Subversion Repositories Kolibri OS

Rev

Rev 4398 | Rev 4557 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2327 Serge 1
/*
2
 * Copyright © 2006-2007 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21
 * DEALINGS IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *  Eric Anholt 
25
 */
26
 
3746 Serge 27
//#include 
2327 Serge 28
#include 
29
//#include 
30
#include 
31
#include 
2330 Serge 32
#include 
3746 Serge 33
#include 
2342 Serge 34
#include 
3031 serge 35
#include 
2327 Serge 36
#include "intel_drv.h"
3031 serge 37
#include 
2327 Serge 38
#include "i915_drv.h"
2351 Serge 39
#include "i915_trace.h"
3031 serge 40
#include 
41
#include 
42
//#include 
2327 Serge 43
 
4104 Serge 44
#define MAX_ERRNO       4095
2327 Serge 45
phys_addr_t get_bus_addr(void);
46
 
2342 Serge 47
bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
2327 Serge 48
static void intel_increase_pllclock(struct drm_crtc *crtc);
3243 Serge 49
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
2327 Serge 50
 
4104 Serge 51
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
52
				struct intel_crtc_config *pipe_config);
53
static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
54
				    struct intel_crtc_config *pipe_config);
2327 Serge 55
 
4104 Serge 56
static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
57
			  int x, int y, struct drm_framebuffer *old_fb);
58
 
59
 
2327 Serge 60
typedef struct {
61
    int min, max;
62
} intel_range_t;
63
 
64
typedef struct {
65
    int dot_limit;
66
    int p2_slow, p2_fast;
67
} intel_p2_t;
68
 
69
typedef struct intel_limit intel_limit_t;
70
struct intel_limit {
71
    intel_range_t   dot, vco, n, m, m1, m2, p, p1;
72
    intel_p2_t      p2;
73
};
74
 
75
/* FDI */
76
#define IRONLAKE_FDI_FREQ       2700000 /* in kHz for mode->clock */
77
 
3243 Serge 78
int
79
intel_pch_rawclk(struct drm_device *dev)
80
{
81
	struct drm_i915_private *dev_priv = dev->dev_private;
82
 
83
	WARN_ON(!HAS_PCH_SPLIT(dev));
84
 
85
	return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
86
}
87
 
2327 Serge 88
static inline u32 /* units of 100MHz */
89
intel_fdi_link_freq(struct drm_device *dev)
90
{
91
	if (IS_GEN5(dev)) {
92
		struct drm_i915_private *dev_priv = dev->dev_private;
93
		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
94
	} else
95
		return 27;
96
}
97
 
4104 Serge 98
static const intel_limit_t intel_limits_i8xx_dac = {
99
	.dot = { .min = 25000, .max = 350000 },
100
	.vco = { .min = 930000, .max = 1400000 },
101
	.n = { .min = 3, .max = 16 },
102
	.m = { .min = 96, .max = 140 },
103
	.m1 = { .min = 18, .max = 26 },
104
	.m2 = { .min = 6, .max = 16 },
105
	.p = { .min = 4, .max = 128 },
106
	.p1 = { .min = 2, .max = 33 },
107
	.p2 = { .dot_limit = 165000,
108
		.p2_slow = 4, .p2_fast = 2 },
109
};
110
 
2327 Serge 111
static const intel_limit_t intel_limits_i8xx_dvo = {
112
        .dot = { .min = 25000, .max = 350000 },
113
        .vco = { .min = 930000, .max = 1400000 },
114
        .n = { .min = 3, .max = 16 },
115
        .m = { .min = 96, .max = 140 },
116
        .m1 = { .min = 18, .max = 26 },
117
        .m2 = { .min = 6, .max = 16 },
118
        .p = { .min = 4, .max = 128 },
119
        .p1 = { .min = 2, .max = 33 },
120
	.p2 = { .dot_limit = 165000,
4104 Serge 121
		.p2_slow = 4, .p2_fast = 4 },
2327 Serge 122
};
123
 
124
static const intel_limit_t intel_limits_i8xx_lvds = {
125
        .dot = { .min = 25000, .max = 350000 },
126
        .vco = { .min = 930000, .max = 1400000 },
127
        .n = { .min = 3, .max = 16 },
128
        .m = { .min = 96, .max = 140 },
129
        .m1 = { .min = 18, .max = 26 },
130
        .m2 = { .min = 6, .max = 16 },
131
        .p = { .min = 4, .max = 128 },
132
        .p1 = { .min = 1, .max = 6 },
133
	.p2 = { .dot_limit = 165000,
134
		.p2_slow = 14, .p2_fast = 7 },
135
};
136
 
137
static const intel_limit_t intel_limits_i9xx_sdvo = {
138
        .dot = { .min = 20000, .max = 400000 },
139
        .vco = { .min = 1400000, .max = 2800000 },
140
        .n = { .min = 1, .max = 6 },
141
        .m = { .min = 70, .max = 120 },
3480 Serge 142
	.m1 = { .min = 8, .max = 18 },
143
	.m2 = { .min = 3, .max = 7 },
2327 Serge 144
        .p = { .min = 5, .max = 80 },
145
        .p1 = { .min = 1, .max = 8 },
146
	.p2 = { .dot_limit = 200000,
147
		.p2_slow = 10, .p2_fast = 5 },
148
};
149
 
150
static const intel_limit_t intel_limits_i9xx_lvds = {
151
        .dot = { .min = 20000, .max = 400000 },
152
        .vco = { .min = 1400000, .max = 2800000 },
153
        .n = { .min = 1, .max = 6 },
154
        .m = { .min = 70, .max = 120 },
3480 Serge 155
	.m1 = { .min = 8, .max = 18 },
156
	.m2 = { .min = 3, .max = 7 },
2327 Serge 157
        .p = { .min = 7, .max = 98 },
158
        .p1 = { .min = 1, .max = 8 },
159
	.p2 = { .dot_limit = 112000,
160
		.p2_slow = 14, .p2_fast = 7 },
161
};
162
 
163
 
164
static const intel_limit_t intel_limits_g4x_sdvo = {
165
	.dot = { .min = 25000, .max = 270000 },
166
	.vco = { .min = 1750000, .max = 3500000},
167
	.n = { .min = 1, .max = 4 },
168
	.m = { .min = 104, .max = 138 },
169
	.m1 = { .min = 17, .max = 23 },
170
	.m2 = { .min = 5, .max = 11 },
171
	.p = { .min = 10, .max = 30 },
172
	.p1 = { .min = 1, .max = 3},
173
	.p2 = { .dot_limit = 270000,
174
		.p2_slow = 10,
175
		.p2_fast = 10
176
	},
177
};
178
 
179
static const intel_limit_t intel_limits_g4x_hdmi = {
180
	.dot = { .min = 22000, .max = 400000 },
181
	.vco = { .min = 1750000, .max = 3500000},
182
	.n = { .min = 1, .max = 4 },
183
	.m = { .min = 104, .max = 138 },
184
	.m1 = { .min = 16, .max = 23 },
185
	.m2 = { .min = 5, .max = 11 },
186
	.p = { .min = 5, .max = 80 },
187
	.p1 = { .min = 1, .max = 8},
188
	.p2 = { .dot_limit = 165000,
189
		.p2_slow = 10, .p2_fast = 5 },
190
};
191
 
192
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
193
	.dot = { .min = 20000, .max = 115000 },
194
	.vco = { .min = 1750000, .max = 3500000 },
195
	.n = { .min = 1, .max = 3 },
196
	.m = { .min = 104, .max = 138 },
197
	.m1 = { .min = 17, .max = 23 },
198
	.m2 = { .min = 5, .max = 11 },
199
	.p = { .min = 28, .max = 112 },
200
	.p1 = { .min = 2, .max = 8 },
201
	.p2 = { .dot_limit = 0,
202
		.p2_slow = 14, .p2_fast = 14
203
	},
204
};
205
 
206
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
207
	.dot = { .min = 80000, .max = 224000 },
208
	.vco = { .min = 1750000, .max = 3500000 },
209
	.n = { .min = 1, .max = 3 },
210
	.m = { .min = 104, .max = 138 },
211
	.m1 = { .min = 17, .max = 23 },
212
	.m2 = { .min = 5, .max = 11 },
213
	.p = { .min = 14, .max = 42 },
214
	.p1 = { .min = 2, .max = 6 },
215
	.p2 = { .dot_limit = 0,
216
		.p2_slow = 7, .p2_fast = 7
217
	},
218
};
219
 
