Subversion Repositories Kolibri OS

Rev

Rev 5097 | Rev 5354 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2327 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Keith Packard 
25
 *
26
 */
27
 
28
#include 
2330 Serge 29
#include 
3031 serge 30
#include 
31
#include 
32
#include 
33
#include 
34
#include 
2327 Serge 35
#include "intel_drv.h"
3031 serge 36
#include 
2327 Serge 37
#include "i915_drv.h"
38
 
5060 serge 39
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
2327 Serge 40
 
4560 Serge 41
struct dp_link_dpll {
42
	int link_bw;
43
	struct dpll dpll;
44
};
45
 
46
static const struct dp_link_dpll gen4_dpll[] = {
47
	{ DP_LINK_BW_1_62,
48
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49
	{ DP_LINK_BW_2_7,
50
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51
};
52
 
53
static const struct dp_link_dpll pch_dpll[] = {
54
	{ DP_LINK_BW_1_62,
55
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56
	{ DP_LINK_BW_2_7,
57
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58
};
59
 
60
static const struct dp_link_dpll vlv_dpll[] = {
61
	{ DP_LINK_BW_1_62,
62
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63
	{ DP_LINK_BW_2_7,
64
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65
};
66
 
5060 serge 67
/*
68
 * CHV supports eDP 1.4 that have  more link rates.
69
 * Below only provides the fixed rate but exclude variable rate.
70
 */
71
static const struct dp_link_dpll chv_dpll[] = {
72
	/*
73
	 * CHV requires to program fractional division for m2.
74
	 * m2 is stored in fixed point format using formula below
75
	 * (m2_int << 22) | m2_fraction
76
	 */
77
	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
78
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79
	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
80
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81
	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
82
		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83
};
84
 
2327 Serge 85
/**
86
 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87
 * @intel_dp: DP struct
88
 *
89
 * If a CPU or PCH DP output is attached to an eDP panel, this function
90
 * will return true, and false otherwise.
91
 */
92
static bool is_edp(struct intel_dp *intel_dp)
93
{
3243 Serge 94
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95
 
96
	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
2327 Serge 97
}
98
 
3243 Serge 99
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
2327 Serge 100
{
3243 Serge 101
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
 
103
	return intel_dig_port->base.base.dev;
2327 Serge 104
}
105
 
2330 Serge 106
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107
{
3243 Serge 108
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
2330 Serge 109
}
2327 Serge 110
 
2330 Serge 111
static void intel_dp_link_down(struct intel_dp *intel_dp);
5060 serge 112
static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
113
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
2330 Serge 114
 
5060 serge 115
int
2330 Serge 116
intel_dp_max_link_bw(struct intel_dp *intel_dp)
117
{
118
	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
5060 serge 119
	struct drm_device *dev = intel_dp->attached_connector->base.dev;
2327 Serge 120
 
2330 Serge 121
	switch (max_link_bw) {
122
	case DP_LINK_BW_1_62:
123
	case DP_LINK_BW_2_7:
124
		break;
4104 Serge 125
	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
5060 serge 126
		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
127
		     INTEL_INFO(dev)->gen >= 8) &&
128
		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
129
			max_link_bw = DP_LINK_BW_5_4;
130
		else
131
			max_link_bw = DP_LINK_BW_2_7;
4104 Serge 132
		break;
2330 Serge 133
	default:
4104 Serge 134
		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
135
		     max_link_bw);
2330 Serge 136
		max_link_bw = DP_LINK_BW_1_62;
137
		break;
138
	}
139
	return max_link_bw;
140
}
2327 Serge 141
 
5060 serge 142
static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
143
{
144
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145
	struct drm_device *dev = intel_dig_port->base.base.dev;
146
	u8 source_max, sink_max;
147
 
148
	source_max = 4;
149
	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
150
	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
151
		source_max = 2;
152
 
153
	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
154
 
155
	return min(source_max, sink_max);
156
}
157
 
2342 Serge 158
/*
159
 * The units on the numbers in the next two are... bizarre.  Examples will
160
 * make it clearer; this one parallels an example in the eDP spec.
161
 *
162
 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
163
 *
164
 *     270000 * 1 * 8 / 10 == 216000
165
 *
166
 * The actual data capacity of that configuration is 2.16Gbit/s, so the
167
 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
168
 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
169
 * 119000.  At 18bpp that's 2142000 kilobits per second.
170
 *
171
 * Thus the strange-looking division by 10 in intel_dp_link_required, to
172
 * get the result in decakilobits instead of kilobits.
173
 */
174
 
2330 Serge 175
static int
2351 Serge 176
intel_dp_link_required(int pixel_clock, int bpp)
2330 Serge 177
{
2342 Serge 178
	return (pixel_clock * bpp + 9) / 10;
2330 Serge 179
}
2327 Serge 180
 
2330 Serge 181
static int
182
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
183
{
184
	return (max_link_clock * max_lanes * 8) / 10;
185
}
2327 Serge 186
 
4560 Serge 187
static enum drm_mode_status
2330 Serge 188
intel_dp_mode_valid(struct drm_connector *connector,
189
		    struct drm_display_mode *mode)
190
{
191
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 192
	struct intel_connector *intel_connector = to_intel_connector(connector);
193
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
3746 Serge 194
	int target_clock = mode->clock;
195
	int max_rate, mode_rate, max_lanes, max_link_clock;
2327 Serge 196
 
3243 Serge 197
	if (is_edp(intel_dp) && fixed_mode) {
198
		if (mode->hdisplay > fixed_mode->hdisplay)
2330 Serge 199
			return MODE_PANEL;
2327 Serge 200
 
3243 Serge 201
		if (mode->vdisplay > fixed_mode->vdisplay)
2330 Serge 202
			return MODE_PANEL;
3746 Serge 203
 
204
		target_clock = fixed_mode->clock;
2330 Serge 205
	}
2327 Serge 206
 
3746 Serge 207
	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
5060 serge 208
	max_lanes = intel_dp_max_lane_count(intel_dp);
3746 Serge 209
 
210
	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
211
	mode_rate = intel_dp_link_required(target_clock, 18);
212
 
213
	if (mode_rate > max_rate)
2330 Serge 214
		return MODE_CLOCK_HIGH;
2327 Serge 215
 
2330 Serge 216
	if (mode->clock < 10000)
217
		return MODE_CLOCK_LOW;
218
 
3031 serge 219
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
220
		return MODE_H_ILLEGAL;
221
 
2330 Serge 222
	return MODE_OK;
223
}
224
 
225
static uint32_t
226
pack_aux(uint8_t *src, int src_bytes)
227
{
228
	int	i;
229
	uint32_t v = 0;
230
 
231
	if (src_bytes > 4)
232
		src_bytes = 4;
233
	for (i = 0; i < src_bytes; i++)
234
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
235
	return v;
236
}
237
 
238
static void
239
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
240
{
241
	int i;
242
	if (dst_bytes > 4)
243
		dst_bytes = 4;
244
	for (i = 0; i < dst_bytes; i++)
245
		dst[i] = src >> ((3-i) * 8);
246
}
247
 
248
/* hrawclock is 1/4 the FSB frequency */
249
static int
250
intel_hrawclk(struct drm_device *dev)
251
{
252
	struct drm_i915_private *dev_priv = dev->dev_private;
253
	uint32_t clkcfg;
254
 
3243 Serge 255
	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
256
	if (IS_VALLEYVIEW(dev))
257
		return 200;
258
 
2330 Serge 259
	clkcfg = I915_READ(CLKCFG);
260
	switch (clkcfg & CLKCFG_FSB_MASK) {
261
	case CLKCFG_FSB_400:
262
		return 100;
263
	case CLKCFG_FSB_533:
264
		return 133;
265
	case CLKCFG_FSB_667:
266
		return 166;
267
	case CLKCFG_FSB_800:
268
		return 200;
269
	case CLKCFG_FSB_1067:
270
		return 266;
271
	case CLKCFG_FSB_1333:
272
		return 333;
273
	/* these two are just a guess; one of them might be right */
274
	case CLKCFG_FSB_1600:
275
	case CLKCFG_FSB_1600_ALT:
276
		return 400;
277
	default:
278
		return 133;
279
	}
280
}
281
 
4560 Serge 282
static void
283
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
284
				    struct intel_dp *intel_dp,
285
				    struct edp_power_seq *out);
286
static void
287
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
288
					      struct intel_dp *intel_dp,
289
					      struct edp_power_seq *out);
290
 
291
static enum pipe
292
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
293
{
294
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
295
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
296
	struct drm_device *dev = intel_dig_port->base.base.dev;
297
	struct drm_i915_private *dev_priv = dev->dev_private;
298
	enum port port = intel_dig_port->port;
299
	enum pipe pipe;
300
 
301
	/* modeset should have pipe */
302
	if (crtc)
303
		return to_intel_crtc(crtc)->pipe;
304
 
305
	/* init time, try to find a pipe with this port selected */
306
	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
307
		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
308
			PANEL_PORT_SELECT_MASK;
309
		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
310
			return pipe;
311
		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
312
			return pipe;
313
	}
314
 
315
	/* shrug */
316
	return PIPE_A;
317
}
318
 
319
static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
320
{
321
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
322
 
323
	if (HAS_PCH_SPLIT(dev))
324
		return PCH_PP_CONTROL;
325
	else
326
		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
327
}
328
 
329
static u32 _pp_stat_reg(struct intel_dp *intel_dp)
330
{
331
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
332
 
333
	if (HAS_PCH_SPLIT(dev))
334
		return PCH_PP_STATUS;
335
	else
336
		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
337
}
338
 
5060 serge 339
 
340
static bool edp_have_panel_power(struct intel_dp *intel_dp)
2342 Serge 341
{
3243 Serge 342
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 343
	struct drm_i915_private *dev_priv = dev->dev_private;
344
 
4560 Serge 345
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
2342 Serge 346
}
347
 
5060 serge 348
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
2342 Serge 349
{
3243 Serge 350
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 351
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 352
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
353
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
354
	enum intel_display_power_domain power_domain;
2342 Serge 355
 
5060 serge 356
	power_domain = intel_display_port_power_domain(intel_encoder);
357
	return intel_display_power_enabled(dev_priv, power_domain) &&
358
	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
2342 Serge 359
}
360
 
361
static void
362
intel_dp_check_edp(struct intel_dp *intel_dp)
363
{
3243 Serge 364
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 365
	struct drm_i915_private *dev_priv = dev->dev_private;
366
 
367
	if (!is_edp(intel_dp))
368
		return;
3746 Serge 369
 
5060 serge 370
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
2342 Serge 371
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
372
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
4560 Serge 373
			      I915_READ(_pp_stat_reg(intel_dp)),
374
			      I915_READ(_pp_ctrl_reg(intel_dp)));
2342 Serge 375
	}
376
}
377
 
3480 Serge 378
static uint32_t
379
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
380
{
381
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
382
	struct drm_device *dev = intel_dig_port->base.base.dev;
383
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 384
	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
3480 Serge 385
	uint32_t status;
386
	bool done;
387
 
388
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
389
	if (has_aux_irq)
390
		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
4104 Serge 391
					  msecs_to_jiffies_timeout(10));
3480 Serge 392
	else
393
		done = wait_for_atomic(C, 10) == 0;
394
	if (!done)
395
		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
396
			  has_aux_irq);
397
#undef C
398
 
399
	return status;
400
}
401
 
5060 serge 402
static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
4104 Serge 403
{
404
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
405
	struct drm_device *dev = intel_dig_port->base.base.dev;
406
 
5060 serge 407
	/*
408
	 * The clock divider is based off the hrawclk, and would like to run at
409
	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
4104 Serge 410
	 */
5060 serge 411
	return index ? 0 : intel_hrawclk(dev) / 2;
412
}
413
 
414
static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
415
{
416
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
417
	struct drm_device *dev = intel_dig_port->base.base.dev;
418
 
419
	if (index)
420
		return 0;
421
 
422
	if (intel_dig_port->port == PORT_A) {
423
		if (IS_GEN6(dev) || IS_GEN7(dev))
4104 Serge 424
			return 200; /* SNB & IVB eDP input clock at 400Mhz */
425
		else
426
			return 225; /* eDP input clock at 450Mhz */
5060 serge 427
	} else {
428
		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
429
	}
430
}
431
 
432
static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
433
{
434
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
435
	struct drm_device *dev = intel_dig_port->base.base.dev;
436
	struct drm_i915_private *dev_priv = dev->dev_private;
437
 
438
	if (intel_dig_port->port == PORT_A) {
439
		if (index)
440
			return 0;
441
		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
4104 Serge 442
	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
443
		/* Workaround for non-ULT HSW */
444
		switch (index) {
445
		case 0: return 63;
446
		case 1: return 72;
447
		default: return 0;
448
		}
5060 serge 449
	} else  {
4104 Serge 450
		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
451
	}
452
}
453
 
5060 serge 454
static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
455
{
456
	return index ? 0 : 100;
457
}
458
 
459
static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
460
				      bool has_aux_irq,
461
				      int send_bytes,
462
				      uint32_t aux_clock_divider)
463
{
464
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
465
	struct drm_device *dev = intel_dig_port->base.base.dev;
466
	uint32_t precharge, timeout;
467
 
468
	if (IS_GEN6(dev))
469
		precharge = 3;
470
	else
471
		precharge = 5;
472
 
473
	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
474
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
475
	else
476
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
477
 
478
	return DP_AUX_CH_CTL_SEND_BUSY |
479
	       DP_AUX_CH_CTL_DONE |
480
	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
481
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
482
	       timeout |
483
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
484
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
485
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
486
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
487
}
488
 
2330 Serge 489
static int
490
intel_dp_aux_ch(struct intel_dp *intel_dp,
491
		uint8_t *send, int send_bytes,
492
		uint8_t *recv, int recv_size)
493
{
3243 Serge 494
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
495
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 496
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 497
	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
2330 Serge 498
	uint32_t ch_data = ch_ctl + 4;
4104 Serge 499
	uint32_t aux_clock_divider;
3480 Serge 500
	int i, ret, recv_bytes;
2330 Serge 501
	uint32_t status;
5060 serge 502
	int try, clock = 0;
503
	bool has_aux_irq = HAS_AUX_IRQ(dev);
504
	bool vdd;
2330 Serge 505
 
5060 serge 506
	vdd = _edp_panel_vdd_on(intel_dp);
507
 
3480 Serge 508
	/* dp aux is extremely sensitive to irq latency, hence request the
509
	 * lowest possible wakeup latency and so prevent the cpu from going into
510
	 * deep sleep states.
511
	 */
512
 
2342 Serge 513
	intel_dp_check_edp(intel_dp);
2330 Serge 514
 
4104 Serge 515
	intel_aux_display_runtime_get(dev_priv);
516
 
2330 Serge 517
	/* Try to wait for any previous AUX channel activity */
518
	for (try = 0; try < 3; try++) {
3480 Serge 519
		status = I915_READ_NOTRACE(ch_ctl);
2330 Serge 520
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
521
			break;
522
		msleep(1);
523
	}
524
 
525
	if (try == 3) {
526
		WARN(1, "dp_aux_ch not started status 0x%08x\n",
527
		     I915_READ(ch_ctl));
3480 Serge 528
		ret = -EBUSY;
529
		goto out;
2330 Serge 530
	}
531
 
4560 Serge 532
	/* Only 5 data registers! */
533
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
534
		ret = -E2BIG;
535
		goto out;
536
	}
537
 
5060 serge 538
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
539
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
540
							  has_aux_irq,
541
							  send_bytes,
542
							  aux_clock_divider);
543
 
2330 Serge 544
	/* Must try at least 3 times according to DP spec */
545
	for (try = 0; try < 5; try++) {
546
		/* Load the send data into the aux channel data registers */
547
		for (i = 0; i < send_bytes; i += 4)
548
			I915_WRITE(ch_data + i,
549
				   pack_aux(send + i, send_bytes - i));
550
 
551
		/* Send the command and wait for it to complete */
5060 serge 552
			I915_WRITE(ch_ctl, send_ctl);
2330 Serge 553
 
3480 Serge 554
		status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
555
 
2330 Serge 556
		/* Clear done status and any errors */
557
		I915_WRITE(ch_ctl,
558
			   status |
559
			   DP_AUX_CH_CTL_DONE |
560
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
561
			   DP_AUX_CH_CTL_RECEIVE_ERROR);
3031 serge 562
 
563
		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
564
			      DP_AUX_CH_CTL_RECEIVE_ERROR))
565
			continue;
2330 Serge 566
		if (status & DP_AUX_CH_CTL_DONE)
567
			break;
568
	}
4104 Serge 569
		if (status & DP_AUX_CH_CTL_DONE)
570
			break;
571
	}
2330 Serge 572
 
573
	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
574
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
3480 Serge 575
		ret = -EBUSY;
576
		goto out;
2330 Serge 577
	}
578
 
579
	/* Check for timeout or receive error.
580
	 * Timeouts occur when the sink is not connected
581
	 */
582
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
583
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
3480 Serge 584
		ret = -EIO;
585
		goto out;
2330 Serge 586
	}
587
 
588
	/* Timeouts occur when the device isn't connected, so they're
589
	 * "normal" -- don't fill the kernel log with these */
590
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
591
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
3480 Serge 592
		ret = -ETIMEDOUT;
593
		goto out;
2330 Serge 594
	}
595
 
596
	/* Unload any bytes sent back from the other side */
597
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
598
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
599
	if (recv_bytes > recv_size)
600
		recv_bytes = recv_size;
601
 
602
	for (i = 0; i < recv_bytes; i += 4)
603
		unpack_aux(I915_READ(ch_data + i),
604
			   recv + i, recv_bytes - i);
605
 
3480 Serge 606
	ret = recv_bytes;
607
out:
608
//	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
4104 Serge 609
	intel_aux_display_runtime_put(dev_priv);
3480 Serge 610
 
5060 serge 611
	if (vdd)
612
		edp_panel_vdd_off(intel_dp, false);
613
 
3480 Serge 614
	return ret;
2330 Serge 615
}
616
 
5060 serge 617
#define BARE_ADDRESS_SIZE	3
618
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
619
static ssize_t
620
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
2330 Serge 621
{
5060 serge 622
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
623
	uint8_t txbuf[20], rxbuf[20];
624
	size_t txsize, rxsize;
2330 Serge 625
	int ret;
626
 
5060 serge 627
	txbuf[0] = msg->request << 4;
628
	txbuf[1] = msg->address >> 8;
629
	txbuf[2] = msg->address & 0xff;
630
	txbuf[3] = msg->size - 1;
631
 
632
	switch (msg->request & ~DP_AUX_I2C_MOT) {
633
	case DP_AUX_NATIVE_WRITE:
634
	case DP_AUX_I2C_WRITE:
635
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
636
		rxsize = 1;
637
 
638
		if (WARN_ON(txsize > 20))
4560 Serge 639
		return -E2BIG;
640
 
5060 serge 641
		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
642
 
643
		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
644
		if (ret > 0) {
645
			msg->reply = rxbuf[0] >> 4;
646
 
647
			/* Return payload size. */
648
			ret = msg->size;
649
		}
2330 Serge 650
			break;
651
 
5060 serge 652
	case DP_AUX_NATIVE_READ:
653
	case DP_AUX_I2C_READ:
654
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
655
		rxsize = msg->size + 1;
2330 Serge 656
 
5060 serge 657
		if (WARN_ON(rxsize > 20))
4560 Serge 658
		return -E2BIG;
659
 
5060 serge 660
		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
661
		if (ret > 0) {
662
			msg->reply = rxbuf[0] >> 4;
663
			/*
664
			 * Assume happy day, and copy the data. The caller is
665
			 * expected to check msg->reply before touching it.
666
			 *
667
			 * Return payload size.
668
			 */
669
			ret--;
670
			memcpy(msg->buffer, rxbuf + 1, ret);
671
		}
672
		break;
2330 Serge 673
 
5060 serge 674
	default:
675
		ret = -EINVAL;
676
		break;
677
	}
2330 Serge 678
 
679
			return ret;
680
}
681
 
5060 serge 682
static void
683
intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
2330 Serge 684
{
5060 serge 685
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
686
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
687
	enum port port = intel_dig_port->port;
688
	const char *name = NULL;
2330 Serge 689
	int ret;
690
 
5060 serge 691
	switch (port) {
692
	case PORT_A:
693
		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
694
		name = "DPDDC-A";
2330 Serge 695
		break;
5060 serge 696
	case PORT_B:
697
		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
698
		name = "DPDDC-B";
2330 Serge 699
		break;
5060 serge 700
	case PORT_C:
701
		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
702
		name = "DPDDC-C";
703
		break;
704
	case PORT_D:
705
		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
706
		name = "DPDDC-D";
707
		break;
2330 Serge 708
	default:
5060 serge 709
		BUG();
2330 Serge 710
	}
711
 
5060 serge 712
	if (!HAS_DDI(dev))
713
		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
2330 Serge 714
 
5060 serge 715
	intel_dp->aux.name = name;
716
	intel_dp->aux.dev = dev->dev;
717
	intel_dp->aux.transfer = intel_dp_aux_transfer;
2330 Serge 718
 
