Subversion Repositories Kolibri OS

Rev

Rev 3746 | Rev 4126 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2327 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Keith Packard 
25
 *
26
 */
27
 
28
#include 
2330 Serge 29
#include 
3031 serge 30
#include 
31
#include 
32
#include 
33
#include 
34
#include 
2327 Serge 35
#include "intel_drv.h"
3031 serge 36
#include 
2327 Serge 37
#include "i915_drv.h"
38
 
39
#define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
 
41
/**
42
 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43
 * @intel_dp: DP struct
44
 *
45
 * If a CPU or PCH DP output is attached to an eDP panel, this function
46
 * will return true, and false otherwise.
47
 */
48
static bool is_edp(struct intel_dp *intel_dp)
49
{
3243 Serge 50
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
 
52
	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
2327 Serge 53
}
54
 
3243 Serge 55
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
2327 Serge 56
{
3243 Serge 57
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
58
 
59
	return intel_dig_port->base.base.dev;
2327 Serge 60
}
61
 
2330 Serge 62
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
63
{
3243 Serge 64
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
2330 Serge 65
}
2327 Serge 66
 
2330 Serge 67
static void intel_dp_link_down(struct intel_dp *intel_dp);
68
 
69
static int
70
intel_dp_max_link_bw(struct intel_dp *intel_dp)
71
{
72
	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
2327 Serge 73
 
2330 Serge 74
	switch (max_link_bw) {
75
	case DP_LINK_BW_1_62:
76
	case DP_LINK_BW_2_7:
77
		break;
4104 Serge 78
	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
79
		max_link_bw = DP_LINK_BW_2_7;
80
		break;
2330 Serge 81
	default:
4104 Serge 82
		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
83
		     max_link_bw);
2330 Serge 84
		max_link_bw = DP_LINK_BW_1_62;
85
		break;
86
	}
87
	return max_link_bw;
88
}
2327 Serge 89
 
2342 Serge 90
/*
91
 * The units on the numbers in the next two are... bizarre.  Examples will
92
 * make it clearer; this one parallels an example in the eDP spec.
93
 *
94
 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
95
 *
96
 *     270000 * 1 * 8 / 10 == 216000
97
 *
98
 * The actual data capacity of that configuration is 2.16Gbit/s, so the
99
 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
100
 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
101
 * 119000.  At 18bpp that's 2142000 kilobits per second.
102
 *
103
 * Thus the strange-looking division by 10 in intel_dp_link_required, to
104
 * get the result in decakilobits instead of kilobits.
105
 */
106
 
2330 Serge 107
static int
2351 Serge 108
intel_dp_link_required(int pixel_clock, int bpp)
2330 Serge 109
{
2342 Serge 110
	return (pixel_clock * bpp + 9) / 10;
2330 Serge 111
}
2327 Serge 112
 
2330 Serge 113
static int
114
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
115
{
116
	return (max_link_clock * max_lanes * 8) / 10;
117
}
2327 Serge 118
 
2330 Serge 119
static int
120
intel_dp_mode_valid(struct drm_connector *connector,
121
		    struct drm_display_mode *mode)
122
{
123
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 124
	struct intel_connector *intel_connector = to_intel_connector(connector);
125
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
3746 Serge 126
	int target_clock = mode->clock;
127
	int max_rate, mode_rate, max_lanes, max_link_clock;
2327 Serge 128
 
3243 Serge 129
	if (is_edp(intel_dp) && fixed_mode) {
130
		if (mode->hdisplay > fixed_mode->hdisplay)
2330 Serge 131
			return MODE_PANEL;
2327 Serge 132
 
3243 Serge 133
		if (mode->vdisplay > fixed_mode->vdisplay)
2330 Serge 134
			return MODE_PANEL;
3746 Serge 135
 
136
		target_clock = fixed_mode->clock;
2330 Serge 137
	}
2327 Serge 138
 
3746 Serge 139
	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
140
	max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
141
 
142
	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
143
	mode_rate = intel_dp_link_required(target_clock, 18);
144
 
145
	if (mode_rate > max_rate)
2330 Serge 146
		return MODE_CLOCK_HIGH;
2327 Serge 147
 
2330 Serge 148
	if (mode->clock < 10000)
149
		return MODE_CLOCK_LOW;
150
 
3031 serge 151
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
152
		return MODE_H_ILLEGAL;
153
 
2330 Serge 154
	return MODE_OK;
155
}
156
 
157
static uint32_t
158
pack_aux(uint8_t *src, int src_bytes)
159
{
160
	int	i;
161
	uint32_t v = 0;
162
 
163
	if (src_bytes > 4)
164
		src_bytes = 4;
165
	for (i = 0; i < src_bytes; i++)
166
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
167
	return v;
168
}
169
 
170
static void
171
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
172
{
173
	int i;
174
	if (dst_bytes > 4)
175
		dst_bytes = 4;
176
	for (i = 0; i < dst_bytes; i++)
177
		dst[i] = src >> ((3-i) * 8);
178
}
179
 
180
/* hrawclock is 1/4 the FSB frequency */
181
static int
182
intel_hrawclk(struct drm_device *dev)
183
{
184
	struct drm_i915_private *dev_priv = dev->dev_private;
185
	uint32_t clkcfg;
186
 
3243 Serge 187
	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188
	if (IS_VALLEYVIEW(dev))
189
		return 200;
190
 
2330 Serge 191
	clkcfg = I915_READ(CLKCFG);
192
	switch (clkcfg & CLKCFG_FSB_MASK) {
193
	case CLKCFG_FSB_400:
194
		return 100;
195
	case CLKCFG_FSB_533:
196
		return 133;
197
	case CLKCFG_FSB_667:
198
		return 166;
199
	case CLKCFG_FSB_800:
200
		return 200;
201
	case CLKCFG_FSB_1067:
202
		return 266;
203
	case CLKCFG_FSB_1333:
204
		return 333;
205
	/* these two are just a guess; one of them might be right */
206
	case CLKCFG_FSB_1600:
207
	case CLKCFG_FSB_1600_ALT:
208
		return 400;
209
	default:
210
		return 133;
211
	}
212
}
213
 
2342 Serge 214
static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
215
{
3243 Serge 216
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 217
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 218
	u32 pp_stat_reg;
2342 Serge 219
 
3746 Serge 220
	pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
221
	return (I915_READ(pp_stat_reg) & PP_ON) != 0;
2342 Serge 222
}
223
 
224
static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
225
{
3243 Serge 226
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 227
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 228
	u32 pp_ctrl_reg;
2342 Serge 229
 
3746 Serge 230
	pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
231
	return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
2342 Serge 232
}
233
 
234
static void
235
intel_dp_check_edp(struct intel_dp *intel_dp)
236
{
3243 Serge 237
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 238
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 239
	u32 pp_stat_reg, pp_ctrl_reg;
2342 Serge 240
 
241
	if (!is_edp(intel_dp))
242
		return;
3746 Serge 243
 
244
	pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
245
	pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
246
 
2342 Serge 247
	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
248
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
249
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
3746 Serge 250
				I915_READ(pp_stat_reg),
251
				I915_READ(pp_ctrl_reg));
2342 Serge 252
	}
253
}
254
 
3480 Serge 255
static uint32_t
256
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
257
{
258
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
259
	struct drm_device *dev = intel_dig_port->base.base.dev;
260
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 261
	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
3480 Serge 262
	uint32_t status;
263
	bool done;
264
 
265
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
266
	if (has_aux_irq)
267
		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
4104 Serge 268
					  msecs_to_jiffies_timeout(10));
3480 Serge 269
	else
270
		done = wait_for_atomic(C, 10) == 0;
271
	if (!done)
272
		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
273
			  has_aux_irq);
274
#undef C
275
 
276
	return status;
277
}
278
 
4104 Serge 279
static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
280
				      int index)
281
{
282
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
283
	struct drm_device *dev = intel_dig_port->base.base.dev;
284
	struct drm_i915_private *dev_priv = dev->dev_private;
285
 
286
	/* The clock divider is based off the hrawclk,
287
	 * and would like to run at 2MHz. So, take the
288
	 * hrawclk value and divide by 2 and use that
289
	 *
290
	 * Note that PCH attached eDP panels should use a 125MHz input
291
	 * clock divider.
292
	 */
293
	if (IS_VALLEYVIEW(dev)) {
294
		return index ? 0 : 100;
295
	} else if (intel_dig_port->port == PORT_A) {
296
		if (index)
297
			return 0;
298
		if (HAS_DDI(dev))
299
			return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
300
		else if (IS_GEN6(dev) || IS_GEN7(dev))
301
			return 200; /* SNB & IVB eDP input clock at 400Mhz */
302
		else
303
			return 225; /* eDP input clock at 450Mhz */
304
	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
305
		/* Workaround for non-ULT HSW */
306
		switch (index) {
307
		case 0: return 63;
308
		case 1: return 72;
309
		default: return 0;
310
		}
311
	} else if (HAS_PCH_SPLIT(dev)) {
312
		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
313
	} else {
314
		return index ? 0 :intel_hrawclk(dev) / 2;
315
	}
316
}
317
 
2330 Serge 318
static int
319
intel_dp_aux_ch(struct intel_dp *intel_dp,
320
		uint8_t *send, int send_bytes,
321
		uint8_t *recv, int recv_size)
322
{
3243 Serge 323
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
324
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 325
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 326
	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
2330 Serge 327
	uint32_t ch_data = ch_ctl + 4;
4104 Serge 328
	uint32_t aux_clock_divider;
3480 Serge 329
	int i, ret, recv_bytes;
2330 Serge 330
	uint32_t status;
4104 Serge 331
	int try, precharge, clock = 0;
3480 Serge 332
	bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
2330 Serge 333
 
3480 Serge 334
	/* dp aux is extremely sensitive to irq latency, hence request the
335
	 * lowest possible wakeup latency and so prevent the cpu from going into
336
	 * deep sleep states.
337
	 */
338
//	pm_qos_update_request(&dev_priv->pm_qos, 0);
339
 
2342 Serge 340
	intel_dp_check_edp(intel_dp);
2330 Serge 341
 
342
	if (IS_GEN6(dev))
343
		precharge = 3;
344
	else
345
		precharge = 5;
346
 
4104 Serge 347
	intel_aux_display_runtime_get(dev_priv);
348
 
2330 Serge 349
	/* Try to wait for any previous AUX channel activity */
350
	for (try = 0; try < 3; try++) {
3480 Serge 351
		status = I915_READ_NOTRACE(ch_ctl);
2330 Serge 352
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
353
			break;
354
		msleep(1);
355
	}
356
 
357
	if (try == 3) {
358
		WARN(1, "dp_aux_ch not started status 0x%08x\n",
359
		     I915_READ(ch_ctl));
3480 Serge 360
		ret = -EBUSY;
361
		goto out;
2330 Serge 362
	}
363
 
4104 Serge 364
	while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
2330 Serge 365
	/* Must try at least 3 times according to DP spec */
366
	for (try = 0; try < 5; try++) {
367
		/* Load the send data into the aux channel data registers */
368
		for (i = 0; i < send_bytes; i += 4)
369
			I915_WRITE(ch_data + i,
370
				   pack_aux(send + i, send_bytes - i));
371
 
372
		/* Send the command and wait for it to complete */
373
		I915_WRITE(ch_ctl,
374
			   DP_AUX_CH_CTL_SEND_BUSY |
3480 Serge 375
			   (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
2330 Serge 376
			   DP_AUX_CH_CTL_TIME_OUT_400us |
377
			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
378
			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
379
			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
380
			   DP_AUX_CH_CTL_DONE |
381
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
382
			   DP_AUX_CH_CTL_RECEIVE_ERROR);
383
 
3480 Serge 384
		status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
385
 
2330 Serge 386
		/* Clear done status and any errors */
387
		I915_WRITE(ch_ctl,
388
			   status |
389
			   DP_AUX_CH_CTL_DONE |
390
			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
391
			   DP_AUX_CH_CTL_RECEIVE_ERROR);
3031 serge 392
 
393
		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
394
			      DP_AUX_CH_CTL_RECEIVE_ERROR))
395
			continue;
2330 Serge 396
		if (status & DP_AUX_CH_CTL_DONE)
397
			break;
398
	}
4104 Serge 399
		if (status & DP_AUX_CH_CTL_DONE)
400
			break;
401
	}
2330 Serge 402
 
403
	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
404
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
3480 Serge 405
		ret = -EBUSY;
406
		goto out;
2330 Serge 407
	}
408
 
409
	/* Check for timeout or receive error.
410
	 * Timeouts occur when the sink is not connected
411
	 */
412
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
413
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
3480 Serge 414
		ret = -EIO;
415
		goto out;
2330 Serge 416
	}
417
 
418
	/* Timeouts occur when the device isn't connected, so they're
419
	 * "normal" -- don't fill the kernel log with these */
420
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
421
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
3480 Serge 422
		ret = -ETIMEDOUT;
423
		goto out;
2330 Serge 424
	}
425
 
426
	/* Unload any bytes sent back from the other side */
427
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
428
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
429
	if (recv_bytes > recv_size)
430
		recv_bytes = recv_size;
431
 
432
	for (i = 0; i < recv_bytes; i += 4)
433
		unpack_aux(I915_READ(ch_data + i),
434
			   recv + i, recv_bytes - i);
435
 
3480 Serge 436
	ret = recv_bytes;
437
out:
438
//	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
4104 Serge 439
	intel_aux_display_runtime_put(dev_priv);
3480 Serge 440
 
441
	return ret;
2330 Serge 442
}
443
 
444
/* Write data to the aux channel in native mode */
445
static int
446
intel_dp_aux_native_write(struct intel_dp *intel_dp,
447
			  uint16_t address, uint8_t *send, int send_bytes)
448
{
449
	int ret;
450
	uint8_t	msg[20];
451
	int msg_bytes;
452
	uint8_t	ack;
453
 
2342 Serge 454
	intel_dp_check_edp(intel_dp);
2330 Serge 455
	if (send_bytes > 16)
456
		return -1;
457
	msg[0] = AUX_NATIVE_WRITE << 4;
458
	msg[1] = address >> 8;
459
	msg[2] = address & 0xff;
460
	msg[3] = send_bytes - 1;
461
	memcpy(&msg[4], send, send_bytes);
462
	msg_bytes = send_bytes + 4;
463
	for (;;) {
464
		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
465
		if (ret < 0)
466
			return ret;
467
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
468
			break;
469
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
470
			udelay(100);
471
		else
472
			return -EIO;
473
	}
474
	return send_bytes;
475
}
476
 
477
/* Write a single byte to the aux channel in native mode */
478
static int
479
intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
480
			    uint16_t address, uint8_t byte)
481
{
482
	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
483
}
484
 
485
/* read bytes from a native aux channel */
486
static int
487
intel_dp_aux_native_read(struct intel_dp *intel_dp,
488
			 uint16_t address, uint8_t *recv, int recv_bytes)
489
{
490
	uint8_t msg[4];
491
	int msg_bytes;
492
	uint8_t reply[20];
493
	int reply_bytes;
494
	uint8_t ack;
495
	int ret;
496
 
2342 Serge 497
	intel_dp_check_edp(intel_dp);
2330 Serge 498
	msg[0] = AUX_NATIVE_READ << 4;
499
	msg[1] = address >> 8;
500
	msg[2] = address & 0xff;
501
	msg[3] = recv_bytes - 1;
502
 
503
	msg_bytes = 4;
504
	reply_bytes = recv_bytes + 1;
505
 
506
	for (;;) {
507
		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
508
				      reply, reply_bytes);
509
		if (ret == 0)
510
			return -EPROTO;
511
		if (ret < 0)
512
			return ret;
513
		ack = reply[0];
514
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
515
			memcpy(recv, reply + 1, ret - 1);
516
			return ret - 1;
517
		}
518
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
519
			udelay(100);
520
		else
521
			return -EIO;
522
	}
523
}
524
 