220
static const intel_limit_t intel_limits_pineview_sdvo = {
221
        .dot = { .min = 20000, .max = 400000},
222
        .vco = { .min = 1700000, .max = 3500000 },
223
	/* Pineview's Ncounter is a ring counter */
224
        .n = { .min = 3, .max = 6 },
225
        .m = { .min = 2, .max = 256 },
226
	/* Pineview only has one combined m divider, which we treat as m2. */
227
        .m1 = { .min = 0, .max = 0 },
228
        .m2 = { .min = 0, .max = 254 },
229
        .p = { .min = 5, .max = 80 },
230
        .p1 = { .min = 1, .max = 8 },
231
	.p2 = { .dot_limit = 200000,
232
		.p2_slow = 10, .p2_fast = 5 },
233
};
234
 
235
static const intel_limit_t intel_limits_pineview_lvds = {
236
        .dot = { .min = 20000, .max = 400000 },
237
        .vco = { .min = 1700000, .max = 3500000 },
238
        .n = { .min = 3, .max = 6 },
239
        .m = { .min = 2, .max = 256 },
240
        .m1 = { .min = 0, .max = 0 },
241
        .m2 = { .min = 0, .max = 254 },
242
        .p = { .min = 7, .max = 112 },
243
        .p1 = { .min = 1, .max = 8 },
244
	.p2 = { .dot_limit = 112000,
245
		.p2_slow = 14, .p2_fast = 14 },
246
};
247
 
248
/* Ironlake / Sandybridge
249
 *
250
 * We calculate clock using (register_value + 2) for N/M1/M2, so here
251
 * the range value for them is (actual_value - 2).
252
 */
253
static const intel_limit_t intel_limits_ironlake_dac = {
254
	.dot = { .min = 25000, .max = 350000 },
255
	.vco = { .min = 1760000, .max = 3510000 },
256
	.n = { .min = 1, .max = 5 },
257
	.m = { .min = 79, .max = 127 },
258
	.m1 = { .min = 12, .max = 22 },
259
	.m2 = { .min = 5, .max = 9 },
260
	.p = { .min = 5, .max = 80 },
261
	.p1 = { .min = 1, .max = 8 },
262
	.p2 = { .dot_limit = 225000,
263
		.p2_slow = 10, .p2_fast = 5 },
264
};
265
 
266
static const intel_limit_t intel_limits_ironlake_single_lvds = {
267
	.dot = { .min = 25000, .max = 350000 },
268
	.vco = { .min = 1760000, .max = 3510000 },
269
	.n = { .min = 1, .max = 3 },
270
	.m = { .min = 79, .max = 118 },
271
	.m1 = { .min = 12, .max = 22 },
272
	.m2 = { .min = 5, .max = 9 },
273
	.p = { .min = 28, .max = 112 },
274
	.p1 = { .min = 2, .max = 8 },
275
	.p2 = { .dot_limit = 225000,
276
		.p2_slow = 14, .p2_fast = 14 },
277
};
278
 
279
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
280
	.dot = { .min = 25000, .max = 350000 },
281
	.vco = { .min = 1760000, .max = 3510000 },
282
	.n = { .min = 1, .max = 3 },
283
	.m = { .min = 79, .max = 127 },
284
	.m1 = { .min = 12, .max = 22 },
285
	.m2 = { .min = 5, .max = 9 },
286
	.p = { .min = 14, .max = 56 },
287
	.p1 = { .min = 2, .max = 8 },
288
	.p2 = { .dot_limit = 225000,
289
		.p2_slow = 7, .p2_fast = 7 },
290
};
291
 
292
/* LVDS 100mhz refclk limits. */
293
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
294
	.dot = { .min = 25000, .max = 350000 },
295
	.vco = { .min = 1760000, .max = 3510000 },
296
	.n = { .min = 1, .max = 2 },
297
	.m = { .min = 79, .max = 126 },
298
	.m1 = { .min = 12, .max = 22 },
299
	.m2 = { .min = 5, .max = 9 },
300
	.p = { .min = 28, .max = 112 },
2342 Serge 301
	.p1 = { .min = 2, .max = 8 },
2327 Serge 302
	.p2 = { .dot_limit = 225000,
303
		.p2_slow = 14, .p2_fast = 14 },
304
};
305
 
306
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
307
	.dot = { .min = 25000, .max = 350000 },
308
	.vco = { .min = 1760000, .max = 3510000 },
309
	.n = { .min = 1, .max = 3 },
310
	.m = { .min = 79, .max = 126 },
311
	.m1 = { .min = 12, .max = 22 },
312
	.m2 = { .min = 5, .max = 9 },
313
	.p = { .min = 14, .max = 42 },
2342 Serge 314
	.p1 = { .min = 2, .max = 6 },
2327 Serge 315
	.p2 = { .dot_limit = 225000,
316
		.p2_slow = 7, .p2_fast = 7 },
317
};
318
 
3031 serge 319
static const intel_limit_t intel_limits_vlv_dac = {
320
	.dot = { .min = 25000, .max = 270000 },
321
	.vco = { .min = 4000000, .max = 6000000 },
322
	.n = { .min = 1, .max = 7 },
323
	.m = { .min = 22, .max = 450 }, /* guess */
324
	.m1 = { .min = 2, .max = 3 },
325
	.m2 = { .min = 11, .max = 156 },
326
	.p = { .min = 10, .max = 30 },
4104 Serge 327
	.p1 = { .min = 1, .max = 3 },
3031 serge 328
	.p2 = { .dot_limit = 270000,
329
		.p2_slow = 2, .p2_fast = 20 },
330
};
331
 
332
static const intel_limit_t intel_limits_vlv_hdmi = {
4104 Serge 333
	.dot = { .min = 25000, .max = 270000 },
334
	.vco = { .min = 4000000, .max = 6000000 },
3031 serge 335
	.n = { .min = 1, .max = 7 },
336
	.m = { .min = 60, .max = 300 }, /* guess */
337
	.m1 = { .min = 2, .max = 3 },
338
	.m2 = { .min = 11, .max = 156 },
339
	.p = { .min = 10, .max = 30 },
340
	.p1 = { .min = 2, .max = 3 },
341
	.p2 = { .dot_limit = 270000,
342
		.p2_slow = 2, .p2_fast = 20 },
343
};
344
 
345
static const intel_limit_t intel_limits_vlv_dp = {
3243 Serge 346
	.dot = { .min = 25000, .max = 270000 },
347
	.vco = { .min = 4000000, .max = 6000000 },
3031 serge 348
	.n = { .min = 1, .max = 7 },
3243 Serge 349
	.m = { .min = 22, .max = 450 },
3031 serge 350
	.m1 = { .min = 2, .max = 3 },
351
	.m2 = { .min = 11, .max = 156 },
352
	.p = { .min = 10, .max = 30 },
4104 Serge 353
	.p1 = { .min = 1, .max = 3 },
3031 serge 354
	.p2 = { .dot_limit = 270000,
355
		.p2_slow = 2, .p2_fast = 20 },
356
};
357
 
2327 Serge 358
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
359
						int refclk)
360
{
361
	struct drm_device *dev = crtc->dev;
362
	const intel_limit_t *limit;
363
 
364
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3480 Serge 365
		if (intel_is_dual_link_lvds(dev)) {
2327 Serge 366
			if (refclk == 100000)
367
				limit = &intel_limits_ironlake_dual_lvds_100m;
368
			else
369
				limit = &intel_limits_ironlake_dual_lvds;
370
		} else {
371
			if (refclk == 100000)
372
				limit = &intel_limits_ironlake_single_lvds_100m;
373
			else
374
				limit = &intel_limits_ironlake_single_lvds;
375
		}
4104 Serge 376
	} else
2327 Serge 377
		limit = &intel_limits_ironlake_dac;
378
 
379
	return limit;
380
}
381
 
382
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
383
{
384
	struct drm_device *dev = crtc->dev;
385
	const intel_limit_t *limit;
386
 
387
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3480 Serge 388
		if (intel_is_dual_link_lvds(dev))
2327 Serge 389
			limit = &intel_limits_g4x_dual_channel_lvds;
390
		else
391
			limit = &intel_limits_g4x_single_channel_lvds;
392
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
393
		   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
394
		limit = &intel_limits_g4x_hdmi;
395
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
396
		limit = &intel_limits_g4x_sdvo;
397
	} else /* The option is for other outputs */
398
		limit = &intel_limits_i9xx_sdvo;
399
 
400
	return limit;
401
}
402
 
403
static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
404
{
405
	struct drm_device *dev = crtc->dev;
406
	const intel_limit_t *limit;
407
 