5060 serge 719
 
720
	ret = drm_dp_aux_register(&intel_dp->aux);
721
		if (ret < 0) {
722
		DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
723
			  name, ret);
724
		return;
2330 Serge 725
	}
5060 serge 726
}
2330 Serge 727
 
5060 serge 728
static void
729
intel_dp_connector_unregister(struct intel_connector *intel_connector)
730
{
731
	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
4560 Serge 732
 
5060 serge 733
	intel_connector_unregister(intel_connector);
2330 Serge 734
}
735
 
5060 serge 736
static void
737
hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
2330 Serge 738
{
5060 serge 739
	switch (link_bw) {
740
	case DP_LINK_BW_1_62:
741
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
742
		break;
743
	case DP_LINK_BW_2_7:
744
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
745
		break;
746
	case DP_LINK_BW_5_4:
747
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
748
		break;
749
	}
2330 Serge 750
}
751
 
4104 Serge 752
static void
753
intel_dp_set_clock(struct intel_encoder *encoder,
754
		   struct intel_crtc_config *pipe_config, int link_bw)
755
{
756
	struct drm_device *dev = encoder->base.dev;
4560 Serge 757
	const struct dp_link_dpll *divisor = NULL;
758
	int i, count = 0;
4104 Serge 759
 
760
	if (IS_G4X(dev)) {
4560 Serge 761
		divisor = gen4_dpll;
762
		count = ARRAY_SIZE(gen4_dpll);
4104 Serge 763
	} else if (HAS_PCH_SPLIT(dev)) {
4560 Serge 764
		divisor = pch_dpll;
765
		count = ARRAY_SIZE(pch_dpll);
5060 serge 766
	} else if (IS_CHERRYVIEW(dev)) {
767
		divisor = chv_dpll;
768
		count = ARRAY_SIZE(chv_dpll);
4560 Serge 769
	} else if (IS_VALLEYVIEW(dev)) {
770
		divisor = vlv_dpll;
771
		count = ARRAY_SIZE(vlv_dpll);
5060 serge 772
	}
4560 Serge 773
 
774
	if (divisor && count) {
775
		for (i = 0; i < count; i++) {
776
			if (link_bw == divisor[i].link_bw) {
777
				pipe_config->dpll = divisor[i].dpll;
5060 serge 778
				pipe_config->clock_set = true;
4560 Serge 779
				break;
780
			}
781
		}
4104 Serge 782
	}
783
}
784
 
5060 serge 785
static void
786
intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
787
{
788
	struct drm_device *dev = crtc->base.dev;
789
	struct drm_i915_private *dev_priv = dev->dev_private;
790
	enum transcoder transcoder = crtc->config.cpu_transcoder;
791
 
792
	I915_WRITE(PIPE_DATA_M2(transcoder),
793
		TU_SIZE(m_n->tu) | m_n->gmch_m);
794
	I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
795
	I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
796
	I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
797
}
798
 
3243 Serge 799
bool
3746 Serge 800
intel_dp_compute_config(struct intel_encoder *encoder,
801
			struct intel_crtc_config *pipe_config)
2330 Serge 802
{
3746 Serge 803
	struct drm_device *dev = encoder->base.dev;
804
	struct drm_i915_private *dev_priv = dev->dev_private;
805
	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
806
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 807
	enum port port = dp_to_dig_port(intel_dp)->port;
808
	struct intel_crtc *intel_crtc = encoder->new_crtc;
3243 Serge 809
	struct intel_connector *intel_connector = intel_dp->attached_connector;
2330 Serge 810
	int lane_count, clock;
5060 serge 811
	int min_lane_count = 1;
812
	int max_lane_count = intel_dp_max_lane_count(intel_dp);
813
	/* Conveniently, the link BW constants become indices with a shift...*/
814
	int min_clock = 0;
815
	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
3031 serge 816
	int bpp, mode_rate;
5060 serge 817
	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
4104 Serge 818
	int link_avail, link_clock;
2330 Serge 819
 
4104 Serge 820
	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
3746 Serge 821
		pipe_config->has_pch_encoder = true;
822
 
823
	pipe_config->has_dp_encoder = true;
5060 serge 824
	pipe_config->has_audio = intel_dp->has_audio;
3746 Serge 825
 
3243 Serge 826
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
827
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
828
				       adjusted_mode);
4104 Serge 829
		if (!HAS_PCH_SPLIT(dev))
830
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
831
						 intel_connector->panel.fitting_mode);
832
		else
833
			intel_pch_panel_fitting(intel_crtc, pipe_config,
834
						intel_connector->panel.fitting_mode);
2330 Serge 835
	}
836
 
3031 serge 837
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
838
		return false;
839
 
840
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
841
		      "max bw %02x pixel clock %iKHz\n",
4560 Serge 842
		      max_lane_count, bws[max_clock],
843
		      adjusted_mode->crtc_clock);
3031 serge 844
 
3746 Serge 845
	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
846
	 * bpc in between. */
4104 Serge 847
	bpp = pipe_config->pipe_bpp;
5060 serge 848
	if (is_edp(intel_dp)) {
849
		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
4104 Serge 850
		DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
851
			      dev_priv->vbt.edp_bpp);
4560 Serge 852
		bpp = dev_priv->vbt.edp_bpp;
4104 Serge 853
	}
3746 Serge 854
 
5060 serge 855
		if (IS_BROADWELL(dev)) {
856
			/* Yes, it's an ugly hack. */
857
			min_lane_count = max_lane_count;
858
			DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
859
				      min_lane_count);
860
		} else if (dev_priv->vbt.edp_lanes) {
861
			min_lane_count = min(dev_priv->vbt.edp_lanes,
862
					     max_lane_count);
863
			DRM_DEBUG_KMS("using min %u lanes per VBT\n",
864
				      min_lane_count);
865
		}
866
 
867
		if (dev_priv->vbt.edp_rate) {
868
			min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
869
			DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
870
				      bws[min_clock]);
871
		}
872
	}
873
 
3746 Serge 874
	for (; bpp >= 6*3; bpp -= 2*3) {
4560 Serge 875
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
876
						   bpp);
3746 Serge 877
 
5060 serge 878
		for (clock = min_clock; clock <= max_clock; clock++) {
879
		for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
3746 Serge 880
				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
881
				link_avail = intel_dp_max_data_rate(link_clock,
882
								    lane_count);
883
 
884
				if (mode_rate <= link_avail) {
885
					goto found;
886
				}
887
			}
888
		}
889
	}
890
 
3031 serge 891
		return false;
892
 
3746 Serge 893
found:
3480 Serge 894
	if (intel_dp->color_range_auto) {
895
		/*
896
		 * See:
897
		 * CEA-861-E - 5.1 Default Encoding Parameters
898
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
899
		 */
900
		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
901
			intel_dp->color_range = DP_COLOR_RANGE_16_235;
902
		else
903
			intel_dp->color_range = 0;
904
	}
905
 
906
	if (intel_dp->color_range)
3746 Serge 907
		pipe_config->limited_color_range = true;
3480 Serge 908
 
2330 Serge 909
				intel_dp->link_bw = bws[clock];
910
				intel_dp->lane_count = lane_count;
3746 Serge 911
	pipe_config->pipe_bpp = bpp;
4104 Serge 912
	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
3746 Serge 913
 
914
	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
2330 Serge 915
				       intel_dp->link_bw, intel_dp->lane_count,
4104 Serge 916
		      pipe_config->port_clock, bpp);
3031 serge 917
				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
918
					      mode_rate, link_avail);
2330 Serge 919
 
3746 Serge 920
	intel_link_compute_m_n(bpp, lane_count,
4560 Serge 921
			       adjusted_mode->crtc_clock,
922
			       pipe_config->port_clock,
3746 Serge 923
			       &pipe_config->dp_m_n);
2330 Serge 924
 
5060 serge 925
	if (intel_connector->panel.downclock_mode != NULL &&
926
		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
927
			intel_link_compute_m_n(bpp, lane_count,
928
				intel_connector->panel.downclock_mode->clock,
929
				pipe_config->port_clock,
930
				&pipe_config->dp_m2_n2);
931
	}
932
 
933
	if (HAS_DDI(dev))
934
		hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
935
	else
4104 Serge 936
	intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
937
 
3746 Serge 938
	return true;
2327 Serge 939
}
940
 
4104 Serge 941
static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
3480 Serge 942
{
4104 Serge 943
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
944
	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
945
	struct drm_device *dev = crtc->base.dev;
3480 Serge 946
	struct drm_i915_private *dev_priv = dev->dev_private;
947
	u32 dpa_ctl;
948
 
4104 Serge 949
	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
3480 Serge 950
	dpa_ctl = I915_READ(DP_A);
951
	dpa_ctl &= ~DP_PLL_FREQ_MASK;
952
 
4104 Serge 953
	if (crtc->config.port_clock == 162000) {
3480 Serge 954
		/* For a long time we've carried around a ILK-DevA w/a for the
955
		 * 160MHz clock. If we're really unlucky, it's still required.
956
		 */
957
		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
958
		dpa_ctl |= DP_PLL_FREQ_160MHZ;
4104 Serge 959
		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
3480 Serge 960
	} else {
961
		dpa_ctl |= DP_PLL_FREQ_270MHZ;
4104 Serge 962
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3480 Serge 963
	}
964
 
965
	I915_WRITE(DP_A, dpa_ctl);
966
 
967
	POSTING_READ(DP_A);
968
	udelay(500);
969
}
970
 
5060 serge 971
static void intel_dp_prepare(struct intel_encoder *encoder)
2330 Serge 972
{
4104 Serge 973
	struct drm_device *dev = encoder->base.dev;
2342 Serge 974
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 975
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
976
	enum port port = dp_to_dig_port(intel_dp)->port;
977
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
978
	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
2327 Serge 979
 
2342 Serge 980
	/*
981
	 * There are four kinds of DP registers:
982
	 *
983
	 * 	IBX PCH
984
	 * 	SNB CPU
985
	 *	IVB CPU
986
	 * 	CPT PCH
987
	 *
988
	 * IBX PCH and CPU are the same for almost everything,
989
	 * except that the CPU DP PLL is configured in this
990
	 * register
991
	 *
992
	 * CPT PCH is quite different, having many bits moved
993
	 * to the TRANS_DP_CTL register instead. That
994
	 * configuration happens (oddly) in ironlake_pch_enable
995
	 */
2327 Serge 996
 
2342 Serge 997
	/* Preserve the BIOS-computed detected bit. This is
998
	 * supposed to be read-only.
999
	 */
1000
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2327 Serge 1001
 
2342 Serge 1002
	/* Handle DP bits in common between all three register formats */
1003
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
4104 Serge 1004
	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
2342 Serge 1005
 
5060 serge 1006
	if (crtc->config.has_audio) {
2342 Serge 1007
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
4104 Serge 1008
				 pipe_name(crtc->pipe));
2330 Serge 1009
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
4104 Serge 1010
		intel_write_eld(&encoder->base, adjusted_mode);
2342 Serge 1011
	}
2327 Serge 1012
 
2342 Serge 1013
	/* Split out the IBX/CPU vs CPT settings */
1014
 
4104 Serge 1015
	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
2342 Serge 1016
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1017
			intel_dp->DP |= DP_SYNC_HS_HIGH;
1018
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1019
			intel_dp->DP |= DP_SYNC_VS_HIGH;
1020
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1021
 
4560 Serge 1022
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2342 Serge 1023
			intel_dp->DP |= DP_ENHANCED_FRAMING;
1024
 
4104 Serge 1025
		intel_dp->DP |= crtc->pipe << 29;
1026
	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
3746 Serge 1027
		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
2342 Serge 1028
		intel_dp->DP |= intel_dp->color_range;
1029
 
1030
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1031
			intel_dp->DP |= DP_SYNC_HS_HIGH;
1032
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1033
			intel_dp->DP |= DP_SYNC_VS_HIGH;
1034
		intel_dp->DP |= DP_LINK_TRAIN_OFF;
1035
 
4560 Serge 1036
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2342 Serge 1037
		intel_dp->DP |= DP_ENHANCED_FRAMING;
1038
 
5060 serge 1039
		if (!IS_CHERRYVIEW(dev)) {
4104 Serge 1040
		if (crtc->pipe == 1)
2330 Serge 1041
		intel_dp->DP |= DP_PIPEB_SELECT;
2342 Serge 1042
	} else {
5060 serge 1043
			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1044
		}
1045
	} else {
2342 Serge 1046
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1047
	}
2330 Serge 1048
}
2327 Serge 1049
 
5060 serge 1050
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1051
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2342 Serge 1052
 
5060 serge 1053
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1054
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2342 Serge 1055
 
5060 serge 1056
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1057
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2342 Serge 1058
 
5060 serge 1059
static void wait_panel_status(struct intel_dp *intel_dp,
2342 Serge 1060
				       u32 mask,
1061
				       u32 value)
1062
{
3243 Serge 1063
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 1064
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 1065
	u32 pp_stat_reg, pp_ctrl_reg;
2342 Serge 1066
 
4560 Serge 1067
	pp_stat_reg = _pp_stat_reg(intel_dp);
1068
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1069
 
2342 Serge 1070
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1071
		      mask, value,
3746 Serge 1072
			I915_READ(pp_stat_reg),
1073
			I915_READ(pp_ctrl_reg));
2342 Serge 1074
 
3746 Serge 1075
	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
2342 Serge 1076
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
3746 Serge 1077
				I915_READ(pp_stat_reg),
1078
				I915_READ(pp_ctrl_reg));
2342 Serge 1079
	}
4560 Serge 1080
 
1081
	DRM_DEBUG_KMS("Wait complete\n");
2342 Serge 1082
}
1083
 
5060 serge 1084
static void wait_panel_on(struct intel_dp *intel_dp)
2342 Serge 1085
{
1086
	DRM_DEBUG_KMS("Wait for panel power on\n");
5060 serge 1087
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2342 Serge 1088
}
1089
 
5060 serge 1090
static void wait_panel_off(struct intel_dp *intel_dp)
2342 Serge 1091
{
1092
	DRM_DEBUG_KMS("Wait for panel power off time\n");
5060 serge 1093
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2342 Serge 1094
}
1095
 
5060 serge 1096
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2342 Serge 1097
{
1098
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
5060 serge 1099
 
1100
	/* When we disable the VDD override bit last we have to do the manual
1101
	 * wait. */
1102
	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1103
				       intel_dp->panel_power_cycle_delay);
1104
 
1105
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2342 Serge 1106
}
1107
 
5060 serge 1108
static void wait_backlight_on(struct intel_dp *intel_dp)
1109
{
1110
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1111
				       intel_dp->backlight_on_delay);
1112
}
2342 Serge 1113
 
5060 serge 1114
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1115
{
1116
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1117
				       intel_dp->backlight_off_delay);
1118
}
1119
 
2342 Serge 1120
/* Read the current pp_control value, unlocking the register if it
1121
 * is locked
1122
 */
1123
 
3746 Serge 1124
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2342 Serge 1125
{
3746 Serge 1126
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1127
	struct drm_i915_private *dev_priv = dev->dev_private;
1128
	u32 control;
2342 Serge 1129
 
4560 Serge 1130
	control = I915_READ(_pp_ctrl_reg(intel_dp));
2342 Serge 1131
	control &= ~PANEL_UNLOCK_MASK;
1132
	control |= PANEL_UNLOCK_REGS;
1133
	return control;
1134
}
1135
 
5060 serge 1136
static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
2330 Serge 1137
{
3243 Serge 1138
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
5060 serge 1139
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1140
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2330 Serge 1141
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1142
	enum intel_display_power_domain power_domain;
2330 Serge 1143
	u32 pp;
3746 Serge 1144
	u32 pp_stat_reg, pp_ctrl_reg;
5060 serge 1145
	bool need_to_disable = !intel_dp->want_panel_vdd;
2327 Serge 1146
 
2342 Serge 1147
	if (!is_edp(intel_dp))
5060 serge 1148
		return false;
2327 Serge 1149
 
2342 Serge 1150
	intel_dp->want_panel_vdd = true;
1151
 
5060 serge 1152
	if (edp_have_panel_vdd(intel_dp))
1153
		return need_to_disable;
2342 Serge 1154
 
5060 serge 1155
	power_domain = intel_display_port_power_domain(intel_encoder);
1156
	intel_display_power_get(dev_priv, power_domain);
4560 Serge 1157
 
1158
	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1159
 
5060 serge 1160
	if (!edp_have_panel_power(intel_dp))
1161
		wait_panel_power_cycle(intel_dp);
2342 Serge 1162
 
3746 Serge 1163
	pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1164
	pp |= EDP_FORCE_VDD;
2342 Serge 1165
 
4560 Serge 1166
	pp_stat_reg = _pp_stat_reg(intel_dp);
1167
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1168
 
1169
	I915_WRITE(pp_ctrl_reg, pp);
1170
	POSTING_READ(pp_ctrl_reg);
1171
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1172
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2342 Serge 1173
	/*
1174
	 * If the panel wasn't on, delay before accessing aux channel
1175
	 */
5060 serge 1176
	if (!edp_have_panel_power(intel_dp)) {
2342 Serge 1177
		DRM_DEBUG_KMS("eDP was not running\n");
1178
		msleep(intel_dp->panel_power_up_delay);
1179
	}
5060 serge 1180
 
1181
	return need_to_disable;
2330 Serge 1182
}
2327 Serge 1183
 
5060 serge 1184
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2330 Serge 1185
{
5060 serge 1186
	if (is_edp(intel_dp)) {
1187
		bool vdd = _edp_panel_vdd_on(intel_dp);
1188
 
1189
		WARN(!vdd, "eDP VDD already requested on\n");
1190
	}
1191
}
1192
 
1193
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1194
{
3243 Serge 1195
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1196
	struct drm_i915_private *dev_priv = dev->dev_private;
1197
	u32 pp;
3746 Serge 1198
	u32 pp_stat_reg, pp_ctrl_reg;
2327 Serge 1199
 
5060 serge 1200
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3480 Serge 1201
 
5060 serge 1202
	if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1203
		struct intel_digital_port *intel_dig_port =
1204
						dp_to_dig_port(intel_dp);
1205
		struct intel_encoder *intel_encoder = &intel_dig_port->base;
1206
		enum intel_display_power_domain power_domain;
1207
 
4560 Serge 1208
		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1209
 
3746 Serge 1210
		pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1211
	pp &= ~EDP_FORCE_VDD;
2327 Serge 1212
 
4560 Serge 1213
		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1214
		pp_stat_reg = _pp_stat_reg(intel_dp);
3746 Serge 1215
 
1216
		I915_WRITE(pp_ctrl_reg, pp);
1217
		POSTING_READ(pp_ctrl_reg);
1218
 
2330 Serge 1219
	/* Make sure sequencer is idle before allowing subsequent activity */
3746 Serge 1220
		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1221
		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
4560 Serge 1222
 
1223
		if ((pp & POWER_TARGET_ON) == 0)
5060 serge 1224
			intel_dp->last_power_cycle = jiffies;
4560 Serge 1225
 
5060 serge 1226
		power_domain = intel_display_port_power_domain(intel_encoder);
1227
		intel_display_power_put(dev_priv, power_domain);
2342 Serge 1228
	}
2330 Serge 1229
}
2327 Serge 1230
 
5060 serge 1231
static void edp_panel_vdd_work(struct work_struct *__work)
3243 Serge 1232
{
3482 Serge 1233
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1234
						 struct intel_dp, panel_vdd_work);
1235
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1236
 
5060 serge 1237
	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1238
	edp_panel_vdd_off_sync(intel_dp);
1239
	drm_modeset_unlock(&dev->mode_config.connection_mutex);
3243 Serge 1240
}
2342 Serge 1241
 
5060 serge 1242
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2330 Serge 1243
{
5060 serge 1244
	unsigned long delay;
1245
 
1246
	/*
1247
	 * Queue the timer to fire a long time from now (relative to the power
1248
	 * down delay) to keep the panel power up across a sequence of
1249
	 * operations.
1250
	 */
1251
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1252
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1253
}
1254
 
1255
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1256
{
2342 Serge 1257
	if (!is_edp(intel_dp))
1258
		return;
1259
 
1260
	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1261
 
1262
	intel_dp->want_panel_vdd = false;
1263
 
5060 serge 1264
	if (sync)
1265
		edp_panel_vdd_off_sync(intel_dp);
1266
	else
1267
		edp_panel_vdd_schedule_off(intel_dp);
2342 Serge 1268
}
1269
 
5060 serge 1270
void intel_edp_panel_on(struct intel_dp *intel_dp)
2342 Serge 1271
{
3243 Serge 1272
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1273
	struct drm_i915_private *dev_priv = dev->dev_private;
2342 Serge 1274
	u32 pp;
3746 Serge 1275
	u32 pp_ctrl_reg;
2327 Serge 1276
 
2342 Serge 1277
	if (!is_edp(intel_dp))
1278
		return;
2327 Serge 1279
 
2342 Serge 1280
	DRM_DEBUG_KMS("Turn eDP power on\n");
2327 Serge 1281
 
5060 serge 1282
	if (edp_have_panel_power(intel_dp)) {
2342 Serge 1283
		DRM_DEBUG_KMS("eDP power already on\n");
1284
		return;
1285
	}
1286
 