525
static int
526
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
527
		    uint8_t write_byte, uint8_t *read_byte)
528
{
529
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
530
	struct intel_dp *intel_dp = container_of(adapter,
531
						struct intel_dp,
532
						adapter);
533
	uint16_t address = algo_data->address;
534
	uint8_t msg[5];
535
	uint8_t reply[2];
536
	unsigned retry;
537
	int msg_bytes;
538
	int reply_bytes;
539
	int ret;
540
 
2342 Serge 541
	intel_dp_check_edp(intel_dp);
2330 Serge 542
	/* Set up the command byte */
543
	if (mode & MODE_I2C_READ)
544
		msg[0] = AUX_I2C_READ << 4;
545
	else
546
		msg[0] = AUX_I2C_WRITE << 4;
547
 
548
	if (!(mode & MODE_I2C_STOP))
549
		msg[0] |= AUX_I2C_MOT << 4;
550
 
551
	msg[1] = address >> 8;
552
	msg[2] = address;
553
 
554
	switch (mode) {
555
	case MODE_I2C_WRITE:
556
		msg[3] = 0;
557
		msg[4] = write_byte;
558
		msg_bytes = 5;
559
		reply_bytes = 1;
560
		break;
561
	case MODE_I2C_READ:
562
		msg[3] = 0;
563
		msg_bytes = 4;
564
		reply_bytes = 2;
565
		break;
566
	default:
567
		msg_bytes = 3;
568
		reply_bytes = 1;
569
		break;
570
	}
571
 
572
	for (retry = 0; retry < 5; retry++) {
573
		ret = intel_dp_aux_ch(intel_dp,
574
				      msg, msg_bytes,
575
				      reply, reply_bytes);
576
		if (ret < 0) {
577
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
578
			return ret;
579
		}
580
 
581
		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
582
		case AUX_NATIVE_REPLY_ACK:
583
			/* I2C-over-AUX Reply field is only valid
584
			 * when paired with AUX ACK.
585
			 */
586
			break;
587
		case AUX_NATIVE_REPLY_NACK:
588
			DRM_DEBUG_KMS("aux_ch native nack\n");
589
			return -EREMOTEIO;
590
		case AUX_NATIVE_REPLY_DEFER:
4104 Serge 591
			udelay(500);
2330 Serge 592
			continue;
593
		default:
594
			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
595
				  reply[0]);
596
			return -EREMOTEIO;
597
		}
598
 
599
		switch (reply[0] & AUX_I2C_REPLY_MASK) {
600
		case AUX_I2C_REPLY_ACK:
601
			if (mode == MODE_I2C_READ) {
602
				*read_byte = reply[1];
603
			}
604
			return reply_bytes - 1;
605
		case AUX_I2C_REPLY_NACK:
606
			DRM_DEBUG_KMS("aux_i2c nack\n");
607
			return -EREMOTEIO;
608
		case AUX_I2C_REPLY_DEFER:
609
			DRM_DEBUG_KMS("aux_i2c defer\n");
610
			udelay(100);
611
			break;
612
		default:
613
			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
614
			return -EREMOTEIO;
615
		}
616
	}
617
 
618
	DRM_ERROR("too many retries, giving up\n");
619
	return -EREMOTEIO;
620
}
621
 
622
static int
623
intel_dp_i2c_init(struct intel_dp *intel_dp,
624
		  struct intel_connector *intel_connector, const char *name)
625
{
2342 Serge 626
	int	ret;
627
 
2330 Serge 628
	DRM_DEBUG_KMS("i2c_init %s\n", name);
629
	intel_dp->algo.running = false;
630
	intel_dp->algo.address = 0;
631
	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
632
 
2342 Serge 633
	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
3031 serge 634
	intel_dp->adapter.owner = THIS_MODULE;
2330 Serge 635
	intel_dp->adapter.class = I2C_CLASS_DDC;
2342 Serge 636
	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
2330 Serge 637
	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
638
	intel_dp->adapter.algo_data = &intel_dp->algo;
639
	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
640
 
2342 Serge 641
	ironlake_edp_panel_vdd_on(intel_dp);
642
	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
643
	ironlake_edp_panel_vdd_off(intel_dp, false);
644
	return ret;
2330 Serge 645
}
646
 
4104 Serge 647
static void
648
intel_dp_set_clock(struct intel_encoder *encoder,
649
		   struct intel_crtc_config *pipe_config, int link_bw)
650
{
651
	struct drm_device *dev = encoder->base.dev;
652
 
653
	if (IS_G4X(dev)) {
654
		if (link_bw == DP_LINK_BW_1_62) {
655
			pipe_config->dpll.p1 = 2;
656
			pipe_config->dpll.p2 = 10;
657
			pipe_config->dpll.n = 2;
658
			pipe_config->dpll.m1 = 23;
659
			pipe_config->dpll.m2 = 8;
660
		} else {
661
			pipe_config->dpll.p1 = 1;
662
			pipe_config->dpll.p2 = 10;
663
			pipe_config->dpll.n = 1;
664
			pipe_config->dpll.m1 = 14;
665
			pipe_config->dpll.m2 = 2;
666
		}
667
		pipe_config->clock_set = true;
668
	} else if (IS_HASWELL(dev)) {
669
		/* Haswell has special-purpose DP DDI clocks. */
670
	} else if (HAS_PCH_SPLIT(dev)) {
671
		if (link_bw == DP_LINK_BW_1_62) {
672
			pipe_config->dpll.n = 1;
673
			pipe_config->dpll.p1 = 2;
674
			pipe_config->dpll.p2 = 10;
675
			pipe_config->dpll.m1 = 12;
676
			pipe_config->dpll.m2 = 9;
677
		} else {
678
			pipe_config->dpll.n = 2;
679
			pipe_config->dpll.p1 = 1;
680
			pipe_config->dpll.p2 = 10;
681
			pipe_config->dpll.m1 = 14;
682
			pipe_config->dpll.m2 = 8;
683
		}
684
		pipe_config->clock_set = true;
685
	} else if (IS_VALLEYVIEW(dev)) {
686
		/* FIXME: Need to figure out optimized DP clocks for vlv. */
687
	}
688
}
689
 
3243 Serge 690
bool
3746 Serge 691
intel_dp_compute_config(struct intel_encoder *encoder,
692
			struct intel_crtc_config *pipe_config)
2330 Serge 693
{
3746 Serge 694
	struct drm_device *dev = encoder->base.dev;
695
	struct drm_i915_private *dev_priv = dev->dev_private;
696
	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
697
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 698
	enum port port = dp_to_dig_port(intel_dp)->port;
699
	struct intel_crtc *intel_crtc = encoder->new_crtc;
3243 Serge 700
	struct intel_connector *intel_connector = intel_dp->attached_connector;
2330 Serge 701
	int lane_count, clock;
3243 Serge 702
	int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
2330 Serge 703
	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
3031 serge 704
	int bpp, mode_rate;
2330 Serge 705
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
4104 Serge 706
	int link_avail, link_clock;
2330 Serge 707
 
4104 Serge 708
	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
3746 Serge 709
		pipe_config->has_pch_encoder = true;
710
 
711
	pipe_config->has_dp_encoder = true;
712
 
3243 Serge 713
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
714
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
715
				       adjusted_mode);
4104 Serge 716
		if (!HAS_PCH_SPLIT(dev))
717
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
718
						 intel_connector->panel.fitting_mode);
719
		else
720
			intel_pch_panel_fitting(intel_crtc, pipe_config,
721
						intel_connector->panel.fitting_mode);
2330 Serge 722
	}
723
 
3031 serge 724
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
725
		return false;
726
 
727
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
728
		      "max bw %02x pixel clock %iKHz\n",
729
		      max_lane_count, bws[max_clock], adjusted_mode->clock);
730
 
3746 Serge 731
	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
732
	 * bpc in between. */
4104 Serge 733
	bpp = pipe_config->pipe_bpp;
734
	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
735
		DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
736
			      dev_priv->vbt.edp_bpp);
737
		bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
738
	}
3746 Serge 739
 
740
	for (; bpp >= 6*3; bpp -= 2*3) {
4104 Serge 741
		mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
3746 Serge 742
 
743
		for (clock = 0; clock <= max_clock; clock++) {
744
			for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
745
				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
746
				link_avail = intel_dp_max_data_rate(link_clock,
747
								    lane_count);
748
 
749
				if (mode_rate <= link_avail) {
750
					goto found;
751
				}
752
			}
753
		}
754
	}
755
 
3031 serge 756
		return false;
757
 
3746 Serge 758
found:
3480 Serge 759
	if (intel_dp->color_range_auto) {
760
		/*
761
		 * See:
762
		 * CEA-861-E - 5.1 Default Encoding Parameters
763
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
764
		 */
765
		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
766
			intel_dp->color_range = DP_COLOR_RANGE_16_235;
767
		else
768
			intel_dp->color_range = 0;
769
	}
770
 
771
	if (intel_dp->color_range)
3746 Serge 772
		pipe_config->limited_color_range = true;
3480 Serge 773
 
2330 Serge 774
				intel_dp->link_bw = bws[clock];
775
				intel_dp->lane_count = lane_count;
3746 Serge 776
	pipe_config->pipe_bpp = bpp;
4104 Serge 777
	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
3746 Serge 778
 
779
	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
2330 Serge 780
				       intel_dp->link_bw, intel_dp->lane_count,
4104 Serge 781
		      pipe_config->port_clock, bpp);
3031 serge 782
				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
783
					      mode_rate, link_avail);
2330 Serge 784
 
3746 Serge 785
	intel_link_compute_m_n(bpp, lane_count,
4104 Serge 786
			       adjusted_mode->clock, pipe_config->port_clock,
3746 Serge 787
			       &pipe_config->dp_m_n);
2330 Serge 788
 
4104 Serge 789
	intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
790
 
3746 Serge 791
	return true;
2327 Serge 792
}
793
 
3243 Serge 794
void intel_dp_init_link_config(struct intel_dp *intel_dp)
795
{
796
	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
797
	intel_dp->link_configuration[0] = intel_dp->link_bw;
798
	intel_dp->link_configuration[1] = intel_dp->lane_count;
799
	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
800
	/*
801
	 * Check for DPCD version > 1.1 and enhanced framing support
802
	 */
803
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
804
	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
805
		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
806
	}
807
}
808
 
4104 Serge 809
static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
3480 Serge 810
{
4104 Serge 811
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
812
	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
813
	struct drm_device *dev = crtc->base.dev;
3480 Serge 814
	struct drm_i915_private *dev_priv = dev->dev_private;
815
	u32 dpa_ctl;
816
 
4104 Serge 817
	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
3480 Serge 818
	dpa_ctl = I915_READ(DP_A);
819
	dpa_ctl &= ~DP_PLL_FREQ_MASK;
820
 
4104 Serge 821
	if (crtc->config.port_clock == 162000) {
3480 Serge 822
		/* For a long time we've carried around a ILK-DevA w/a for the
823
		 * 160MHz clock. If we're really unlucky, it's still required.
824
		 */
825
		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
826
		dpa_ctl |= DP_PLL_FREQ_160MHZ;
4104 Serge 827
		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
3480 Serge 828
	} else {
829
		dpa_ctl |= DP_PLL_FREQ_270MHZ;
4104 Serge 830
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3480 Serge 831
	}
832
 
833
	I915_WRITE(DP_A, dpa_ctl);
834
 
835
	POSTING_READ(DP_A);
836
	udelay(500);
837
}
838
 
4104 Serge 839
static void intel_dp_mode_set(struct intel_encoder *encoder)
2330 Serge 840
{
4104 Serge 841
	struct drm_device *dev = encoder->base.dev;
2342 Serge 842
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 843
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
844
	enum port port = dp_to_dig_port(intel_dp)->port;
845
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
846
	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
2327 Serge 847
 
2342 Serge 848
	/*
849
	 * There are four kinds of DP registers:
850
	 *
851
	 * 	IBX PCH
852
	 * 	SNB CPU
853
	 *	IVB CPU
854
	 * 	CPT PCH
855
	 *
856
	 * IBX PCH and CPU are the same for almost everything,
857
	 * except that the CPU DP PLL is configured in this
858
	 * register
859
	 *
860
	 * CPT PCH is quite different, having many bits moved
861
	 * to the TRANS_DP_CTL register instead. That
862
	 * configuration happens (oddly) in ironlake_pch_enable
863
	 */
2327 Serge 864
 
2342 Serge 865
	/* Preserve the BIOS-computed detected bit. This is
866
	 * supposed to be read-only.
867
	 */
868
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2327 Serge 869
 
2342 Serge 870
	/* Handle DP bits in common between all three register formats */
871
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
4104 Serge 872
	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
2342 Serge 873
 
874
	if (intel_dp->has_audio) {
875
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
4104 Serge 876
				 pipe_name(crtc->pipe));
2330 Serge 877
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
4104 Serge 878
		intel_write_eld(&encoder->base, adjusted_mode);
2342 Serge 879
	}
2327 Serge 880
 
3243 Serge 881
	intel_dp_init_link_config(intel_dp);
882
 
2342 Serge 883
	/* Split out the IBX/CPU vs CPT settings */
884
 
4104 Serge 885
	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
2342 Serge 886
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
887
			intel_dp->DP |= DP_SYNC_HS_HIGH;
888
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
889
			intel_dp->DP |= DP_SYNC_VS_HIGH;
890
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
891
 
892
		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
893
			intel_dp->DP |= DP_ENHANCED_FRAMING;
894
 
4104 Serge 895
		intel_dp->DP |= crtc->pipe << 29;
896
	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
3746 Serge 897
		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
2342 Serge 898
		intel_dp->DP |= intel_dp->color_range;
899
 
900
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
901
			intel_dp->DP |= DP_SYNC_HS_HIGH;
902
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
903
			intel_dp->DP |= DP_SYNC_VS_HIGH;
904
		intel_dp->DP |= DP_LINK_TRAIN_OFF;
905
 
906
		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
907
		intel_dp->DP |= DP_ENHANCED_FRAMING;
908
 
4104 Serge 909
		if (crtc->pipe == 1)
2330 Serge 910
		intel_dp->DP |= DP_PIPEB_SELECT;
2342 Serge 911
	} else {
912
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
913
	}
3480 Serge 914
 
4104 Serge 915
	if (port == PORT_A && !IS_VALLEYVIEW(dev))
916
		ironlake_set_pll_cpu_edp(intel_dp);
2330 Serge 917
}
2327 Serge 918
 
2342 Serge 919
#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
920
#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
921
 
922
#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
923
#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
924
 
925
#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
926
#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
927
 
928
static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
929
				       u32 mask,
930
				       u32 value)
931
{
3243 Serge 932
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2342 Serge 933
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 934
	u32 pp_stat_reg, pp_ctrl_reg;
2342 Serge 935
 
3746 Serge 936
	pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
937
	pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
938
 
2342 Serge 939
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
940
		      mask, value,
3746 Serge 941
			I915_READ(pp_stat_reg),
942
			I915_READ(pp_ctrl_reg));
2342 Serge 943
 
3746 Serge 944
	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
2342 Serge 945
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
3746 Serge 946
				I915_READ(pp_stat_reg),
947
				I915_READ(pp_ctrl_reg));
2342 Serge 948
	}
949
}
950
 
951
static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
952
{
953
	DRM_DEBUG_KMS("Wait for panel power on\n");
954
	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
955
}
956
 
957
static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
958
{
959
	DRM_DEBUG_KMS("Wait for panel power off time\n");
960
	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
961
}
962
 
963
static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
964
{
965
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
966
	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
967
}
968
 
969
 
970
/* Read the current pp_control value, unlocking the register if it
971
 * is locked
972
 */
973
 
3746 Serge 974
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2342 Serge 975
{
3746 Serge 976
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
977
	struct drm_i915_private *dev_priv = dev->dev_private;
978
	u32 control;
979
	u32 pp_ctrl_reg;
2342 Serge 980
 
3746 Serge 981
	pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
982
	control = I915_READ(pp_ctrl_reg);
983
 
2342 Serge 984
	control &= ~PANEL_UNLOCK_MASK;
985
	control |= PANEL_UNLOCK_REGS;
986
	return control;
987
}
988
 
3243 Serge 989
void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
2330 Serge 990
{
3243 Serge 991
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 992
	struct drm_i915_private *dev_priv = dev->dev_private;
993
	u32 pp;
3746 Serge 994
	u32 pp_stat_reg, pp_ctrl_reg;
2327 Serge 995
 