408
	if (HAS_PCH_SPLIT(dev))
409
		limit = intel_ironlake_limit(crtc, refclk);
410
	else if (IS_G4X(dev)) {
411
		limit = intel_g4x_limit(crtc);
412
	} else if (IS_PINEVIEW(dev)) {
413
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
414
			limit = &intel_limits_pineview_lvds;
415
		else
416
			limit = &intel_limits_pineview_sdvo;
3031 serge 417
	} else if (IS_VALLEYVIEW(dev)) {
418
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
419
			limit = &intel_limits_vlv_dac;
420
		else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
421
			limit = &intel_limits_vlv_hdmi;
422
		else
423
			limit = &intel_limits_vlv_dp;
2327 Serge 424
	} else if (!IS_GEN2(dev)) {
425
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
426
			limit = &intel_limits_i9xx_lvds;
427
		else
428
			limit = &intel_limits_i9xx_sdvo;
429
	} else {
430
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431
			limit = &intel_limits_i8xx_lvds;
4104 Serge 432
		else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
433
			limit = &intel_limits_i8xx_dvo;
2327 Serge 434
		else
4104 Serge 435
			limit = &intel_limits_i8xx_dac;
2327 Serge 436
	}
437
	return limit;
438
}
439
 
440
/* m1 is reserved as 0 in Pineview, n is a ring counter */
441
static void pineview_clock(int refclk, intel_clock_t *clock)
442
{
443
	clock->m = clock->m2 + 2;
444
	clock->p = clock->p1 * clock->p2;
445
	clock->vco = refclk * clock->m / clock->n;
446
	clock->dot = clock->vco / clock->p;
447
}
448
 
4104 Serge 449
static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
2327 Serge 450
{
4104 Serge 451
	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
452
}
453
 
454
static void i9xx_clock(int refclk, intel_clock_t *clock)
455
{
456
	clock->m = i9xx_dpll_compute_m(clock);
2327 Serge 457
	clock->p = clock->p1 * clock->p2;
458
	clock->vco = refclk * clock->m / (clock->n + 2);
459
	clock->dot = clock->vco / clock->p;
460
}
461
 
462
/**
463
 * Returns whether any output on the specified pipe is of the specified type
464
 */
465
bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
466
{
467
	struct drm_device *dev = crtc->dev;
468
	struct intel_encoder *encoder;
469
 
3031 serge 470
	for_each_encoder_on_crtc(dev, crtc, encoder)
471
		if (encoder->type == type)
2327 Serge 472
			return true;
473
 
474
	return false;
475
}
476
 
477
#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
478
/**
479
 * Returns whether the given set of divisors are valid for a given refclk with
480
 * the given connectors.
481
 */
482
 
483
static bool intel_PLL_is_valid(struct drm_device *dev,
484
			       const intel_limit_t *limit,
485
			       const intel_clock_t *clock)
486
{
487
	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
2342 Serge 488
		INTELPllInvalid("p1 out of range\n");
2327 Serge 489
	if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
2342 Serge 490
		INTELPllInvalid("p out of range\n");
2327 Serge 491
	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
2342 Serge 492
		INTELPllInvalid("m2 out of range\n");
2327 Serge 493
	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
2342 Serge 494
		INTELPllInvalid("m1 out of range\n");
2327 Serge 495
	if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
2342 Serge 496
		INTELPllInvalid("m1 <= m2\n");
2327 Serge 497
	if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
2342 Serge 498
		INTELPllInvalid("m out of range\n");
2327 Serge 499
	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
2342 Serge 500
		INTELPllInvalid("n out of range\n");
2327 Serge 501
	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
2342 Serge 502
		INTELPllInvalid("vco out of range\n");
2327 Serge 503
	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
504
	 * connector, etc., rather than just a single range.
505
	 */
506
	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
2342 Serge 507
		INTELPllInvalid("dot out of range\n");
2327 Serge 508
 
509
	return true;
510
}
511
 
512
static bool
4104 Serge 513
i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 514
		    int target, int refclk, intel_clock_t *match_clock,
515
		    intel_clock_t *best_clock)
2327 Serge 516
{
517
	struct drm_device *dev = crtc->dev;
518
	intel_clock_t clock;
519
	int err = target;
520
 
3480 Serge 521
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2327 Serge 522
		/*
3480 Serge 523
		 * For LVDS just rely on its current settings for dual-channel.
524
		 * We haven't figured out how to reliably set up different
525
		 * single/dual channel state, if we even can.
2327 Serge 526
		 */
3480 Serge 527
		if (intel_is_dual_link_lvds(dev))
2327 Serge 528
			clock.p2 = limit->p2.p2_fast;
529
		else
530
			clock.p2 = limit->p2.p2_slow;
531
	} else {
532
		if (target < limit->p2.dot_limit)
533
			clock.p2 = limit->p2.p2_slow;
534
		else
535
			clock.p2 = limit->p2.p2_fast;
536
	}
537
 
2342 Serge 538
	memset(best_clock, 0, sizeof(*best_clock));
2327 Serge 539
 
540
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
541
	     clock.m1++) {
542
		for (clock.m2 = limit->m2.min;
543
		     clock.m2 <= limit->m2.max; clock.m2++) {
4104 Serge 544
			if (clock.m2 >= clock.m1)
2327 Serge 545
				break;
546
			for (clock.n = limit->n.min;
547
			     clock.n <= limit->n.max; clock.n++) {
548
				for (clock.p1 = limit->p1.min;
549
					clock.p1 <= limit->p1.max; clock.p1++) {
550
					int this_err;
551
 
4104 Serge 552
					i9xx_clock(refclk, &clock);
2327 Serge 553
					if (!intel_PLL_is_valid(dev, limit,
554
								&clock))
555
						continue;
3031 serge 556
					if (match_clock &&
557
					    clock.p != match_clock->p)
558
						continue;
2327 Serge 559
 
560
					this_err = abs(clock.dot - target);
561
					if (this_err < err) {
562
						*best_clock = clock;
563
						err = this_err;
564
					}
565
				}
566
			}
567
		}
568
	}
569
 
570
	return (err != target);
571
}
572
 
573
static bool
4104 Serge 574
pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
575
		   int target, int refclk, intel_clock_t *match_clock,
576
		   intel_clock_t *best_clock)
577
{
578
	struct drm_device *dev = crtc->dev;
579
	intel_clock_t clock;
580
	int err = target;
581
 
582
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
583
		/*
584
		 * For LVDS just rely on its current settings for dual-channel.
585
		 * We haven't figured out how to reliably set up different
586
		 * single/dual channel state, if we even can.
587
		 */
588
		if (intel_is_dual_link_lvds(dev))
589
			clock.p2 = limit->p2.p2_fast;
590
		else
591
			clock.p2 = limit->p2.p2_slow;
592
	} else {
593
		if (target < limit->p2.dot_limit)
594
			clock.p2 = limit->p2.p2_slow;
595
		else
596
			clock.p2 = limit->p2.p2_fast;
597
	}
598
 
599
	memset(best_clock, 0, sizeof(*best_clock));
600
 
601
	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
602
	     clock.m1++) {
603
		for (clock.m2 = limit->m2.min;
604
		     clock.m2 <= limit->m2.max; clock.m2++) {
605
			for (clock.n = limit->n.min;
606
			     clock.n <= limit->n.max; clock.n++) {
607
				for (clock.p1 = limit->p1.min;
608
					clock.p1 <= limit->p1.max; clock.p1++) {
609
					int this_err;
610
 
611
					pineview_clock(refclk, &clock);
612
					if (!intel_PLL_is_valid(dev, limit,
613
								&clock))
614
						continue;
615
					if (match_clock &&
616
					    clock.p != match_clock->p)
617
						continue;
618
 
619
					this_err = abs(clock.dot - target);
620
					if (this_err < err) {
621
						*best_clock = clock;
622
						err = this_err;
623
					}
624
				}
625
			}
626
		}
627
	}
628
 
629
	return (err != target);
630
}
631
 
632
static bool
633
g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 634
			int target, int refclk, intel_clock_t *match_clock,
635
			intel_clock_t *best_clock)
2327 Serge 636
{
637
	struct drm_device *dev = crtc->dev;
638
	intel_clock_t clock;
639
	int max_n;
640
	bool found;
641
	/* approximately equals target * 0.00585 */
642
	int err_most = (target >> 8) + (target >> 9);
643
	found = false;
644
 
645
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3480 Serge 646
		if (intel_is_dual_link_lvds(dev))
2327 Serge 647
			clock.p2 = limit->p2.p2_fast;
648
		else
649
			clock.p2 = limit->p2.p2_slow;
650
	} else {
651
		if (target < limit->p2.dot_limit)
652
			clock.p2 = limit->p2.p2_slow;
653
		else
654
			clock.p2 = limit->p2.p2_fast;
655
	}
656
 