5060 serge 1287
	wait_panel_power_cycle(intel_dp);
2342 Serge 1288
 
4560 Serge 1289
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1290
	pp = ironlake_get_pp_control(intel_dp);
2342 Serge 1291
	if (IS_GEN5(dev)) {
2330 Serge 1292
	/* ILK workaround: disable reset around power sequence */
1293
	pp &= ~PANEL_POWER_RESET;
4560 Serge 1294
		I915_WRITE(pp_ctrl_reg, pp);
1295
		POSTING_READ(pp_ctrl_reg);
2342 Serge 1296
	}
2327 Serge 1297
 
2342 Serge 1298
	pp |= POWER_TARGET_ON;
1299
	if (!IS_GEN5(dev))
1300
		pp |= PANEL_POWER_RESET;
1301
 
3746 Serge 1302
	I915_WRITE(pp_ctrl_reg, pp);
1303
	POSTING_READ(pp_ctrl_reg);
1304
 
5060 serge 1305
	wait_panel_on(intel_dp);
1306
	intel_dp->last_power_on = jiffies;
2327 Serge 1307
 
2342 Serge 1308
	if (IS_GEN5(dev)) {
2330 Serge 1309
	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
4560 Serge 1310
		I915_WRITE(pp_ctrl_reg, pp);
1311
		POSTING_READ(pp_ctrl_reg);
2342 Serge 1312
	}
2330 Serge 1313
}
2327 Serge 1314
 
5060 serge 1315
void intel_edp_panel_off(struct intel_dp *intel_dp)
2330 Serge 1316
{
5060 serge 1317
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1318
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3243 Serge 1319
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1320
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1321
	enum intel_display_power_domain power_domain;
2342 Serge 1322
	u32 pp;
3746 Serge 1323
	u32 pp_ctrl_reg;
2327 Serge 1324
 
2342 Serge 1325
	if (!is_edp(intel_dp))
1326
		return;
2327 Serge 1327
 
2342 Serge 1328
	DRM_DEBUG_KMS("Turn eDP power off\n");
2327 Serge 1329
 
5060 serge 1330
	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1331
 
3746 Serge 1332
	pp = ironlake_get_pp_control(intel_dp);
3031 serge 1333
	/* We need to switch off panel power _and_ force vdd, for otherwise some
1334
	 * panels get very unhappy and cease to work. */
5060 serge 1335
	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1336
		EDP_BLC_ENABLE);
2327 Serge 1337
 
4560 Serge 1338
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1339
 
5060 serge 1340
	intel_dp->want_panel_vdd = false;
1341
 
3746 Serge 1342
	I915_WRITE(pp_ctrl_reg, pp);
1343
	POSTING_READ(pp_ctrl_reg);
1344
 
5060 serge 1345
	intel_dp->last_power_cycle = jiffies;
1346
	wait_panel_off(intel_dp);
1347
 
1348
	/* We got a reference when we enabled the VDD. */
1349
	power_domain = intel_display_port_power_domain(intel_encoder);
1350
	intel_display_power_put(dev_priv, power_domain);
2330 Serge 1351
}
2327 Serge 1352
 
5060 serge 1353
void intel_edp_backlight_on(struct intel_dp *intel_dp)
2330 Serge 1354
{
3243 Serge 1355
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1356
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 1357
	struct drm_i915_private *dev_priv = dev->dev_private;
1358
	u32 pp;
3746 Serge 1359
	u32 pp_ctrl_reg;
2327 Serge 1360
 
2342 Serge 1361
	if (!is_edp(intel_dp))
1362
		return;
1363
 
2330 Serge 1364
	DRM_DEBUG_KMS("\n");
5060 serge 1365
 
1366
	intel_panel_enable_backlight(intel_dp->attached_connector);
1367
 
2330 Serge 1368
	/*
1369
	 * If we enable the backlight right away following a panel power
1370
	 * on, we may see slight flicker as the panel syncs with the eDP
1371
	 * link.  So delay a bit to make sure the image is solid before
1372
	 * allowing it to appear.
1373
	 */
5060 serge 1374
	wait_backlight_on(intel_dp);
3746 Serge 1375
	pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1376
	pp |= EDP_BLC_ENABLE;
3243 Serge 1377
 
4560 Serge 1378
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1379
 
1380
	I915_WRITE(pp_ctrl_reg, pp);
1381
	POSTING_READ(pp_ctrl_reg);
2330 Serge 1382
}
2327 Serge 1383
 
5060 serge 1384
void intel_edp_backlight_off(struct intel_dp *intel_dp)
2330 Serge 1385
{
3243 Serge 1386
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1387
	struct drm_i915_private *dev_priv = dev->dev_private;
1388
	u32 pp;
3746 Serge 1389
	u32 pp_ctrl_reg;
2327 Serge 1390
 
2342 Serge 1391
	if (!is_edp(intel_dp))
1392
		return;
1393
 
2330 Serge 1394
	DRM_DEBUG_KMS("\n");
3746 Serge 1395
	pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1396
	pp &= ~EDP_BLC_ENABLE;
3746 Serge 1397
 
4560 Serge 1398
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3746 Serge 1399
 
1400
	I915_WRITE(pp_ctrl_reg, pp);
1401
	POSTING_READ(pp_ctrl_reg);
5060 serge 1402
	intel_dp->last_backlight_off = jiffies;
1403
 
1404
	edp_wait_backlight_off(intel_dp);
1405
 
1406
	intel_panel_disable_backlight(intel_dp->attached_connector);
2330 Serge 1407
}
2327 Serge 1408
 
3031 serge 1409
static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2330 Serge 1410
{
3243 Serge 1411
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1412
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1413
	struct drm_device *dev = crtc->dev;
2330 Serge 1414
	struct drm_i915_private *dev_priv = dev->dev_private;
1415
	u32 dpa_ctl;
2327 Serge 1416
 
3031 serge 1417
	assert_pipe_disabled(dev_priv,
1418
			     to_intel_crtc(crtc)->pipe);
1419
 
2330 Serge 1420
	DRM_DEBUG_KMS("\n");
1421
	dpa_ctl = I915_READ(DP_A);
3031 serge 1422
	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1423
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1424
 
1425
	/* We don't adjust intel_dp->DP while tearing down the link, to
1426
	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1427
	 * enable bits here to ensure that we don't enable too much. */
1428
	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1429
	intel_dp->DP |= DP_PLL_ENABLE;
1430
	I915_WRITE(DP_A, intel_dp->DP);
2330 Serge 1431
	POSTING_READ(DP_A);
1432
	udelay(200);
1433
}
2327 Serge 1434
 
3031 serge 1435
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2330 Serge 1436
{
3243 Serge 1437
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1438
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1439
	struct drm_device *dev = crtc->dev;
2330 Serge 1440
	struct drm_i915_private *dev_priv = dev->dev_private;
1441
	u32 dpa_ctl;
2327 Serge 1442
 
3031 serge 1443
	assert_pipe_disabled(dev_priv,
1444
			     to_intel_crtc(crtc)->pipe);
1445
 
2330 Serge 1446
	dpa_ctl = I915_READ(DP_A);
3031 serge 1447
	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1448
	     "dp pll off, should be on\n");
1449
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1450
 
1451
	/* We can't rely on the value tracked for the DP register in
1452
	 * intel_dp->DP because link_down must not change that (otherwise link
1453
	 * re-training will fail. */
2330 Serge 1454
	dpa_ctl &= ~DP_PLL_ENABLE;
1455
	I915_WRITE(DP_A, dpa_ctl);
1456
	POSTING_READ(DP_A);
1457
	udelay(200);
1458
}
2327 Serge 1459
 
2330 Serge 1460
/* If the sink supports it, try to set the power state appropriately */
3243 Serge 1461
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2330 Serge 1462
{
1463
	int ret, i;
2327 Serge 1464
 
2330 Serge 1465
	/* Should have a valid DPCD by this point */
1466
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1467
		return;
2327 Serge 1468
 
2330 Serge 1469
	if (mode != DRM_MODE_DPMS_ON) {
5060 serge 1470
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2330 Serge 1471
						  DP_SET_POWER_D3);
1472
		if (ret != 1)
1473
			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1474
	} else {
1475
		/*
1476
		 * When turning on, we need to retry for 1ms to give the sink
1477
		 * time to wake up.
1478
		 */
1479
		for (i = 0; i < 3; i++) {
5060 serge 1480
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2330 Serge 1481
							  DP_SET_POWER_D0);
1482
			if (ret == 1)
1483
				break;
1484
			msleep(1);
1485
		}
1486
	}
1487
}
2327 Serge 1488
 
3031 serge 1489
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1490
				  enum pipe *pipe)
2330 Serge 1491
{
3031 serge 1492
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 1493
	enum port port = dp_to_dig_port(intel_dp)->port;
3031 serge 1494
	struct drm_device *dev = encoder->base.dev;
1495
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1496
	enum intel_display_power_domain power_domain;
1497
	u32 tmp;
2327 Serge 1498
 
5060 serge 1499
	power_domain = intel_display_port_power_domain(encoder);
1500
	if (!intel_display_power_enabled(dev_priv, power_domain))
1501
		return false;
1502
 
1503
	tmp = I915_READ(intel_dp->output_reg);
1504
 
3031 serge 1505
	if (!(tmp & DP_PORT_EN))
1506
		return false;
2342 Serge 1507
 
4104 Serge 1508
	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
3031 serge 1509
		*pipe = PORT_TO_PIPE_CPT(tmp);
5060 serge 1510
	} else if (IS_CHERRYVIEW(dev)) {
1511
		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
4104 Serge 1512
	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
3031 serge 1513
		*pipe = PORT_TO_PIPE(tmp);
1514
	} else {
1515
		u32 trans_sel;
1516
		u32 trans_dp;
1517
		int i;
2327 Serge 1518
 
3031 serge 1519
		switch (intel_dp->output_reg) {
1520
		case PCH_DP_B:
1521
			trans_sel = TRANS_DP_PORT_SEL_B;
1522
			break;
1523
		case PCH_DP_C:
1524
			trans_sel = TRANS_DP_PORT_SEL_C;
1525
			break;
1526
		case PCH_DP_D:
1527
			trans_sel = TRANS_DP_PORT_SEL_D;
1528
			break;
1529
		default:
1530
			return true;
1531
		}
1532
 
1533
		for_each_pipe(i) {
1534
			trans_dp = I915_READ(TRANS_DP_CTL(i));
1535
			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1536
				*pipe = i;
1537
				return true;
1538
			}
1539
		}
3243 Serge 1540
 
1541
		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1542
			      intel_dp->output_reg);
3031 serge 1543
	}
1544
 
1545
	return true;
2330 Serge 1546
}
2327 Serge 1547
 
4104 Serge 1548
static void intel_dp_get_config(struct intel_encoder *encoder,
1549
				struct intel_crtc_config *pipe_config)
1550
{
1551
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1552
	u32 tmp, flags = 0;
1553
	struct drm_device *dev = encoder->base.dev;
1554
	struct drm_i915_private *dev_priv = dev->dev_private;
1555
	enum port port = dp_to_dig_port(intel_dp)->port;
1556
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
4560 Serge 1557
	int dotclock;
4104 Serge 1558
 
5060 serge 1559
	tmp = I915_READ(intel_dp->output_reg);
1560
	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1561
		pipe_config->has_audio = true;
1562
 
4104 Serge 1563
	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1564
		if (tmp & DP_SYNC_HS_HIGH)
1565
			flags |= DRM_MODE_FLAG_PHSYNC;
1566
		else
1567
			flags |= DRM_MODE_FLAG_NHSYNC;
1568
 
1569
		if (tmp & DP_SYNC_VS_HIGH)
1570
			flags |= DRM_MODE_FLAG_PVSYNC;
1571
		else
1572
			flags |= DRM_MODE_FLAG_NVSYNC;
1573
	} else {
1574
		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1575
		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1576
			flags |= DRM_MODE_FLAG_PHSYNC;
1577
		else
1578
			flags |= DRM_MODE_FLAG_NHSYNC;
1579
 
1580
		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1581
			flags |= DRM_MODE_FLAG_PVSYNC;
1582
		else
1583
			flags |= DRM_MODE_FLAG_NVSYNC;
1584
	}
1585
 
1586
	pipe_config->adjusted_mode.flags |= flags;
1587
 
5139 serge 1588
	if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1589
	    tmp & DP_COLOR_RANGE_16_235)
1590
		pipe_config->limited_color_range = true;
1591
 
4560 Serge 1592
	pipe_config->has_dp_encoder = true;
1593
 
1594
	intel_dp_get_m_n(crtc, pipe_config);
1595
 
1596
	if (port == PORT_A) {
4104 Serge 1597
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1598
			pipe_config->port_clock = 162000;
1599
		else
1600
			pipe_config->port_clock = 270000;
1601
	}
4280 Serge 1602
 
4560 Serge 1603
	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1604
					    &pipe_config->dp_m_n);
1605
 
1606
	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1607
		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1608
 
1609
	pipe_config->adjusted_mode.crtc_clock = dotclock;
1610
 
4280 Serge 1611
	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1612
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1613
		/*
1614
		 * This is a big fat ugly hack.
1615
		 *
1616
		 * Some machines in UEFI boot mode provide us a VBT that has 18
1617
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1618
		 * unknown we fail to light up. Yet the same BIOS boots up with
1619
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1620
		 * max, not what it tells us to use.
1621
		 *
1622
		 * Note: This will still be broken if the eDP panel is not lit
1623
		 * up by the BIOS, and thus we can't get the mode at module
1624
		 * load.
1625
		 */
1626
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1627
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1628
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1629
	}
4104 Serge 1630
}
1631
 
5060 serge 1632
static bool is_edp_psr(struct intel_dp *intel_dp)
4104 Serge 1633
{
5060 serge 1634
	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
4104 Serge 1635
}
1636
 
1637
static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1638
{
1639
	struct drm_i915_private *dev_priv = dev->dev_private;
1640
 
4560 Serge 1641
	if (!HAS_PSR(dev))
4104 Serge 1642
		return false;
1643
 
4560 Serge 1644
	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
4104 Serge 1645
}
1646
 
1647
static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1648
				    struct edp_vsc_psr *vsc_psr)
1649
{
1650
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1651
	struct drm_device *dev = dig_port->base.base.dev;
1652
	struct drm_i915_private *dev_priv = dev->dev_private;
1653
	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1654
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1655
	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1656
	uint32_t *data = (uint32_t *) vsc_psr;
1657
	unsigned int i;
1658
 
1659
	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1660
	   the video DIP being updated before program video DIP data buffer
1661
	   registers for DIP being updated. */
1662
	I915_WRITE(ctl_reg, 0);
1663
	POSTING_READ(ctl_reg);
1664
 
1665
	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1666
		if (i < sizeof(struct edp_vsc_psr))
1667
			I915_WRITE(data_reg + i, *data++);
1668
		else
1669
			I915_WRITE(data_reg + i, 0);
1670
	}
1671
 
1672
	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1673
	POSTING_READ(ctl_reg);
1674
}
1675
 
1676
static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1677
{
1678
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1679
	struct drm_i915_private *dev_priv = dev->dev_private;
1680
	struct edp_vsc_psr psr_vsc;
1681
 
1682
	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1683
	memset(&psr_vsc, 0, sizeof(psr_vsc));
1684
	psr_vsc.sdp_header.HB0 = 0;
1685
	psr_vsc.sdp_header.HB1 = 0x7;
1686
	psr_vsc.sdp_header.HB2 = 0x2;
1687
	psr_vsc.sdp_header.HB3 = 0x8;
1688
	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1689
 
1690
	/* Avoid continuous PSR exit by masking memup and hpd */
4560 Serge 1691
	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
4104 Serge 1692
		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1693
}
1694
 
1695
static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1696
{
5060 serge 1697
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1698
	struct drm_device *dev = dig_port->base.base.dev;
4104 Serge 1699
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1700
	uint32_t aux_clock_divider;
4104 Serge 1701
	int precharge = 0x3;
1702
	int msg_size = 5;       /* Header(4) + Message(1) */
5060 serge 1703
	bool only_standby = false;
4104 Serge 1704
 
5060 serge 1705
	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1706
 
1707
	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1708
		only_standby = true;
1709
 
4104 Serge 1710
	/* Enable PSR in sink */
5060 serge 1711
	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1712
		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1713
				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
4104 Serge 1714
	else
5060 serge 1715
		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1716
				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
4104 Serge 1717
 
1718
	/* Setup AUX registers */
4560 Serge 1719
	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1720
	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1721
	I915_WRITE(EDP_PSR_AUX_CTL(dev),
4104 Serge 1722
		   DP_AUX_CH_CTL_TIME_OUT_400us |
1723
		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1724
		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1725
		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1726
}
1727
 
1728
static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1729
{
5060 serge 1730
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1731
	struct drm_device *dev = dig_port->base.base.dev;
4104 Serge 1732
	struct drm_i915_private *dev_priv = dev->dev_private;
1733
	uint32_t max_sleep_time = 0x1f;
1734
	uint32_t idle_frames = 1;
1735
	uint32_t val = 0x0;
4560 Serge 1736
	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
5060 serge 1737
	bool only_standby = false;
4104 Serge 1738
 
5060 serge 1739
	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1740
		only_standby = true;
1741
 
1742
	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
4104 Serge 1743
		val |= EDP_PSR_LINK_STANDBY;
1744
		val |= EDP_PSR_TP2_TP3_TIME_0us;
1745
		val |= EDP_PSR_TP1_TIME_0us;
1746
		val |= EDP_PSR_SKIP_AUX_EXIT;
5060 serge 1747
		val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
4104 Serge 1748
	} else
1749
		val |= EDP_PSR_LINK_DISABLE;
1750
 
4560 Serge 1751
	I915_WRITE(EDP_PSR_CTL(dev), val |
5060 serge 1752
		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
4104 Serge 1753
		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1754
		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1755
		   EDP_PSR_ENABLE);
1756
}
1757
 
1758
static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1759
{
1760
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1761
	struct drm_device *dev = dig_port->base.base.dev;
1762
	struct drm_i915_private *dev_priv = dev->dev_private;
1763
	struct drm_crtc *crtc = dig_port->base.base.crtc;
1764
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1765
 
5060 serge 1766
	lockdep_assert_held(&dev_priv->psr.lock);
1767
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1768
	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1769
 
4560 Serge 1770
	dev_priv->psr.source_ok = false;
1771
 
5060 serge 1772
	if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
4104 Serge 1773
		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1774
		return false;
1775
	}
1776
 
5060 serge 1777
	if (!i915.enable_psr) {
4104 Serge 1778
		DRM_DEBUG_KMS("PSR disable by flag\n");
1779
		return false;
1780
	}
1781
 
5060 serge 1782
	/* Below limitations aren't valid for Broadwell */
1783
	if (IS_BROADWELL(dev))
1784
		goto out;
4104 Serge 1785
 
1786
	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1787
	    S3D_ENABLE) {
1788
		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1789
		return false;
1790
	}
1791
 
4560 Serge 1792
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
4104 Serge 1793
		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1794
		return false;
1795
	}
1796
 
5060 serge 1797
 out:
4560 Serge 1798
	dev_priv->psr.source_ok = true;
4104 Serge 1799
	return true;
1800
}
1801
 
1802
static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1803
{
5060 serge 1804
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1805
	struct drm_device *dev = intel_dig_port->base.base.dev;
1806
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1807
 
5060 serge 1808
	WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1809
	WARN_ON(dev_priv->psr.active);
1810
	lockdep_assert_held(&dev_priv->psr.lock);
4104 Serge 1811
 
1812
	/* Enable PSR on the panel */
1813
	intel_edp_psr_enable_sink(intel_dp);
1814
 
1815
	/* Enable PSR on the host */
1816
	intel_edp_psr_enable_source(intel_dp);
5060 serge 1817
 
1818
	dev_priv->psr.active = true;
4104 Serge 1819
}
1820
 
1821
void intel_edp_psr_enable(struct intel_dp *intel_dp)
1822
{
1823
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
5060 serge 1824
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1825
 
5060 serge 1826
	if (!HAS_PSR(dev)) {
1827
		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1828
		return;
1829
	}
1830
 
1831
	if (!is_edp_psr(intel_dp)) {
1832
		DRM_DEBUG_KMS("PSR not supported by this panel\n");
1833
		return;
1834
	}
1835
 
1836
	mutex_lock(&dev_priv->psr.lock);
1837
	if (dev_priv->psr.enabled) {
1838
		DRM_DEBUG_KMS("PSR already in use\n");
1839
		mutex_unlock(&dev_priv->psr.lock);
1840
		return;
1841
	}
1842
 
1843
	dev_priv->psr.busy_frontbuffer_bits = 0;
1844
 
1845
	/* Setup PSR once */
1846
	intel_edp_psr_setup(intel_dp);
1847
 
1848
	if (intel_edp_psr_match_conditions(intel_dp))
1849
		dev_priv->psr.enabled = intel_dp;
1850
	mutex_unlock(&dev_priv->psr.lock);
4104 Serge 1851
}
1852
 
1853
void intel_edp_psr_disable(struct intel_dp *intel_dp)
1854
{
1855
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1856
	struct drm_i915_private *dev_priv = dev->dev_private;
1857
 