2342 Serge 996
	if (!is_edp(intel_dp))
997
		return;
998
	DRM_DEBUG_KMS("Turn eDP VDD on\n");
2327 Serge 999
 
2342 Serge 1000
	WARN(intel_dp->want_panel_vdd,
1001
	     "eDP VDD already requested on\n");
1002
 
1003
	intel_dp->want_panel_vdd = true;
1004
 
1005
	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1006
		DRM_DEBUG_KMS("eDP VDD already on\n");
1007
		return;
1008
	}
1009
 
1010
	if (!ironlake_edp_have_panel_power(intel_dp))
1011
		ironlake_wait_panel_power_cycle(intel_dp);
1012
 
3746 Serge 1013
	pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1014
	pp |= EDP_FORCE_VDD;
2342 Serge 1015
 
3746 Serge 1016
	pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1017
	pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1018
 
1019
	I915_WRITE(pp_ctrl_reg, pp);
1020
	POSTING_READ(pp_ctrl_reg);
1021
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1022
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2342 Serge 1023
	/*
1024
	 * If the panel wasn't on, delay before accessing aux channel
1025
	 */
1026
	if (!ironlake_edp_have_panel_power(intel_dp)) {
1027
		DRM_DEBUG_KMS("eDP was not running\n");
1028
		msleep(intel_dp->panel_power_up_delay);
1029
	}
2330 Serge 1030
}
2327 Serge 1031
 
2342 Serge 1032
static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
2330 Serge 1033
{
3243 Serge 1034
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1035
	struct drm_i915_private *dev_priv = dev->dev_private;
1036
	u32 pp;
3746 Serge 1037
	u32 pp_stat_reg, pp_ctrl_reg;
2327 Serge 1038
 
3480 Serge 1039
	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1040
 
2342 Serge 1041
	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
3746 Serge 1042
		pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1043
	pp &= ~EDP_FORCE_VDD;
2327 Serge 1044
 
3746 Serge 1045
		pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1046
		pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1047
 
1048
		I915_WRITE(pp_ctrl_reg, pp);
1049
		POSTING_READ(pp_ctrl_reg);
1050
 
2330 Serge 1051
	/* Make sure sequencer is idle before allowing subsequent activity */
3746 Serge 1052
		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1053
		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2342 Serge 1054
		msleep(intel_dp->panel_power_down_delay);
1055
	}
2330 Serge 1056
}
2327 Serge 1057
 
3243 Serge 1058
static void ironlake_panel_vdd_work(struct work_struct *__work)
1059
{
3482 Serge 1060
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1061
						 struct intel_dp, panel_vdd_work);
1062
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1063
 
1064
	mutex_lock(&dev->mode_config.mutex);
1065
	ironlake_panel_vdd_off_sync(intel_dp);
1066
	mutex_unlock(&dev->mode_config.mutex);
3243 Serge 1067
}
2342 Serge 1068
 
3243 Serge 1069
void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2330 Serge 1070
{
2342 Serge 1071
	if (!is_edp(intel_dp))
1072
		return;
1073
 
1074
	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1075
	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1076
 
1077
	intel_dp->want_panel_vdd = false;
1078
 
1079
	if (sync) {
1080
		ironlake_panel_vdd_off_sync(intel_dp);
1081
	} else {
1082
		/*
1083
		 * Queue the timer to fire a long
1084
		 * time from now (relative to the power down delay)
1085
		 * to keep the panel power up across a sequence of operations
1086
		 */
4104 Serge 1087
//       schedule_delayed_work(&intel_dp->panel_vdd_work,
1088
//                     msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
2342 Serge 1089
	}
1090
}
1091
 
3243 Serge 1092
void ironlake_edp_panel_on(struct intel_dp *intel_dp)
2342 Serge 1093
{
3243 Serge 1094
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1095
	struct drm_i915_private *dev_priv = dev->dev_private;
2342 Serge 1096
	u32 pp;
3746 Serge 1097
	u32 pp_ctrl_reg;
2327 Serge 1098
 
2342 Serge 1099
	if (!is_edp(intel_dp))
1100
		return;
2327 Serge 1101
 
2342 Serge 1102
	DRM_DEBUG_KMS("Turn eDP power on\n");
2327 Serge 1103
 
2342 Serge 1104
	if (ironlake_edp_have_panel_power(intel_dp)) {
1105
		DRM_DEBUG_KMS("eDP power already on\n");
1106
		return;
1107
	}
1108
 
1109
	ironlake_wait_panel_power_cycle(intel_dp);
1110
 
3746 Serge 1111
	pp = ironlake_get_pp_control(intel_dp);
2342 Serge 1112
	if (IS_GEN5(dev)) {
2330 Serge 1113
	/* ILK workaround: disable reset around power sequence */
1114
	pp &= ~PANEL_POWER_RESET;
1115
	I915_WRITE(PCH_PP_CONTROL, pp);
1116
	POSTING_READ(PCH_PP_CONTROL);
2342 Serge 1117
	}
2327 Serge 1118
 
2342 Serge 1119
	pp |= POWER_TARGET_ON;
1120
	if (!IS_GEN5(dev))
1121
		pp |= PANEL_POWER_RESET;
1122
 
3746 Serge 1123
	pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
2327 Serge 1124
 
3746 Serge 1125
	I915_WRITE(pp_ctrl_reg, pp);
1126
	POSTING_READ(pp_ctrl_reg);
1127
 
2342 Serge 1128
	ironlake_wait_panel_on(intel_dp);
2327 Serge 1129
 
2342 Serge 1130
	if (IS_GEN5(dev)) {
2330 Serge 1131
	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1132
	I915_WRITE(PCH_PP_CONTROL, pp);
1133
	POSTING_READ(PCH_PP_CONTROL);
2342 Serge 1134
	}
2330 Serge 1135
}
2327 Serge 1136
 
3243 Serge 1137
void ironlake_edp_panel_off(struct intel_dp *intel_dp)
2330 Serge 1138
{
3243 Serge 1139
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1140
	struct drm_i915_private *dev_priv = dev->dev_private;
2342 Serge 1141
	u32 pp;
3746 Serge 1142
	u32 pp_ctrl_reg;
2327 Serge 1143
 
2342 Serge 1144
	if (!is_edp(intel_dp))
1145
		return;
2327 Serge 1146
 
2342 Serge 1147
	DRM_DEBUG_KMS("Turn eDP power off\n");
2327 Serge 1148
 
3031 serge 1149
	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
2342 Serge 1150
 
3746 Serge 1151
	pp = ironlake_get_pp_control(intel_dp);
3031 serge 1152
	/* We need to switch off panel power _and_ force vdd, for otherwise some
1153
	 * panels get very unhappy and cease to work. */
2342 Serge 1154
	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
2327 Serge 1155
 
3746 Serge 1156
	pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1157
 
1158
	I915_WRITE(pp_ctrl_reg, pp);
1159
	POSTING_READ(pp_ctrl_reg);
1160
 
3031 serge 1161
	intel_dp->want_panel_vdd = false;
1162
 
2342 Serge 1163
	ironlake_wait_panel_off(intel_dp);
2330 Serge 1164
}
2327 Serge 1165
 
3243 Serge 1166
void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
2330 Serge 1167
{
3243 Serge 1168
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1169
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 1170
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1171
	int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
2330 Serge 1172
	u32 pp;
3746 Serge 1173
	u32 pp_ctrl_reg;
2327 Serge 1174
 
2342 Serge 1175
	if (!is_edp(intel_dp))
1176
		return;
1177
 
2330 Serge 1178
	DRM_DEBUG_KMS("\n");
1179
	/*
1180
	 * If we enable the backlight right away following a panel power
1181
	 * on, we may see slight flicker as the panel syncs with the eDP
1182
	 * link.  So delay a bit to make sure the image is solid before
1183
	 * allowing it to appear.
1184
	 */
2342 Serge 1185
	msleep(intel_dp->backlight_on_delay);
3746 Serge 1186
	pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1187
	pp |= EDP_BLC_ENABLE;
3243 Serge 1188
 
3746 Serge 1189
	pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1190
 
1191
	I915_WRITE(pp_ctrl_reg, pp);
1192
	POSTING_READ(pp_ctrl_reg);
1193
 
3243 Serge 1194
	intel_panel_enable_backlight(dev, pipe);
2330 Serge 1195
}
2327 Serge 1196
 
3243 Serge 1197
void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
2330 Serge 1198
{
3243 Serge 1199
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 1200
	struct drm_i915_private *dev_priv = dev->dev_private;
1201
	u32 pp;
3746 Serge 1202
	u32 pp_ctrl_reg;
2327 Serge 1203
 
2342 Serge 1204
	if (!is_edp(intel_dp))
1205
		return;
1206
 
3243 Serge 1207
	intel_panel_disable_backlight(dev);
1208
 
2330 Serge 1209
	DRM_DEBUG_KMS("\n");
3746 Serge 1210
	pp = ironlake_get_pp_control(intel_dp);
2330 Serge 1211
	pp &= ~EDP_BLC_ENABLE;
3746 Serge 1212
 
1213
	pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1214
 
1215
	I915_WRITE(pp_ctrl_reg, pp);
1216
	POSTING_READ(pp_ctrl_reg);
2342 Serge 1217
	msleep(intel_dp->backlight_off_delay);
2330 Serge 1218
}
2327 Serge 1219
 
3031 serge 1220
static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2330 Serge 1221
{
3243 Serge 1222
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1223
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1224
	struct drm_device *dev = crtc->dev;
2330 Serge 1225
	struct drm_i915_private *dev_priv = dev->dev_private;
1226
	u32 dpa_ctl;
2327 Serge 1227
 
3031 serge 1228
	assert_pipe_disabled(dev_priv,
1229
			     to_intel_crtc(crtc)->pipe);
1230
 
2330 Serge 1231
	DRM_DEBUG_KMS("\n");
1232
	dpa_ctl = I915_READ(DP_A);
3031 serge 1233
	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1234
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1235
 
1236
	/* We don't adjust intel_dp->DP while tearing down the link, to
1237
	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1238
	 * enable bits here to ensure that we don't enable too much. */
1239
	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1240
	intel_dp->DP |= DP_PLL_ENABLE;
1241
	I915_WRITE(DP_A, intel_dp->DP);
2330 Serge 1242
	POSTING_READ(DP_A);
1243
	udelay(200);
1244
}
2327 Serge 1245
 
3031 serge 1246
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2330 Serge 1247
{
3243 Serge 1248
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1249
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1250
	struct drm_device *dev = crtc->dev;
2330 Serge 1251
	struct drm_i915_private *dev_priv = dev->dev_private;
1252
	u32 dpa_ctl;
2327 Serge 1253
 
3031 serge 1254
	assert_pipe_disabled(dev_priv,
1255
			     to_intel_crtc(crtc)->pipe);
1256
 
2330 Serge 1257
	dpa_ctl = I915_READ(DP_A);
3031 serge 1258
	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1259
	     "dp pll off, should be on\n");
1260
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1261
 
1262
	/* We can't rely on the value tracked for the DP register in
1263
	 * intel_dp->DP because link_down must not change that (otherwise link
1264
	 * re-training will fail. */
2330 Serge 1265
	dpa_ctl &= ~DP_PLL_ENABLE;
1266
	I915_WRITE(DP_A, dpa_ctl);
1267
	POSTING_READ(DP_A);
1268
	udelay(200);
1269
}
2327 Serge 1270
 
2330 Serge 1271
/* If the sink supports it, try to set the power state appropriately */
3243 Serge 1272
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2330 Serge 1273
{
1274
	int ret, i;
2327 Serge 1275
 
2330 Serge 1276
	/* Should have a valid DPCD by this point */
1277
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1278
		return;
2327 Serge 1279
 
2330 Serge 1280
	if (mode != DRM_MODE_DPMS_ON) {
1281
		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1282
						  DP_SET_POWER_D3);
1283
		if (ret != 1)
1284
			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1285
	} else {
1286
		/*
1287
		 * When turning on, we need to retry for 1ms to give the sink
1288
		 * time to wake up.
1289
		 */
1290
		for (i = 0; i < 3; i++) {
1291
			ret = intel_dp_aux_native_write_1(intel_dp,
1292
							  DP_SET_POWER,
1293
							  DP_SET_POWER_D0);
1294
			if (ret == 1)
1295
				break;
1296
			msleep(1);
1297
		}
1298
	}
1299
}
2327 Serge 1300
 
3031 serge 1301
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1302
				  enum pipe *pipe)
2330 Serge 1303
{
3031 serge 1304
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 1305
	enum port port = dp_to_dig_port(intel_dp)->port;
3031 serge 1306
	struct drm_device *dev = encoder->base.dev;
1307
	struct drm_i915_private *dev_priv = dev->dev_private;
1308
	u32 tmp = I915_READ(intel_dp->output_reg);
2327 Serge 1309
 
3031 serge 1310
	if (!(tmp & DP_PORT_EN))
1311
		return false;
2342 Serge 1312
 
4104 Serge 1313
	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
3031 serge 1314
		*pipe = PORT_TO_PIPE_CPT(tmp);
4104 Serge 1315
	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
3031 serge 1316
		*pipe = PORT_TO_PIPE(tmp);
1317
	} else {
1318
		u32 trans_sel;
1319
		u32 trans_dp;
1320
		int i;
2327 Serge 1321
 
3031 serge 1322
		switch (intel_dp->output_reg) {
1323
		case PCH_DP_B:
1324
			trans_sel = TRANS_DP_PORT_SEL_B;
1325
			break;
1326
		case PCH_DP_C:
1327
			trans_sel = TRANS_DP_PORT_SEL_C;
1328
			break;
1329
		case PCH_DP_D:
1330
			trans_sel = TRANS_DP_PORT_SEL_D;
1331
			break;
1332
		default:
1333
			return true;
1334
		}
1335
 
1336
		for_each_pipe(i) {
1337
			trans_dp = I915_READ(TRANS_DP_CTL(i));
1338
			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1339
				*pipe = i;
1340
				return true;
1341
			}
1342
		}
3243 Serge 1343
 
1344
		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1345
			      intel_dp->output_reg);
3031 serge 1346
	}
1347
 
1348
	return true;
2330 Serge 1349
}
2327 Serge 1350
 
4104 Serge 1351
static void intel_dp_get_config(struct intel_encoder *encoder,
1352
				struct intel_crtc_config *pipe_config)
1353
{
1354
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1355
	u32 tmp, flags = 0;
1356
	struct drm_device *dev = encoder->base.dev;
1357
	struct drm_i915_private *dev_priv = dev->dev_private;
1358
	enum port port = dp_to_dig_port(intel_dp)->port;
1359
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1360
 
1361
	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1362
		tmp = I915_READ(intel_dp->output_reg);
1363
		if (tmp & DP_SYNC_HS_HIGH)
1364
			flags |= DRM_MODE_FLAG_PHSYNC;
1365
		else
1366
			flags |= DRM_MODE_FLAG_NHSYNC;
1367
 
1368
		if (tmp & DP_SYNC_VS_HIGH)
1369
			flags |= DRM_MODE_FLAG_PVSYNC;
1370
		else
1371
			flags |= DRM_MODE_FLAG_NVSYNC;
1372
	} else {
1373
		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1374
		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1375
			flags |= DRM_MODE_FLAG_PHSYNC;
1376
		else
1377
			flags |= DRM_MODE_FLAG_NHSYNC;
1378
 
1379
		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1380
			flags |= DRM_MODE_FLAG_PVSYNC;
1381
		else
1382
			flags |= DRM_MODE_FLAG_NVSYNC;
1383
	}
1384
 
1385
	pipe_config->adjusted_mode.flags |= flags;
1386
 
1387
	if (dp_to_dig_port(intel_dp)->port == PORT_A) {
1388
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1389
			pipe_config->port_clock = 162000;
1390
		else
1391
			pipe_config->port_clock = 270000;
1392
	}
1393
}
1394
 
