
			dev_priv->display.disable_fbc = ironlake_disable_fbc;
3928
		} else if (IS_GM45(dev)) {
3929
			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
3930
			dev_priv->display.enable_fbc = g4x_enable_fbc;
3931
			dev_priv->display.disable_fbc = g4x_disable_fbc;
3932
		} else if (IS_CRESTLINE(dev)) {
3933
			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
3934
			dev_priv->display.enable_fbc = i8xx_enable_fbc;
3935
			dev_priv->display.disable_fbc = i8xx_disable_fbc;
3936
		}
3937
		/* 855GM needs testing */
3938
	}
3939
 
3940
	/* For cxsr */
3941
	if (IS_PINEVIEW(dev))
3942
		i915_pineview_get_mem_freq(dev);
3943
	else if (IS_GEN5(dev))
3944
		i915_ironlake_get_mem_freq(dev);
3945
 
3946
	/* For FIFO watermark updates */
3947
	if (HAS_PCH_SPLIT(dev)) {
3948
		if (HAS_PCH_IBX(dev))
3949
			dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
3950
		else if (HAS_PCH_CPT(dev))
3951
			dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
3952
 
3953
		if (IS_GEN5(dev)) {
3954
			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
3955
				dev_priv->display.update_wm = ironlake_update_wm;
3956
			else {
3957
				DRM_DEBUG_KMS("Failed to get proper latency. "
3958
					      "Disable CxSR\n");
3959
				dev_priv->display.update_wm = NULL;
3960
			}
3961
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
3962
		} else if (IS_GEN6(dev)) {
3963
			if (SNB_READ_WM0_LATENCY()) {
3964
				dev_priv->display.update_wm = sandybridge_update_wm;
3965
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3966
			} else {
3967
				DRM_DEBUG_KMS("Failed to read display plane latency. "
3968
					      "Disable CxSR\n");
3969
				dev_priv->display.update_wm = NULL;
3970
			}
3971
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
3972
		} else if (IS_IVYBRIDGE(dev)) {
3973
			/* FIXME: detect B0+ stepping and use auto training */
3974
			if (SNB_READ_WM0_LATENCY()) {
3975
				dev_priv->display.update_wm = sandybridge_update_wm;
3976
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3977
			} else {
3978
				DRM_DEBUG_KMS("Failed to read display plane latency. "
3979
					      "Disable CxSR\n");
3980
				dev_priv->display.update_wm = NULL;
3981
			}
3982
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
3983
		} else if (IS_HASWELL(dev)) {
3984
			if (SNB_READ_WM0_LATENCY()) {
3985
				dev_priv->display.update_wm = sandybridge_update_wm;
3986
				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3987
				dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
3988
			} else {
3989
				DRM_DEBUG_KMS("Failed to read display plane latency. "
3990
					      "Disable CxSR\n");
3991
				dev_priv->display.update_wm = NULL;
3992
			}
3993
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
3994
		} else
3995
			dev_priv->display.update_wm = NULL;
3996
	} else if (IS_VALLEYVIEW(dev)) {
3997
		dev_priv->display.update_wm = valleyview_update_wm;
3998
		dev_priv->display.init_clock_gating =
3999
			valleyview_init_clock_gating;
4000
	} else if (IS_PINEVIEW(dev)) {
4001
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4002
					    dev_priv->is_ddr3,
4003
					    dev_priv->fsb_freq,
4004
					    dev_priv->mem_freq)) {
4005
			DRM_INFO("failed to find known CxSR latency "
4006
				 "(found ddr%s fsb freq %d, mem freq %d), "
4007
				 "disabling CxSR\n",
4008
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4009
				 dev_priv->fsb_freq, dev_priv->mem_freq);
4010
			/* Disable CxSR and never update its watermark again */
4011
			pineview_disable_cxsr(dev);
4012
			dev_priv->display.update_wm = NULL;
4013
		} else
4014
			dev_priv->display.update_wm = pineview_update_wm;
4015
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4016
	} else if (IS_G4X(dev)) {
4017
		dev_priv->display.update_wm = g4x_update_wm;
4018
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4019
	} else if (IS_GEN4(dev)) {
4020
		dev_priv->display.update_wm = i965_update_wm;
4021
		if (IS_CRESTLINE(dev))
4022
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4023
		else if (IS_BROADWATER(dev))
4024
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4025
	} else if (IS_GEN3(dev)) {
4026
		dev_priv->display.update_wm = i9xx_update_wm;
4027
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4028
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4029
	} else if (IS_I865G(dev)) {
4030
		dev_priv->display.update_wm = i830_update_wm;
4031
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4032
		dev_priv->display.get_fifo_size = i830_get_fifo_size;
4033
	} else if (IS_I85X(dev)) {
4034
		dev_priv->display.update_wm = i9xx_update_wm;
4035
		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4036
		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4037
	} else {
4038
		dev_priv->display.update_wm = i830_update_wm;
4039
		dev_priv->display.init_clock_gating = i830_init_clock_gating;
4040
		if (IS_845G(dev))
4041
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
4042
		else
4043
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
4044
	}
4045
}
4046
 
4047
static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4048
{
4049
	u32 gt_thread_status_mask;
4050
 
4051
	if (IS_HASWELL(dev_priv->dev))
4052
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4053
	else
4054
		gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4055
 
4056
	/* w/a for a sporadic read returning 0 by waiting for the GT
4057
	 * thread to wake up.
4058
	 */
4059
	if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4060
		DRM_ERROR("GT thread status wait timed out\n");
4061
}
4062
 
4063
static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4064
{
4065
	u32 forcewake_ack;
4066
 