5060 serge 1858
	mutex_lock(&dev_priv->psr.lock);
1859
	if (!dev_priv->psr.enabled) {
1860
		mutex_unlock(&dev_priv->psr.lock);
4104 Serge 1861
		return;
5060 serge 1862
	}
4104 Serge 1863
 
5060 serge 1864
	if (dev_priv->psr.active) {
4560 Serge 1865
	I915_WRITE(EDP_PSR_CTL(dev),
1866
		   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
4104 Serge 1867
 
1868
	/* Wait till PSR is idle */
4560 Serge 1869
	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
4104 Serge 1870
		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1871
		DRM_ERROR("Timed out waiting for PSR Idle State\n");
5060 serge 1872
 
1873
		dev_priv->psr.active = false;
1874
	} else {
1875
		WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1876
	}
1877
 
1878
	dev_priv->psr.enabled = NULL;
1879
	mutex_unlock(&dev_priv->psr.lock);
1880
 
1881
	cancel_delayed_work_sync(&dev_priv->psr.work);
4104 Serge 1882
}
1883
 
5060 serge 1884
static void intel_edp_psr_work(struct work_struct *work)
4104 Serge 1885
{
5060 serge 1886
	struct drm_i915_private *dev_priv =
1887
		container_of(work, typeof(*dev_priv), psr.work.work);
1888
	struct intel_dp *intel_dp = dev_priv->psr.enabled;
4104 Serge 1889
 
5060 serge 1890
	mutex_lock(&dev_priv->psr.lock);
1891
	intel_dp = dev_priv->psr.enabled;
4104 Serge 1892
 
5060 serge 1893
	if (!intel_dp)
1894
		goto unlock;
1895
 
1896
	/*
1897
	 * The delayed work can race with an invalidate hence we need to
1898
	 * recheck. Since psr_flush first clears this and then reschedules we
1899
	 * won't ever miss a flush when bailing out here.
1900
	 */
1901
	if (dev_priv->psr.busy_frontbuffer_bits)
1902
		goto unlock;
1903
 
1904
	intel_edp_psr_do_enable(intel_dp);
1905
unlock:
1906
	mutex_unlock(&dev_priv->psr.lock);
1907
}
1908
 
1909
static void intel_edp_psr_do_exit(struct drm_device *dev)
1910
{
1911
	struct drm_i915_private *dev_priv = dev->dev_private;
1912
 
1913
	if (dev_priv->psr.active) {
1914
		u32 val = I915_READ(EDP_PSR_CTL(dev));
1915
 
1916
		WARN_ON(!(val & EDP_PSR_ENABLE));
1917
 
1918
		I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
1919
 
1920
		dev_priv->psr.active = false;
1921
	}
1922
 
1923
}
1924
 
1925
void intel_edp_psr_invalidate(struct drm_device *dev,
1926
			      unsigned frontbuffer_bits)
1927
{
1928
	struct drm_i915_private *dev_priv = dev->dev_private;
1929
	struct drm_crtc *crtc;
1930
	enum pipe pipe;
1931
 
1932
	mutex_lock(&dev_priv->psr.lock);
1933
	if (!dev_priv->psr.enabled) {
1934
		mutex_unlock(&dev_priv->psr.lock);
4104 Serge 1935
				return;
5060 serge 1936
	}
4104 Serge 1937
 
5060 serge 1938
	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
1939
	pipe = to_intel_crtc(crtc)->pipe;
1940
 
1941
	intel_edp_psr_do_exit(dev);
1942
 
1943
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
1944
 
1945
	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1946
	mutex_unlock(&dev_priv->psr.lock);
1947
}
1948
 
1949
void intel_edp_psr_flush(struct drm_device *dev,
1950
			 unsigned frontbuffer_bits)
1951
{
1952
	struct drm_i915_private *dev_priv = dev->dev_private;
1953
	struct drm_crtc *crtc;
1954
	enum pipe pipe;
1955
 
1956
	mutex_lock(&dev_priv->psr.lock);
1957
	if (!dev_priv->psr.enabled) {
1958
		mutex_unlock(&dev_priv->psr.lock);
1959
		return;
4104 Serge 1960
		}
5060 serge 1961
 
1962
	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
1963
	pipe = to_intel_crtc(crtc)->pipe;
1964
	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1965
 
1966
	/*
1967
	 * On Haswell sprite plane updates don't result in a psr invalidating
1968
	 * signal in the hardware. Which means we need to manually fake this in
1969
	 * software for all flushes, not just when we've seen a preceding
1970
	 * invalidation through frontbuffer rendering.
1971
	 */
1972
	if (IS_HASWELL(dev) &&
1973
	    (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
1974
		intel_edp_psr_do_exit(dev);
1975
 
1976
	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1977
		schedule_delayed_work(&dev_priv->psr.work,
1978
				      msecs_to_jiffies(100));
1979
	mutex_unlock(&dev_priv->psr.lock);
4104 Serge 1980
}
1981
 
5060 serge 1982
void intel_edp_psr_init(struct drm_device *dev)
1983
{
1984
	struct drm_i915_private *dev_priv = dev->dev_private;
1985
 
1986
	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
1987
	mutex_init(&dev_priv->psr.lock);
1988
}
1989
 
3031 serge 1990
static void intel_disable_dp(struct intel_encoder *encoder)
2330 Serge 1991
{
3031 serge 1992
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 1993
	enum port port = dp_to_dig_port(intel_dp)->port;
1994
	struct drm_device *dev = encoder->base.dev;
2327 Serge 1995
 
3031 serge 1996
	/* Make sure the panel is off before trying to change the mode. But also
1997
	 * ensure that we have vdd while we switch off the panel. */
5060 serge 1998
	intel_edp_panel_vdd_on(intel_dp);
1999
	intel_edp_backlight_off(intel_dp);
4560 Serge 2000
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
5060 serge 2001
	intel_edp_panel_off(intel_dp);
2330 Serge 2002
 
3031 serge 2003
	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
4104 Serge 2004
	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
3031 serge 2005
		intel_dp_link_down(intel_dp);
2006
}
2330 Serge 2007
 
5060 serge 2008
static void g4x_post_disable_dp(struct intel_encoder *encoder)
3031 serge 2009
{
2010
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 2011
	enum port port = dp_to_dig_port(intel_dp)->port;
5060 serge 2012
 
2013
	if (port != PORT_A)
2014
		return;
2015
 
2016
	intel_dp_link_down(intel_dp);
2017
	ironlake_edp_pll_off(intel_dp);
2018
}
2019
 
2020
static void vlv_post_disable_dp(struct intel_encoder *encoder)
2021
{
2022
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2023
 
2024
	intel_dp_link_down(intel_dp);
2025
}
2026
 
2027
static void chv_post_disable_dp(struct intel_encoder *encoder)
2028
{
2029
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2030
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3746 Serge 2031
	struct drm_device *dev = encoder->base.dev;
5060 serge 2032
	struct drm_i915_private *dev_priv = dev->dev_private;
2033
	struct intel_crtc *intel_crtc =
2034
		to_intel_crtc(encoder->base.crtc);
2035
	enum dpio_channel ch = vlv_dport_to_channel(dport);
2036
	enum pipe pipe = intel_crtc->pipe;
2037
	u32 val;
3031 serge 2038
 
2039
		intel_dp_link_down(intel_dp);
5060 serge 2040
 
2041
	mutex_lock(&dev_priv->dpio_lock);
2042
 
2043
	/* Propagate soft reset to data lane reset */
2044
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2045
	val |= CHV_PCS_REQ_SOFTRESET_EN;
2046
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2047
 
2048
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2049
	val |= CHV_PCS_REQ_SOFTRESET_EN;
2050
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2051
 
2052
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2053
	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2054
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2055
 
2056
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2057
	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2058
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2059
 
2060
	mutex_unlock(&dev_priv->dpio_lock);
2330 Serge 2061
}
2062
 
3031 serge 2063
static void intel_enable_dp(struct intel_encoder *encoder)
2330 Serge 2064
{
3031 serge 2065
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2066
	struct drm_device *dev = encoder->base.dev;
2330 Serge 2067
	struct drm_i915_private *dev_priv = dev->dev_private;
2068
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2069
 
3031 serge 2070
	if (WARN_ON(dp_reg & DP_PORT_EN))
2071
		return;
2342 Serge 2072
 
5060 serge 2073
	intel_edp_panel_vdd_on(intel_dp);
3031 serge 2074
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2330 Serge 2075
			intel_dp_start_link_train(intel_dp);
5060 serge 2076
	intel_edp_panel_on(intel_dp);
2077
	edp_panel_vdd_off(intel_dp, true);
2330 Serge 2078
			intel_dp_complete_link_train(intel_dp);
3746 Serge 2079
	intel_dp_stop_link_train(intel_dp);
4560 Serge 2080
}
2081
 
2082
static void g4x_enable_dp(struct intel_encoder *encoder)
2083
{
2084
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2085
 
2086
	intel_enable_dp(encoder);
5060 serge 2087
	intel_edp_backlight_on(intel_dp);
2330 Serge 2088
}
2089
 
4104 Serge 2090
static void vlv_enable_dp(struct intel_encoder *encoder)
2091
{
4560 Serge 2092
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2093
 
5060 serge 2094
	intel_edp_backlight_on(intel_dp);
4104 Serge 2095
}
2096
 
4560 Serge 2097
static void g4x_pre_enable_dp(struct intel_encoder *encoder)
3031 serge 2098
{
2099
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 2100
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3031 serge 2101
 
5060 serge 2102
	intel_dp_prepare(encoder);
2103
 
2104
	/* Only ilk+ has port A */
2105
	if (dport->port == PORT_A) {
2106
		ironlake_set_pll_cpu_edp(intel_dp);
3031 serge 2107
		ironlake_edp_pll_on(intel_dp);
5060 serge 2108
	}
3031 serge 2109
}
2110
 
4104 Serge 2111
static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2112
{
2113
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2114
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2115
	struct drm_device *dev = encoder->base.dev;
2116
	struct drm_i915_private *dev_priv = dev->dev_private;
2117
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
4560 Serge 2118
	enum dpio_channel port = vlv_dport_to_channel(dport);
4104 Serge 2119
		int pipe = intel_crtc->pipe;
4560 Serge 2120
	struct edp_power_seq power_seq;
4104 Serge 2121
		u32 val;
2122
 
2123
	mutex_lock(&dev_priv->dpio_lock);
2124
 
4560 Serge 2125
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
4104 Serge 2126
		val = 0;
2127
		if (pipe)
2128
			val |= (1<<21);
2129
		else
2130
			val &= ~(1<<21);
2131
		val |= 0x001000c4;
4560 Serge 2132
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2133
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2134
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
4104 Serge 2135
 
2136
	mutex_unlock(&dev_priv->dpio_lock);
2137
 
5060 serge 2138
	if (is_edp(intel_dp)) {
4560 Serge 2139
	/* init power sequencer on this pipe and port */
2140
	intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2141
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2142
						      &power_seq);
5060 serge 2143
	}
4560 Serge 2144
 
4104 Serge 2145
	intel_enable_dp(encoder);
2146
 
4560 Serge 2147
	vlv_wait_port_ready(dev_priv, dport);
4539 Serge 2148
}
4104 Serge 2149
 
4560 Serge 2150
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
4104 Serge 2151
{
2152
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2153
	struct drm_device *dev = encoder->base.dev;
2154
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 2155
	struct intel_crtc *intel_crtc =
2156
		to_intel_crtc(encoder->base.crtc);
2157
	enum dpio_channel port = vlv_dport_to_channel(dport);
2158
	int pipe = intel_crtc->pipe;
4104 Serge 2159
 
5060 serge 2160
	intel_dp_prepare(encoder);
2161
 
4104 Serge 2162
	/* Program Tx lane resets to default */
2163
	mutex_lock(&dev_priv->dpio_lock);
4560 Serge 2164
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
4104 Serge 2165
			 DPIO_PCS_TX_LANE2_RESET |
2166
			 DPIO_PCS_TX_LANE1_RESET);
4560 Serge 2167
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
4104 Serge 2168
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2169
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2170
			 (1<
2171
				 DPIO_PCS_CLK_SOFT_RESET);
2172
 
2173
	/* Fix up inter-pair skew failure */
4560 Serge 2174
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2175
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2176
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
4104 Serge 2177
	mutex_unlock(&dev_priv->dpio_lock);
2178
}
2179
 
5060 serge 2180
static void chv_pre_enable_dp(struct intel_encoder *encoder)
2181
{
2182
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2183
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2184
	struct drm_device *dev = encoder->base.dev;
2185
	struct drm_i915_private *dev_priv = dev->dev_private;
2186
	struct edp_power_seq power_seq;
2187
	struct intel_crtc *intel_crtc =
2188
		to_intel_crtc(encoder->base.crtc);
2189
	enum dpio_channel ch = vlv_dport_to_channel(dport);
2190
	int pipe = intel_crtc->pipe;
2191
	int data, i;
2192
	u32 val;
2193
 
2194
	mutex_lock(&dev_priv->dpio_lock);
2195
 
2196
	/* Deassert soft data lane reset*/
2197
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2198
	val |= CHV_PCS_REQ_SOFTRESET_EN;
2199
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2200
 
2201
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2202
	val |= CHV_PCS_REQ_SOFTRESET_EN;
2203
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2204
 
2205
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2206
	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2207
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2208
 
2209
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2210
	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2211
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2212
 
2213
	/* Program Tx lane latency optimal setting*/
2214
	for (i = 0; i < 4; i++) {
2215
		/* Set the latency optimal bit */
2216
		data = (i == 1) ? 0x0 : 0x6;
2217
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2218
				data << DPIO_FRC_LATENCY_SHFIT);
2219
 
2220
		/* Set the upar bit */
2221
		data = (i == 1) ? 0x0 : 0x1;
2222
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2223
				data << DPIO_UPAR_SHIFT);
2224
	}
2225
 
2226
	/* Data lane stagger programming */
2227
	/* FIXME: Fix up value only after power analysis */
2228
 
2229
	mutex_unlock(&dev_priv->dpio_lock);
2230
 
2231
	if (is_edp(intel_dp)) {
2232
		/* init power sequencer on this pipe and port */
2233
		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2234
		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2235
							      &power_seq);
2236
	}
2237
 
2238
	intel_enable_dp(encoder);
2239
 
2240
	vlv_wait_port_ready(dev_priv, dport);
2241
}
2242
 
2243
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2244
{
2245
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2246
	struct drm_device *dev = encoder->base.dev;
2247
	struct drm_i915_private *dev_priv = dev->dev_private;
2248
	struct intel_crtc *intel_crtc =
2249
		to_intel_crtc(encoder->base.crtc);
2250
	enum dpio_channel ch = vlv_dport_to_channel(dport);
2251
	enum pipe pipe = intel_crtc->pipe;
2252
	u32 val;
2253
 
2254
	mutex_lock(&dev_priv->dpio_lock);
2255
 
2256
	/* program left/right clock distribution */
2257
	if (pipe != PIPE_B) {
2258
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2259
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2260
		if (ch == DPIO_CH0)
2261
			val |= CHV_BUFLEFTENA1_FORCE;
2262
		if (ch == DPIO_CH1)
2263
			val |= CHV_BUFRIGHTENA1_FORCE;
2264
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2265
	} else {
2266
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2267
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2268
		if (ch == DPIO_CH0)
2269
			val |= CHV_BUFLEFTENA2_FORCE;
2270
		if (ch == DPIO_CH1)
2271
			val |= CHV_BUFRIGHTENA2_FORCE;
2272
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2273
	}
2274
 
2275
	/* program clock channel usage */
2276
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2277
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2278
	if (pipe != PIPE_B)
2279
		val &= ~CHV_PCS_USEDCLKCHANNEL;
2280
	else
2281
		val |= CHV_PCS_USEDCLKCHANNEL;
2282
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2283
 
2284
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2285
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2286
	if (pipe != PIPE_B)
2287
		val &= ~CHV_PCS_USEDCLKCHANNEL;
2288
	else
2289
		val |= CHV_PCS_USEDCLKCHANNEL;
2290
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2291
 
2292
	/*
2293
	 * This a a bit weird since generally CL
2294
	 * matches the pipe, but here we need to
2295
	 * pick the CL based on the port.
2296
	 */
2297
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2298
	if (pipe != PIPE_B)
2299
		val &= ~CHV_CMN_USEDCLKCHANNEL;
2300
	else
2301
		val |= CHV_CMN_USEDCLKCHANNEL;
2302
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2303
 
2304
	mutex_unlock(&dev_priv->dpio_lock);
2305
}
2306
 
2330 Serge 2307
/*
2308
 * Native read with retry for link status and receiver capability reads for
2309
 * cases where the sink may still be asleep.
5060 serge 2310
 *
2311
 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2312
 * supposed to retry 3 times per the spec.
2330 Serge 2313
 */
5060 serge 2314
static ssize_t
2315
intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2316
			void *buffer, size_t size)
2330 Serge 2317
{
5060 serge 2318
	ssize_t ret;
2319
	int i;
2330 Serge 2320
 
2321
	for (i = 0; i < 3; i++) {
5060 serge 2322
		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2323
		if (ret == size)
2324
			return ret;
2330 Serge 2325
		msleep(1);
2326
	}
2327
 
5060 serge 2328
	return ret;
2330 Serge 2329
}
2330
 
2331
/*
2332
 * Fetch AUX CH registers 0x202 - 0x207 which contain
2333
 * link status information
2334
 */
2335
static bool
2342 Serge 2336
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2330 Serge 2337
{
5060 serge 2338
	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2330 Serge 2339
					      DP_LANE0_1_STATUS,
2342 Serge 2340
					      link_status,
5060 serge 2341
				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2330 Serge 2342
}
2343
 
5060 serge 2344
/* These are source-specific values. */
2330 Serge 2345
static uint8_t
2342 Serge 2346
intel_dp_voltage_max(struct intel_dp *intel_dp)
2330 Serge 2347
{
3243 Serge 2348
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4104 Serge 2349
	enum port port = dp_to_dig_port(intel_dp)->port;
2342 Serge 2350
 
5060 serge 2351
	if (IS_VALLEYVIEW(dev))
4104 Serge 2352
		return DP_TRAIN_VOLTAGE_SWING_1200;
2353
	else if (IS_GEN7(dev) && port == PORT_A)
2342 Serge 2354
		return DP_TRAIN_VOLTAGE_SWING_800;
4104 Serge 2355
	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2342 Serge 2356
		return DP_TRAIN_VOLTAGE_SWING_1200;
2357
	else
2358
		return DP_TRAIN_VOLTAGE_SWING_800;
2359
}
2360
 
2361
static uint8_t
2362
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2363
{
3243 Serge 2364
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4104 Serge 2365
	enum port port = dp_to_dig_port(intel_dp)->port;
2342 Serge 2366
 
5060 serge 2367
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2342 Serge 2368
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2369
		case DP_TRAIN_VOLTAGE_SWING_400:
3243 Serge 2370
			return DP_TRAIN_PRE_EMPHASIS_9_5;
2371
		case DP_TRAIN_VOLTAGE_SWING_600:
2342 Serge 2372
			return DP_TRAIN_PRE_EMPHASIS_6;
3243 Serge 2373
		case DP_TRAIN_VOLTAGE_SWING_800:
2374
			return DP_TRAIN_PRE_EMPHASIS_3_5;
2375
		case DP_TRAIN_VOLTAGE_SWING_1200:
2376
		default:
2377
			return DP_TRAIN_PRE_EMPHASIS_0;
2378
		}
4104 Serge 2379
	} else if (IS_VALLEYVIEW(dev)) {
3243 Serge 2380
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2381
		case DP_TRAIN_VOLTAGE_SWING_400:
4104 Serge 2382
			return DP_TRAIN_PRE_EMPHASIS_9_5;
2383
		case DP_TRAIN_VOLTAGE_SWING_600:
3243 Serge 2384
			return DP_TRAIN_PRE_EMPHASIS_6;
4104 Serge 2385
		case DP_TRAIN_VOLTAGE_SWING_800:
2386
			return DP_TRAIN_PRE_EMPHASIS_3_5;
2387
		case DP_TRAIN_VOLTAGE_SWING_1200:
2388
		default:
2389
			return DP_TRAIN_PRE_EMPHASIS_0;
2390
		}
2391
	} else if (IS_GEN7(dev) && port == PORT_A) {
2392
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2393
		case DP_TRAIN_VOLTAGE_SWING_400:
2394
			return DP_TRAIN_PRE_EMPHASIS_6;
2342 Serge 2395
		case DP_TRAIN_VOLTAGE_SWING_600:
2396
		case DP_TRAIN_VOLTAGE_SWING_800:
2397
			return DP_TRAIN_PRE_EMPHASIS_3_5;
2398
		default:
2399
			return DP_TRAIN_PRE_EMPHASIS_0;
2400
		}
2401
	} else {
2330 Serge 2402
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2403
	case DP_TRAIN_VOLTAGE_SWING_400:
2404
		return DP_TRAIN_PRE_EMPHASIS_6;
2405
	case DP_TRAIN_VOLTAGE_SWING_600:
2406
		return DP_TRAIN_PRE_EMPHASIS_6;
2407
	case DP_TRAIN_VOLTAGE_SWING_800:
2408
		return DP_TRAIN_PRE_EMPHASIS_3_5;
2409
	case DP_TRAIN_VOLTAGE_SWING_1200:
2410
	default:
2411
		return DP_TRAIN_PRE_EMPHASIS_0;
2412
	}
2342 Serge 2413
	}
2330 Serge 2414
}
2415
 