1395
static bool is_edp_psr(struct intel_dp *intel_dp)
1396
{
1397
	return is_edp(intel_dp) &&
1398
		intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1399
}
1400
 
1401
static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1402
{
1403
	struct drm_i915_private *dev_priv = dev->dev_private;
1404
 
1405
	if (!IS_HASWELL(dev))
1406
		return false;
1407
 
1408
	return I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
1409
}
1410
 
1411
static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1412
				    struct edp_vsc_psr *vsc_psr)
1413
{
1414
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1415
	struct drm_device *dev = dig_port->base.base.dev;
1416
	struct drm_i915_private *dev_priv = dev->dev_private;
1417
	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1418
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1419
	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1420
	uint32_t *data = (uint32_t *) vsc_psr;
1421
	unsigned int i;
1422
 
1423
	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1424
	   the video DIP being updated before program video DIP data buffer
1425
	   registers for DIP being updated. */
1426
	I915_WRITE(ctl_reg, 0);
1427
	POSTING_READ(ctl_reg);
1428
 
1429
	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1430
		if (i < sizeof(struct edp_vsc_psr))
1431
			I915_WRITE(data_reg + i, *data++);
1432
		else
1433
			I915_WRITE(data_reg + i, 0);
1434
	}
1435
 
1436
	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1437
	POSTING_READ(ctl_reg);
1438
}
1439
 
1440
static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1441
{
1442
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1443
	struct drm_i915_private *dev_priv = dev->dev_private;
1444
	struct edp_vsc_psr psr_vsc;
1445
 
1446
	if (intel_dp->psr_setup_done)
1447
		return;
1448
 
1449
	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1450
	memset(&psr_vsc, 0, sizeof(psr_vsc));
1451
	psr_vsc.sdp_header.HB0 = 0;
1452
	psr_vsc.sdp_header.HB1 = 0x7;
1453
	psr_vsc.sdp_header.HB2 = 0x2;
1454
	psr_vsc.sdp_header.HB3 = 0x8;
1455
	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1456
 
1457
	/* Avoid continuous PSR exit by masking memup and hpd */
1458
	I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
1459
		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1460
 
1461
	intel_dp->psr_setup_done = true;
1462
}
1463
 
1464
static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1465
{
1466
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1467
	struct drm_i915_private *dev_priv = dev->dev_private;
1468
	uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1469
	int precharge = 0x3;
1470
	int msg_size = 5;       /* Header(4) + Message(1) */
1471
 
1472
	/* Enable PSR in sink */
1473
	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1474
		intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1475
					    DP_PSR_ENABLE &
1476
					    ~DP_PSR_MAIN_LINK_ACTIVE);
1477
	else
1478
		intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1479
					    DP_PSR_ENABLE |
1480
					    DP_PSR_MAIN_LINK_ACTIVE);
1481
 
1482
	/* Setup AUX registers */
1483
	I915_WRITE(EDP_PSR_AUX_DATA1, EDP_PSR_DPCD_COMMAND);
1484
	I915_WRITE(EDP_PSR_AUX_DATA2, EDP_PSR_DPCD_NORMAL_OPERATION);
1485
	I915_WRITE(EDP_PSR_AUX_CTL,
1486
		   DP_AUX_CH_CTL_TIME_OUT_400us |
1487
		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1488
		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1489
		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1490
}
1491
 
1492
static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1493
{
1494
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1495
	struct drm_i915_private *dev_priv = dev->dev_private;
1496
	uint32_t max_sleep_time = 0x1f;
1497
	uint32_t idle_frames = 1;
1498
	uint32_t val = 0x0;
1499
 
1500
	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1501
		val |= EDP_PSR_LINK_STANDBY;
1502
		val |= EDP_PSR_TP2_TP3_TIME_0us;
1503
		val |= EDP_PSR_TP1_TIME_0us;
1504
		val |= EDP_PSR_SKIP_AUX_EXIT;
1505
	} else
1506
		val |= EDP_PSR_LINK_DISABLE;
1507
 
1508
	I915_WRITE(EDP_PSR_CTL, val |
1509
		   EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1510
		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1511
		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1512
		   EDP_PSR_ENABLE);
1513
}
1514
 
1515
static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1516
{
1517
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1518
	struct drm_device *dev = dig_port->base.base.dev;
1519
	struct drm_i915_private *dev_priv = dev->dev_private;
1520
	struct drm_crtc *crtc = dig_port->base.base.crtc;
1521
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1522
	struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1523
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1524
 
1525
	if (!IS_HASWELL(dev)) {
1526
		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1527
		dev_priv->no_psr_reason = PSR_NO_SOURCE;
1528
		return false;
1529
	}
1530
 
1531
	if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1532
	    (dig_port->port != PORT_A)) {
1533
		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1534
		dev_priv->no_psr_reason = PSR_HSW_NOT_DDIA;
1535
		return false;
1536
	}
1537
 
1538
	if (!is_edp_psr(intel_dp)) {
1539
		DRM_DEBUG_KMS("PSR not supported by this panel\n");
1540
		dev_priv->no_psr_reason = PSR_NO_SINK;
1541
		return false;
1542
	}
1543
 
1544
	if (!i915_enable_psr) {
1545
		DRM_DEBUG_KMS("PSR disable by flag\n");
1546
		dev_priv->no_psr_reason = PSR_MODULE_PARAM;
1547
		return false;
1548
	}
1549
 
1550
	crtc = dig_port->base.base.crtc;
1551
	if (crtc == NULL) {
1552
		DRM_DEBUG_KMS("crtc not active for PSR\n");
1553
		dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1554
		return false;
1555
	}
1556
 
1557
	intel_crtc = to_intel_crtc(crtc);
1558
	if (!intel_crtc->active || !crtc->fb || !crtc->mode.clock) {
1559
		DRM_DEBUG_KMS("crtc not active for PSR\n");
1560
		dev_priv->no_psr_reason = PSR_CRTC_NOT_ACTIVE;
1561
		return false;
1562
	}
1563
 
1564
	obj = to_intel_framebuffer(crtc->fb)->obj;
1565
	if (obj->tiling_mode != I915_TILING_X ||
1566
	    obj->fence_reg == I915_FENCE_REG_NONE) {
1567
		DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1568
		dev_priv->no_psr_reason = PSR_NOT_TILED;
1569
		return false;
1570
	}
1571
 
1572
	if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1573
		DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1574
		dev_priv->no_psr_reason = PSR_SPRITE_ENABLED;
1575
		return false;
1576
	}
1577
 
1578
	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1579
	    S3D_ENABLE) {
1580
		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1581
		dev_priv->no_psr_reason = PSR_S3D_ENABLED;
1582
		return false;
1583
	}
1584
 
1585
	if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) {
1586
		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1587
		dev_priv->no_psr_reason = PSR_INTERLACED_ENABLED;
1588
		return false;
1589
	}
1590
 
1591
	return true;
1592
}
1593
 
1594
static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1595
{
1596
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1597
 
1598
	if (!intel_edp_psr_match_conditions(intel_dp) ||
1599
	    intel_edp_is_psr_enabled(dev))
1600
		return;
1601
 
1602
	/* Setup PSR once */
1603
	intel_edp_psr_setup(intel_dp);
1604
 
1605
	/* Enable PSR on the panel */
1606
	intel_edp_psr_enable_sink(intel_dp);
1607
 
1608
	/* Enable PSR on the host */
1609
	intel_edp_psr_enable_source(intel_dp);
1610
}
1611
 
1612
void intel_edp_psr_enable(struct intel_dp *intel_dp)
1613
{
1614
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1615
 
1616
	if (intel_edp_psr_match_conditions(intel_dp) &&
1617
	    !intel_edp_is_psr_enabled(dev))
1618
		intel_edp_psr_do_enable(intel_dp);
1619
}
1620
 
1621
void intel_edp_psr_disable(struct intel_dp *intel_dp)
1622
{
1623
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1624
	struct drm_i915_private *dev_priv = dev->dev_private;
1625
 
1626
	if (!intel_edp_is_psr_enabled(dev))
1627
		return;
1628
 
1629
	I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
1630
 
1631
	/* Wait till PSR is idle */
1632
	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
1633
		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1634
		DRM_ERROR("Timed out waiting for PSR Idle State\n");
1635
}
1636
 
1637
void intel_edp_psr_update(struct drm_device *dev)
1638
{
1639
	struct intel_encoder *encoder;
1640
	struct intel_dp *intel_dp = NULL;
1641
 
1642
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1643
		if (encoder->type == INTEL_OUTPUT_EDP) {
1644
			intel_dp = enc_to_intel_dp(&encoder->base);
1645
 
1646
			if (!is_edp_psr(intel_dp))
1647
				return;
1648
 
1649
			if (!intel_edp_psr_match_conditions(intel_dp))
1650
				intel_edp_psr_disable(intel_dp);
1651
			else
1652
				if (!intel_edp_is_psr_enabled(dev))
1653
					intel_edp_psr_do_enable(intel_dp);
1654
		}
1655
}
1656
 
3031 serge 1657
static void intel_disable_dp(struct intel_encoder *encoder)
2330 Serge 1658
{
3031 serge 1659
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 1660
	enum port port = dp_to_dig_port(intel_dp)->port;
1661
	struct drm_device *dev = encoder->base.dev;
2327 Serge 1662
 
3031 serge 1663
	/* Make sure the panel is off before trying to change the mode. But also
1664
	 * ensure that we have vdd while we switch off the panel. */
2330 Serge 1665
		ironlake_edp_panel_vdd_on(intel_dp);
3031 serge 1666
	ironlake_edp_backlight_off(intel_dp);
2342 Serge 1667
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3031 serge 1668
	ironlake_edp_panel_off(intel_dp);
2330 Serge 1669
 
3031 serge 1670
	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
4104 Serge 1671
	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
3031 serge 1672
		intel_dp_link_down(intel_dp);
1673
}
2330 Serge 1674
 
3031 serge 1675
static void intel_post_disable_dp(struct intel_encoder *encoder)
1676
{
1677
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 1678
	enum port port = dp_to_dig_port(intel_dp)->port;
3746 Serge 1679
	struct drm_device *dev = encoder->base.dev;
3031 serge 1680
 
4104 Serge 1681
	if (port == PORT_A || IS_VALLEYVIEW(dev)) {
3031 serge 1682
		intel_dp_link_down(intel_dp);
3746 Serge 1683
		if (!IS_VALLEYVIEW(dev))
3031 serge 1684
		ironlake_edp_pll_off(intel_dp);
1685
	}
2330 Serge 1686
}
1687
 
3031 serge 1688
static void intel_enable_dp(struct intel_encoder *encoder)
2330 Serge 1689
{
3031 serge 1690
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1691
	struct drm_device *dev = encoder->base.dev;
2330 Serge 1692
	struct drm_i915_private *dev_priv = dev->dev_private;
1693
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1694
 
3031 serge 1695
	if (WARN_ON(dp_reg & DP_PORT_EN))
1696
		return;
2342 Serge 1697
 
1698
		ironlake_edp_panel_vdd_on(intel_dp);
3031 serge 1699
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2330 Serge 1700
			intel_dp_start_link_train(intel_dp);
1701
				ironlake_edp_panel_on(intel_dp);
2342 Serge 1702
			ironlake_edp_panel_vdd_off(intel_dp, true);
2330 Serge 1703
			intel_dp_complete_link_train(intel_dp);
3746 Serge 1704
	intel_dp_stop_link_train(intel_dp);
2342 Serge 1705
		ironlake_edp_backlight_on(intel_dp);
2330 Serge 1706
}
1707
 
4104 Serge 1708
static void vlv_enable_dp(struct intel_encoder *encoder)
1709
{
1710
}
1711
 
3031 serge 1712
static void intel_pre_enable_dp(struct intel_encoder *encoder)
1713
{
1714
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4104 Serge 1715
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3031 serge 1716
 
4104 Serge 1717
	if (dport->port == PORT_A)
3031 serge 1718
		ironlake_edp_pll_on(intel_dp);
1719
}
1720
 
4104 Serge 1721
static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1722
{
1723
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1724
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1725
	struct drm_device *dev = encoder->base.dev;
1726
	struct drm_i915_private *dev_priv = dev->dev_private;
1727
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1728
		int port = vlv_dport_to_channel(dport);
1729
		int pipe = intel_crtc->pipe;
1730
		u32 val;
1731
 
1732
	mutex_lock(&dev_priv->dpio_lock);
1733
 
1734
		val = vlv_dpio_read(dev_priv, DPIO_DATA_LANE_A(port));
1735
		val = 0;
1736
		if (pipe)
1737
			val |= (1<<21);
1738
		else
1739
			val &= ~(1<<21);
1740
		val |= 0x001000c4;
1741
		vlv_dpio_write(dev_priv, DPIO_DATA_CHANNEL(port), val);
1742
	vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
1743
	vlv_dpio_write(dev_priv, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
1744
 
1745
	mutex_unlock(&dev_priv->dpio_lock);
1746
 
1747
	intel_enable_dp(encoder);
1748
 
1749
	vlv_wait_port_ready(dev_priv, port);
1750
	}
1751
 
1752
static void intel_dp_pre_pll_enable(struct intel_encoder *encoder)
1753
{
1754
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1755
	struct drm_device *dev = encoder->base.dev;
1756
	struct drm_i915_private *dev_priv = dev->dev_private;
1757
	int port = vlv_dport_to_channel(dport);
1758
 
1759
	if (!IS_VALLEYVIEW(dev))
1760
		return;
1761
 
1762
	/* Program Tx lane resets to default */
1763
	mutex_lock(&dev_priv->dpio_lock);
1764
	vlv_dpio_write(dev_priv, DPIO_PCS_TX(port),
1765
			 DPIO_PCS_TX_LANE2_RESET |
1766
			 DPIO_PCS_TX_LANE1_RESET);
1767
	vlv_dpio_write(dev_priv, DPIO_PCS_CLK(port),
1768
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1769
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1770
			 (1<
1771
				 DPIO_PCS_CLK_SOFT_RESET);
1772
 
1773
	/* Fix up inter-pair skew failure */
1774
	vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER1(port), 0x00750f00);
1775
	vlv_dpio_write(dev_priv, DPIO_TX_CTL(port), 0x00001500);
1776
	vlv_dpio_write(dev_priv, DPIO_TX_LANE(port), 0x40400000);
1777
	mutex_unlock(&dev_priv->dpio_lock);
1778
}
1779
 
2330 Serge 1780
/*
1781
 * Native read with retry for link status and receiver capability reads for
1782
 * cases where the sink may still be asleep.
1783
 */
1784
static bool
1785
intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1786
			       uint8_t *recv, int recv_bytes)
1787
{
1788
	int ret, i;
1789
 
1790
	/*
1791
	 * Sinks are *supposed* to come up within 1ms from an off state,
1792
	 * but we're also supposed to retry 3 times per the spec.
1793
	 */
1794
	for (i = 0; i < 3; i++) {
1795
		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1796
					       recv_bytes);
1797
		if (ret == recv_bytes)
1798
			return true;
1799
		msleep(1);
1800
	}
1801
 
1802
	return false;
1803
}
1804
 
1805
/*
1806
 * Fetch AUX CH registers 0x202 - 0x207 which contain
1807
 * link status information
1808
 */
1809
static bool
2342 Serge 1810
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2330 Serge 1811
{
1812
	return intel_dp_aux_native_read_retry(intel_dp,
1813
					      DP_LANE0_1_STATUS,
2342 Serge 1814
					      link_status,
2330 Serge 1815
					      DP_LINK_STATUS_SIZE);
1816
}
1817
 
1818
#if 0
1819
static char	*voltage_names[] = {
1820
	"0.4V", "0.6V", "0.8V", "1.2V"
1821
};
1822
static char	*pre_emph_names[] = {
1823
	"0dB", "3.5dB", "6dB", "9.5dB"
1824
};
1825
static char	*link_train_names[] = {
1826
	"pattern 1", "pattern 2", "idle", "off"
1827
};
1828
#endif
1829
 
1830
/*
1831
 * These are source-specific values; current Intel hardware supports
1832
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1833
 */
1834
 