657
	memset(best_clock, 0, sizeof(*best_clock));
658
	max_n = limit->n.max;
659
	/* based on hardware requirement, prefer smaller n to precision */
660
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
661
		/* based on hardware requirement, prefere larger m1,m2 */
662
		for (clock.m1 = limit->m1.max;
663
		     clock.m1 >= limit->m1.min; clock.m1--) {
664
			for (clock.m2 = limit->m2.max;
665
			     clock.m2 >= limit->m2.min; clock.m2--) {
666
				for (clock.p1 = limit->p1.max;
667
				     clock.p1 >= limit->p1.min; clock.p1--) {
668
					int this_err;
669
 
4104 Serge 670
					i9xx_clock(refclk, &clock);
2327 Serge 671
					if (!intel_PLL_is_valid(dev, limit,
672
								&clock))
673
						continue;
674
 
675
					this_err = abs(clock.dot - target);
676
					if (this_err < err_most) {
677
						*best_clock = clock;
678
						err_most = this_err;
679
						max_n = clock.n;
680
						found = true;
681
					}
682
				}
683
			}
684
		}
685
	}
686
	return found;
687
}
688
 
689
static bool
4104 Serge 690
vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
3031 serge 691
			int target, int refclk, intel_clock_t *match_clock,
692
			intel_clock_t *best_clock)
693
{
694
	u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
695
	u32 m, n, fastclk;
4104 Serge 696
	u32 updrate, minupdate, p;
3031 serge 697
	unsigned long bestppm, ppm, absppm;
698
	int dotclk, flag;
2327 Serge 699
 
3031 serge 700
	flag = 0;
701
	dotclk = target * 1000;
702
	bestppm = 1000000;
703
	ppm = absppm = 0;
704
	fastclk = dotclk / (2*100);
705
	updrate = 0;
706
	minupdate = 19200;
707
	n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
708
	bestm1 = bestm2 = bestp1 = bestp2 = 0;
709
 
710
	/* based on hardware requirement, prefer smaller n to precision */
711
	for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
712
		updrate = refclk / n;
713
		for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
714
			for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
715
				if (p2 > 10)
716
					p2 = p2 - 1;
717
				p = p1 * p2;
718
				/* based on hardware requirement, prefer bigger m1,m2 values */
719
				for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
720
					m2 = (((2*(fastclk * p * n / m1 )) +
721
					       refclk) / (2*refclk));
722
					m = m1 * m2;
723
					vco = updrate * m;
724
					if (vco >= limit->vco.min && vco < limit->vco.max) {
725
						ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
726
						absppm = (ppm > 0) ? ppm : (-ppm);
727
						if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
728
							bestppm = 0;
729
							flag = 1;
730
						}
731
						if (absppm < bestppm - 10) {
732
							bestppm = absppm;
733
							flag = 1;
734
						}
735
						if (flag) {
736
							bestn = n;
737
							bestm1 = m1;
738
							bestm2 = m2;
739
							bestp1 = p1;
740
							bestp2 = p2;
741
							flag = 0;
742
						}
743
					}
744
				}
745
			}
746
		}
747
	}
748
	best_clock->n = bestn;
749
	best_clock->m1 = bestm1;
750
	best_clock->m2 = bestm2;
751
	best_clock->p1 = bestp1;
752
	best_clock->p2 = bestp2;
753
 
754
	return true;
755
}
756
 
3243 Serge 757
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
758
					     enum pipe pipe)
759
{
760
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
761
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
762
 
3746 Serge 763
	return intel_crtc->config.cpu_transcoder;
3243 Serge 764
}
765
 
3031 serge 766
static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
767
{
768
	struct drm_i915_private *dev_priv = dev->dev_private;
769
	u32 frame, frame_reg = PIPEFRAME(pipe);
770
 
771
	frame = I915_READ(frame_reg);
772
 
773
	if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
774
		DRM_DEBUG_KMS("vblank wait timed out\n");
775
}
776
 
2327 Serge 777
/**
778
 * intel_wait_for_vblank - wait for vblank on a given pipe
779
 * @dev: drm device
780
 * @pipe: pipe to wait for
781
 *
782
 * Wait for vblank to occur on a given pipe.  Needed for various bits of
783
 * mode setting code.
784
 */
785
void intel_wait_for_vblank(struct drm_device *dev, int pipe)
786
{
787
	struct drm_i915_private *dev_priv = dev->dev_private;
788
	int pipestat_reg = PIPESTAT(pipe);
789
 
3031 serge 790
	if (INTEL_INFO(dev)->gen >= 5) {
791
		ironlake_wait_for_vblank(dev, pipe);
792
		return;
793
	}
794
 
2327 Serge 795
	/* Clear existing vblank status. Note this will clear any other
796
	 * sticky status fields as well.
797
	 *
798
	 * This races with i915_driver_irq_handler() with the result
799
	 * that either function could miss a vblank event.  Here it is not
800
	 * fatal, as we will either wait upon the next vblank interrupt or
801
	 * timeout.  Generally speaking intel_wait_for_vblank() is only
802
	 * called during modeset at which time the GPU should be idle and
803
	 * should *not* be performing page flips and thus not waiting on
804
	 * vblanks...
805
	 * Currently, the result of us stealing a vblank from the irq
806
	 * handler is that a single frame will be skipped during swapbuffers.
807
	 */
808
	I915_WRITE(pipestat_reg,
809
		   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
810
 
811
	/* Wait for vblank interrupt bit to set */
812
	if (wait_for(I915_READ(pipestat_reg) &
813
		     PIPE_VBLANK_INTERRUPT_STATUS,
814
		     50))
815
		DRM_DEBUG_KMS("vblank wait timed out\n");
816
}
817
 
818
/*
819
 * intel_wait_for_pipe_off - wait for pipe to turn off
820
 * @dev: drm device
821
 * @pipe: pipe to wait for
822
 *
823
 * After disabling a pipe, we can't wait for vblank in the usual way,
824
 * spinning on the vblank interrupt status bit, since we won't actually
825
 * see an interrupt when the pipe is disabled.
826
 *
827
 * On Gen4 and above:
828
 *   wait for the pipe register state bit to turn off
829
 *
830
 * Otherwise:
831
 *   wait for the display line value to settle (it usually
832
 *   ends up stopping at the start of the next frame).
833
 *
834
 */
835
void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
836
{
837
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 838
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
839
								      pipe);
2327 Serge 840
 
841
	if (INTEL_INFO(dev)->gen >= 4) {
3243 Serge 842
		int reg = PIPECONF(cpu_transcoder);
2327 Serge 843
 
844
		/* Wait for the Pipe State to go off */
845
		if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
846
			     100))
3031 serge 847
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 848
	} else {
3031 serge 849
		u32 last_line, line_mask;
2327 Serge 850
		int reg = PIPEDSL(pipe);
4104 Serge 851
		unsigned long timeout = GetTimerTicks() + msecs_to_jiffies(100);
2327 Serge 852
 
3031 serge 853
		if (IS_GEN2(dev))
854
			line_mask = DSL_LINEMASK_GEN2;
855
		else
856
			line_mask = DSL_LINEMASK_GEN3;
857
 
2327 Serge 858
		/* Wait for the display line to settle */
859
		do {
3031 serge 860
			last_line = I915_READ(reg) & line_mask;
2327 Serge 861
			mdelay(5);
3031 serge 862
		} while (((I915_READ(reg) & line_mask) != last_line) &&
863
			 time_after(timeout, GetTimerTicks()));
864
		if (time_after(GetTimerTicks(), timeout))
865
			WARN(1, "pipe_off wait timed out\n");
2327 Serge 866
	}
867
}
868
 
3480 Serge 869
/*
870
 * ibx_digital_port_connected - is the specified port connected?
871
 * @dev_priv: i915 private structure
872
 * @port: the port to test
873
 *
874
 * Returns true if @port is connected, false otherwise.
875
 */
876
bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
877
				struct intel_digital_port *port)
878
{
879
	u32 bit;
880
 
881
	if (HAS_PCH_IBX(dev_priv->dev)) {
882
		switch(port->port) {
883
		case PORT_B:
884
			bit = SDE_PORTB_HOTPLUG;
885
			break;
886
		case PORT_C:
887
			bit = SDE_PORTC_HOTPLUG;
888
			break;
889
		case PORT_D:
890
			bit = SDE_PORTD_HOTPLUG;
891
			break;
892
		default:
893
			return true;
894
		}
895
	} else {
896
		switch(port->port) {
897
		case PORT_B:
898
			bit = SDE_PORTB_HOTPLUG_CPT;
899
			break;
900
		case PORT_C:
901
			bit = SDE_PORTC_HOTPLUG_CPT;
902
			break;
903
		case PORT_D:
904
			bit = SDE_PORTD_HOTPLUG_CPT;
905
			break;
906
		default:
907
			return true;
908
		}
909
	}
910
 