4104 Serge 2416
static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2417
{
2418
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2419
	struct drm_i915_private *dev_priv = dev->dev_private;
2420
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
4560 Serge 2421
	struct intel_crtc *intel_crtc =
2422
		to_intel_crtc(dport->base.base.crtc);
4104 Serge 2423
	unsigned long demph_reg_value, preemph_reg_value,
2424
		uniqtranscale_reg_value;
2425
	uint8_t train_set = intel_dp->train_set[0];
4560 Serge 2426
	enum dpio_channel port = vlv_dport_to_channel(dport);
2427
	int pipe = intel_crtc->pipe;
4104 Serge 2428
 
2429
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2430
	case DP_TRAIN_PRE_EMPHASIS_0:
2431
		preemph_reg_value = 0x0004000;
2432
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2433
		case DP_TRAIN_VOLTAGE_SWING_400:
2434
			demph_reg_value = 0x2B405555;
2435
			uniqtranscale_reg_value = 0x552AB83A;
2436
			break;
2437
		case DP_TRAIN_VOLTAGE_SWING_600:
2438
			demph_reg_value = 0x2B404040;
2439
			uniqtranscale_reg_value = 0x5548B83A;
2440
			break;
2441
		case DP_TRAIN_VOLTAGE_SWING_800:
2442
			demph_reg_value = 0x2B245555;
2443
			uniqtranscale_reg_value = 0x5560B83A;
2444
			break;
2445
		case DP_TRAIN_VOLTAGE_SWING_1200:
2446
			demph_reg_value = 0x2B405555;
2447
			uniqtranscale_reg_value = 0x5598DA3A;
2448
			break;
2449
		default:
2450
			return 0;
2451
		}
2452
		break;
2453
	case DP_TRAIN_PRE_EMPHASIS_3_5:
2454
		preemph_reg_value = 0x0002000;
2455
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2456
		case DP_TRAIN_VOLTAGE_SWING_400:
2457
			demph_reg_value = 0x2B404040;
2458
			uniqtranscale_reg_value = 0x5552B83A;
2459
			break;
2460
		case DP_TRAIN_VOLTAGE_SWING_600:
2461
			demph_reg_value = 0x2B404848;
2462
			uniqtranscale_reg_value = 0x5580B83A;
2463
			break;
2464
		case DP_TRAIN_VOLTAGE_SWING_800:
2465
			demph_reg_value = 0x2B404040;
2466
			uniqtranscale_reg_value = 0x55ADDA3A;
2467
			break;
2468
		default:
2469
			return 0;
2470
		}
2471
		break;
2472
	case DP_TRAIN_PRE_EMPHASIS_6:
2473
		preemph_reg_value = 0x0000000;
2474
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2475
		case DP_TRAIN_VOLTAGE_SWING_400:
2476
			demph_reg_value = 0x2B305555;
2477
			uniqtranscale_reg_value = 0x5570B83A;
2478
			break;
2479
		case DP_TRAIN_VOLTAGE_SWING_600:
2480
			demph_reg_value = 0x2B2B4040;
2481
			uniqtranscale_reg_value = 0x55ADDA3A;
2482
			break;
2483
		default:
2484
			return 0;
2485
		}
2486
		break;
2487
	case DP_TRAIN_PRE_EMPHASIS_9_5:
2488
		preemph_reg_value = 0x0006000;
2489
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2490
		case DP_TRAIN_VOLTAGE_SWING_400:
2491
			demph_reg_value = 0x1B405555;
2492
			uniqtranscale_reg_value = 0x55ADDA3A;
2493
			break;
2494
		default:
2495
			return 0;
2496
		}
2497
		break;
2498
	default:
2499
		return 0;
2500
	}
2501
 
2502
	mutex_lock(&dev_priv->dpio_lock);
4560 Serge 2503
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2504
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2505
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
4104 Serge 2506
			 uniqtranscale_reg_value);
4560 Serge 2507
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2508
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2509
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2510
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
4104 Serge 2511
	mutex_unlock(&dev_priv->dpio_lock);
2512
 
2513
	return 0;
2514
}
2515
 
5060 serge 2516
static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2517
{
2518
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2519
	struct drm_i915_private *dev_priv = dev->dev_private;
2520
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2521
	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2522
	u32 deemph_reg_value, margin_reg_value, val;
2523
	uint8_t train_set = intel_dp->train_set[0];
2524
	enum dpio_channel ch = vlv_dport_to_channel(dport);
2525
	enum pipe pipe = intel_crtc->pipe;
2526
	int i;
2527
 
2528
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2529
	case DP_TRAIN_PRE_EMPHASIS_0:
2530
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2531
		case DP_TRAIN_VOLTAGE_SWING_400:
2532
			deemph_reg_value = 128;
2533
			margin_reg_value = 52;
2534
			break;
2535
		case DP_TRAIN_VOLTAGE_SWING_600:
2536
			deemph_reg_value = 128;
2537
			margin_reg_value = 77;
2538
			break;
2539
		case DP_TRAIN_VOLTAGE_SWING_800:
2540
			deemph_reg_value = 128;
2541
			margin_reg_value = 102;
2542
			break;
2543
		case DP_TRAIN_VOLTAGE_SWING_1200:
2544
			deemph_reg_value = 128;
2545
			margin_reg_value = 154;
2546
			/* FIXME extra to set for 1200 */
2547
			break;
2548
		default:
2549
			return 0;
2550
		}
2551
		break;
2552
	case DP_TRAIN_PRE_EMPHASIS_3_5:
2553
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2554
		case DP_TRAIN_VOLTAGE_SWING_400:
2555
			deemph_reg_value = 85;
2556
			margin_reg_value = 78;
2557
			break;
2558
		case DP_TRAIN_VOLTAGE_SWING_600:
2559
			deemph_reg_value = 85;
2560
			margin_reg_value = 116;
2561
			break;
2562
		case DP_TRAIN_VOLTAGE_SWING_800:
2563
			deemph_reg_value = 85;
2564
			margin_reg_value = 154;
2565
			break;
2566
		default:
2567
			return 0;
2568
		}
2569
		break;
2570
	case DP_TRAIN_PRE_EMPHASIS_6:
2571
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2572
		case DP_TRAIN_VOLTAGE_SWING_400:
2573
			deemph_reg_value = 64;
2574
			margin_reg_value = 104;
2575
			break;
2576
		case DP_TRAIN_VOLTAGE_SWING_600:
2577
			deemph_reg_value = 64;
2578
			margin_reg_value = 154;
2579
			break;
2580
		default:
2581
			return 0;
2582
		}
2583
		break;
2584
	case DP_TRAIN_PRE_EMPHASIS_9_5:
2585
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2586
		case DP_TRAIN_VOLTAGE_SWING_400:
2587
			deemph_reg_value = 43;
2588
			margin_reg_value = 154;
2589
			break;
2590
		default:
2591
			return 0;
2592
		}
2593
		break;
2594
	default:
2595
		return 0;
2596
	}
2597
 
2598
	mutex_lock(&dev_priv->dpio_lock);
2599
 
2600
	/* Clear calc init */
2601
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2602
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2603
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2604
 
2605
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2606
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2607
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2608
 
2609
	/* Program swing deemph */
2610
	for (i = 0; i < 4; i++) {
2611
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2612
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2613
		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2614
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2615
	}
2616
 
2617
	/* Program swing margin */
2618
	for (i = 0; i < 4; i++) {
2619
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2620
		val &= ~DPIO_SWING_MARGIN_MASK;
2621
		val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2622
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2623
	}
2624
 
2625
	/* Disable unique transition scale */
2626
	for (i = 0; i < 4; i++) {
2627
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2628
		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2629
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2630
	}
2631
 
2632
	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2633
			== DP_TRAIN_PRE_EMPHASIS_0) &&
2634
		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2635
			== DP_TRAIN_VOLTAGE_SWING_1200)) {
2636
 
2637
		/*
2638
		 * The document said it needs to set bit 27 for ch0 and bit 26
2639
		 * for ch1. Might be a typo in the doc.
2640
		 * For now, for this unique transition scale selection, set bit
2641
		 * 27 for ch0 and ch1.
2642
		 */
2643
		for (i = 0; i < 4; i++) {
2644
			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2645
			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2646
			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2647
		}
2648
 
2649
		for (i = 0; i < 4; i++) {
2650
			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2651
			val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2652
			val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2653
			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2654
		}
2655
	}
2656
 
2657
	/* Start swing calculation */
2658
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2659
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2660
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2661
 
2662
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2663
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2664
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2665
 
2666
	/* LRC Bypass */
2667
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2668
	val |= DPIO_LRC_BYPASS;
2669
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2670
 
2671
	mutex_unlock(&dev_priv->dpio_lock);
2672
 
2673
	return 0;
2674
}
2675
 
2330 Serge 2676
static void
4560 Serge 2677
intel_get_adjust_train(struct intel_dp *intel_dp,
2678
		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2330 Serge 2679
{
2680
	uint8_t v = 0;
2681
	uint8_t p = 0;
2682
	int lane;
2342 Serge 2683
	uint8_t voltage_max;
2684
	uint8_t preemph_max;
2330 Serge 2685
 
2686
	for (lane = 0; lane < intel_dp->lane_count; lane++) {
3243 Serge 2687
		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2688
		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2330 Serge 2689
 
2690
		if (this_v > v)
2691
			v = this_v;
2692
		if (this_p > p)
2693
			p = this_p;
2694
	}
2695
 
2342 Serge 2696
	voltage_max = intel_dp_voltage_max(intel_dp);
2697
	if (v >= voltage_max)
2698
		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2330 Serge 2699
 
2342 Serge 2700
	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2701
	if (p >= preemph_max)
2702
		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2330 Serge 2703
 
2704
	for (lane = 0; lane < 4; lane++)
2705
		intel_dp->train_set[lane] = v | p;
2706
}
2707
 
2708
static uint32_t
3480 Serge 2709
intel_gen4_signal_levels(uint8_t train_set)
2330 Serge 2710
{
2711
	uint32_t	signal_levels = 0;
2712
 
2713
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2714
	case DP_TRAIN_VOLTAGE_SWING_400:
2715
	default:
2716
		signal_levels |= DP_VOLTAGE_0_4;
2717
		break;
2718
	case DP_TRAIN_VOLTAGE_SWING_600:
2719
		signal_levels |= DP_VOLTAGE_0_6;
2720
		break;
2721
	case DP_TRAIN_VOLTAGE_SWING_800:
2722
		signal_levels |= DP_VOLTAGE_0_8;
2723
		break;
2724
	case DP_TRAIN_VOLTAGE_SWING_1200:
2725
		signal_levels |= DP_VOLTAGE_1_2;
2726
		break;
2727
	}
2728
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2729
	case DP_TRAIN_PRE_EMPHASIS_0:
2730
	default:
2731
		signal_levels |= DP_PRE_EMPHASIS_0;
2732
		break;
2733
	case DP_TRAIN_PRE_EMPHASIS_3_5:
2734
		signal_levels |= DP_PRE_EMPHASIS_3_5;
2735
		break;
2736
	case DP_TRAIN_PRE_EMPHASIS_6:
2737
		signal_levels |= DP_PRE_EMPHASIS_6;
2738
		break;
2739
	case DP_TRAIN_PRE_EMPHASIS_9_5:
2740
		signal_levels |= DP_PRE_EMPHASIS_9_5;
2741
		break;
2742
	}
2743
	return signal_levels;
2744
}
2745
 
2746
/* Gen6's DP voltage swing and pre-emphasis control */
2747
static uint32_t
2748
intel_gen6_edp_signal_levels(uint8_t train_set)
2749
{
2750
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2751
					 DP_TRAIN_PRE_EMPHASIS_MASK);
2752
	switch (signal_levels) {
2753
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2754
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2755
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2756
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2757
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2758
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2759
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2760
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2761
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2762
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2763
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2764
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2765
	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2766
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2767
	default:
2768
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2769
			      "0x%x\n", signal_levels);
2770
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2771
	}
2772
}
2773
 
2342 Serge 2774
/* Gen7's DP voltage swing and pre-emphasis control */
2775
static uint32_t
2776
intel_gen7_edp_signal_levels(uint8_t train_set)
2777
{
2778
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2779
					 DP_TRAIN_PRE_EMPHASIS_MASK);
2780
	switch (signal_levels) {
2781
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2782
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2783
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2784
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2785
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2786
		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2787
 
2788
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2789
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2790
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2791
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2792
 
2793
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2794
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2795
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2796
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2797
 
2798
	default:
2799
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2800
			      "0x%x\n", signal_levels);
2801
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2802
	}
2803
}
2804
 
3243 Serge 2805
/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2806
static uint32_t
3480 Serge 2807
intel_hsw_signal_levels(uint8_t train_set)
2330 Serge 2808
{
3243 Serge 2809
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2810
					 DP_TRAIN_PRE_EMPHASIS_MASK);
2811
	switch (signal_levels) {
2812
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2813
		return DDI_BUF_EMP_400MV_0DB_HSW;
2814
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2815
		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2816
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2817
		return DDI_BUF_EMP_400MV_6DB_HSW;
2818
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2819
		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2330 Serge 2820
 
3243 Serge 2821
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2822
		return DDI_BUF_EMP_600MV_0DB_HSW;
2823
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2824
		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2825
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2826
		return DDI_BUF_EMP_600MV_6DB_HSW;
2330 Serge 2827
 
3243 Serge 2828
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2829
		return DDI_BUF_EMP_800MV_0DB_HSW;
2830
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2831
		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2832
	default:
2833
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2834
			      "0x%x\n", signal_levels);
2835
		return DDI_BUF_EMP_400MV_0DB_HSW;
2330 Serge 2836
	}
2837
}
2838
 
3480 Serge 2839
/* Properly updates "DP" with the correct signal levels. */
2840
static void
2841
intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2842
{
2843
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4104 Serge 2844
	enum port port = intel_dig_port->port;
3480 Serge 2845
	struct drm_device *dev = intel_dig_port->base.base.dev;
2846
	uint32_t signal_levels, mask;
2847
	uint8_t train_set = intel_dp->train_set[0];
2848
 
5060 serge 2849
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3480 Serge 2850
		signal_levels = intel_hsw_signal_levels(train_set);
2851
		mask = DDI_BUF_EMP_MASK;
5060 serge 2852
	} else if (IS_CHERRYVIEW(dev)) {
2853
		signal_levels = intel_chv_signal_levels(intel_dp);
2854
		mask = 0;
4104 Serge 2855
	} else if (IS_VALLEYVIEW(dev)) {
2856
		signal_levels = intel_vlv_signal_levels(intel_dp);
2857
		mask = 0;
2858
	} else if (IS_GEN7(dev) && port == PORT_A) {
3480 Serge 2859
		signal_levels = intel_gen7_edp_signal_levels(train_set);
2860
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4104 Serge 2861
	} else if (IS_GEN6(dev) && port == PORT_A) {
3480 Serge 2862
		signal_levels = intel_gen6_edp_signal_levels(train_set);
2863
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2864
	} else {
2865
		signal_levels = intel_gen4_signal_levels(train_set);
2866
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2867
	}
2868
 
2869
	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2870
 
2871
	*DP = (*DP & ~mask) | signal_levels;
2872
}
2873
 
2330 Serge 2874
static bool
2875
intel_dp_set_link_train(struct intel_dp *intel_dp,
4560 Serge 2876
			uint32_t *DP,
2330 Serge 2877
			uint8_t dp_train_pat)
2878
{
3243 Serge 2879
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2880
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 2881
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 2882
	enum port port = intel_dig_port->port;
4560 Serge 2883
	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2884
	int ret, len;
2330 Serge 2885
 
3746 Serge 2886
	if (HAS_DDI(dev)) {
2887
		uint32_t temp = I915_READ(DP_TP_CTL(port));
3243 Serge 2888
 
2889
		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2890
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2891
		else
2892
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2893
 
2894
		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2895
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2896
		case DP_TRAINING_PATTERN_DISABLE:
2897
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2898
 
2899
			break;
2900
		case DP_TRAINING_PATTERN_1:
2901
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2902
			break;
2903
		case DP_TRAINING_PATTERN_2:
2904
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2905
			break;
2906
		case DP_TRAINING_PATTERN_3:
2907
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2908
			break;
2909
		}
2910
		I915_WRITE(DP_TP_CTL(port), temp);
2911
 
4104 Serge 2912
	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
4560 Serge 2913
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3031 serge 2914
 
2915
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2916
		case DP_TRAINING_PATTERN_DISABLE:
4560 Serge 2917
			*DP |= DP_LINK_TRAIN_OFF_CPT;
3031 serge 2918
			break;
2919
		case DP_TRAINING_PATTERN_1:
4560 Serge 2920
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
3031 serge 2921
			break;
2922
		case DP_TRAINING_PATTERN_2:
4560 Serge 2923
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3031 serge 2924
			break;
2925
		case DP_TRAINING_PATTERN_3:
2926
			DRM_ERROR("DP training pattern 3 not supported\n");
4560 Serge 2927
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
3031 serge 2928
			break;
2929
		}
2930
 
2931
	} else {
4560 Serge 2932
		*DP &= ~DP_LINK_TRAIN_MASK;
3031 serge 2933
 
2934
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2935
		case DP_TRAINING_PATTERN_DISABLE:
4560 Serge 2936
			*DP |= DP_LINK_TRAIN_OFF;
3031 serge 2937
			break;
2938
		case DP_TRAINING_PATTERN_1:
4560 Serge 2939
			*DP |= DP_LINK_TRAIN_PAT_1;
3031 serge 2940
			break;
2941
		case DP_TRAINING_PATTERN_2:
4560 Serge 2942
			*DP |= DP_LINK_TRAIN_PAT_2;
3031 serge 2943
			break;
2944
		case DP_TRAINING_PATTERN_3:
2945
			DRM_ERROR("DP training pattern 3 not supported\n");
4560 Serge 2946
			*DP |= DP_LINK_TRAIN_PAT_2;
3031 serge 2947
			break;
2948
		}
2949
	}
2950
 
4560 Serge 2951
	I915_WRITE(intel_dp->output_reg, *DP);
2330 Serge 2952
	POSTING_READ(intel_dp->output_reg);
2953
 
4560 Serge 2954
	buf[0] = dp_train_pat;
2955
	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2956
	    DP_TRAINING_PATTERN_DISABLE) {
2957
		/* don't write DP_TRAINING_LANEx_SET on disable */
2958
		len = 1;
2959
	} else {
2960
		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2961
		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2962
		len = intel_dp->lane_count + 1;
2963
	}
2330 Serge 2964
 
5060 serge 2965
	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
4560 Serge 2966
					buf, len);
2967
 
2968
	return ret == len;
2969
}
2970
 
2971
static bool
2972
intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2973
			uint8_t dp_train_pat)
2974
{
2975
	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2976
	intel_dp_set_signal_levels(intel_dp, DP);
2977
	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2978
}
2979
 
2980
static bool
2981
intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2982
			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
2983
{
2984
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2985
	struct drm_device *dev = intel_dig_port->base.base.dev;
2986
	struct drm_i915_private *dev_priv = dev->dev_private;
2987
	int ret;
2988
 
2989
	intel_get_adjust_train(intel_dp, link_status);
2990
	intel_dp_set_signal_levels(intel_dp, DP);
2991
 
2992
	I915_WRITE(intel_dp->output_reg, *DP);
2993
	POSTING_READ(intel_dp->output_reg);
2994
 
5060 serge 2995
	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2996
				intel_dp->train_set, intel_dp->lane_count);
2330 Serge 2997
 
4560 Serge 2998
	return ret == intel_dp->lane_count;
2330 Serge 2999
}
3000
 
3746 Serge 3001
static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3002
{
3003
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3004
	struct drm_device *dev = intel_dig_port->base.base.dev;
3005
	struct drm_i915_private *dev_priv = dev->dev_private;
3006
	enum port port = intel_dig_port->port;
3007
	uint32_t val;
3008
 
3009
	if (!HAS_DDI(dev))
3010
		return;
3011
 
3012
	val = I915_READ(DP_TP_CTL(port));
3013
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3014
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3015
	I915_WRITE(DP_TP_CTL(port), val);
3016
 
3017
	/*
3018
	 * On PORT_A we can have only eDP in SST mode. There the only reason
3019
	 * we need to set idle transmission mode is to work around a HW issue
3020
	 * where we enable the pipe while not in idle link-training mode.
3021
	 * In this case there is requirement to wait for a minimum number of
3022
	 * idle patterns to be sent.
3023
	 */
3024
	if (port == PORT_A)
3025
		return;
3026
 
3027
	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3028
		     1))
3029
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
3030
}
3031
 