1835
static uint8_t
2342 Serge 1836
intel_dp_voltage_max(struct intel_dp *intel_dp)
2330 Serge 1837
{
3243 Serge 1838
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4104 Serge 1839
	enum port port = dp_to_dig_port(intel_dp)->port;
2342 Serge 1840
 
4104 Serge 1841
	if (IS_VALLEYVIEW(dev))
1842
		return DP_TRAIN_VOLTAGE_SWING_1200;
1843
	else if (IS_GEN7(dev) && port == PORT_A)
2342 Serge 1844
		return DP_TRAIN_VOLTAGE_SWING_800;
4104 Serge 1845
	else if (HAS_PCH_CPT(dev) && port != PORT_A)
2342 Serge 1846
		return DP_TRAIN_VOLTAGE_SWING_1200;
1847
	else
1848
		return DP_TRAIN_VOLTAGE_SWING_800;
1849
}
1850
 
1851
static uint8_t
1852
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1853
{
3243 Serge 1854
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
4104 Serge 1855
	enum port port = dp_to_dig_port(intel_dp)->port;
2342 Serge 1856
 
3746 Serge 1857
	if (HAS_DDI(dev)) {
2342 Serge 1858
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1859
		case DP_TRAIN_VOLTAGE_SWING_400:
3243 Serge 1860
			return DP_TRAIN_PRE_EMPHASIS_9_5;
1861
		case DP_TRAIN_VOLTAGE_SWING_600:
2342 Serge 1862
			return DP_TRAIN_PRE_EMPHASIS_6;
3243 Serge 1863
		case DP_TRAIN_VOLTAGE_SWING_800:
1864
			return DP_TRAIN_PRE_EMPHASIS_3_5;
1865
		case DP_TRAIN_VOLTAGE_SWING_1200:
1866
		default:
1867
			return DP_TRAIN_PRE_EMPHASIS_0;
1868
		}
4104 Serge 1869
	} else if (IS_VALLEYVIEW(dev)) {
3243 Serge 1870
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1871
		case DP_TRAIN_VOLTAGE_SWING_400:
4104 Serge 1872
			return DP_TRAIN_PRE_EMPHASIS_9_5;
1873
		case DP_TRAIN_VOLTAGE_SWING_600:
3243 Serge 1874
			return DP_TRAIN_PRE_EMPHASIS_6;
4104 Serge 1875
		case DP_TRAIN_VOLTAGE_SWING_800:
1876
			return DP_TRAIN_PRE_EMPHASIS_3_5;
1877
		case DP_TRAIN_VOLTAGE_SWING_1200:
1878
		default:
1879
			return DP_TRAIN_PRE_EMPHASIS_0;
1880
		}
1881
	} else if (IS_GEN7(dev) && port == PORT_A) {
1882
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1883
		case DP_TRAIN_VOLTAGE_SWING_400:
1884
			return DP_TRAIN_PRE_EMPHASIS_6;
2342 Serge 1885
		case DP_TRAIN_VOLTAGE_SWING_600:
1886
		case DP_TRAIN_VOLTAGE_SWING_800:
1887
			return DP_TRAIN_PRE_EMPHASIS_3_5;
1888
		default:
1889
			return DP_TRAIN_PRE_EMPHASIS_0;
1890
		}
1891
	} else {
2330 Serge 1892
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1893
	case DP_TRAIN_VOLTAGE_SWING_400:
1894
		return DP_TRAIN_PRE_EMPHASIS_6;
1895
	case DP_TRAIN_VOLTAGE_SWING_600:
1896
		return DP_TRAIN_PRE_EMPHASIS_6;
1897
	case DP_TRAIN_VOLTAGE_SWING_800:
1898
		return DP_TRAIN_PRE_EMPHASIS_3_5;
1899
	case DP_TRAIN_VOLTAGE_SWING_1200:
1900
	default:
1901
		return DP_TRAIN_PRE_EMPHASIS_0;
1902
	}
2342 Serge 1903
	}
2330 Serge 1904
}
1905
 
4104 Serge 1906
static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1907
{
1908
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1909
	struct drm_i915_private *dev_priv = dev->dev_private;
1910
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1911
	unsigned long demph_reg_value, preemph_reg_value,
1912
		uniqtranscale_reg_value;
1913
	uint8_t train_set = intel_dp->train_set[0];
1914
	int port = vlv_dport_to_channel(dport);
1915
 
1916
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1917
	case DP_TRAIN_PRE_EMPHASIS_0:
1918
		preemph_reg_value = 0x0004000;
1919
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1920
		case DP_TRAIN_VOLTAGE_SWING_400:
1921
			demph_reg_value = 0x2B405555;
1922
			uniqtranscale_reg_value = 0x552AB83A;
1923
			break;
1924
		case DP_TRAIN_VOLTAGE_SWING_600:
1925
			demph_reg_value = 0x2B404040;
1926
			uniqtranscale_reg_value = 0x5548B83A;
1927
			break;
1928
		case DP_TRAIN_VOLTAGE_SWING_800:
1929
			demph_reg_value = 0x2B245555;
1930
			uniqtranscale_reg_value = 0x5560B83A;
1931
			break;
1932
		case DP_TRAIN_VOLTAGE_SWING_1200:
1933
			demph_reg_value = 0x2B405555;
1934
			uniqtranscale_reg_value = 0x5598DA3A;
1935
			break;
1936
		default:
1937
			return 0;
1938
		}
1939
		break;
1940
	case DP_TRAIN_PRE_EMPHASIS_3_5:
1941
		preemph_reg_value = 0x0002000;
1942
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1943
		case DP_TRAIN_VOLTAGE_SWING_400:
1944
			demph_reg_value = 0x2B404040;
1945
			uniqtranscale_reg_value = 0x5552B83A;
1946
			break;
1947
		case DP_TRAIN_VOLTAGE_SWING_600:
1948
			demph_reg_value = 0x2B404848;
1949
			uniqtranscale_reg_value = 0x5580B83A;
1950
			break;
1951
		case DP_TRAIN_VOLTAGE_SWING_800:
1952
			demph_reg_value = 0x2B404040;
1953
			uniqtranscale_reg_value = 0x55ADDA3A;
1954
			break;
1955
		default:
1956
			return 0;
1957
		}
1958
		break;
1959
	case DP_TRAIN_PRE_EMPHASIS_6:
1960
		preemph_reg_value = 0x0000000;
1961
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1962
		case DP_TRAIN_VOLTAGE_SWING_400:
1963
			demph_reg_value = 0x2B305555;
1964
			uniqtranscale_reg_value = 0x5570B83A;
1965
			break;
1966
		case DP_TRAIN_VOLTAGE_SWING_600:
1967
			demph_reg_value = 0x2B2B4040;
1968
			uniqtranscale_reg_value = 0x55ADDA3A;
1969
			break;
1970
		default:
1971
			return 0;
1972
		}
1973
		break;
1974
	case DP_TRAIN_PRE_EMPHASIS_9_5:
1975
		preemph_reg_value = 0x0006000;
1976
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1977
		case DP_TRAIN_VOLTAGE_SWING_400:
1978
			demph_reg_value = 0x1B405555;
1979
			uniqtranscale_reg_value = 0x55ADDA3A;
1980
			break;
1981
		default:
1982
			return 0;
1983
		}
1984
		break;
1985
	default:
1986
		return 0;
1987
	}
1988
 
1989
	mutex_lock(&dev_priv->dpio_lock);
1990
	vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x00000000);
1991
	vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL4(port), demph_reg_value);
1992
	vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL2(port),
1993
			 uniqtranscale_reg_value);
1994
	vlv_dpio_write(dev_priv, DPIO_TX_SWING_CTL3(port), 0x0C782040);
1995
	vlv_dpio_write(dev_priv, DPIO_PCS_STAGGER0(port), 0x00030000);
1996
	vlv_dpio_write(dev_priv, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
1997
	vlv_dpio_write(dev_priv, DPIO_TX_OCALINIT(port), 0x80000000);
1998
	mutex_unlock(&dev_priv->dpio_lock);
1999
 
2000
	return 0;
2001
}
2002
 
2330 Serge 2003
static void
2342 Serge 2004
intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2330 Serge 2005
{
2006
	uint8_t v = 0;
2007
	uint8_t p = 0;
2008
	int lane;
2342 Serge 2009
	uint8_t voltage_max;
2010
	uint8_t preemph_max;
2330 Serge 2011
 
2012
	for (lane = 0; lane < intel_dp->lane_count; lane++) {
3243 Serge 2013
		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2014
		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2330 Serge 2015
 
2016
		if (this_v > v)
2017
			v = this_v;
2018
		if (this_p > p)
2019
			p = this_p;
2020
	}
2021
 
2342 Serge 2022
	voltage_max = intel_dp_voltage_max(intel_dp);
2023
	if (v >= voltage_max)
2024
		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2330 Serge 2025
 
2342 Serge 2026
	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2027
	if (p >= preemph_max)
2028
		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2330 Serge 2029
 
2030
	for (lane = 0; lane < 4; lane++)
2031
		intel_dp->train_set[lane] = v | p;
2032
}
2033
 
2034
static uint32_t
3480 Serge 2035
intel_gen4_signal_levels(uint8_t train_set)
2330 Serge 2036
{
2037
	uint32_t	signal_levels = 0;
2038
 
2039
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2040
	case DP_TRAIN_VOLTAGE_SWING_400:
2041
	default:
2042
		signal_levels |= DP_VOLTAGE_0_4;
2043
		break;
2044
	case DP_TRAIN_VOLTAGE_SWING_600:
2045
		signal_levels |= DP_VOLTAGE_0_6;
2046
		break;
2047
	case DP_TRAIN_VOLTAGE_SWING_800:
2048
		signal_levels |= DP_VOLTAGE_0_8;
2049
		break;
2050
	case DP_TRAIN_VOLTAGE_SWING_1200:
2051
		signal_levels |= DP_VOLTAGE_1_2;
2052
		break;
2053
	}
2054
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2055
	case DP_TRAIN_PRE_EMPHASIS_0:
2056
	default:
2057
		signal_levels |= DP_PRE_EMPHASIS_0;
2058
		break;
2059
	case DP_TRAIN_PRE_EMPHASIS_3_5:
2060
		signal_levels |= DP_PRE_EMPHASIS_3_5;
2061
		break;
2062
	case DP_TRAIN_PRE_EMPHASIS_6:
2063
		signal_levels |= DP_PRE_EMPHASIS_6;
2064
		break;
2065
	case DP_TRAIN_PRE_EMPHASIS_9_5:
2066
		signal_levels |= DP_PRE_EMPHASIS_9_5;
2067
		break;
2068
	}
2069
	return signal_levels;
2070
}
2071
 
2072
/* Gen6's DP voltage swing and pre-emphasis control */
2073
static uint32_t
2074
intel_gen6_edp_signal_levels(uint8_t train_set)
2075
{
2076
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2077
					 DP_TRAIN_PRE_EMPHASIS_MASK);
2078
	switch (signal_levels) {
2079
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2080
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2081
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2082
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2083
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2084
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2085
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2086
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2087
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2088
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2089
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2090
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2091
	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2092
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2093
	default:
2094
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2095
			      "0x%x\n", signal_levels);
2096
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2097
	}
2098
}
2099
 
2342 Serge 2100
/* Gen7's DP voltage swing and pre-emphasis control */
2101
static uint32_t
2102
intel_gen7_edp_signal_levels(uint8_t train_set)
2103
{
2104
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2105
					 DP_TRAIN_PRE_EMPHASIS_MASK);
2106
	switch (signal_levels) {
2107
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2108
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2109
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2110
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2111
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2112
		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2113
 
2114
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2115
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2116
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2117
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2118
 
2119
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2120
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2121
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2122
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2123
 
2124
	default:
2125
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2126
			      "0x%x\n", signal_levels);
2127
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2128
	}
2129
}
2130
 
3243 Serge 2131
/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2132
static uint32_t
3480 Serge 2133
intel_hsw_signal_levels(uint8_t train_set)
2330 Serge 2134
{
3243 Serge 2135
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2136
					 DP_TRAIN_PRE_EMPHASIS_MASK);
2137
	switch (signal_levels) {
2138
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2139
		return DDI_BUF_EMP_400MV_0DB_HSW;
2140
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2141
		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2142
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2143
		return DDI_BUF_EMP_400MV_6DB_HSW;
2144
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2145
		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2330 Serge 2146
 
3243 Serge 2147
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2148
		return DDI_BUF_EMP_600MV_0DB_HSW;
2149
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2150
		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2151
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2152
		return DDI_BUF_EMP_600MV_6DB_HSW;
2330 Serge 2153
 
3243 Serge 2154
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2155
		return DDI_BUF_EMP_800MV_0DB_HSW;
2156
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2157
		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2158
	default:
2159
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2160
			      "0x%x\n", signal_levels);
2161
		return DDI_BUF_EMP_400MV_0DB_HSW;
2330 Serge 2162
	}
2163
}
2164
 
3480 Serge 2165
/* Properly updates "DP" with the correct signal levels. */
2166
static void
2167
intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2168
{
2169
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4104 Serge 2170
	enum port port = intel_dig_port->port;
3480 Serge 2171
	struct drm_device *dev = intel_dig_port->base.base.dev;
2172
	uint32_t signal_levels, mask;
2173
	uint8_t train_set = intel_dp->train_set[0];
2174
 
3746 Serge 2175
	if (HAS_DDI(dev)) {
3480 Serge 2176
		signal_levels = intel_hsw_signal_levels(train_set);
2177
		mask = DDI_BUF_EMP_MASK;
4104 Serge 2178
	} else if (IS_VALLEYVIEW(dev)) {
2179
		signal_levels = intel_vlv_signal_levels(intel_dp);
2180
		mask = 0;
2181
	} else if (IS_GEN7(dev) && port == PORT_A) {
3480 Serge 2182
		signal_levels = intel_gen7_edp_signal_levels(train_set);
2183
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4104 Serge 2184
	} else if (IS_GEN6(dev) && port == PORT_A) {
3480 Serge 2185
		signal_levels = intel_gen6_edp_signal_levels(train_set);
2186
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2187
	} else {
2188
		signal_levels = intel_gen4_signal_levels(train_set);
2189
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2190
	}
2191
 
2192
	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2193
 
2194
	*DP = (*DP & ~mask) | signal_levels;
2195
}
2196
 
2330 Serge 2197
static bool
2198
intel_dp_set_link_train(struct intel_dp *intel_dp,
2199
			uint32_t dp_reg_value,
2200
			uint8_t dp_train_pat)
2201
{
3243 Serge 2202
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2203
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 2204
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 2205
	enum port port = intel_dig_port->port;
2330 Serge 2206
	int ret;
2207
 
3746 Serge 2208
	if (HAS_DDI(dev)) {
2209
		uint32_t temp = I915_READ(DP_TP_CTL(port));
3243 Serge 2210
 
2211
		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2212
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2213
		else
2214
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2215
 
2216
		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2217
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2218
		case DP_TRAINING_PATTERN_DISABLE:
2219
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2220
 
2221
			break;
2222
		case DP_TRAINING_PATTERN_1:
2223
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2224
			break;
2225
		case DP_TRAINING_PATTERN_2:
2226
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2227
			break;
2228
		case DP_TRAINING_PATTERN_3:
2229
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2230
			break;
2231
		}
2232
		I915_WRITE(DP_TP_CTL(port), temp);
2233
 
4104 Serge 2234
	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3031 serge 2235
		dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
2236
 
2237
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2238
		case DP_TRAINING_PATTERN_DISABLE:
2239
			dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
2240
			break;
2241
		case DP_TRAINING_PATTERN_1:
2242
			dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
2243
			break;
2244
		case DP_TRAINING_PATTERN_2:
2245
			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2246
			break;
2247
		case DP_TRAINING_PATTERN_3:
2248
			DRM_ERROR("DP training pattern 3 not supported\n");
2249
			dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
2250
			break;
2251
		}
2252
 