911
	return I915_READ(SDEISR) & bit;
912
}
913
 
2327 Serge 914
static const char *state_string(bool enabled)
915
{
916
	return enabled ? "on" : "off";
917
}
918
 
919
/* Only for pre-ILK configs */
4104 Serge 920
void assert_pll(struct drm_i915_private *dev_priv,
2327 Serge 921
		       enum pipe pipe, bool state)
922
{
923
	int reg;
924
	u32 val;
925
	bool cur_state;
926
 
927
	reg = DPLL(pipe);
928
	val = I915_READ(reg);
929
	cur_state = !!(val & DPLL_VCO_ENABLE);
930
	WARN(cur_state != state,
931
	     "PLL state assertion failure (expected %s, current %s)\n",
932
	     state_string(state), state_string(cur_state));
933
}
934
 
4104 Serge 935
struct intel_shared_dpll *
936
intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
937
{
938
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
939
 
940
	if (crtc->config.shared_dpll < 0)
941
		return NULL;
942
 
943
	return &dev_priv->shared_dplls[crtc->config.shared_dpll];
944
}
945
 
2327 Serge 946
/* For ILK+ */
4104 Serge 947
void assert_shared_dpll(struct drm_i915_private *dev_priv,
948
			       struct intel_shared_dpll *pll,
3031 serge 949
			   bool state)
2327 Serge 950
{
951
	bool cur_state;
4104 Serge 952
	struct intel_dpll_hw_state hw_state;
2327 Serge 953
 
3031 serge 954
	if (HAS_PCH_LPT(dev_priv->dev)) {
955
		DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
956
		return;
957
	}
2342 Serge 958
 
3031 serge 959
	if (WARN (!pll,
4104 Serge 960
		  "asserting DPLL %s with no DPLL\n", state_string(state)))
3031 serge 961
		return;
2342 Serge 962
 
4104 Serge 963
	cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
3031 serge 964
	WARN(cur_state != state,
4104 Serge 965
	     "%s assertion failure (expected %s, current %s)\n",
966
	     pll->name, state_string(state), state_string(cur_state));
2327 Serge 967
}
968
 
969
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
970
			  enum pipe pipe, bool state)
971
{
972
	int reg;
973
	u32 val;
974
	bool cur_state;
3243 Serge 975
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
976
								      pipe);
2327 Serge 977
 
3480 Serge 978
	if (HAS_DDI(dev_priv->dev)) {
979
		/* DDI does not have a specific FDI_TX register */
3243 Serge 980
		reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
3031 serge 981
		val = I915_READ(reg);
3243 Serge 982
		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
3031 serge 983
	} else {
2327 Serge 984
	reg = FDI_TX_CTL(pipe);
985
	val = I915_READ(reg);
986
	cur_state = !!(val & FDI_TX_ENABLE);
3031 serge 987
	}
2327 Serge 988
	WARN(cur_state != state,
989
	     "FDI TX state assertion failure (expected %s, current %s)\n",
990
	     state_string(state), state_string(cur_state));
991
}
992
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
993
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
994
 
995
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
996
			  enum pipe pipe, bool state)
997
{
998
	int reg;
999
	u32 val;
1000
	bool cur_state;
1001
 
1002
	reg = FDI_RX_CTL(pipe);
1003
	val = I915_READ(reg);
1004
	cur_state = !!(val & FDI_RX_ENABLE);
1005
	WARN(cur_state != state,
1006
	     "FDI RX state assertion failure (expected %s, current %s)\n",
1007
	     state_string(state), state_string(cur_state));
1008
}
1009
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1010
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1011
 
1012
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1013
				      enum pipe pipe)
1014
{
1015
	int reg;
1016
	u32 val;
1017
 
1018
	/* ILK FDI PLL is always enabled */
1019
	if (dev_priv->info->gen == 5)
1020
		return;
1021
 
3031 serge 1022
	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
3480 Serge 1023
	if (HAS_DDI(dev_priv->dev))
3031 serge 1024
		return;
1025
 
2327 Serge 1026
	reg = FDI_TX_CTL(pipe);
1027
	val = I915_READ(reg);
1028
	WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1029
}
1030
 
4104 Serge 1031
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1032
		       enum pipe pipe, bool state)
2327 Serge 1033
{
1034
	int reg;
1035
	u32 val;
4104 Serge 1036
	bool cur_state;
2327 Serge 1037
 
1038
	reg = FDI_RX_CTL(pipe);
1039
	val = I915_READ(reg);
4104 Serge 1040
	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1041
	WARN(cur_state != state,
1042
	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1043
	     state_string(state), state_string(cur_state));
2327 Serge 1044
}
1045
 
1046
static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1047
				  enum pipe pipe)
1048
{
1049
	int pp_reg, lvds_reg;
1050
	u32 val;
1051
	enum pipe panel_pipe = PIPE_A;
1052
	bool locked = true;
1053
 
1054
	if (HAS_PCH_SPLIT(dev_priv->dev)) {
1055
		pp_reg = PCH_PP_CONTROL;
1056
		lvds_reg = PCH_LVDS;
1057
	} else {
1058
		pp_reg = PP_CONTROL;
1059
		lvds_reg = LVDS;
1060
	}
1061
 
1062
	val = I915_READ(pp_reg);
1063
	if (!(val & PANEL_POWER_ON) ||
1064
	    ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1065
		locked = false;
1066
 
1067
	if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1068
		panel_pipe = PIPE_B;
1069
 
1070
	WARN(panel_pipe == pipe && locked,
1071
	     "panel assertion failure, pipe %c regs locked\n",
1072
	     pipe_name(pipe));
1073
}
1074
 
2342 Serge 1075
void assert_pipe(struct drm_i915_private *dev_priv,
2327 Serge 1076
			enum pipe pipe, bool state)
1077
{
1078
	int reg;
1079
	u32 val;
1080
	bool cur_state;
3243 Serge 1081
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1082
								      pipe);
2327 Serge 1083
 
3031 serge 1084
	/* if we need the pipe A quirk it must be always on */
1085
	if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1086
		state = true;
1087
 
4104 Serge 1088
	if (!intel_display_power_enabled(dev_priv->dev,
1089
				POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
3480 Serge 1090
		cur_state = false;
1091
	} else {
3243 Serge 1092
	reg = PIPECONF(cpu_transcoder);
2327 Serge 1093
	val = I915_READ(reg);
1094
	cur_state = !!(val & PIPECONF_ENABLE);
3480 Serge 1095
	}
1096
 
2327 Serge 1097
	WARN(cur_state != state,
1098
	     "pipe %c assertion failure (expected %s, current %s)\n",
1099
	     pipe_name(pipe), state_string(state), state_string(cur_state));
1100
}
1101
 
3031 serge 1102
static void assert_plane(struct drm_i915_private *dev_priv,
1103
			 enum plane plane, bool state)
2327 Serge 1104
{
1105
	int reg;
1106
	u32 val;
3031 serge 1107
	bool cur_state;
2327 Serge 1108
 
1109
	reg = DSPCNTR(plane);
1110
	val = I915_READ(reg);
3031 serge 1111
	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1112
	WARN(cur_state != state,
1113
	     "plane %c assertion failure (expected %s, current %s)\n",
1114
	     plane_name(plane), state_string(state), state_string(cur_state));
2327 Serge 1115
}
1116
 
3031 serge 1117
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1118
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1119
 
2327 Serge 1120
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1121
				   enum pipe pipe)
1122
{
4104 Serge 1123
	struct drm_device *dev = dev_priv->dev;
2327 Serge 1124
	int reg, i;
1125
	u32 val;
1126
	int cur_pipe;
1127
 
4104 Serge 1128
	/* Primary planes are fixed to pipes on gen4+ */
1129
	if (INTEL_INFO(dev)->gen >= 4) {
3031 serge 1130
		reg = DSPCNTR(pipe);
1131
		val = I915_READ(reg);
1132
		WARN((val & DISPLAY_PLANE_ENABLE),
1133
		     "plane %c assertion failure, should be disabled but not\n",
1134
		     plane_name(pipe));
2327 Serge 1135
		return;
3031 serge 1136
	}
2327 Serge 1137
 
1138
	/* Need to check both planes against the pipe */
4104 Serge 1139
	for_each_pipe(i) {
2327 Serge 1140
		reg = DSPCNTR(i);
1141
		val = I915_READ(reg);
1142
		cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1143
			DISPPLANE_SEL_PIPE_SHIFT;
1144
		WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1145
		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1146
		     plane_name(i), pipe_name(pipe));
1147
	}
1148
}
1149
 