2330 Serge 3032
/* Enable corresponding port and start training pattern 1 */
3243 Serge 3033
void
2330 Serge 3034
intel_dp_start_link_train(struct intel_dp *intel_dp)
3035
{
3243 Serge 3036
	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3037
	struct drm_device *dev = encoder->dev;
2330 Serge 3038
	int i;
3039
	uint8_t voltage;
2342 Serge 3040
	int voltage_tries, loop_tries;
2330 Serge 3041
	uint32_t DP = intel_dp->DP;
4560 Serge 3042
	uint8_t link_config[2];
2330 Serge 3043
 
3480 Serge 3044
	if (HAS_DDI(dev))
3243 Serge 3045
		intel_ddi_prepare_link_retrain(encoder);
3046
 
2330 Serge 3047
	/* Write the link configuration data */
4560 Serge 3048
	link_config[0] = intel_dp->link_bw;
3049
	link_config[1] = intel_dp->lane_count;
3050
	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3051
		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
5060 serge 3052
	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2330 Serge 3053
 
4560 Serge 3054
	link_config[0] = 0;
3055
	link_config[1] = DP_SET_ANSI_8B10B;
5060 serge 3056
	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
4560 Serge 3057
 
2330 Serge 3058
	DP |= DP_PORT_EN;
2342 Serge 3059
 
4560 Serge 3060
	/* clock recovery */
3061
	if (!intel_dp_reset_link_train(intel_dp, &DP,
3062
				       DP_TRAINING_PATTERN_1 |
3063
				       DP_LINK_SCRAMBLING_DISABLE)) {
3064
		DRM_ERROR("failed to enable link training\n");
3065
		return;
3066
	}
3067
 
2330 Serge 3068
	voltage = 0xff;
2342 Serge 3069
	voltage_tries = 0;
3070
	loop_tries = 0;
2330 Serge 3071
	for (;;) {
2342 Serge 3072
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
3073
 
3243 Serge 3074
		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2342 Serge 3075
		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3076
			DRM_ERROR("failed to get link status\n");
2330 Serge 3077
			break;
2342 Serge 3078
		}
2330 Serge 3079
 
3243 Serge 3080
		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2342 Serge 3081
			DRM_DEBUG_KMS("clock recovery OK\n");
2330 Serge 3082
			break;
3083
		}
3084
 
3085
		/* Check to see if we've tried the max voltage */
3086
		for (i = 0; i < intel_dp->lane_count; i++)
3087
			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3088
				break;
3480 Serge 3089
		if (i == intel_dp->lane_count) {
2342 Serge 3090
			++loop_tries;
3091
			if (loop_tries == 5) {
4560 Serge 3092
				DRM_ERROR("too many full retries, give up\n");
2330 Serge 3093
			break;
2342 Serge 3094
			}
4560 Serge 3095
			intel_dp_reset_link_train(intel_dp, &DP,
3096
						  DP_TRAINING_PATTERN_1 |
3097
						  DP_LINK_SCRAMBLING_DISABLE);
2342 Serge 3098
			voltage_tries = 0;
3099
			continue;
3100
		}
2330 Serge 3101
 
3102
		/* Check to see if we've tried the same voltage 5 times */
3103
		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2342 Serge 3104
			++voltage_tries;
3105
			if (voltage_tries == 5) {
4560 Serge 3106
				DRM_ERROR("too many voltage retries, give up\n");
2330 Serge 3107
				break;
2342 Serge 3108
			}
2330 Serge 3109
		} else
2342 Serge 3110
			voltage_tries = 0;
2330 Serge 3111
		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3112
 
4560 Serge 3113
		/* Update training set as requested by target */
3114
		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3115
			DRM_ERROR("failed to update link training\n");
3116
			break;
3117
		}
2330 Serge 3118
	}
3119
 
3120
	intel_dp->DP = DP;
3121
}
3122
 
3243 Serge 3123
void
2330 Serge 3124
intel_dp_complete_link_train(struct intel_dp *intel_dp)
3125
{
3126
	bool channel_eq = false;
3127
	int tries, cr_tries;
3128
	uint32_t DP = intel_dp->DP;
5060 serge 3129
	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2330 Serge 3130
 
5060 serge 3131
	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3132
	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3133
		training_pattern = DP_TRAINING_PATTERN_3;
3134
 
2330 Serge 3135
	/* channel equalization */
4560 Serge 3136
	if (!intel_dp_set_link_train(intel_dp, &DP,
5060 serge 3137
				     training_pattern |
4560 Serge 3138
				     DP_LINK_SCRAMBLING_DISABLE)) {
3139
		DRM_ERROR("failed to start channel equalization\n");
3140
		return;
3141
	}
3142
 
2330 Serge 3143
	tries = 0;
3144
	cr_tries = 0;
3145
	channel_eq = false;
3146
	for (;;) {
2342 Serge 3147
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
2330 Serge 3148
 
3149
		if (cr_tries > 5) {
3150
			DRM_ERROR("failed to train DP, aborting\n");
3151
			break;
3152
		}
3153
 
3243 Serge 3154
		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
4560 Serge 3155
		if (!intel_dp_get_link_status(intel_dp, link_status)) {
3156
			DRM_ERROR("failed to get link status\n");
2330 Serge 3157
			break;
4560 Serge 3158
		}
2330 Serge 3159
 
3160
		/* Make sure clock is still ok */
3243 Serge 3161
		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2330 Serge 3162
			intel_dp_start_link_train(intel_dp);
4560 Serge 3163
			intel_dp_set_link_train(intel_dp, &DP,
5060 serge 3164
						training_pattern |
4560 Serge 3165
						DP_LINK_SCRAMBLING_DISABLE);
2330 Serge 3166
			cr_tries++;
3167
			continue;
3168
		}
3169
 
3243 Serge 3170
		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2330 Serge 3171
			channel_eq = true;
3172
			break;
3173
		}
3174
 
3175
		/* Try 5 times, then try clock recovery if that fails */
3176
		if (tries > 5) {
3177
			intel_dp_link_down(intel_dp);
3178
			intel_dp_start_link_train(intel_dp);
4560 Serge 3179
			intel_dp_set_link_train(intel_dp, &DP,
5060 serge 3180
						training_pattern |
4560 Serge 3181
						DP_LINK_SCRAMBLING_DISABLE);
2330 Serge 3182
			tries = 0;
3183
			cr_tries++;
3184
			continue;
3185
		}
3186
 
4560 Serge 3187
		/* Update training set as requested by target */
3188
		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3189
			DRM_ERROR("failed to update link training\n");
3190
			break;
3191
		}
2330 Serge 3192
		++tries;
3193
	}
3194
 
3746 Serge 3195
	intel_dp_set_idle_link_train(intel_dp);
3196
 
3197
	intel_dp->DP = DP;
3198
 
3243 Serge 3199
	if (channel_eq)
3746 Serge 3200
		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3243 Serge 3201
 
2330 Serge 3202
}
3203
 
3746 Serge 3204
void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3205
{
4560 Serge 3206
	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3746 Serge 3207
				DP_TRAINING_PATTERN_DISABLE);
3208
}
3209
 
2330 Serge 3210
static void
3211
intel_dp_link_down(struct intel_dp *intel_dp)
3212
{
3243 Serge 3213
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4104 Serge 3214
	enum port port = intel_dig_port->port;
3243 Serge 3215
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 3216
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 3217
	struct intel_crtc *intel_crtc =
3218
		to_intel_crtc(intel_dig_port->base.base.crtc);
2330 Serge 3219
	uint32_t DP = intel_dp->DP;
3220
 
5060 serge 3221
	if (WARN_ON(HAS_DDI(dev)))
3243 Serge 3222
		return;
3223
 
3031 serge 3224
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2330 Serge 3225
		return;
3226
 
3227
	DRM_DEBUG_KMS("\n");
3228
 
4104 Serge 3229
	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2330 Serge 3230
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
3231
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3232
	} else {
3233
		DP &= ~DP_LINK_TRAIN_MASK;
3234
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3235
	}
3236
	POSTING_READ(intel_dp->output_reg);
3237
 
3031 serge 3238
	if (HAS_PCH_IBX(dev) &&
2330 Serge 3239
	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3243 Serge 3240
		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2330 Serge 3241
 
3242
		/* Hardware workaround: leaving our transcoder select
3243
		 * set to transcoder B while it's off will prevent the
3244
		 * corresponding HDMI output on transcoder A.
3245
		 *
3246
		 * Combine this with another hardware workaround:
3247
		 * transcoder select bit can only be cleared while the
3248
		 * port is enabled.
3249
		 */
3250
		DP &= ~DP_PIPEB_SELECT;
3251
		I915_WRITE(intel_dp->output_reg, DP);
3252
 
3253
		/* Changes to enable or select take place the vblank
3254
		 * after being written.
3255
		 */
3480 Serge 3256
		if (WARN_ON(crtc == NULL)) {
3257
			/* We should never try to disable a port without a crtc
3258
			 * attached. For paranoia keep the code around for a
3259
			 * bit. */
2330 Serge 3260
			POSTING_READ(intel_dp->output_reg);
3261
			msleep(50);
3262
		} else
3480 Serge 3263
			intel_wait_for_vblank(dev, intel_crtc->pipe);
2330 Serge 3264
	}
3265
 
2342 Serge 3266
	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2330 Serge 3267
	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3268
	POSTING_READ(intel_dp->output_reg);
2342 Serge 3269
	msleep(intel_dp->panel_power_down_delay);
2330 Serge 3270
}
3271
 
3272
static bool
3273
intel_dp_get_dpcd(struct intel_dp *intel_dp)
3274
{
4560 Serge 3275
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3276
	struct drm_device *dev = dig_port->base.base.dev;
3277
	struct drm_i915_private *dev_priv = dev->dev_private;
3278
 
3480 Serge 3279
	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3280
 
5060 serge 3281
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3282
				    sizeof(intel_dp->dpcd)) < 0)
3031 serge 3283
		return false; /* aux transfer failed */
3284
 
3480 Serge 3285
	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3286
			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3287
	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3288
 
3031 serge 3289
	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3290
		return false; /* DPCD not present */
3291
 
4104 Serge 3292
	/* Check if the panel supports PSR */
3293
	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
4560 Serge 3294
	if (is_edp(intel_dp)) {
5060 serge 3295
		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
4104 Serge 3296
				       intel_dp->psr_dpcd,
3297
				       sizeof(intel_dp->psr_dpcd));
4560 Serge 3298
		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3299
			dev_priv->psr.sink_support = true;
4104 Serge 3300
		DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
4560 Serge 3301
		}
3302
	}
3303
 
5060 serge 3304
	/* Training Pattern 3 support */
3305
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3306
	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3307
		intel_dp->use_tps3 = true;
3308
		DRM_DEBUG_KMS("Displayport TPS3 supported");
3309
	} else
3310
		intel_dp->use_tps3 = false;
3311
 
3031 serge 3312
	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3313
	      DP_DWN_STRM_PORT_PRESENT))
3314
		return true; /* native DP sink */
3315
 
3316
	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3317
		return true; /* no per-port downstream info */
3318
 
5060 serge 3319
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3031 serge 3320
					   intel_dp->downstream_ports,
5060 serge 3321
				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3031 serge 3322
		return false; /* downstream port status fetch failed */
3323
 
2330 Serge 3324
		return true;
3031 serge 3325
}
2330 Serge 3326
 
3031 serge 3327
static void
3328
intel_dp_probe_oui(struct intel_dp *intel_dp)
3329
{
3330
	u8 buf[3];
3331
 
3332
	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3333
		return;
3334
 
5060 serge 3335
	intel_edp_panel_vdd_on(intel_dp);
3031 serge 3336
 
5060 serge 3337
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3031 serge 3338
		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3339
			      buf[0], buf[1], buf[2]);
3340
 
5060 serge 3341
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3031 serge 3342
		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3343
			      buf[0], buf[1], buf[2]);
3344
 
5060 serge 3345
	edp_panel_vdd_off(intel_dp, false);
2330 Serge 3346
}
3347
 
2342 Serge 3348
static bool
5060 serge 3349
intel_dp_probe_mst(struct intel_dp *intel_dp)
3350
{
3351
	u8 buf[1];
3352
 
3353
	if (!intel_dp->can_mst)
3354
		return false;
3355
 
3356
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3357
		return false;
3358
 
3359
	_edp_panel_vdd_on(intel_dp);
3360
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3361
		if (buf[0] & DP_MST_CAP) {
3362
			DRM_DEBUG_KMS("Sink is MST capable\n");
3363
			intel_dp->is_mst = true;
3364
		} else {
3365
			DRM_DEBUG_KMS("Sink is not MST capable\n");
3366
			intel_dp->is_mst = false;
3367
		}
3368
	}
3369
	edp_panel_vdd_off(intel_dp, false);
3370
 
3371
	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3372
	return intel_dp->is_mst;
3373
}
3374
 
3375
int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3376
{
3377
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3378
	struct drm_device *dev = intel_dig_port->base.base.dev;
3379
	struct intel_crtc *intel_crtc =
3380
		to_intel_crtc(intel_dig_port->base.base.crtc);
3381
	u8 buf[1];
3382
 
3383
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3384
		return -EAGAIN;
3385
 
3386
	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3387
		return -ENOTTY;
3388
 
3389
	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3390
			       DP_TEST_SINK_START) < 0)
3391
		return -EAGAIN;
3392
 
3393
	/* Wait 2 vblanks to be sure we will have the correct CRC value */
3394
	intel_wait_for_vblank(dev, intel_crtc->pipe);
3395
	intel_wait_for_vblank(dev, intel_crtc->pipe);
3396
 
3397
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3398
		return -EAGAIN;
3399
 
3400
	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3401
	return 0;
3402
}
3403
 
3404
static bool
2342 Serge 3405
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3406
{
5060 serge 3407
	return intel_dp_dpcd_read_wake(&intel_dp->aux,
3408
					     DP_DEVICE_SERVICE_IRQ_VECTOR,
3409
				       sink_irq_vector, 1) == 1;
3410
}
3411
 
3412
static bool
3413
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3414
{
2342 Serge 3415
	int ret;
3416
 
5060 serge 3417
	ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3418
					     DP_SINK_COUNT_ESI,
3419
					     sink_irq_vector, 14);
3420
	if (ret != 14)
2342 Serge 3421
		return false;
3422
 
3423
	return true;
3424
}
3425
 
3426
static void
3427
intel_dp_handle_test_request(struct intel_dp *intel_dp)
3428
{
3429
	/* NAK by default */
5060 serge 3430
	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
2342 Serge 3431
}
3432
 
5060 serge 3433
static int
3434
intel_dp_check_mst_status(struct intel_dp *intel_dp)
3435
{
3436
	bool bret;
3437
 
3438
	if (intel_dp->is_mst) {
3439
		u8 esi[16] = { 0 };
3440
		int ret = 0;
3441
		int retry;
3442
		bool handled;
3443
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3444
go_again:
3445
		if (bret == true) {
3446
 
3447
			/* check link status - esi[10] = 0x200c */
3448
			if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3449
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3450
				intel_dp_start_link_train(intel_dp);
3451
				intel_dp_complete_link_train(intel_dp);
3452
				intel_dp_stop_link_train(intel_dp);
3453
			}
3454
 
3455
			DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3456
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3457
 
3458
			if (handled) {
3459
				for (retry = 0; retry < 3; retry++) {
3460
					int wret;
3461
					wret = drm_dp_dpcd_write(&intel_dp->aux,
3462
								 DP_SINK_COUNT_ESI+1,
3463
								 &esi[1], 3);
3464
					if (wret == 3) {
3465
						break;
3466
					}
3467
				}
3468
 
3469
				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3470
				if (bret == true) {
3471
					DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3472
					goto go_again;
3473
				}
3474
			} else
3475
				ret = 0;
3476
 
3477
			return ret;
3478
		} else {
3479
			struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3480
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3481
			intel_dp->is_mst = false;
3482
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3483
			/* send a hotplug event */
3484
			drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3485
		}
3486
	}
3487
	return -EINVAL;
3488
}
3489
 
2330 Serge 3490
/*
3491
 * According to DP spec
3492
 * 5.1.2:
3493
 *  1. Read DPCD
3494
 *  2. Configure link according to Receiver Capabilities
3495
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3496
 *  4. Check link status on receipt of hot-plug interrupt
3497
 */
3243 Serge 3498
void
2330 Serge 3499
intel_dp_check_link_status(struct intel_dp *intel_dp)
3500
{
5060 serge 3501
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3243 Serge 3502
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2342 Serge 3503
	u8 sink_irq_vector;
3504
	u8 link_status[DP_LINK_STATUS_SIZE];
3505
 
5060 serge 3506
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3507
 
3243 Serge 3508
	if (!intel_encoder->connectors_active)
2330 Serge 3509
		return;
3510
 
3243 Serge 3511
	if (WARN_ON(!intel_encoder->base.crtc))
2330 Serge 3512
		return;
3513
 
5060 serge 3514
	if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3515
		return;
3516
 
2330 Serge 3517
	/* Try to read receiver status if the link appears to be up */
2342 Serge 3518
	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2330 Serge 3519
		return;
3520
	}
3521
 
3522
	/* Now read the DPCD to see if it's actually running */
3523
	if (!intel_dp_get_dpcd(intel_dp)) {
3524
		return;
3525
	}
3526
 
2342 Serge 3527
	/* Try to read the source of the interrupt */
3528
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3529
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3530
		/* Clear interrupt source */
5060 serge 3531
		drm_dp_dpcd_writeb(&intel_dp->aux,
2342 Serge 3532
					    DP_DEVICE_SERVICE_IRQ_VECTOR,
3533
					    sink_irq_vector);
3534
 
3535
		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3536
			intel_dp_handle_test_request(intel_dp);
3537
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3538
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3539
	}
3540
 
3243 Serge 3541
	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2330 Serge 3542
		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
5060 serge 3543
			      intel_encoder->base.name);
2330 Serge 3544
		intel_dp_start_link_train(intel_dp);
3545
		intel_dp_complete_link_train(intel_dp);
3746 Serge 3546
		intel_dp_stop_link_train(intel_dp);
2330 Serge 3547
	}
3548
}
3549
 
3031 serge 3550
/* XXX this is probably wrong for multiple downstream ports */
2330 Serge 3551
static enum drm_connector_status
3552
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3553
{
3031 serge 3554
	uint8_t *dpcd = intel_dp->dpcd;
3555
	uint8_t type;
3556
 
3557
	if (!intel_dp_get_dpcd(intel_dp))
3558
		return connector_status_disconnected;
3559
 
3560
	/* if there's no downstream port, we're done */
3561
	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2330 Serge 3562
		return connector_status_connected;
3031 serge 3563
 
3564
	/* If we're HPD-aware, SINK_COUNT changes dynamically */
4560 Serge 3565
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3566
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3031 serge 3567
		uint8_t reg;
5060 serge 3568
 
3569
		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3570
					    ®, 1) < 0)
3031 serge 3571
			return connector_status_unknown;
5060 serge 3572
 
3031 serge 3573
		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3574
					      : connector_status_disconnected;
3575
	}
3576
 
3577
	/* If no HPD, poke DDC gently */
5060 serge 3578
	if (drm_probe_ddc(&intel_dp->aux.ddc))
3031 serge 3579
		return connector_status_connected;
3580
 
3581
	/* Well we tried, say unknown for unreliable port types */
4560 Serge 3582
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3031 serge 3583
	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4560 Serge 3584
		if (type == DP_DS_PORT_TYPE_VGA ||
3585
		    type == DP_DS_PORT_TYPE_NON_EDID)
3031 serge 3586
		return connector_status_unknown;
4560 Serge 3587
	} else {
3588
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3589
			DP_DWN_STRM_PORT_TYPE_MASK;
3590
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3591
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
5060 serge 3592
			return connector_status_unknown;
4560 Serge 3593
	}
3031 serge 3594
 
3595
	/* Anything else is out of spec, warn and ignore */
3596
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2330 Serge 3597
	return connector_status_disconnected;
3598
}
3599
 
3600
static enum drm_connector_status
3601
ironlake_dp_detect(struct intel_dp *intel_dp)
3602
{
3243 Serge 3603
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3480 Serge 3604
	struct drm_i915_private *dev_priv = dev->dev_private;
3605
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2330 Serge 3606
	enum drm_connector_status status;
3607
 
3608
	/* Can't disconnect eDP, but you can close the lid... */
3609
	if (is_edp(intel_dp)) {
3243 Serge 3610
		status = intel_panel_detect(dev);
2330 Serge 3611
		if (status == connector_status_unknown)
3612
			status = connector_status_connected;
3613
		return status;
3614
	}
3615
 
3480 Serge 3616
	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3617
		return connector_status_disconnected;
3618
 
2330 Serge 3619
	return intel_dp_detect_dpcd(intel_dp);
3620
}
3621
 
5097 serge 3622
static int g4x_digital_port_connected(struct drm_device *dev,
3623
				       struct intel_digital_port *intel_dig_port)
2330 Serge 3624
{
3625
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3626
	uint32_t bit;
2330 Serge 3627
 