2253
	} else {
2254
		dp_reg_value &= ~DP_LINK_TRAIN_MASK;
2255
 
2256
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2257
		case DP_TRAINING_PATTERN_DISABLE:
2258
			dp_reg_value |= DP_LINK_TRAIN_OFF;
2259
			break;
2260
		case DP_TRAINING_PATTERN_1:
2261
			dp_reg_value |= DP_LINK_TRAIN_PAT_1;
2262
			break;
2263
		case DP_TRAINING_PATTERN_2:
2264
			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2265
			break;
2266
		case DP_TRAINING_PATTERN_3:
2267
			DRM_ERROR("DP training pattern 3 not supported\n");
2268
			dp_reg_value |= DP_LINK_TRAIN_PAT_2;
2269
			break;
2270
		}
2271
	}
2272
 
2330 Serge 2273
	I915_WRITE(intel_dp->output_reg, dp_reg_value);
2274
	POSTING_READ(intel_dp->output_reg);
2275
 
2276
	intel_dp_aux_native_write_1(intel_dp,
2277
				    DP_TRAINING_PATTERN_SET,
2278
				    dp_train_pat);
2279
 
3031 serge 2280
	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
2281
	    DP_TRAINING_PATTERN_DISABLE) {
2330 Serge 2282
	ret = intel_dp_aux_native_write(intel_dp,
2283
					DP_TRAINING_LANE0_SET,
2342 Serge 2284
					intel_dp->train_set,
2285
					intel_dp->lane_count);
2286
	if (ret != intel_dp->lane_count)
2330 Serge 2287
		return false;
3031 serge 2288
	}
2330 Serge 2289
 
2290
	return true;
2291
}
2292
 
3746 Serge 2293
static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2294
{
2295
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2296
	struct drm_device *dev = intel_dig_port->base.base.dev;
2297
	struct drm_i915_private *dev_priv = dev->dev_private;
2298
	enum port port = intel_dig_port->port;
2299
	uint32_t val;
2300
 
2301
	if (!HAS_DDI(dev))
2302
		return;
2303
 
2304
	val = I915_READ(DP_TP_CTL(port));
2305
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2306
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2307
	I915_WRITE(DP_TP_CTL(port), val);
2308
 
2309
	/*
2310
	 * On PORT_A we can have only eDP in SST mode. There the only reason
2311
	 * we need to set idle transmission mode is to work around a HW issue
2312
	 * where we enable the pipe while not in idle link-training mode.
2313
	 * In this case there is requirement to wait for a minimum number of
2314
	 * idle patterns to be sent.
2315
	 */
2316
	if (port == PORT_A)
2317
		return;
2318
 
2319
	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2320
		     1))
2321
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
2322
}
2323
 
2330 Serge 2324
/* Enable corresponding port and start training pattern 1 */
3243 Serge 2325
void
2330 Serge 2326
intel_dp_start_link_train(struct intel_dp *intel_dp)
2327
{
3243 Serge 2328
	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2329
	struct drm_device *dev = encoder->dev;
2330 Serge 2330
	int i;
2331
	uint8_t voltage;
2342 Serge 2332
	int voltage_tries, loop_tries;
2330 Serge 2333
	uint32_t DP = intel_dp->DP;
2334
 
3480 Serge 2335
	if (HAS_DDI(dev))
3243 Serge 2336
		intel_ddi_prepare_link_retrain(encoder);
2337
 
2330 Serge 2338
	/* Write the link configuration data */
2339
	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
2340
				  intel_dp->link_configuration,
2341
				  DP_LINK_CONFIGURATION_SIZE);
2342
 
2343
	DP |= DP_PORT_EN;
2342 Serge 2344
 
2330 Serge 2345
	memset(intel_dp->train_set, 0, 4);
2346
	voltage = 0xff;
2342 Serge 2347
	voltage_tries = 0;
2348
	loop_tries = 0;
2330 Serge 2349
	for (;;) {
2350
		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
2342 Serge 2351
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
2352
 
3480 Serge 2353
		intel_dp_set_signal_levels(intel_dp, &DP);
2330 Serge 2354
 
3243 Serge 2355
		/* Set training pattern 1 */
3031 serge 2356
		if (!intel_dp_set_link_train(intel_dp, DP,
2330 Serge 2357
					     DP_TRAINING_PATTERN_1 |
2358
					     DP_LINK_SCRAMBLING_DISABLE))
2359
			break;
2360
 
3243 Serge 2361
		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2342 Serge 2362
		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2363
			DRM_ERROR("failed to get link status\n");
2330 Serge 2364
			break;
2342 Serge 2365
		}
2330 Serge 2366
 
3243 Serge 2367
		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2342 Serge 2368
			DRM_DEBUG_KMS("clock recovery OK\n");
2330 Serge 2369
			break;
2370
		}
2371
 
2372
		/* Check to see if we've tried the max voltage */
2373
		for (i = 0; i < intel_dp->lane_count; i++)
2374
			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2375
				break;
3480 Serge 2376
		if (i == intel_dp->lane_count) {
2342 Serge 2377
			++loop_tries;
2378
			if (loop_tries == 5) {
2379
				DRM_DEBUG_KMS("too many full retries, give up\n");
2330 Serge 2380
			break;
2342 Serge 2381
			}
2382
			memset(intel_dp->train_set, 0, 4);
2383
			voltage_tries = 0;
2384
			continue;
2385
		}
2330 Serge 2386
 
2387
		/* Check to see if we've tried the same voltage 5 times */
2388
		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2342 Serge 2389
			++voltage_tries;
2390
			if (voltage_tries == 5) {
2391
				DRM_DEBUG_KMS("too many voltage retries, give up\n");
2330 Serge 2392
				break;
2342 Serge 2393
			}
2330 Serge 2394
		} else
2342 Serge 2395
			voltage_tries = 0;
2330 Serge 2396
		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2397
 
2398
		/* Compute new intel_dp->train_set as requested by target */
2342 Serge 2399
		intel_get_adjust_train(intel_dp, link_status);
2330 Serge 2400
	}
2401
 
2402
	intel_dp->DP = DP;
2403
}
2404
 
3243 Serge 2405
void
2330 Serge 2406
intel_dp_complete_link_train(struct intel_dp *intel_dp)
2407
{
2408
	bool channel_eq = false;
2409
	int tries, cr_tries;
2410
	uint32_t DP = intel_dp->DP;
2411
 
2412
	/* channel equalization */
2413
	tries = 0;
2414
	cr_tries = 0;
2415
	channel_eq = false;
2416
	for (;;) {
2342 Serge 2417
		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
2330 Serge 2418
 
2419
		if (cr_tries > 5) {
2420
			DRM_ERROR("failed to train DP, aborting\n");
2421
			intel_dp_link_down(intel_dp);
2422
			break;
2423
		}
2424
 
3480 Serge 2425
		intel_dp_set_signal_levels(intel_dp, &DP);
2330 Serge 2426
 
2427
		/* channel eq pattern */
3031 serge 2428
		if (!intel_dp_set_link_train(intel_dp, DP,
2330 Serge 2429
					     DP_TRAINING_PATTERN_2 |
2430
					     DP_LINK_SCRAMBLING_DISABLE))
2431
			break;
2432
 
3243 Serge 2433
		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2342 Serge 2434
		if (!intel_dp_get_link_status(intel_dp, link_status))
2330 Serge 2435
			break;
2436
 
2437
		/* Make sure clock is still ok */
3243 Serge 2438
		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2330 Serge 2439
			intel_dp_start_link_train(intel_dp);
2440
			cr_tries++;
2441
			continue;
2442
		}
2443
 
3243 Serge 2444
		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2330 Serge 2445
			channel_eq = true;
2446
			break;
2447
		}
2448
 
2449
		/* Try 5 times, then try clock recovery if that fails */
2450
		if (tries > 5) {
2451
			intel_dp_link_down(intel_dp);
2452
			intel_dp_start_link_train(intel_dp);
2453
			tries = 0;
2454
			cr_tries++;
2455
			continue;
2456
		}
2457
 
2458
		/* Compute new intel_dp->train_set as requested by target */
2342 Serge 2459
		intel_get_adjust_train(intel_dp, link_status);
2330 Serge 2460
		++tries;
2461
	}
2462
 
3746 Serge 2463
	intel_dp_set_idle_link_train(intel_dp);
2464
 
2465
	intel_dp->DP = DP;
2466
 
3243 Serge 2467
	if (channel_eq)
3746 Serge 2468
		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3243 Serge 2469
 
2330 Serge 2470
}
2471
 
3746 Serge 2472
void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2473
{
2474
	intel_dp_set_link_train(intel_dp, intel_dp->DP,
2475
				DP_TRAINING_PATTERN_DISABLE);
2476
}
2477
 
2330 Serge 2478
static void
2479
intel_dp_link_down(struct intel_dp *intel_dp)
2480
{
3243 Serge 2481
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4104 Serge 2482
	enum port port = intel_dig_port->port;
3243 Serge 2483
	struct drm_device *dev = intel_dig_port->base.base.dev;
2330 Serge 2484
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 2485
	struct intel_crtc *intel_crtc =
2486
		to_intel_crtc(intel_dig_port->base.base.crtc);
2330 Serge 2487
	uint32_t DP = intel_dp->DP;
2488
 
3243 Serge 2489
	/*
2490
	 * DDI code has a strict mode set sequence and we should try to respect
2491
	 * it, otherwise we might hang the machine in many different ways. So we
2492
	 * really should be disabling the port only on a complete crtc_disable
2493
	 * sequence. This function is just called under two conditions on DDI
2494
	 * code:
2495
	 * - Link train failed while doing crtc_enable, and on this case we
2496
	 *   really should respect the mode set sequence and wait for a
2497
	 *   crtc_disable.
2498
	 * - Someone turned the monitor off and intel_dp_check_link_status
2499
	 *   called us. We don't need to disable the whole port on this case, so
2500
	 *   when someone turns the monitor on again,
2501
	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
2502
	 *   train.
2503
	 */
3480 Serge 2504
	if (HAS_DDI(dev))
3243 Serge 2505
		return;
2506
 
3031 serge 2507
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2330 Serge 2508
		return;
2509
 
2510
	DRM_DEBUG_KMS("\n");
2511
 
4104 Serge 2512
	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2330 Serge 2513
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
2514
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2515
	} else {
2516
		DP &= ~DP_LINK_TRAIN_MASK;
2517
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2518
	}
2519
	POSTING_READ(intel_dp->output_reg);
2520
 
3480 Serge 2521
	/* We don't really know why we're doing this */
2522
	intel_wait_for_vblank(dev, intel_crtc->pipe);
2330 Serge 2523
 
3031 serge 2524
	if (HAS_PCH_IBX(dev) &&
2330 Serge 2525
	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3243 Serge 2526
		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2330 Serge 2527
 
2528
		/* Hardware workaround: leaving our transcoder select
2529
		 * set to transcoder B while it's off will prevent the
2530
		 * corresponding HDMI output on transcoder A.
2531
		 *
2532
		 * Combine this with another hardware workaround:
2533
		 * transcoder select bit can only be cleared while the
2534
		 * port is enabled.
2535
		 */
2536
		DP &= ~DP_PIPEB_SELECT;
2537
		I915_WRITE(intel_dp->output_reg, DP);
2538
 
2539
		/* Changes to enable or select take place the vblank
2540
		 * after being written.
2541
		 */
3480 Serge 2542
		if (WARN_ON(crtc == NULL)) {
2543
			/* We should never try to disable a port without a crtc
2544
			 * attached. For paranoia keep the code around for a
2545
			 * bit. */
2330 Serge 2546
			POSTING_READ(intel_dp->output_reg);
2547
			msleep(50);
2548
		} else
3480 Serge 2549
			intel_wait_for_vblank(dev, intel_crtc->pipe);
2330 Serge 2550
	}
2551
 
2342 Serge 2552
	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2330 Serge 2553
	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2554
	POSTING_READ(intel_dp->output_reg);
2342 Serge 2555
	msleep(intel_dp->panel_power_down_delay);
2330 Serge 2556
}
2557
 
2558
static bool
2559
intel_dp_get_dpcd(struct intel_dp *intel_dp)
2560
{
3480 Serge 2561
	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2562
 
2330 Serge 2563
	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
3031 serge 2564
					   sizeof(intel_dp->dpcd)) == 0)
2565
		return false; /* aux transfer failed */
2566
 
3480 Serge 2567
	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2568
			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2569
	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2570
 
3031 serge 2571
	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2572
		return false; /* DPCD not present */
2573
 
4104 Serge 2574
	/* Check if the panel supports PSR */
2575
	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2576
	intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2577
				       intel_dp->psr_dpcd,
2578
				       sizeof(intel_dp->psr_dpcd));
2579
	if (is_edp_psr(intel_dp))
2580
		DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3031 serge 2581
	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2582
	      DP_DWN_STRM_PORT_PRESENT))
2583
		return true; /* native DP sink */
2584
 
2585
	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2586
		return true; /* no per-port downstream info */
2587
 
2588
	if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2589
					   intel_dp->downstream_ports,
2590
					   DP_MAX_DOWNSTREAM_PORTS) == 0)
2591
		return false; /* downstream port status fetch failed */
2592
 
2330 Serge 2593
		return true;
3031 serge 2594
}
2330 Serge 2595
 
3031 serge 2596
static void
2597
intel_dp_probe_oui(struct intel_dp *intel_dp)
2598
{
2599
	u8 buf[3];
2600
 
2601
	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2602
		return;
2603
 
2604
	ironlake_edp_panel_vdd_on(intel_dp);
2605
 
2606
	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2607
		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2608
			      buf[0], buf[1], buf[2]);
2609
 
2610
	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2611
		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2612
			      buf[0], buf[1], buf[2]);
2613
 
2614
	ironlake_edp_panel_vdd_off(intel_dp, false);
2330 Serge 2615
}
2616
 
2342 Serge 2617
static bool
2618
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2619
{
2620
	int ret;
2621
 
2622
	ret = intel_dp_aux_native_read_retry(intel_dp,
2623
					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2624
					     sink_irq_vector, 1);
2625
	if (!ret)
2626
		return false;
2627
 
2628
	return true;
2629
}
2630
 
2631
static void
2632
intel_dp_handle_test_request(struct intel_dp *intel_dp)
2633
{
2634
	/* NAK by default */
3243 Serge 2635
	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2342 Serge 2636
}
2637
 
2330 Serge 2638
/*
2639
 * According to DP spec
2640
 * 5.1.2:
2641
 *  1. Read DPCD
2642
 *  2. Configure link according to Receiver Capabilities
2643
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2644
 *  4. Check link status on receipt of hot-plug interrupt
2645
 */
2646
 
3243 Serge 2647
void
2330 Serge 2648
intel_dp_check_link_status(struct intel_dp *intel_dp)
2649
{
3243 Serge 2650
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2342 Serge 2651
	u8 sink_irq_vector;
2652
	u8 link_status[DP_LINK_STATUS_SIZE];
2653
 
3243 Serge 2654
	if (!intel_encoder->connectors_active)
2330 Serge 2655
		return;
2656
 
3243 Serge 2657
	if (WARN_ON(!intel_encoder->base.crtc))
2330 Serge 2658
		return;
2659
 
2660
	/* Try to read receiver status if the link appears to be up */
2342 Serge 2661
	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2330 Serge 2662
		intel_dp_link_down(intel_dp);
2663
		return;
2664
	}
2665
 
2666
	/* Now read the DPCD to see if it's actually running */
2667
	if (!intel_dp_get_dpcd(intel_dp)) {
2668
		intel_dp_link_down(intel_dp);
2669
		return;
2670
	}
2671
 
2342 Serge 2672
	/* Try to read the source of the interrupt */
2673
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2674
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2675
		/* Clear interrupt source */
2676
		intel_dp_aux_native_write_1(intel_dp,
2677
					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2678
					    sink_irq_vector);
2679
 
2680
		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2681
			intel_dp_handle_test_request(intel_dp);
2682
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2683
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2684
	}
2685
 
3243 Serge 2686
	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2330 Serge 2687
		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3243 Serge 2688
			      drm_get_encoder_name(&intel_encoder->base));
2330 Serge 2689
		intel_dp_start_link_train(intel_dp);
2690
		intel_dp_complete_link_train(intel_dp);
3746 Serge 2691
		intel_dp_stop_link_train(intel_dp);
2330 Serge 2692
	}
2693
}
2694
 