3746 Serge 1150
static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1151
				    enum pipe pipe)
1152
{
4104 Serge 1153
	struct drm_device *dev = dev_priv->dev;
3746 Serge 1154
	int reg, i;
1155
	u32 val;
1156
 
4104 Serge 1157
	if (IS_VALLEYVIEW(dev)) {
3746 Serge 1158
	for (i = 0; i < dev_priv->num_plane; i++) {
1159
		reg = SPCNTR(pipe, i);
1160
		val = I915_READ(reg);
1161
		WARN((val & SP_ENABLE),
4104 Serge 1162
			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1163
			     sprite_name(pipe, i), pipe_name(pipe));
1164
		}
1165
	} else if (INTEL_INFO(dev)->gen >= 7) {
1166
		reg = SPRCTL(pipe);
1167
		val = I915_READ(reg);
1168
		WARN((val & SPRITE_ENABLE),
1169
		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1170
		     plane_name(pipe), pipe_name(pipe));
1171
	} else if (INTEL_INFO(dev)->gen >= 5) {
1172
		reg = DVSCNTR(pipe);
1173
		val = I915_READ(reg);
1174
		WARN((val & DVS_ENABLE),
1175
		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1176
		     plane_name(pipe), pipe_name(pipe));
3746 Serge 1177
	}
1178
}
1179
 
2327 Serge 1180
static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1181
{
1182
	u32 val;
1183
	bool enabled;
1184
 
3031 serge 1185
	if (HAS_PCH_LPT(dev_priv->dev)) {
1186
		DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1187
		return;
1188
	}
1189
 
2327 Serge 1190
	val = I915_READ(PCH_DREF_CONTROL);
1191
	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1192
			    DREF_SUPERSPREAD_SOURCE_MASK));
1193
	WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1194
}
1195
 
4104 Serge 1196
static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
2327 Serge 1197
				       enum pipe pipe)
1198
{
1199
	int reg;
1200
	u32 val;
1201
	bool enabled;
1202
 
4104 Serge 1203
	reg = PCH_TRANSCONF(pipe);
2327 Serge 1204
	val = I915_READ(reg);
1205
	enabled = !!(val & TRANS_ENABLE);
1206
	WARN(enabled,
1207
	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1208
	     pipe_name(pipe));
1209
}
1210
 
1211
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1212
			    enum pipe pipe, u32 port_sel, u32 val)
1213
{
1214
	if ((val & DP_PORT_EN) == 0)
1215
		return false;
1216
 
1217
	if (HAS_PCH_CPT(dev_priv->dev)) {
1218
		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1219
		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1220
		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1221
			return false;
1222
	} else {
1223
		if ((val & DP_PIPE_MASK) != (pipe << 30))
1224
			return false;
1225
	}
1226
	return true;
1227
}
1228
 
1229
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1230
			      enum pipe pipe, u32 val)
1231
{
3746 Serge 1232
	if ((val & SDVO_ENABLE) == 0)
2327 Serge 1233
		return false;
1234
 
1235
	if (HAS_PCH_CPT(dev_priv->dev)) {
3746 Serge 1236
		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
2327 Serge 1237
			return false;
1238
	} else {
3746 Serge 1239
		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
2327 Serge 1240
			return false;
1241
	}
1242
	return true;
1243
}
1244
 
1245
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1246
			      enum pipe pipe, u32 val)
1247
{
1248
	if ((val & LVDS_PORT_EN) == 0)
1249
		return false;
1250
 
1251
	if (HAS_PCH_CPT(dev_priv->dev)) {
1252
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1253
			return false;
1254
	} else {
1255
		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1256
			return false;
1257
	}
1258
	return true;
1259
}
1260
 
1261
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1262
			      enum pipe pipe, u32 val)
1263
{
1264
	if ((val & ADPA_DAC_ENABLE) == 0)
1265
		return false;
1266
	if (HAS_PCH_CPT(dev_priv->dev)) {
1267
		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1268
			return false;
1269
	} else {
1270
		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1271
			return false;
1272
	}
1273
	return true;
1274
}
1275
 
1276
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1277
				   enum pipe pipe, int reg, u32 port_sel)
1278
{
1279
	u32 val = I915_READ(reg);
1280
	WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1281
	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1282
	     reg, pipe_name(pipe));
3031 serge 1283
 
1284
	WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1285
	     && (val & DP_PIPEB_SELECT),
1286
	     "IBX PCH dp port still using transcoder B\n");
2327 Serge 1287
}
1288
 
1289
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1290
				     enum pipe pipe, int reg)
1291
{
1292
	u32 val = I915_READ(reg);
3031 serge 1293
	WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1294
	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
2327 Serge 1295
	     reg, pipe_name(pipe));
3031 serge 1296
 
3746 Serge 1297
	WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
3031 serge 1298
	     && (val & SDVO_PIPE_B_SELECT),
1299
	     "IBX PCH hdmi port still using transcoder B\n");
2327 Serge 1300
}
1301
 
1302
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1303
				      enum pipe pipe)
1304
{
1305
	int reg;
1306
	u32 val;
1307
 
1308
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1309
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1310
	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1311
 
1312
	reg = PCH_ADPA;
1313
	val = I915_READ(reg);
3031 serge 1314
	WARN(adpa_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1315
	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1316
	     pipe_name(pipe));
1317
 
1318
	reg = PCH_LVDS;
1319
	val = I915_READ(reg);
3031 serge 1320
	WARN(lvds_pipe_enabled(dev_priv, pipe, val),
2327 Serge 1321
	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1322
	     pipe_name(pipe));
1323
 
3746 Serge 1324
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1325
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1326
	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
2327 Serge 1327
}
1328
 
4104 Serge 1329
static void vlv_enable_pll(struct intel_crtc *crtc)
2327 Serge 1330
{
4104 Serge 1331
	struct drm_device *dev = crtc->base.dev;
1332
	struct drm_i915_private *dev_priv = dev->dev_private;
1333
	int reg = DPLL(crtc->pipe);
1334
	u32 dpll = crtc->config.dpll_hw_state.dpll;
2327 Serge 1335
 
4104 Serge 1336
	assert_pipe_disabled(dev_priv, crtc->pipe);
1337
 
2327 Serge 1338
    /* No really, not for ILK+ */
4104 Serge 1339
	BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
2327 Serge 1340
 
1341
    /* PLL is protected by panel, make sure we can write it */
1342
    if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
4104 Serge 1343
		assert_panel_unlocked(dev_priv, crtc->pipe);
2327 Serge 1344
 
4104 Serge 1345
	I915_WRITE(reg, dpll);
1346
	POSTING_READ(reg);
1347
	udelay(150);
2327 Serge 1348
 
4104 Serge 1349
	if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1350
		DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1351
 
1352
	I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1353
	POSTING_READ(DPLL_MD(crtc->pipe));
1354
 
1355
	/* We do this three times for luck */
1356
	I915_WRITE(reg, dpll);
1357
	POSTING_READ(reg);
1358
	udelay(150); /* wait for warmup */
1359
	I915_WRITE(reg, dpll);
1360
	POSTING_READ(reg);
1361
	udelay(150); /* wait for warmup */
1362
	I915_WRITE(reg, dpll);
1363
	POSTING_READ(reg);
1364
	udelay(150); /* wait for warmup */
1365
}
1366
 
1367
static void i9xx_enable_pll(struct intel_crtc *crtc)
1368
{
1369
	struct drm_device *dev = crtc->base.dev;
1370
	struct drm_i915_private *dev_priv = dev->dev_private;
1371
	int reg = DPLL(crtc->pipe);
1372
	u32 dpll = crtc->config.dpll_hw_state.dpll;
1373
 
1374
	assert_pipe_disabled(dev_priv, crtc->pipe);
1375
 
1376
	/* No really, not for ILK+ */
1377
	BUG_ON(dev_priv->info->gen >= 5);
1378
 
1379
	/* PLL is protected by panel, make sure we can write it */
1380
	if (IS_MOBILE(dev) && !IS_I830(dev))
1381
		assert_panel_unlocked(dev_priv, crtc->pipe);
1382
 
1383
	I915_WRITE(reg, dpll);
1384
 
1385
	/* Wait for the clocks to stabilize. */
1386
	POSTING_READ(reg);
1387
	udelay(150);
1388
 
1389
	if (INTEL_INFO(dev)->gen >= 4) {
1390
		I915_WRITE(DPLL_MD(crtc->pipe),
1391
			   crtc->config.dpll_hw_state.dpll_md);
1392
	} else {
1393
		/* The pixel multiplier can only be updated once the
1394
		 * DPLL is enabled and the clocks are stable.
1395
		 *
1396
		 * So write it again.
1397
		 */
1398
		I915_WRITE(reg, dpll);
1399
	}
1400
 