4560 Serge 3628
	if (IS_VALLEYVIEW(dev)) {
3629
		switch (intel_dig_port->port) {
3630
		case PORT_B:
3631
			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3632
			break;
3633
		case PORT_C:
3634
			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3635
			break;
3636
		case PORT_D:
3637
			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3638
			break;
3639
		default:
5097 serge 3640
			return -EINVAL;
4560 Serge 3641
		}
3642
	} else {
3480 Serge 3643
	switch (intel_dig_port->port) {
3644
	case PORT_B:
4560 Serge 3645
			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
2330 Serge 3646
		break;
3480 Serge 3647
	case PORT_C:
4560 Serge 3648
			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
2330 Serge 3649
		break;
3480 Serge 3650
	case PORT_D:
4560 Serge 3651
			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
2330 Serge 3652
		break;
3653
	default:
5097 serge 3654
			return -EINVAL;
2330 Serge 3655
	}
4560 Serge 3656
	}
2330 Serge 3657
 
3031 serge 3658
	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
5097 serge 3659
		return 0;
3660
	return 1;
3661
}
3662
 
3663
static enum drm_connector_status
3664
g4x_dp_detect(struct intel_dp *intel_dp)
3665
{
3666
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3667
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3668
	int ret;
3669
 
3670
	/* Can't disconnect eDP, but you can close the lid... */
3671
	if (is_edp(intel_dp)) {
3672
		enum drm_connector_status status;
3673
 
3674
		status = intel_panel_detect(dev);
3675
		if (status == connector_status_unknown)
3676
			status = connector_status_connected;
3677
		return status;
3678
	}
3679
 
3680
	ret = g4x_digital_port_connected(dev, intel_dig_port);
3681
	if (ret == -EINVAL)
3682
		return connector_status_unknown;
3683
	else if (ret == 0)
2330 Serge 3684
		return connector_status_disconnected;
3685
 
3686
	return intel_dp_detect_dpcd(intel_dp);
3687
}
3688
 
2342 Serge 3689
static struct edid *
3690
intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3691
{
3243 Serge 3692
	struct intel_connector *intel_connector = to_intel_connector(connector);
3693
 
3694
	/* use cached edid if we have one */
3695
	if (intel_connector->edid) {
3696
		/* invalid edid */
3697
		if (IS_ERR(intel_connector->edid))
3031 serge 3698
			return NULL;
3699
 
4560 Serge 3700
		return drm_edid_duplicate(intel_connector->edid);
3031 serge 3701
	}
3702
 
3243 Serge 3703
	return drm_get_edid(connector, adapter);
2342 Serge 3704
}
3705
 
3706
static int
3707
intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3708
{
3243 Serge 3709
	struct intel_connector *intel_connector = to_intel_connector(connector);
2342 Serge 3710
 
3243 Serge 3711
	/* use cached edid if we have one */
3712
	if (intel_connector->edid) {
3713
		/* invalid edid */
3714
		if (IS_ERR(intel_connector->edid))
3715
			return 0;
3716
 
3717
		return intel_connector_update_modes(connector,
3718
						    intel_connector->edid);
3031 serge 3719
	}
3720
 
3243 Serge 3721
	return intel_ddc_get_modes(connector, adapter);
2342 Serge 3722
}
3723
 
2330 Serge 3724
static enum drm_connector_status
3725
intel_dp_detect(struct drm_connector *connector, bool force)
3726
{
3727
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 3728
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3729
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3730
	struct drm_device *dev = connector->dev;
4560 Serge 3731
	struct drm_i915_private *dev_priv = dev->dev_private;
2330 Serge 3732
	enum drm_connector_status status;
5060 serge 3733
	enum intel_display_power_domain power_domain;
2330 Serge 3734
	struct edid *edid = NULL;
5060 serge 3735
	bool ret;
2330 Serge 3736
 
5060 serge 3737
	power_domain = intel_display_port_power_domain(intel_encoder);
3738
	intel_display_power_get(dev_priv, power_domain);
4560 Serge 3739
 
4104 Serge 3740
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5060 serge 3741
		      connector->base.id, connector->name);
4104 Serge 3742
 
5060 serge 3743
	if (intel_dp->is_mst) {
3744
		/* MST devices are disconnected from a monitor POV */
3745
		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3746
			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3747
		status = connector_status_disconnected;
3748
		goto out;
3749
	}
3750
 
2330 Serge 3751
	intel_dp->has_audio = false;
3752
 
3753
	if (HAS_PCH_SPLIT(dev))
3754
		status = ironlake_dp_detect(intel_dp);
3755
	else
3756
		status = g4x_dp_detect(intel_dp);
3757
 
3758
	if (status != connector_status_connected)
4560 Serge 3759
		goto out;
3031 serge 3760
 
3761
	intel_dp_probe_oui(intel_dp);
3762
 
5060 serge 3763
	ret = intel_dp_probe_mst(intel_dp);
3764
	if (ret) {
3765
		/* if we are in MST mode then this connector
3766
		   won't appear connected or have anything with EDID on it */
3767
		if (intel_encoder->type != INTEL_OUTPUT_EDP)
3768
			intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3769
		status = connector_status_disconnected;
3770
		goto out;
3771
	}
3772
 
3243 Serge 3773
	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3774
		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2330 Serge 3775
	} else {
5060 serge 3776
		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
2330 Serge 3777
		if (edid) {
3778
			intel_dp->has_audio = drm_detect_monitor_audio(edid);
3779
			kfree(edid);
3780
		}
3781
	}
3243 Serge 3782
 
3783
	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3784
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4560 Serge 3785
	status = connector_status_connected;
3786
 
3787
out:
5060 serge 3788
	intel_display_power_put(dev_priv, power_domain);
4560 Serge 3789
	return status;
2330 Serge 3790
}
3791
 
3792
static int intel_dp_get_modes(struct drm_connector *connector)
3793
{
3794
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5060 serge 3795
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3796
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3243 Serge 3797
	struct intel_connector *intel_connector = to_intel_connector(connector);
3798
	struct drm_device *dev = connector->dev;
5060 serge 3799
	struct drm_i915_private *dev_priv = dev->dev_private;
3800
	enum intel_display_power_domain power_domain;
2330 Serge 3801
	int ret;
3802
 
3803
	/* We should parse the EDID data and find out if it has an audio sink
3804
	 */
3805
 
5060 serge 3806
	power_domain = intel_display_port_power_domain(intel_encoder);
3807
	intel_display_power_get(dev_priv, power_domain);
3808
 
3809
	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3810
	intel_display_power_put(dev_priv, power_domain);
3243 Serge 3811
	if (ret)
2330 Serge 3812
		return ret;
3813
 
3243 Serge 3814
	/* if eDP has no EDID, fall back to fixed mode */
3815
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2330 Serge 3816
			struct drm_display_mode *mode;
3243 Serge 3817
		mode = drm_mode_duplicate(dev,
3818
					  intel_connector->panel.fixed_mode);
3819
		if (mode) {
2330 Serge 3820
			drm_mode_probed_add(connector, mode);
3821
			return 1;
3822
		}
3823
	}
3824
	return 0;
3825
}
3826
 
3243 Serge 3827
static bool
3828
intel_dp_detect_audio(struct drm_connector *connector)
3829
{
3830
	struct intel_dp *intel_dp = intel_attached_dp(connector);
5060 serge 3831
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3832
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3833
	struct drm_device *dev = connector->dev;
3834
	struct drm_i915_private *dev_priv = dev->dev_private;
3835
	enum intel_display_power_domain power_domain;
3243 Serge 3836
	struct edid *edid;
3837
	bool has_audio = false;
2330 Serge 3838
 
5060 serge 3839
	power_domain = intel_display_port_power_domain(intel_encoder);
3840
	intel_display_power_get(dev_priv, power_domain);
3841
 
3842
	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3243 Serge 3843
	if (edid) {
3844
		has_audio = drm_detect_monitor_audio(edid);
3845
		kfree(edid);
3846
	}
2330 Serge 3847
 
5060 serge 3848
	intel_display_power_put(dev_priv, power_domain);
3849
 
3243 Serge 3850
	return has_audio;
3851
}
2330 Serge 3852
 
3853
static int
3854
intel_dp_set_property(struct drm_connector *connector,
3855
		      struct drm_property *property,
3856
		      uint64_t val)
3857
{
3858
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3243 Serge 3859
	struct intel_connector *intel_connector = to_intel_connector(connector);
3860
	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3861
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2330 Serge 3862
	int ret;
3863
 
3243 Serge 3864
	ret = drm_object_property_set_value(&connector->base, property, val);
2330 Serge 3865
	if (ret)
3866
		return ret;
3480 Serge 3867
 
2330 Serge 3868
	if (property == dev_priv->force_audio_property) {
3869
		int i = val;
3870
		bool has_audio;
3871
 
3872
		if (i == intel_dp->force_audio)
3873
			return 0;
3874
 
3875
		intel_dp->force_audio = i;
3876
 
3031 serge 3877
		if (i == HDMI_AUDIO_AUTO)
2330 Serge 3878
			has_audio = intel_dp_detect_audio(connector);
3879
		else
3031 serge 3880
			has_audio = (i == HDMI_AUDIO_ON);
2330 Serge 3881
 
3882
		if (has_audio == intel_dp->has_audio)
3883
			return 0;
3884
 
3885
		intel_dp->has_audio = has_audio;
3886
		goto done;
3887
	}
3888
 
3889
	if (property == dev_priv->broadcast_rgb_property) {
3746 Serge 3890
		bool old_auto = intel_dp->color_range_auto;
3891
		uint32_t old_range = intel_dp->color_range;
3892
 
3480 Serge 3893
		switch (val) {
3894
		case INTEL_BROADCAST_RGB_AUTO:
3895
			intel_dp->color_range_auto = true;
3896
			break;
3897
		case INTEL_BROADCAST_RGB_FULL:
3898
			intel_dp->color_range_auto = false;
3899
			intel_dp->color_range = 0;
3900
			break;
3901
		case INTEL_BROADCAST_RGB_LIMITED:
3902
			intel_dp->color_range_auto = false;
3903
			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3904
			break;
3905
		default:
3906
			return -EINVAL;
3907
		}
3746 Serge 3908
 
3909
		if (old_auto == intel_dp->color_range_auto &&
3910
		    old_range == intel_dp->color_range)
3911
			return 0;
3912
 
2330 Serge 3913
	goto done;
3914
	}
3915
 
3243 Serge 3916
	if (is_edp(intel_dp) &&
3917
	    property == connector->dev->mode_config.scaling_mode_property) {
3918
		if (val == DRM_MODE_SCALE_NONE) {
3919
			DRM_DEBUG_KMS("no scaling not supported\n");
3920
			return -EINVAL;
3921
		}
3922
 
3923
		if (intel_connector->panel.fitting_mode == val) {
3924
			/* the eDP scaling property is not changed */
3925
			return 0;
3926
		}
3927
		intel_connector->panel.fitting_mode = val;
3928
 
3929
		goto done;
3930
	}
3931
 
2330 Serge 3932
	return -EINVAL;
3933
 
3934
done:
3480 Serge 3935
	if (intel_encoder->base.crtc)
3936
		intel_crtc_restore_mode(intel_encoder->base.crtc);
2330 Serge 3937
 
3938
	return 0;
3939
}
3940
 
3941
static void
4104 Serge 3942
intel_dp_connector_destroy(struct drm_connector *connector)
2330 Serge 3943
{
3243 Serge 3944
	struct intel_connector *intel_connector = to_intel_connector(connector);
2330 Serge 3945
 
3243 Serge 3946
	if (!IS_ERR_OR_NULL(intel_connector->edid))
3947
		kfree(intel_connector->edid);
3948
 
4104 Serge 3949
	/* Can't call is_edp() since the encoder may have been destroyed
3950
	 * already. */
3951
	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3243 Serge 3952
		intel_panel_fini(&intel_connector->panel);
2330 Serge 3953
 
3954
	drm_connector_cleanup(connector);
3955
	kfree(connector);
3956
}
3957
 
3243 Serge 3958
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2330 Serge 3959
{
3243 Serge 3960
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3961
	struct intel_dp *intel_dp = &intel_dig_port->dp;
3480 Serge 3962
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 3963
 
5060 serge 3964
	drm_dp_aux_unregister(&intel_dp->aux);
3965
	intel_dp_mst_encoder_cleanup(intel_dig_port);
2330 Serge 3966
	drm_encoder_cleanup(encoder);
2342 Serge 3967
	if (is_edp(intel_dp)) {
4293 Serge 3968
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5060 serge 3969
		drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3970
		edp_panel_vdd_off_sync(intel_dp);
3971
		drm_modeset_unlock(&dev->mode_config.connection_mutex);
2342 Serge 3972
	}
3243 Serge 3973
	kfree(intel_dig_port);
2330 Serge 3974
}
3975
 
5060 serge 3976
static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
3977
{
3978
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3979
 
3980
	if (!is_edp(intel_dp))
3981
		return;
3982
 
3983
	edp_panel_vdd_off_sync(intel_dp);
3984
}
3985
 
3986
static void intel_dp_encoder_reset(struct drm_encoder *encoder)
3987
{
3988
	intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
3989
}
3990
 
2330 Serge 3991
static const struct drm_connector_funcs intel_dp_connector_funcs = {
3031 serge 3992
	.dpms = intel_connector_dpms,
2330 Serge 3993
	.detect = intel_dp_detect,
3994
	.fill_modes = drm_helper_probe_single_connector_modes,
3995
	.set_property = intel_dp_set_property,
4104 Serge 3996
	.destroy = intel_dp_connector_destroy,
2330 Serge 3997
};
3998
 
3999
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4000
	.get_modes = intel_dp_get_modes,
4001
	.mode_valid = intel_dp_mode_valid,
4002
	.best_encoder = intel_best_encoder,
4003
};
4004
 
4005
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5060 serge 4006
	.reset = intel_dp_encoder_reset,
2330 Serge 4007
	.destroy = intel_dp_encoder_destroy,
4008
};
4009
 
5060 serge 4010
void
2330 Serge 4011
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4012
{
5060 serge 4013
	return;
4014
}
2330 Serge 4015
 
5060 serge 4016
bool
4017
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4018
{
4019
	struct intel_dp *intel_dp = &intel_dig_port->dp;
4020
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4021
	struct drm_device *dev = intel_dig_port->base.base.dev;
4022
	struct drm_i915_private *dev_priv = dev->dev_private;
4023
	enum intel_display_power_domain power_domain;
4024
	bool ret = true;
4025
 
4026
	if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4027
		intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4028
 
4029
	DRM_DEBUG_KMS("got hpd irq on port %d - %s\n", intel_dig_port->port,
4030
		      long_hpd ? "long" : "short");
4031
 
4032
	power_domain = intel_display_port_power_domain(intel_encoder);
4033
	intel_display_power_get(dev_priv, power_domain);
4034
 
4035
	if (long_hpd) {
5097 serge 4036
 
4037
		if (HAS_PCH_SPLIT(dev)) {
5060 serge 4038
		if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4039
			goto mst_fail;
5097 serge 4040
		} else {
4041
			if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4042
				goto mst_fail;
4043
		}
5060 serge 4044
 
4045
		if (!intel_dp_get_dpcd(intel_dp)) {
4046
			goto mst_fail;
4047
		}
4048
 
4049
		intel_dp_probe_oui(intel_dp);
4050
 
4051
		if (!intel_dp_probe_mst(intel_dp))
4052
			goto mst_fail;
4053
 
4054
	} else {
4055
		if (intel_dp->is_mst) {
4056
			if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4057
				goto mst_fail;
4058
		}
4059
 
4060
		if (!intel_dp->is_mst) {
4061
			/*
4062
			 * we'll check the link status via the normal hot plug path later -
4063
			 * but for short hpds we should check it now
4064
			 */
4065
			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4066
			intel_dp_check_link_status(intel_dp);
4067
			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4068
		}
4069
	}
4070
	ret = false;
4071
	goto put_power;
4072
mst_fail:
4073
	/* if we were in MST mode, and device is not there get out of MST mode */
4074
	if (intel_dp->is_mst) {
4075
		DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4076
		intel_dp->is_mst = false;
4077
		drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4078
	}
4079
put_power:
4080
	intel_display_power_put(dev_priv, power_domain);
4081
 
4082
	return ret;
2330 Serge 4083
}
4084
 
2327 Serge 4085
/* Return which DP Port should be selected for Transcoder DP control */
4086
int
2342 Serge 4087
intel_trans_dp_port_sel(struct drm_crtc *crtc)
2327 Serge 4088
{
4089
	struct drm_device *dev = crtc->dev;
3243 Serge 4090
	struct intel_encoder *intel_encoder;
4091
	struct intel_dp *intel_dp;
2327 Serge 4092
 
3243 Serge 4093
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4094
		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2327 Serge 4095
 
3243 Serge 4096
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4097
		    intel_encoder->type == INTEL_OUTPUT_EDP)
2327 Serge 4098
			return intel_dp->output_reg;
4099
	}
4100
 
4101
	return -1;
4102
}
2330 Serge 4103
 
4104
/* check the VBT to see whether the eDP is on DP-D port */
4560 Serge 4105
bool intel_dp_is_edp(struct drm_device *dev, enum port port)
2330 Serge 4106
{
4107
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4108
	union child_device_config *p_child;
2330 Serge 4109
	int i;
4560 Serge 4110
	static const short port_mapping[] = {
4111
		[PORT_B] = PORT_IDPB,
4112
		[PORT_C] = PORT_IDPC,
4113
		[PORT_D] = PORT_IDPD,
4114
	};
2330 Serge 4115
 
4560 Serge 4116
	if (port == PORT_A)
4117
		return true;
4118
 
4104 Serge 4119
	if (!dev_priv->vbt.child_dev_num)
2330 Serge 4120
		return false;
4121
 
4104 Serge 4122
	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4123
		p_child = dev_priv->vbt.child_dev + i;
2330 Serge 4124
 
4560 Serge 4125
		if (p_child->common.dvo_port == port_mapping[port] &&
4126
		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4127
		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2330 Serge 4128
			return true;
4129
	}
4130
	return false;
4131
}
4132
 
5060 serge 4133
void
2330 Serge 4134
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4135
{
3243 Serge 4136
	struct intel_connector *intel_connector = to_intel_connector(connector);
4137
 
2330 Serge 4138
	intel_attach_force_audio_property(connector);
4139
	intel_attach_broadcast_rgb_property(connector);
3480 Serge 4140
	intel_dp->color_range_auto = true;
3243 Serge 4141
 
4142
	if (is_edp(intel_dp)) {
4143
		drm_mode_create_scaling_mode_property(connector->dev);
4144
		drm_object_attach_property(
4145
			&connector->base,
4146
			connector->dev->mode_config.scaling_mode_property,
4147
			DRM_MODE_SCALE_ASPECT);
4148
		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4149
	}
2330 Serge 4150
}
4151
 
5060 serge 4152
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4153
{
4154
	intel_dp->last_power_cycle = jiffies;
4155
	intel_dp->last_power_on = jiffies;
4156
	intel_dp->last_backlight_off = jiffies;
4157
}
4158
 
3243 Serge 4159
static void
4160
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4161
				    struct intel_dp *intel_dp,
4162
				    struct edp_power_seq *out)
4163
{
4164
	struct drm_i915_private *dev_priv = dev->dev_private;
4165
	struct edp_power_seq cur, vbt, spec, final;
4166
	u32 pp_on, pp_off, pp_div, pp;
4560 Serge 4167
	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3243 Serge 4168
 
3746 Serge 4169
	if (HAS_PCH_SPLIT(dev)) {
4560 Serge 4170
		pp_ctrl_reg = PCH_PP_CONTROL;
3746 Serge 4171
		pp_on_reg = PCH_PP_ON_DELAYS;
4172
		pp_off_reg = PCH_PP_OFF_DELAYS;
4173
		pp_div_reg = PCH_PP_DIVISOR;
4174
	} else {
4560 Serge 4175
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4176
 
4177
		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4178
		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4179
		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4180
		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3746 Serge 4181
	}
4182
 
3243 Serge 4183
	/* Workaround: Need to write PP_CONTROL with the unlock key as
4184
	 * the very first thing. */
3746 Serge 4185
	pp = ironlake_get_pp_control(intel_dp);
4560 Serge 4186
	I915_WRITE(pp_ctrl_reg, pp);
3243 Serge 4187
 
3746 Serge 4188
	pp_on = I915_READ(pp_on_reg);
4189
	pp_off = I915_READ(pp_off_reg);
4190
	pp_div = I915_READ(pp_div_reg);
3243 Serge 4191
 
4192
	/* Pull timing values out of registers */
4193
	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4194
		PANEL_POWER_UP_DELAY_SHIFT;
4195
 
4196
	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4197
		PANEL_LIGHT_ON_DELAY_SHIFT;
4198
 
4199
	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4200
		PANEL_LIGHT_OFF_DELAY_SHIFT;
4201
 
4202
	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4203
		PANEL_POWER_DOWN_DELAY_SHIFT;
4204
 
4205
	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4206
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4207
 
4208
	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4209
		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4210
 
4104 Serge 4211
	vbt = dev_priv->vbt.edp_pps;
3243 Serge 4212
 
4213
	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4214
	 * our hw here, which are all in 100usec. */
4215
	spec.t1_t3 = 210 * 10;
4216
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4217
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4218
	spec.t10 = 500 * 10;
4219
	/* This one is special and actually in units of 100ms, but zero
4220
	 * based in the hw (so we need to add 100 ms). But the sw vbt
4221
	 * table multiplies it with 1000 to make it in units of 100usec,
4222
	 * too. */
4223
	spec.t11_t12 = (510 + 100) * 10;
4224
 