3031 serge 2695
/* XXX this is probably wrong for multiple downstream ports */
2330 Serge 2696
static enum drm_connector_status
2697
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2698
{
3031 serge 2699
	uint8_t *dpcd = intel_dp->dpcd;
2700
	bool hpd;
2701
	uint8_t type;
2702
 
2703
	if (!intel_dp_get_dpcd(intel_dp))
2704
		return connector_status_disconnected;
2705
 
2706
	/* if there's no downstream port, we're done */
2707
	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2330 Serge 2708
		return connector_status_connected;
3031 serge 2709
 
2710
	/* If we're HPD-aware, SINK_COUNT changes dynamically */
2711
	hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2712
	if (hpd) {
2713
		uint8_t reg;
2714
		if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2715
						    ®, 1))
2716
			return connector_status_unknown;
2717
		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2718
					      : connector_status_disconnected;
2719
	}
2720
 
2721
	/* If no HPD, poke DDC gently */
2722
	if (drm_probe_ddc(&intel_dp->adapter))
2723
		return connector_status_connected;
2724
 
2725
	/* Well we tried, say unknown for unreliable port types */
2726
	type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2727
	if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2728
		return connector_status_unknown;
2729
 
2730
	/* Anything else is out of spec, warn and ignore */
2731
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2330 Serge 2732
	return connector_status_disconnected;
2733
}
2734
 
2735
static enum drm_connector_status
2736
ironlake_dp_detect(struct intel_dp *intel_dp)
2737
{
3243 Serge 2738
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3480 Serge 2739
	struct drm_i915_private *dev_priv = dev->dev_private;
2740
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2330 Serge 2741
	enum drm_connector_status status;
2742
 
2743
	/* Can't disconnect eDP, but you can close the lid... */
2744
	if (is_edp(intel_dp)) {
3243 Serge 2745
		status = intel_panel_detect(dev);
2330 Serge 2746
		if (status == connector_status_unknown)
2747
			status = connector_status_connected;
2748
		return status;
2749
	}
2750
 
3480 Serge 2751
	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2752
		return connector_status_disconnected;
2753
 
2330 Serge 2754
	return intel_dp_detect_dpcd(intel_dp);
2755
}
2756
 
2757
static enum drm_connector_status
2758
g4x_dp_detect(struct intel_dp *intel_dp)
2759
{
3243 Serge 2760
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 2761
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 2762
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3031 serge 2763
	uint32_t bit;
2330 Serge 2764
 
3746 Serge 2765
	/* Can't disconnect eDP, but you can close the lid... */
2766
	if (is_edp(intel_dp)) {
2767
		enum drm_connector_status status;
2768
 
2769
		status = intel_panel_detect(dev);
2770
		if (status == connector_status_unknown)
2771
			status = connector_status_connected;
2772
		return status;
2773
	}
2774
 
3480 Serge 2775
	switch (intel_dig_port->port) {
2776
	case PORT_B:
2777
		bit = PORTB_HOTPLUG_LIVE_STATUS;
2330 Serge 2778
		break;
3480 Serge 2779
	case PORT_C:
2780
		bit = PORTC_HOTPLUG_LIVE_STATUS;
2330 Serge 2781
		break;
3480 Serge 2782
	case PORT_D:
2783
		bit = PORTD_HOTPLUG_LIVE_STATUS;
2330 Serge 2784
		break;
2785
	default:
2786
		return connector_status_unknown;
2787
	}
2788
 
3031 serge 2789
	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2330 Serge 2790
		return connector_status_disconnected;
2791
 
2792
	return intel_dp_detect_dpcd(intel_dp);
2793
}
2794
 
2342 Serge 2795
static struct edid *
2796
intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2797
{
3243 Serge 2798
	struct intel_connector *intel_connector = to_intel_connector(connector);
2799
 
2800
	/* use cached edid if we have one */
2801
	if (intel_connector->edid) {
2342 Serge 2802
	struct edid	*edid;
3031 serge 2803
	int size;
2342 Serge 2804
 
3243 Serge 2805
		/* invalid edid */
2806
		if (IS_ERR(intel_connector->edid))
3031 serge 2807
			return NULL;
2808
 
3243 Serge 2809
		size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
4104 Serge 2810
		edid = kmemdup(intel_connector->edid, size, GFP_KERNEL);
3031 serge 2811
		if (!edid)
2812
			return NULL;
2813
 
2814
		return edid;
2815
	}
2816
 
3243 Serge 2817
	return drm_get_edid(connector, adapter);
2342 Serge 2818
}
2819
 
2820
static int
2821
intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2822
{
3243 Serge 2823
	struct intel_connector *intel_connector = to_intel_connector(connector);
2342 Serge 2824
 
3243 Serge 2825
	/* use cached edid if we have one */
2826
	if (intel_connector->edid) {
2827
		/* invalid edid */
2828
		if (IS_ERR(intel_connector->edid))
2829
			return 0;
2830
 
2831
		return intel_connector_update_modes(connector,
2832
						    intel_connector->edid);
3031 serge 2833
	}
2834
 
3243 Serge 2835
	return intel_ddc_get_modes(connector, adapter);
2342 Serge 2836
}
2837
 
2330 Serge 2838
static enum drm_connector_status
2839
intel_dp_detect(struct drm_connector *connector, bool force)
2840
{
2841
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 2842
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2843
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
2844
	struct drm_device *dev = connector->dev;
2330 Serge 2845
	enum drm_connector_status status;
2846
	struct edid *edid = NULL;
2847
 
4104 Serge 2848
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
2849
		      connector->base.id, drm_get_connector_name(connector));
2850
 
2330 Serge 2851
	intel_dp->has_audio = false;
2852
 
2853
	if (HAS_PCH_SPLIT(dev))
2854
		status = ironlake_dp_detect(intel_dp);
2855
	else
2856
		status = g4x_dp_detect(intel_dp);
2857
 
2858
	if (status != connector_status_connected)
2859
		return status;
3031 serge 2860
 
2861
	intel_dp_probe_oui(intel_dp);
2862
 
3243 Serge 2863
	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2864
		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2330 Serge 2865
	} else {
3031 serge 2866
		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2330 Serge 2867
		if (edid) {
2868
			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2869
			kfree(edid);
2870
		}
2871
	}
3243 Serge 2872
 
2873
	if (intel_encoder->type != INTEL_OUTPUT_EDP)
2874
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2330 Serge 2875
	return connector_status_connected;
2876
}
2877
 
2878
static int intel_dp_get_modes(struct drm_connector *connector)
2879
{
2880
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3243 Serge 2881
	struct intel_connector *intel_connector = to_intel_connector(connector);
2882
	struct drm_device *dev = connector->dev;
2330 Serge 2883
	int ret;
2884
 
2885
	/* We should parse the EDID data and find out if it has an audio sink
2886
	 */
2887
 
2342 Serge 2888
	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3243 Serge 2889
	if (ret)
2330 Serge 2890
		return ret;
2891
 
3243 Serge 2892
	/* if eDP has no EDID, fall back to fixed mode */
2893
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2330 Serge 2894
			struct drm_display_mode *mode;
3243 Serge 2895
		mode = drm_mode_duplicate(dev,
2896
					  intel_connector->panel.fixed_mode);
2897
		if (mode) {
2330 Serge 2898
			drm_mode_probed_add(connector, mode);
2899
			return 1;
2900
		}
2901
	}
2902
	return 0;
2903
}
2904
 
3243 Serge 2905
static bool
2906
intel_dp_detect_audio(struct drm_connector *connector)
2907
{
2908
	struct intel_dp *intel_dp = intel_attached_dp(connector);
2909
	struct edid *edid;
2910
	bool has_audio = false;
2330 Serge 2911
 
3243 Serge 2912
	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2913
	if (edid) {
2914
		has_audio = drm_detect_monitor_audio(edid);
2915
		kfree(edid);
2916
	}
2330 Serge 2917
 
3243 Serge 2918
	return has_audio;
2919
}
2330 Serge 2920
 
2921
static int
2922
intel_dp_set_property(struct drm_connector *connector,
2923
		      struct drm_property *property,
2924
		      uint64_t val)
2925
{
2926
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3243 Serge 2927
	struct intel_connector *intel_connector = to_intel_connector(connector);
2928
	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2929
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2330 Serge 2930
	int ret;
2931
 
3243 Serge 2932
	ret = drm_object_property_set_value(&connector->base, property, val);
2330 Serge 2933
	if (ret)
2934
		return ret;
3480 Serge 2935
 
2330 Serge 2936
	if (property == dev_priv->force_audio_property) {
2937
		int i = val;
2938
		bool has_audio;
2939
 
2940
		if (i == intel_dp->force_audio)
2941
			return 0;
2942
 
2943
		intel_dp->force_audio = i;
2944
 
3031 serge 2945
		if (i == HDMI_AUDIO_AUTO)
2330 Serge 2946
			has_audio = intel_dp_detect_audio(connector);
2947
		else
3031 serge 2948
			has_audio = (i == HDMI_AUDIO_ON);
2330 Serge 2949
 
2950
		if (has_audio == intel_dp->has_audio)
2951
			return 0;
2952
 
2953
		intel_dp->has_audio = has_audio;
2954
		goto done;
2955
	}
2956
 
2957
	if (property == dev_priv->broadcast_rgb_property) {
3746 Serge 2958
		bool old_auto = intel_dp->color_range_auto;
2959
		uint32_t old_range = intel_dp->color_range;
2960
 
3480 Serge 2961
		switch (val) {
2962
		case INTEL_BROADCAST_RGB_AUTO:
2963
			intel_dp->color_range_auto = true;
2964
			break;
2965
		case INTEL_BROADCAST_RGB_FULL:
2966
			intel_dp->color_range_auto = false;
2967
			intel_dp->color_range = 0;
2968
			break;
2969
		case INTEL_BROADCAST_RGB_LIMITED:
2970
			intel_dp->color_range_auto = false;
2971
			intel_dp->color_range = DP_COLOR_RANGE_16_235;
2972
			break;
2973
		default:
2974
			return -EINVAL;
2975
		}
3746 Serge 2976
 
2977
		if (old_auto == intel_dp->color_range_auto &&
2978
		    old_range == intel_dp->color_range)
2979
			return 0;
2980
 
2330 Serge 2981
	goto done;
2982
	}
2983
 
3243 Serge 2984
	if (is_edp(intel_dp) &&
2985
	    property == connector->dev->mode_config.scaling_mode_property) {
2986
		if (val == DRM_MODE_SCALE_NONE) {
2987
			DRM_DEBUG_KMS("no scaling not supported\n");
2988
			return -EINVAL;
2989
		}
2990
 
2991
		if (intel_connector->panel.fitting_mode == val) {
2992
			/* the eDP scaling property is not changed */
2993
			return 0;
2994
		}
2995
		intel_connector->panel.fitting_mode = val;
2996
 
2997
		goto done;
2998
	}
2999
 
2330 Serge 3000
	return -EINVAL;
3001
 
3002
done:
3480 Serge 3003
	if (intel_encoder->base.crtc)
3004
		intel_crtc_restore_mode(intel_encoder->base.crtc);
2330 Serge 3005
 
3006
	return 0;
3007
}
3008
 
3009
static void
4104 Serge 3010
intel_dp_connector_destroy(struct drm_connector *connector)
2330 Serge 3011
{
3243 Serge 3012
	struct intel_connector *intel_connector = to_intel_connector(connector);
2330 Serge 3013
 
3243 Serge 3014
	if (!IS_ERR_OR_NULL(intel_connector->edid))
3015
		kfree(intel_connector->edid);
3016
 
4104 Serge 3017
	/* Can't call is_edp() since the encoder may have been destroyed
3018
	 * already. */
3019
	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3243 Serge 3020
		intel_panel_fini(&intel_connector->panel);
2330 Serge 3021
 
3022
	drm_sysfs_connector_remove(connector);
3023
	drm_connector_cleanup(connector);
3024
	kfree(connector);
3025
}
3026
 
3243 Serge 3027
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2330 Serge 3028
{
3243 Serge 3029
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3030
	struct intel_dp *intel_dp = &intel_dig_port->dp;
3480 Serge 3031
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2330 Serge 3032
 
3243 Serge 3033
	i2c_del_adapter(&intel_dp->adapter);
2330 Serge 3034
	drm_encoder_cleanup(encoder);
2342 Serge 3035
	if (is_edp(intel_dp)) {
3036
//		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3480 Serge 3037
		mutex_lock(&dev->mode_config.mutex);
2342 Serge 3038
		ironlake_panel_vdd_off_sync(intel_dp);
3480 Serge 3039
		mutex_unlock(&dev->mode_config.mutex);
2342 Serge 3040
	}
3243 Serge 3041
	kfree(intel_dig_port);
2330 Serge 3042
}
3043
 
3044
static const struct drm_connector_funcs intel_dp_connector_funcs = {
3031 serge 3045
	.dpms = intel_connector_dpms,
2330 Serge 3046
	.detect = intel_dp_detect,
3047
	.fill_modes = drm_helper_probe_single_connector_modes,
3048
	.set_property = intel_dp_set_property,
4104 Serge 3049
	.destroy = intel_dp_connector_destroy,
2330 Serge 3050
};
3051
 
3052
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3053
	.get_modes = intel_dp_get_modes,
3054
	.mode_valid = intel_dp_mode_valid,
3055
	.best_encoder = intel_best_encoder,
3056
};
3057
 
3058
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3059
	.destroy = intel_dp_encoder_destroy,
3060
};
3061
 
3062
static void
3063
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3064
{
3243 Serge 3065
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2330 Serge 3066
 
3067
	intel_dp_check_link_status(intel_dp);
3068
}
3069
 
2327 Serge 3070
/* Return which DP Port should be selected for Transcoder DP control */
3071
int
2342 Serge 3072
intel_trans_dp_port_sel(struct drm_crtc *crtc)
2327 Serge 3073
{
3074
	struct drm_device *dev = crtc->dev;
3243 Serge 3075
	struct intel_encoder *intel_encoder;
3076
	struct intel_dp *intel_dp;
2327 Serge 3077
 
3243 Serge 3078
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3079
		intel_dp = enc_to_intel_dp(&intel_encoder->base);
2327 Serge 3080
 
3243 Serge 3081
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3082
		    intel_encoder->type == INTEL_OUTPUT_EDP)
2327 Serge 3083
			return intel_dp->output_reg;
3084
	}
3085
 
3086
	return -1;
3087
}
2330 Serge 3088
 
3089
/* check the VBT to see whether the eDP is on DP-D port */
3090
bool intel_dpd_is_edp(struct drm_device *dev)
3091
{
3092
	struct drm_i915_private *dev_priv = dev->dev_private;
3093
	struct child_device_config *p_child;
3094
	int i;
3095
 
4104 Serge 3096
	if (!dev_priv->vbt.child_dev_num)
2330 Serge 3097
		return false;
3098
 
4104 Serge 3099
	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3100
		p_child = dev_priv->vbt.child_dev + i;
2330 Serge 3101
 
3102
		if (p_child->dvo_port == PORT_IDPD &&
3103
		    p_child->device_type == DEVICE_TYPE_eDP)
3104
			return true;
3105
	}
3106
	return false;
3107
}
3108
 
3109
static void
3110
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3111
{
3243 Serge 3112
	struct intel_connector *intel_connector = to_intel_connector(connector);
3113
 
2330 Serge 3114
	intel_attach_force_audio_property(connector);
3115
	intel_attach_broadcast_rgb_property(connector);
3480 Serge 3116
	intel_dp->color_range_auto = true;
3243 Serge 3117
 
3118
	if (is_edp(intel_dp)) {
3119
		drm_mode_create_scaling_mode_property(connector->dev);
3120
		drm_object_attach_property(
3121
			&connector->base,
3122
			connector->dev->mode_config.scaling_mode_property,
3123
			DRM_MODE_SCALE_ASPECT);
3124
		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3125
	}
2330 Serge 3126
}
3127
 