2327 Serge 1401
    /* We do this three times for luck */
4104 Serge 1402
	I915_WRITE(reg, dpll);
2327 Serge 1403
    POSTING_READ(reg);
1404
    udelay(150); /* wait for warmup */
4104 Serge 1405
	I915_WRITE(reg, dpll);
2327 Serge 1406
    POSTING_READ(reg);
1407
    udelay(150); /* wait for warmup */
4104 Serge 1408
	I915_WRITE(reg, dpll);
2327 Serge 1409
    POSTING_READ(reg);
1410
    udelay(150); /* wait for warmup */
1411
}
1412
 
1413
/**
4104 Serge 1414
 * i9xx_disable_pll - disable a PLL
2327 Serge 1415
 * @dev_priv: i915 private structure
1416
 * @pipe: pipe PLL to disable
1417
 *
1418
 * Disable the PLL for @pipe, making sure the pipe is off first.
1419
 *
1420
 * Note!  This is for pre-ILK only.
1421
 */
4104 Serge 1422
static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
2327 Serge 1423
{
1424
	/* Don't disable pipe A or pipe A PLLs if needed */
1425
	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1426
		return;
1427
 
1428
	/* Make sure the pipe isn't still relying on us */
1429
	assert_pipe_disabled(dev_priv, pipe);
1430
 
4104 Serge 1431
	I915_WRITE(DPLL(pipe), 0);
1432
	POSTING_READ(DPLL(pipe));
2327 Serge 1433
}
1434
 
4539 Serge 1435
static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1436
{
1437
	u32 val = 0;
1438
 
1439
	/* Make sure the pipe isn't still relying on us */
1440
	assert_pipe_disabled(dev_priv, pipe);
1441
 
1442
	/* Leave integrated clock source enabled */
1443
	if (pipe == PIPE_B)
1444
		val = DPLL_INTEGRATED_CRI_CLK_VLV;
1445
	I915_WRITE(DPLL(pipe), val);
1446
	POSTING_READ(DPLL(pipe));
1447
}
1448
 
4104 Serge 1449
void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
3031 serge 1450
{
4104 Serge 1451
	u32 port_mask;
3031 serge 1452
 
4104 Serge 1453
	if (!port)
1454
		port_mask = DPLL_PORTB_READY_MASK;
3243 Serge 1455
	else
4104 Serge 1456
		port_mask = DPLL_PORTC_READY_MASK;
3243 Serge 1457
 
4104 Serge 1458
	if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1459
		WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1460
		     'B' + port, I915_READ(DPLL(0)));
3031 serge 1461
}
1462
 
2327 Serge 1463
/**
4104 Serge 1464
 * ironlake_enable_shared_dpll - enable PCH PLL
2327 Serge 1465
 * @dev_priv: i915 private structure
1466
 * @pipe: pipe PLL to enable
1467
 *
1468
 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1469
 * drives the transcoder clock.
1470
 */
4104 Serge 1471
static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
2327 Serge 1472
{
4104 Serge 1473
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1474
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
2327 Serge 1475
 
3031 serge 1476
	/* PCH PLLs only available on ILK, SNB and IVB */
1477
	BUG_ON(dev_priv->info->gen < 5);
4104 Serge 1478
	if (WARN_ON(pll == NULL))
2342 Serge 1479
		return;
1480
 
3031 serge 1481
	if (WARN_ON(pll->refcount == 0))
1482
		return;
2327 Serge 1483
 
4104 Serge 1484
	DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1485
		      pll->name, pll->active, pll->on,
1486
		      crtc->base.base.id);
3031 serge 1487
 
4104 Serge 1488
	if (pll->active++) {
1489
		WARN_ON(!pll->on);
1490
		assert_shared_dpll_enabled(dev_priv, pll);
3031 serge 1491
		return;
1492
	}
4104 Serge 1493
	WARN_ON(pll->on);
3031 serge 1494
 
4104 Serge 1495
	DRM_DEBUG_KMS("enabling %s\n", pll->name);
1496
	pll->enable(dev_priv, pll);
3031 serge 1497
	pll->on = true;
2327 Serge 1498
}
1499
 
4104 Serge 1500
static void intel_disable_shared_dpll(struct intel_crtc *crtc)
2327 Serge 1501
{
4104 Serge 1502
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1503
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
2327 Serge 1504
 
1505
	/* PCH only available on ILK+ */
1506
	BUG_ON(dev_priv->info->gen < 5);
4104 Serge 1507
	if (WARN_ON(pll == NULL))
3031 serge 1508
	       return;
2327 Serge 1509
 
3031 serge 1510
	if (WARN_ON(pll->refcount == 0))
1511
		return;
2327 Serge 1512
 
4104 Serge 1513
	DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1514
		      pll->name, pll->active, pll->on,
1515
		      crtc->base.base.id);
2342 Serge 1516
 
3031 serge 1517
	if (WARN_ON(pll->active == 0)) {
4104 Serge 1518
		assert_shared_dpll_disabled(dev_priv, pll);
3031 serge 1519
		return;
1520
	}
2342 Serge 1521
 
4104 Serge 1522
	assert_shared_dpll_enabled(dev_priv, pll);
1523
	WARN_ON(!pll->on);
1524
	if (--pll->active)
2342 Serge 1525
		return;
1526
 
4104 Serge 1527
	DRM_DEBUG_KMS("disabling %s\n", pll->name);
1528
	pll->disable(dev_priv, pll);
3031 serge 1529
	pll->on = false;
2327 Serge 1530
}
1531
 
3243 Serge 1532
static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2327 Serge 1533
				    enum pipe pipe)
1534
{
3243 Serge 1535
	struct drm_device *dev = dev_priv->dev;
3031 serge 1536
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4104 Serge 1537
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3243 Serge 1538
	uint32_t reg, val, pipeconf_val;
2327 Serge 1539
 
1540
	/* PCH only available on ILK+ */
1541
	BUG_ON(dev_priv->info->gen < 5);
1542
 
1543
	/* Make sure PCH DPLL is enabled */
4104 Serge 1544
	assert_shared_dpll_enabled(dev_priv,
1545
				   intel_crtc_to_shared_dpll(intel_crtc));
2327 Serge 1546
 
1547
	/* FDI must be feeding us bits for PCH ports */
1548
	assert_fdi_tx_enabled(dev_priv, pipe);
1549
	assert_fdi_rx_enabled(dev_priv, pipe);
1550
 
3243 Serge 1551
	if (HAS_PCH_CPT(dev)) {
1552
		/* Workaround: Set the timing override bit before enabling the
1553
		 * pch transcoder. */
1554
		reg = TRANS_CHICKEN2(pipe);
1555
		val = I915_READ(reg);
1556
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1557
		I915_WRITE(reg, val);
3031 serge 1558
	}
3243 Serge 1559
 
4104 Serge 1560
	reg = PCH_TRANSCONF(pipe);
2327 Serge 1561
	val = I915_READ(reg);
3031 serge 1562
	pipeconf_val = I915_READ(PIPECONF(pipe));
2327 Serge 1563
 
1564
	if (HAS_PCH_IBX(dev_priv->dev)) {
1565
		/*
1566
		 * make the BPC in transcoder be consistent with
1567
		 * that in pipeconf reg.
1568
		 */
3480 Serge 1569
		val &= ~PIPECONF_BPC_MASK;
1570
		val |= pipeconf_val & PIPECONF_BPC_MASK;
2327 Serge 1571
	}
3031 serge 1572
 
1573
	val &= ~TRANS_INTERLACE_MASK;
1574
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1575
		if (HAS_PCH_IBX(dev_priv->dev) &&
1576
		    intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1577
			val |= TRANS_LEGACY_INTERLACED_ILK;
1578
		else
1579
			val |= TRANS_INTERLACED;
1580
	else
1581
		val |= TRANS_PROGRESSIVE;
1582
 
2327 Serge 1583
	I915_WRITE(reg, val | TRANS_ENABLE);
1584
	if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4104 Serge 1585
		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2327 Serge 1586
}
1587
 
3243 Serge 1588
static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1589
				      enum transcoder cpu_transcoder)
1590
{
1591
	u32 val, pipeconf_val;
1592
 
1593
	/* PCH only available on ILK+ */
1594
	BUG_ON(dev_priv->info->gen < 5);
1595
 
1596
	/* FDI must be feeding us bits for PCH ports */
3480 Serge 1597
	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
3243 Serge 1598
	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1599
 
1600
	/* Workaround: set timing override bit. */
1601
	val = I915_READ(_TRANSA_CHICKEN2);
1602
	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1603
	I915_WRITE(_TRANSA_CHICKEN2, val);
1604
 
1605
	val = TRANS_ENABLE;
1606
	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1607
 