4225
	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4226
		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4227
 
4228
	/* Use the max of the register settings and vbt. If both are
4229
	 * unset, fall back to the spec limits. */
4230
#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
4231
				       spec.field : \
4232
				       max(cur.field, vbt.field))
4233
	assign_final(t1_t3);
4234
	assign_final(t8);
4235
	assign_final(t9);
4236
	assign_final(t10);
4237
	assign_final(t11_t12);
4238
#undef assign_final
4239
 
4240
#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
4241
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
4242
	intel_dp->backlight_on_delay = get_delay(t8);
4243
	intel_dp->backlight_off_delay = get_delay(t9);
4244
	intel_dp->panel_power_down_delay = get_delay(t10);
4245
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4246
#undef get_delay
4247
 
4248
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4249
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4250
		      intel_dp->panel_power_cycle_delay);
4251
 
4252
	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4253
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4254
 
4255
	if (out)
4256
		*out = final;
4257
}
4258
 
4259
static void
4260
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4261
					      struct intel_dp *intel_dp,
4262
					      struct edp_power_seq *seq)
4263
{
4264
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 4265
	u32 pp_on, pp_off, pp_div, port_sel = 0;
4266
	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4267
	int pp_on_reg, pp_off_reg, pp_div_reg;
3243 Serge 4268
 
3746 Serge 4269
	if (HAS_PCH_SPLIT(dev)) {
4270
		pp_on_reg = PCH_PP_ON_DELAYS;
4271
		pp_off_reg = PCH_PP_OFF_DELAYS;
4272
		pp_div_reg = PCH_PP_DIVISOR;
4273
	} else {
4560 Serge 4274
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4275
 
4276
		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4277
		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4278
		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3746 Serge 4279
	}
4280
 
5060 serge 4281
	/*
4282
	 * And finally store the new values in the power sequencer. The
4283
	 * backlight delays are set to 1 because we do manual waits on them. For
4284
	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4285
	 * we'll end up waiting for the backlight off delay twice: once when we
4286
	 * do the manual sleep, and once when we disable the panel and wait for
4287
	 * the PP_STATUS bit to become zero.
4288
	 */
3243 Serge 4289
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5060 serge 4290
		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4291
	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3243 Serge 4292
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4293
	/* Compute the divisor for the pp clock, simply match the Bspec
4294
	 * formula. */
3746 Serge 4295
	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3243 Serge 4296
	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4297
			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
4298
 
4299
	/* Haswell doesn't have any port selection bits for the panel
4300
	 * power sequencer any more. */
4104 Serge 4301
	if (IS_VALLEYVIEW(dev)) {
4560 Serge 4302
		if (dp_to_dig_port(intel_dp)->port == PORT_B)
4303
			port_sel = PANEL_PORT_SELECT_DPB_VLV;
4304
		else
4305
			port_sel = PANEL_PORT_SELECT_DPC_VLV;
4104 Serge 4306
	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4307
		if (dp_to_dig_port(intel_dp)->port == PORT_A)
4560 Serge 4308
			port_sel = PANEL_PORT_SELECT_DPA;
3243 Serge 4309
		else
4560 Serge 4310
			port_sel = PANEL_PORT_SELECT_DPD;
3243 Serge 4311
	}
4312
 
3746 Serge 4313
	pp_on |= port_sel;
3243 Serge 4314
 
3746 Serge 4315
	I915_WRITE(pp_on_reg, pp_on);
4316
	I915_WRITE(pp_off_reg, pp_off);
4317
	I915_WRITE(pp_div_reg, pp_div);
4318
 
3243 Serge 4319
	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3746 Serge 4320
		      I915_READ(pp_on_reg),
4321
		      I915_READ(pp_off_reg),
4322
		      I915_READ(pp_div_reg));
3243 Serge 4323
}
4324
 
5060 serge 4325
void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4326
{
4327
	struct drm_i915_private *dev_priv = dev->dev_private;
4328
	struct intel_encoder *encoder;
4329
	struct intel_dp *intel_dp = NULL;
4330
	struct intel_crtc_config *config = NULL;
4331
	struct intel_crtc *intel_crtc = NULL;
4332
	struct intel_connector *intel_connector = dev_priv->drrs.connector;
4333
	u32 reg, val;
4334
	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4335
 
4336
	if (refresh_rate <= 0) {
4337
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4338
		return;
4339
	}
4340
 
4341
	if (intel_connector == NULL) {
4342
		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4343
		return;
4344
	}
4345
 
4346
	/*
4347
	 * FIXME: This needs proper synchronization with psr state. But really
4348
	 * hard to tell without seeing the user of this function of this code.
4349
	 * Check locking and ordering once that lands.
4350
	 */
4351
	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4352
		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4353
		return;
4354
	}
4355
 
4356
	encoder = intel_attached_encoder(&intel_connector->base);
4357
	intel_dp = enc_to_intel_dp(&encoder->base);
4358
	intel_crtc = encoder->new_crtc;
4359
 
4360
	if (!intel_crtc) {
4361
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4362
		return;
4363
	}
4364
 
4365
	config = &intel_crtc->config;
4366
 
4367
	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4368
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4369
		return;
4370
	}
4371
 
4372
	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4373
		index = DRRS_LOW_RR;
4374
 
4375
	if (index == intel_dp->drrs_state.refresh_rate_type) {
4376
		DRM_DEBUG_KMS(
4377
			"DRRS requested for previously set RR...ignoring\n");
4378
		return;
4379
	}
4380
 
4381
	if (!intel_crtc->active) {
4382
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4383
		return;
4384
	}
4385
 
4386
	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4387
		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4388
		val = I915_READ(reg);
4389
		if (index > DRRS_HIGH_RR) {
4390
			val |= PIPECONF_EDP_RR_MODE_SWITCH;
4391
			intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4392
		} else {
4393
			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4394
		}
4395
		I915_WRITE(reg, val);
4396
	}
4397
 
4398
	/*
4399
	 * mutex taken to ensure that there is no race between differnt
4400
	 * drrs calls trying to update refresh rate. This scenario may occur
4401
	 * in future when idleness detection based DRRS in kernel and
4402
	 * possible calls from user space to set differnt RR are made.
4403
	 */
4404
 
4405
	mutex_lock(&intel_dp->drrs_state.mutex);
4406
 
4407
	intel_dp->drrs_state.refresh_rate_type = index;
4408
 
4409
	mutex_unlock(&intel_dp->drrs_state.mutex);
4410
 
4411
	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4412
}
4413
 
4414
static struct drm_display_mode *
4415
intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4416
			struct intel_connector *intel_connector,
4417
			struct drm_display_mode *fixed_mode)
4418
{
4419
	struct drm_connector *connector = &intel_connector->base;
4420
	struct intel_dp *intel_dp = &intel_dig_port->dp;
4421
	struct drm_device *dev = intel_dig_port->base.base.dev;
4422
	struct drm_i915_private *dev_priv = dev->dev_private;
4423
	struct drm_display_mode *downclock_mode = NULL;
4424
 
4425
	if (INTEL_INFO(dev)->gen <= 6) {
4426
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4427
		return NULL;
4428
	}
4429
 
4430
	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4431
		DRM_INFO("VBT doesn't support DRRS\n");
4432
		return NULL;
4433
	}
4434
 
4435
	downclock_mode = intel_find_panel_downclock
4436
					(dev, fixed_mode, connector);
4437
 
4438
	if (!downclock_mode) {
4439
		DRM_INFO("DRRS not supported\n");
4440
		return NULL;
4441
	}
4442
 
4443
	dev_priv->drrs.connector = intel_connector;
4444
 
4445
	mutex_init(&intel_dp->drrs_state.mutex);
4446
 
4447
	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4448
 
4449
	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4450
	DRM_INFO("seamless DRRS supported for eDP panel.\n");
4451
	return downclock_mode;
4452
}
4453
 
4454
void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4455
{
4456
	struct drm_device *dev = intel_encoder->base.dev;
4457
	struct drm_i915_private *dev_priv = dev->dev_private;
4458
	struct intel_dp *intel_dp;
4459
	enum intel_display_power_domain power_domain;
4460
 
4461
	if (intel_encoder->type != INTEL_OUTPUT_EDP)
4462
		return;
4463
 
4464
	intel_dp = enc_to_intel_dp(&intel_encoder->base);
4465
	if (!edp_have_panel_vdd(intel_dp))
4466
		return;
4467
	/*
4468
	 * The VDD bit needs a power domain reference, so if the bit is
4469
	 * already enabled when we boot or resume, grab this reference and
4470
	 * schedule a vdd off, so we don't hold on to the reference
4471
	 * indefinitely.
4472
	 */
4473
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4474
	power_domain = intel_display_port_power_domain(intel_encoder);
4475
	intel_display_power_get(dev_priv, power_domain);
4476
 
4477
	edp_panel_vdd_schedule_off(intel_dp);
4478
}
4479
 
4104 Serge 4480
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5060 serge 4481
				     struct intel_connector *intel_connector,
4482
				     struct edp_power_seq *power_seq)
4104 Serge 4483
{
4484
	struct drm_connector *connector = &intel_connector->base;
4485
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5060 serge 4486
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4487
	struct drm_device *dev = intel_encoder->base.dev;
4104 Serge 4488
	struct drm_i915_private *dev_priv = dev->dev_private;
4489
	struct drm_display_mode *fixed_mode = NULL;
5060 serge 4490
	struct drm_display_mode *downclock_mode = NULL;
4104 Serge 4491
	bool has_dpcd;
4492
	struct drm_display_mode *scan;
4493
	struct edid *edid;
4494
 
5060 serge 4495
	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4496
 
4104 Serge 4497
	if (!is_edp(intel_dp))
4498
		return true;
4499
 
5060 serge 4500
	intel_edp_panel_vdd_sanitize(intel_encoder);
4104 Serge 4501
 
4502
	/* Cache DPCD and EDID for edp. */
5060 serge 4503
	intel_edp_panel_vdd_on(intel_dp);
4104 Serge 4504
	has_dpcd = intel_dp_get_dpcd(intel_dp);
5060 serge 4505
	edp_panel_vdd_off(intel_dp, false);
4104 Serge 4506
 
4507
	if (has_dpcd) {
4508
		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4509
			dev_priv->no_aux_handshake =
4510
				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4511
				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4512
	} else {
4513
		/* if this fails, presume the device is a ghost */
4514
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
4515
		return false;
4516
	}
4517
 
4518
	/* We now know it's not a ghost, init power sequence regs. */
5060 serge 4519
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4104 Serge 4520
 
5060 serge 4521
	mutex_lock(&dev->mode_config.mutex);
4522
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4104 Serge 4523
	if (edid) {
4524
		if (drm_add_edid_modes(connector, edid)) {
4525
			drm_mode_connector_update_edid_property(connector,
4526
								edid);
4527
			drm_edid_to_eld(connector, edid);
4528
		} else {
4529
			kfree(edid);
4530
			edid = ERR_PTR(-EINVAL);
4531
		}
4532
	} else {
4533
		edid = ERR_PTR(-ENOENT);
4534
	}
4535
	intel_connector->edid = edid;
4536
 
4537
	/* prefer fixed mode from EDID if available */
4538
	list_for_each_entry(scan, &connector->probed_modes, head) {
4539
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4540
			fixed_mode = drm_mode_duplicate(dev, scan);
5060 serge 4541
			downclock_mode = intel_dp_drrs_init(
4542
						intel_dig_port,
4543
						intel_connector, fixed_mode);
4104 Serge 4544
			break;
4545
		}
4546
	}
4547
 
4548
	/* fallback to VBT if available for eDP */
4549
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4550
		fixed_mode = drm_mode_duplicate(dev,
4551
					dev_priv->vbt.lfp_lvds_vbt_mode);
4552
		if (fixed_mode)
4553
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4554
	}
5060 serge 4555
	mutex_unlock(&dev->mode_config.mutex);
4104 Serge 4556
 
5060 serge 4557
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4104 Serge 4558
	intel_panel_setup_backlight(connector);
4559
 
4560
	return true;
4561
}
4562
 
4563
bool
3243 Serge 4564
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4565
			struct intel_connector *intel_connector)
2330 Serge 4566
{
3243 Serge 4567
	struct drm_connector *connector = &intel_connector->base;
4568
	struct intel_dp *intel_dp = &intel_dig_port->dp;
4569
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
4570
	struct drm_device *dev = intel_encoder->base.dev;
2330 Serge 4571
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 4572
	enum port port = intel_dig_port->port;
5060 serge 4573
	struct edp_power_seq power_seq = { 0 };
4574
	int type;
2330 Serge 4575
 
5060 serge 4576
	/* intel_dp vfuncs */
4577
	if (IS_VALLEYVIEW(dev))
4578
		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4579
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4580
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4581
	else if (HAS_PCH_SPLIT(dev))
4582
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4583
	else
4584
		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4585
 
4586
	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4587
 
3031 serge 4588
	/* Preserve the current hw state. */
4589
	intel_dp->DP = I915_READ(intel_dp->output_reg);
3243 Serge 4590
	intel_dp->attached_connector = intel_connector;
2330 Serge 4591
 
4560 Serge 4592
	if (intel_dp_is_edp(dev, port))
4593
		type = DRM_MODE_CONNECTOR_eDP;
4594
	else
4104 Serge 4595
	type = DRM_MODE_CONNECTOR_DisplayPort;
2330 Serge 4596
 
4104 Serge 4597
	/*
4598
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4599
	 * for DP the encoder type can be set by the caller to
4600
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4601
	 */
4602
	if (type == DRM_MODE_CONNECTOR_eDP)
4603
		intel_encoder->type = INTEL_OUTPUT_EDP;
4604
 
4605
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4606
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4607
			port_name(port));
4608
 
2330 Serge 4609
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4610
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4611
 
4612
	connector->interlace_allowed = true;
4613
	connector->doublescan_allowed = 0;
4614
 
3243 Serge 4615
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5060 serge 4616
			  edp_panel_vdd_work);
2330 Serge 4617
 
4618
	intel_connector_attach_encoder(intel_connector, intel_encoder);
5060 serge 4619
	drm_connector_register(connector);
2330 Serge 4620
 
3480 Serge 4621
	if (HAS_DDI(dev))
3243 Serge 4622
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4623
	else
3031 serge 4624
	intel_connector->get_hw_state = intel_connector_get_hw_state;
5060 serge 4625
	intel_connector->unregister = intel_dp_connector_unregister;
3031 serge 4626
 
5060 serge 4627
	/* Set up the hotplug pin. */
3031 serge 4628
	switch (port) {
4629
	case PORT_A:
3746 Serge 4630
		intel_encoder->hpd_pin = HPD_PORT_A;
2330 Serge 4631
			break;
3031 serge 4632
	case PORT_B:
3746 Serge 4633
		intel_encoder->hpd_pin = HPD_PORT_B;
2330 Serge 4634
			break;
3031 serge 4635
	case PORT_C:
3746 Serge 4636
		intel_encoder->hpd_pin = HPD_PORT_C;
2330 Serge 4637
			break;
3031 serge 4638
	case PORT_D:
3746 Serge 4639
		intel_encoder->hpd_pin = HPD_PORT_D;
2330 Serge 4640
			break;
3031 serge 4641
	default:
3746 Serge 4642
		BUG();
2330 Serge 4643
	}
4644
 
5060 serge 4645
	if (is_edp(intel_dp)) {
4646
		intel_dp_init_panel_power_timestamps(intel_dp);
4647
		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4648
	}
2330 Serge 4649
 
5060 serge 4650
	intel_dp_aux_init(intel_dp, intel_connector);
3031 serge 4651
 
5060 serge 4652
	/* init MST on ports that can support it */
4653
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4654
		if (port == PORT_B || port == PORT_C || port == PORT_D) {
4655
			intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4656
		}
4657
	}
4658
 
4659
	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4660
		drm_dp_aux_unregister(&intel_dp->aux);
3031 serge 4661
	if (is_edp(intel_dp)) {
4293 Serge 4662
			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5060 serge 4663
			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4664
			edp_panel_vdd_off_sync(intel_dp);
4665
			drm_modeset_unlock(&dev->mode_config.connection_mutex);
2330 Serge 4666
		}
5060 serge 4667
		drm_connector_unregister(connector);
4104 Serge 4668
		drm_connector_cleanup(connector);
4669
		return false;
2330 Serge 4670
	}
4671
 
4672
	intel_dp_add_properties(intel_dp, connector);
4673
 
4674
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4675
	 * 0xd.  Failure to do so will result in spurious interrupts being
4676
	 * generated on the port when a cable is not attached.
4677
	 */
4678
	if (IS_G4X(dev) && !IS_GM45(dev)) {
4679
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4680
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4681
	}
4104 Serge 4682
 
4683
	return true;
2330 Serge 4684
}
3243 Serge 4685
 
4686
void
4687
intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4688
{
5060 serge 4689
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 4690
	struct intel_digital_port *intel_dig_port;
4691
	struct intel_encoder *intel_encoder;
4692
	struct drm_encoder *encoder;
4693
	struct intel_connector *intel_connector;
4694
 
4560 Serge 4695
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3243 Serge 4696
	if (!intel_dig_port)
4697
		return;
4698
 
4560 Serge 4699
	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3243 Serge 4700
	if (!intel_connector) {
4701
		kfree(intel_dig_port);
4702
		return;
4703
	}
4704
 
4705
	intel_encoder = &intel_dig_port->base;
4706
	encoder = &intel_encoder->base;
4707
 
4708
	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4709
			 DRM_MODE_ENCODER_TMDS);
4710
 
3746 Serge 4711
	intel_encoder->compute_config = intel_dp_compute_config;
3243 Serge 4712
	intel_encoder->disable = intel_disable_dp;
4713
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4104 Serge 4714
	intel_encoder->get_config = intel_dp_get_config;
5060 serge 4715
	intel_encoder->suspend = intel_dp_encoder_suspend;
4716
	if (IS_CHERRYVIEW(dev)) {
4717
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4718
		intel_encoder->pre_enable = chv_pre_enable_dp;
4719
		intel_encoder->enable = vlv_enable_dp;
4720
		intel_encoder->post_disable = chv_post_disable_dp;
4721
	} else if (IS_VALLEYVIEW(dev)) {
4560 Serge 4722
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4104 Serge 4723
		intel_encoder->pre_enable = vlv_pre_enable_dp;
4724
		intel_encoder->enable = vlv_enable_dp;
5060 serge 4725
		intel_encoder->post_disable = vlv_post_disable_dp;
4104 Serge 4726
	} else {
4560 Serge 4727
		intel_encoder->pre_enable = g4x_pre_enable_dp;
4728
		intel_encoder->enable = g4x_enable_dp;
5060 serge 4729
		intel_encoder->post_disable = g4x_post_disable_dp;
4104 Serge 4730
	}
3243 Serge 4731
 
4732
	intel_dig_port->port = port;
4733
	intel_dig_port->dp.output_reg = output_reg;
4734
 
4735
	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5060 serge 4736
	if (IS_CHERRYVIEW(dev)) {
4737
		if (port == PORT_D)
4738
			intel_encoder->crtc_mask = 1 << 2;
4739
		else
4740
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4741
	} else {
3243 Serge 4742
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5060 serge 4743
	}
4744
	intel_encoder->cloneable = 0;
3243 Serge 4745
	intel_encoder->hot_plug = intel_dp_hot_plug;
4746
 
5060 serge 4747
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4748
	dev_priv->hpd_irq_port[port] = intel_dig_port;
4749
 
4104 Serge 4750
	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4751
		drm_encoder_cleanup(encoder);
4752
		kfree(intel_dig_port);
4753
		kfree(intel_connector);
4754
	}
3243 Serge 4755
}
5060 serge 4756
 
4757
void intel_dp_mst_suspend(struct drm_device *dev)
4758
{
4759
	struct drm_i915_private *dev_priv = dev->dev_private;
4760
	int i;
4761
 
4762
	/* disable MST */
4763
	for (i = 0; i < I915_MAX_PORTS; i++) {
4764
		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4765
		if (!intel_dig_port)
4766
			continue;
4767
 
4768
		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4769
			if (!intel_dig_port->dp.can_mst)
4770
				continue;
4771
			if (intel_dig_port->dp.is_mst)
4772
				drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4773
		}
4774
	}
4775
}
4776
 
4777
void intel_dp_mst_resume(struct drm_device *dev)
4778
{
4779
	struct drm_i915_private *dev_priv = dev->dev_private;
4780
	int i;
4781
 
4782
	for (i = 0; i < I915_MAX_PORTS; i++) {
4783
		struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4784
		if (!intel_dig_port)
4785
			continue;
4786
		if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4787
			int ret;
4788
 
4789
			if (!intel_dig_port->dp.can_mst)
4790
				continue;
4791
 
4792
			ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4793
			if (ret != 0) {
4794
				intel_dp_check_mst_status(&intel_dig_port->dp);
4795
			}
4796
		}
4797
	}
4798
}