4067
	if (IS_HASWELL(dev_priv->dev))
4068
		forcewake_ack = FORCEWAKE_ACK_HSW;
4069
	else
4070
		forcewake_ack = FORCEWAKE_ACK;
4071
 
4072
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4073
			    FORCEWAKE_ACK_TIMEOUT_MS))
4074
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4075
 
4076
	I915_WRITE_NOTRACE(FORCEWAKE, 1);
4077
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4078
 
4079
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4080
			    FORCEWAKE_ACK_TIMEOUT_MS))
4081
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4082
 
4083
	__gen6_gt_wait_for_thread_c0(dev_priv);
4084
}
4085
 
4086
static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4087
{
4088
	u32 forcewake_ack;
4089
 
4090
	if (IS_HASWELL(dev_priv->dev))
4091
		forcewake_ack = FORCEWAKE_ACK_HSW;
4092
	else
4093
		forcewake_ack = FORCEWAKE_MT_ACK;
4094
 
4095
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4096
			    FORCEWAKE_ACK_TIMEOUT_MS))
4097
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4098
 
4099
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(1));
4100
	POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4101
 
4102
	if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4103
			    FORCEWAKE_ACK_TIMEOUT_MS))
4104
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4105
 
4106
	__gen6_gt_wait_for_thread_c0(dev_priv);
4107
}
4108
 
4109
/*
4110
 * Generally this is called implicitly by the register read function. However,
4111
 * if some sequence requires the GT to not power down then this function should
4112
 * be called at the beginning of the sequence followed by a call to
4113
 * gen6_gt_force_wake_put() at the end of the sequence.
4114
 */
4115
void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4116
{
4117
	unsigned long irqflags;
4118
 
4119
	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4120
	if (dev_priv->forcewake_count++ == 0)
4121
		dev_priv->gt.force_wake_get(dev_priv);
4122
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4123
}
4124
 
4125
void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4126
{
4127
	u32 gtfifodbg;
4128
	gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4129
	if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4130
	     "MMIO read or write has been dropped %x\n", gtfifodbg))
4131
		I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4132
}
4133
 
4134
static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4135
{
4136
	I915_WRITE_NOTRACE(FORCEWAKE, 0);
4137
	/* gen6_gt_check_fifodbg doubles as the POSTING_READ */
4138
	gen6_gt_check_fifodbg(dev_priv);
4139
}
4140
 
4141
static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4142
{
4143
	I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(1));
4144
	/* gen6_gt_check_fifodbg doubles as the POSTING_READ */
4145
	gen6_gt_check_fifodbg(dev_priv);
4146
}
4147
 
4148
/*
4149
 * see gen6_gt_force_wake_get()
4150
 */
4151
void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4152
{
4153
	unsigned long irqflags;
4154
 
4155
	spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4156
	if (--dev_priv->forcewake_count == 0)
4157
		dev_priv->gt.force_wake_put(dev_priv);
4158
	spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4159
}
4160
 
4161
int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4162
{
4163
	int ret = 0;
4164
 
4165
	if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4166
		int loop = 500;
4167
		u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4168
		while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4169
			udelay(10);
4170
			fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4171
		}
4172
		if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4173
			++ret;
4174
		dev_priv->gt_fifo_count = fifo;
4175
	}
4176
	dev_priv->gt_fifo_count--;
4177
 
4178
	return ret;
4179
}
4180
 
4181
static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4182
{
4183
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4184
			    FORCEWAKE_ACK_TIMEOUT_MS))
4185
		DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4186
 
4187
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(1));
4188
 
4189
	if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4190
			    FORCEWAKE_ACK_TIMEOUT_MS))
4191
		DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4192
 
4193
	__gen6_gt_wait_for_thread_c0(dev_priv);
4194
}
4195
 
4196
static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4197
{
4198
	I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(1));
4199
	/* The below doubles as a POSTING_READ */
4200
	gen6_gt_check_fifodbg(dev_priv);
4201
}
4202
 
4203
void intel_gt_init(struct drm_device *dev)
4204
{
4205
	struct drm_i915_private *dev_priv = dev->dev_private;
4206
 
4207
	spin_lock_init(&dev_priv->gt_lock);
4208
 
4209
	if (IS_VALLEYVIEW(dev)) {
4210
		dev_priv->gt.force_wake_get = vlv_force_wake_get;
4211
		dev_priv->gt.force_wake_put = vlv_force_wake_put;
4212
	} else if (INTEL_INFO(dev)->gen >= 6) {
4213
		dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4214
		dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4215
 
4216
		/* IVB configs may use multi-threaded forcewake */
4217
		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4218
			u32 ecobus;
4219
 
4220
			/* A small trick here - if the bios hasn't configured
4221
			 * MT forcewake, and if the device is in RC6, then
4222
			 * force_wake_mt_get will not wake the device and the
4223
			 * ECOBUS read will return zero. Which will be
4224
			 * (correctly) interpreted by the test below as MT
4225
			 * forcewake being disabled.
4226
			 */
4227
			mutex_lock(&dev->struct_mutex);
4228
			__gen6_gt_force_wake_mt_get(dev_priv);
4229
			ecobus = I915_READ_NOTRACE(ECOBUS);
4230
			__gen6_gt_force_wake_mt_put(dev_priv);
4231
			mutex_unlock(&dev->struct_mutex);
4232
 
4233
			if (ecobus & FORCEWAKE_MT_ENABLE) {
4234
				DRM_DEBUG_KMS("Using MT version of forcewake\n");
4235
				dev_priv->gt.force_wake_get =
4236
					__gen6_gt_force_wake_mt_get;
4237
				dev_priv->gt.force_wake_put =
4238
					__gen6_gt_force_wake_mt_put;
4239
			}
4240
		}
4241
	}
4242
}
4243