3243 Serge 3128
static void
3129
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3130
				    struct intel_dp *intel_dp,
3131
				    struct edp_power_seq *out)
3132
{
3133
	struct drm_i915_private *dev_priv = dev->dev_private;
3134
	struct edp_power_seq cur, vbt, spec, final;
3135
	u32 pp_on, pp_off, pp_div, pp;
3746 Serge 3136
	int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3243 Serge 3137
 
3746 Serge 3138
	if (HAS_PCH_SPLIT(dev)) {
3139
		pp_control_reg = PCH_PP_CONTROL;
3140
		pp_on_reg = PCH_PP_ON_DELAYS;
3141
		pp_off_reg = PCH_PP_OFF_DELAYS;
3142
		pp_div_reg = PCH_PP_DIVISOR;
3143
	} else {
3144
		pp_control_reg = PIPEA_PP_CONTROL;
3145
		pp_on_reg = PIPEA_PP_ON_DELAYS;
3146
		pp_off_reg = PIPEA_PP_OFF_DELAYS;
3147
		pp_div_reg = PIPEA_PP_DIVISOR;
3148
	}
3149
 
3243 Serge 3150
	/* Workaround: Need to write PP_CONTROL with the unlock key as
3151
	 * the very first thing. */
3746 Serge 3152
	pp = ironlake_get_pp_control(intel_dp);
3153
	I915_WRITE(pp_control_reg, pp);
3243 Serge 3154
 
3746 Serge 3155
	pp_on = I915_READ(pp_on_reg);
3156
	pp_off = I915_READ(pp_off_reg);
3157
	pp_div = I915_READ(pp_div_reg);
3243 Serge 3158
 
3159
	/* Pull timing values out of registers */
3160
	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3161
		PANEL_POWER_UP_DELAY_SHIFT;
3162
 
3163
	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3164
		PANEL_LIGHT_ON_DELAY_SHIFT;
3165
 
3166
	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3167
		PANEL_LIGHT_OFF_DELAY_SHIFT;
3168
 
3169
	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3170
		PANEL_POWER_DOWN_DELAY_SHIFT;
3171
 
3172
	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3173
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3174
 
3175
	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3176
		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3177
 
4104 Serge 3178
	vbt = dev_priv->vbt.edp_pps;
3243 Serge 3179
 
3180
	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3181
	 * our hw here, which are all in 100usec. */
3182
	spec.t1_t3 = 210 * 10;
3183
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3184
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3185
	spec.t10 = 500 * 10;
3186
	/* This one is special and actually in units of 100ms, but zero
3187
	 * based in the hw (so we need to add 100 ms). But the sw vbt
3188
	 * table multiplies it with 1000 to make it in units of 100usec,
3189
	 * too. */
3190
	spec.t11_t12 = (510 + 100) * 10;
3191
 
3192
	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3193
		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3194
 
3195
	/* Use the max of the register settings and vbt. If both are
3196
	 * unset, fall back to the spec limits. */
3197
#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
3198
				       spec.field : \
3199
				       max(cur.field, vbt.field))
3200
	assign_final(t1_t3);
3201
	assign_final(t8);
3202
	assign_final(t9);
3203
	assign_final(t10);
3204
	assign_final(t11_t12);
3205
#undef assign_final
3206
 
3207
#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
3208
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
3209
	intel_dp->backlight_on_delay = get_delay(t8);
3210
	intel_dp->backlight_off_delay = get_delay(t9);
3211
	intel_dp->panel_power_down_delay = get_delay(t10);
3212
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3213
#undef get_delay
3214
 
3215
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3216
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3217
		      intel_dp->panel_power_cycle_delay);
3218
 
3219
	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3220
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3221
 
3222
	if (out)
3223
		*out = final;
3224
}
3225
 
3226
static void
3227
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3228
					      struct intel_dp *intel_dp,
3229
					      struct edp_power_seq *seq)
3230
{
3231
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 3232
	u32 pp_on, pp_off, pp_div, port_sel = 0;
3233
	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3234
	int pp_on_reg, pp_off_reg, pp_div_reg;
3243 Serge 3235
 
3746 Serge 3236
	if (HAS_PCH_SPLIT(dev)) {
3237
		pp_on_reg = PCH_PP_ON_DELAYS;
3238
		pp_off_reg = PCH_PP_OFF_DELAYS;
3239
		pp_div_reg = PCH_PP_DIVISOR;
3240
	} else {
3241
		pp_on_reg = PIPEA_PP_ON_DELAYS;
3242
		pp_off_reg = PIPEA_PP_OFF_DELAYS;
3243
		pp_div_reg = PIPEA_PP_DIVISOR;
3244
	}
3245
 
3243 Serge 3246
	/* And finally store the new values in the power sequencer. */
3247
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3248
		(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3249
	pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3250
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3251
	/* Compute the divisor for the pp clock, simply match the Bspec
3252
	 * formula. */
3746 Serge 3253
	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3243 Serge 3254
	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3255
			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
3256
 
3257
	/* Haswell doesn't have any port selection bits for the panel
3258
	 * power sequencer any more. */
4104 Serge 3259
	if (IS_VALLEYVIEW(dev)) {
3260
		port_sel = I915_READ(pp_on_reg) & 0xc0000000;
3261
	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3262
		if (dp_to_dig_port(intel_dp)->port == PORT_A)
3746 Serge 3263
			port_sel = PANEL_POWER_PORT_DP_A;
3243 Serge 3264
		else
3746 Serge 3265
			port_sel = PANEL_POWER_PORT_DP_D;
3243 Serge 3266
	}
3267
 
3746 Serge 3268
	pp_on |= port_sel;
3243 Serge 3269
 
3746 Serge 3270
	I915_WRITE(pp_on_reg, pp_on);
3271
	I915_WRITE(pp_off_reg, pp_off);
3272
	I915_WRITE(pp_div_reg, pp_div);
3273
 
3243 Serge 3274
	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3746 Serge 3275
		      I915_READ(pp_on_reg),
3276
		      I915_READ(pp_off_reg),
3277
		      I915_READ(pp_div_reg));
3243 Serge 3278
}
3279
 
4104 Serge 3280
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3281
				     struct intel_connector *intel_connector)
3282
{
3283
	struct drm_connector *connector = &intel_connector->base;
3284
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3285
	struct drm_device *dev = intel_dig_port->base.base.dev;
3286
	struct drm_i915_private *dev_priv = dev->dev_private;
3287
	struct drm_display_mode *fixed_mode = NULL;
3288
	struct edp_power_seq power_seq = { 0 };
3289
	bool has_dpcd;
3290
	struct drm_display_mode *scan;
3291
	struct edid *edid;
3292
 
3293
	if (!is_edp(intel_dp))
3294
		return true;
3295
 
3296
	intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3297
 
3298
	/* Cache DPCD and EDID for edp. */
3299
	ironlake_edp_panel_vdd_on(intel_dp);
3300
	has_dpcd = intel_dp_get_dpcd(intel_dp);
3301
	ironlake_edp_panel_vdd_off(intel_dp, false);
3302
 
3303
	if (has_dpcd) {
3304
		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3305
			dev_priv->no_aux_handshake =
3306
				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3307
				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3308
	} else {
3309
		/* if this fails, presume the device is a ghost */
3310
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
3311
		return false;
3312
	}
3313
 
3314
	/* We now know it's not a ghost, init power sequence regs. */
3315
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3316
						      &power_seq);
3317
 
3318
	ironlake_edp_panel_vdd_on(intel_dp);
3319
	edid = drm_get_edid(connector, &intel_dp->adapter);
3320
	if (edid) {
3321
		if (drm_add_edid_modes(connector, edid)) {
3322
			drm_mode_connector_update_edid_property(connector,
3323
								edid);
3324
			drm_edid_to_eld(connector, edid);
3325
		} else {
3326
			kfree(edid);
3327
			edid = ERR_PTR(-EINVAL);
3328
		}
3329
	} else {
3330
		edid = ERR_PTR(-ENOENT);
3331
	}
3332
	intel_connector->edid = edid;
3333
 
3334
	/* prefer fixed mode from EDID if available */
3335
	list_for_each_entry(scan, &connector->probed_modes, head) {
3336
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3337
			fixed_mode = drm_mode_duplicate(dev, scan);
3338
			break;
3339
		}
3340
	}
3341
 
3342
	/* fallback to VBT if available for eDP */
3343
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3344
		fixed_mode = drm_mode_duplicate(dev,
3345
					dev_priv->vbt.lfp_lvds_vbt_mode);
3346
		if (fixed_mode)
3347
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3348
	}
3349
 
3350
	ironlake_edp_panel_vdd_off(intel_dp, false);
3351
 
3352
	intel_panel_init(&intel_connector->panel, fixed_mode);
3353
	intel_panel_setup_backlight(connector);
3354
 
3355
	return true;
3356
}
3357
 
3358
bool
3243 Serge 3359
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3360
			struct intel_connector *intel_connector)
2330 Serge 3361
{
3243 Serge 3362
	struct drm_connector *connector = &intel_connector->base;
3363
	struct intel_dp *intel_dp = &intel_dig_port->dp;
3364
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3365
	struct drm_device *dev = intel_encoder->base.dev;
2330 Serge 3366
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 3367
	enum port port = intel_dig_port->port;
2330 Serge 3368
	const char *name = NULL;
4104 Serge 3369
	int type, error;
2330 Serge 3370
 
3031 serge 3371
	/* Preserve the current hw state. */
3372
	intel_dp->DP = I915_READ(intel_dp->output_reg);
3243 Serge 3373
	intel_dp->attached_connector = intel_connector;
2330 Serge 3374
 
4104 Serge 3375
	type = DRM_MODE_CONNECTOR_DisplayPort;
3243 Serge 3376
	/*
3377
	 * FIXME : We need to initialize built-in panels before external panels.
3378
	 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3379
	 */
4104 Serge 3380
	switch (port) {
3381
	case PORT_A:
2330 Serge 3382
		type = DRM_MODE_CONNECTOR_eDP;
4104 Serge 3383
		break;
3384
	case PORT_C:
3385
		if (IS_VALLEYVIEW(dev))
3243 Serge 3386
		type = DRM_MODE_CONNECTOR_eDP;
4104 Serge 3387
		break;
3388
	case PORT_D:
3389
		if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3390
			type = DRM_MODE_CONNECTOR_eDP;
3391
		break;
3392
	default:	/* silence GCC warning */
3393
		break;
2330 Serge 3394
	}
3395
 
4104 Serge 3396
	/*
3397
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3398
	 * for DP the encoder type can be set by the caller to
3399
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3400
	 */
3401
	if (type == DRM_MODE_CONNECTOR_eDP)
3402
		intel_encoder->type = INTEL_OUTPUT_EDP;
3403
 
3404
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3405
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3406
			port_name(port));
3407
 
2330 Serge 3408
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3409
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3410
 
3411
	connector->interlace_allowed = true;
3412
	connector->doublescan_allowed = 0;
3413
 
3243 Serge 3414
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3415
			  ironlake_panel_vdd_work);
2330 Serge 3416
 
3417
	intel_connector_attach_encoder(intel_connector, intel_encoder);
3418
	drm_sysfs_connector_add(connector);
3419
 
3480 Serge 3420
	if (HAS_DDI(dev))
3243 Serge 3421
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3422
	else
3031 serge 3423
	intel_connector->get_hw_state = intel_connector_get_hw_state;
3424
 
3746 Serge 3425
	intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3426
	if (HAS_DDI(dev)) {
3427
		switch (intel_dig_port->port) {
3428
		case PORT_A:
3429
			intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3430
			break;
3431
		case PORT_B:
3432
			intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3433
			break;
3434
		case PORT_C:
3435
			intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3436
			break;
3437
		case PORT_D:
3438
			intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3439
			break;
3440
		default:
3441
			BUG();
3442
		}
3443
	}
3243 Serge 3444
 
2330 Serge 3445
	/* Set up the DDC bus. */
3031 serge 3446
	switch (port) {
3447
	case PORT_A:
3746 Serge 3448
		intel_encoder->hpd_pin = HPD_PORT_A;
2330 Serge 3449
			name = "DPDDC-A";
3450
			break;
3031 serge 3451
	case PORT_B:
3746 Serge 3452
		intel_encoder->hpd_pin = HPD_PORT_B;
2330 Serge 3453
			name = "DPDDC-B";
3454
			break;
3031 serge 3455
	case PORT_C:
3746 Serge 3456
		intel_encoder->hpd_pin = HPD_PORT_C;
2330 Serge 3457
			name = "DPDDC-C";
3458
			break;
3031 serge 3459
	case PORT_D:
3746 Serge 3460
		intel_encoder->hpd_pin = HPD_PORT_D;
2330 Serge 3461
			name = "DPDDC-D";
3462
			break;
3031 serge 3463
	default:
3746 Serge 3464
		BUG();
2330 Serge 3465
	}
3466
 
4104 Serge 3467
	error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3468
	WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3469
	     error, port_name(port));
2330 Serge 3470
 
4104 Serge 3471
	intel_dp->psr_setup_done = false;
3031 serge 3472
 
4104 Serge 3473
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3474
		i2c_del_adapter(&intel_dp->adapter);
3031 serge 3475
	if (is_edp(intel_dp)) {
4104 Serge 3476
//           cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3477
			mutex_lock(&dev->mode_config.mutex);
3478
			ironlake_panel_vdd_off_sync(intel_dp);
3479
			mutex_unlock(&dev->mode_config.mutex);
2330 Serge 3480
		}
4104 Serge 3481
		drm_sysfs_connector_remove(connector);
3482
		drm_connector_cleanup(connector);
3483
		return false;
2330 Serge 3484
	}
3485
 
3486
	intel_dp_add_properties(intel_dp, connector);
3487
 
3488
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3489
	 * 0xd.  Failure to do so will result in spurious interrupts being
3490
	 * generated on the port when a cable is not attached.
3491
	 */
3492
	if (IS_G4X(dev) && !IS_GM45(dev)) {
3493
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3494
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3495
	}
4104 Serge 3496
 
3497
	return true;
2330 Serge 3498
}
3243 Serge 3499
 
3500
void
3501
intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3502
{
3503
	struct intel_digital_port *intel_dig_port;
3504
	struct intel_encoder *intel_encoder;
3505
	struct drm_encoder *encoder;
3506
	struct intel_connector *intel_connector;
3507
 
3508
	intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
3509
	if (!intel_dig_port)
3510
		return;
3511
 
3512
	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
3513
	if (!intel_connector) {
3514
		kfree(intel_dig_port);
3515
		return;
3516
	}
3517
 
3518
	intel_encoder = &intel_dig_port->base;
3519
	encoder = &intel_encoder->base;
3520
 
3521
	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3522
			 DRM_MODE_ENCODER_TMDS);
3523
 
3746 Serge 3524
	intel_encoder->compute_config = intel_dp_compute_config;
4104 Serge 3525
	intel_encoder->mode_set = intel_dp_mode_set;
3243 Serge 3526
	intel_encoder->disable = intel_disable_dp;
3527
	intel_encoder->post_disable = intel_post_disable_dp;
3528
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4104 Serge 3529
	intel_encoder->get_config = intel_dp_get_config;
3530
	if (IS_VALLEYVIEW(dev)) {
3531
		intel_encoder->pre_pll_enable = intel_dp_pre_pll_enable;
3532
		intel_encoder->pre_enable = vlv_pre_enable_dp;
3533
		intel_encoder->enable = vlv_enable_dp;
3534
	} else {
3535
		intel_encoder->pre_enable = intel_pre_enable_dp;
3536
		intel_encoder->enable = intel_enable_dp;
3537
	}
3243 Serge 3538
 
3539
	intel_dig_port->port = port;
3540
	intel_dig_port->dp.output_reg = output_reg;
3541
 
3542
	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3543
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3544
	intel_encoder->cloneable = false;
3545
	intel_encoder->hot_plug = intel_dp_hot_plug;
3546
 
4104 Serge 3547
	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3548
		drm_encoder_cleanup(encoder);
3549
		kfree(intel_dig_port);
3550
		kfree(intel_connector);
3551
	}
3243 Serge 3552
}