1608
	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1609
	    PIPECONF_INTERLACED_ILK)
1610
		val |= TRANS_INTERLACED;
1611
	else
1612
		val |= TRANS_PROGRESSIVE;
1613
 
4104 Serge 1614
	I915_WRITE(LPT_TRANSCONF, val);
1615
	if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
3243 Serge 1616
		DRM_ERROR("Failed to enable PCH transcoder\n");
1617
}
1618
 
1619
static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2327 Serge 1620
				     enum pipe pipe)
1621
{
3243 Serge 1622
	struct drm_device *dev = dev_priv->dev;
1623
	uint32_t reg, val;
2327 Serge 1624
 
1625
	/* FDI relies on the transcoder */
1626
	assert_fdi_tx_disabled(dev_priv, pipe);
1627
	assert_fdi_rx_disabled(dev_priv, pipe);
1628
 
1629
	/* Ports must be off as well */
1630
	assert_pch_ports_disabled(dev_priv, pipe);
1631
 
4104 Serge 1632
	reg = PCH_TRANSCONF(pipe);
2327 Serge 1633
	val = I915_READ(reg);
1634
	val &= ~TRANS_ENABLE;
1635
	I915_WRITE(reg, val);
1636
	/* wait for PCH transcoder off, transcoder state */
1637
	if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4104 Serge 1638
		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
3243 Serge 1639
 
1640
	if (!HAS_PCH_IBX(dev)) {
1641
		/* Workaround: Clear the timing override chicken bit again. */
1642
		reg = TRANS_CHICKEN2(pipe);
1643
		val = I915_READ(reg);
1644
		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1645
		I915_WRITE(reg, val);
1646
	}
2327 Serge 1647
}
1648
 
3243 Serge 1649
static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1650
{
1651
	u32 val;
1652
 
4104 Serge 1653
	val = I915_READ(LPT_TRANSCONF);
3243 Serge 1654
	val &= ~TRANS_ENABLE;
4104 Serge 1655
	I915_WRITE(LPT_TRANSCONF, val);
3243 Serge 1656
	/* wait for PCH transcoder off, transcoder state */
4104 Serge 1657
	if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
3243 Serge 1658
		DRM_ERROR("Failed to disable PCH transcoder\n");
1659
 
1660
	/* Workaround: clear timing override bit. */
1661
	val = I915_READ(_TRANSA_CHICKEN2);
1662
	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1663
	I915_WRITE(_TRANSA_CHICKEN2, val);
1664
}
1665
 
2327 Serge 1666
/**
1667
 * intel_enable_pipe - enable a pipe, asserting requirements
1668
 * @dev_priv: i915 private structure
1669
 * @pipe: pipe to enable
1670
 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1671
 *
1672
 * Enable @pipe, making sure that various hardware specific requirements
1673
 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1674
 *
1675
 * @pipe should be %PIPE_A or %PIPE_B.
1676
 *
1677
 * Will wait until the pipe is actually running (i.e. first vblank) before
1678
 * returning.
1679
 */
1680
static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1681
			      bool pch_port)
1682
{
3243 Serge 1683
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1684
								      pipe);
3480 Serge 1685
	enum pipe pch_transcoder;
2327 Serge 1686
	int reg;
1687
	u32 val;
1688
 
4104 Serge 1689
	assert_planes_disabled(dev_priv, pipe);
1690
	assert_sprites_disabled(dev_priv, pipe);
1691
 
3480 Serge 1692
	if (HAS_PCH_LPT(dev_priv->dev))
3243 Serge 1693
		pch_transcoder = TRANSCODER_A;
1694
	else
1695
		pch_transcoder = pipe;
1696
 
2327 Serge 1697
	/*
1698
	 * A pipe without a PLL won't actually be able to drive bits from
1699
	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1700
	 * need the check.
1701
	 */
1702
	if (!HAS_PCH_SPLIT(dev_priv->dev))
1703
		assert_pll_enabled(dev_priv, pipe);
1704
	else {
1705
		if (pch_port) {
1706
			/* if driving the PCH, we need FDI enabled */
3243 Serge 1707
			assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
3480 Serge 1708
			assert_fdi_tx_pll_enabled(dev_priv,
1709
						  (enum pipe) cpu_transcoder);
2327 Serge 1710
		}
1711
		/* FIXME: assert CPU port conditions for SNB+ */
1712
	}
1713
 
3243 Serge 1714
	reg = PIPECONF(cpu_transcoder);
2327 Serge 1715
	val = I915_READ(reg);
1716
	if (val & PIPECONF_ENABLE)
1717
		return;
1718
 
1719
	I915_WRITE(reg, val | PIPECONF_ENABLE);
1720
	intel_wait_for_vblank(dev_priv->dev, pipe);
1721
}
1722
 
1723
/**
1724
 * intel_disable_pipe - disable a pipe, asserting requirements
1725
 * @dev_priv: i915 private structure
1726
 * @pipe: pipe to disable
1727
 *
1728
 * Disable @pipe, making sure that various hardware specific requirements
1729
 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1730
 *
1731
 * @pipe should be %PIPE_A or %PIPE_B.
1732
 *
1733
 * Will wait until the pipe has shut down before returning.
1734
 */
1735
static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1736
			       enum pipe pipe)
1737
{
3243 Serge 1738
	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1739
								      pipe);
2327 Serge 1740
	int reg;
1741
	u32 val;
1742
 
3031 serge 1743
    /*
2327 Serge 1744
	 * Make sure planes won't keep trying to pump pixels to us,
1745
	 * or we might hang the display.
1746
	 */
1747
	assert_planes_disabled(dev_priv, pipe);
3746 Serge 1748
	assert_sprites_disabled(dev_priv, pipe);
2327 Serge 1749
 
1750
	/* Don't disable pipe A or pipe A PLLs if needed */
1751
	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1752
		return;
1753
 
3243 Serge 1754
	reg = PIPECONF(cpu_transcoder);
2327 Serge 1755
	val = I915_READ(reg);
1756
	if ((val & PIPECONF_ENABLE) == 0)
1757
		return;
1758
 
1759
	I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1760
	intel_wait_for_pipe_off(dev_priv->dev, pipe);
1761
}
1762
 
1763
/*
1764
 * Plane regs are double buffered, going from enabled->disabled needs a
1765
 * trigger in order to latch.  The display address reg provides this.
1766
 */
3031 serge 1767
void intel_flush_display_plane(struct drm_i915_private *dev_priv,
2327 Serge 1768
				      enum plane plane)
1769
{
3243 Serge 1770
	if (dev_priv->info->gen >= 4)
1771
		I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1772
	else
2327 Serge 1773
	I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1774
}
1775
 
1776
/**
1777
 * intel_enable_plane - enable a display plane on a given pipe
1778
 * @dev_priv: i915 private structure
1779
 * @plane: plane to enable
1780
 * @pipe: pipe being fed
1781
 *
1782
 * Enable @plane on @pipe, making sure that @pipe is running first.
1783
 */
1784
static void intel_enable_plane(struct drm_i915_private *dev_priv,
1785
			       enum plane plane, enum pipe pipe)
1786
{
1787
	int reg;
1788
	u32 val;
1789
 
1790
	/* If the pipe isn't enabled, we can't pump pixels and may hang */
1791
	assert_pipe_enabled(dev_priv, pipe);
1792
 
1793
	reg = DSPCNTR(plane);
1794
	val = I915_READ(reg);
1795
	if (val & DISPLAY_PLANE_ENABLE)
1796
		return;
1797
 
1798
	I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1799
	intel_flush_display_plane(dev_priv, plane);
1800
	intel_wait_for_vblank(dev_priv->dev, pipe);
1801
}
1802
 
1803
/**
1804
 * intel_disable_plane - disable a display plane
1805
 * @dev_priv: i915 private structure
1806
 * @plane: plane to disable
1807
 * @pipe: pipe consuming the data
1808
 *
1809
 * Disable @plane; should be an independent operation.
1810
 */
1811
static void intel_disable_plane(struct drm_i915_private *dev_priv,
1812
				enum plane plane, enum pipe pipe)
1813
{
1814
	int reg;
1815
	u32 val;
1816
 
1817
	reg = DSPCNTR(plane);
1818
	val = I915_READ(reg);
1819
	if ((val & DISPLAY_PLANE_ENABLE) == 0)
1820
		return;
1821
 
1822
	I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1823
	intel_flush_display_plane(dev_priv, plane);
3031 serge 1824
    intel_wait_for_vblank(dev_priv->dev, pipe);
2327 Serge 1825
}
1826
 
3746 Serge 1827
static bool need_vtd_wa(struct drm_device *dev)
1828
{
1829
#ifdef CONFIG_INTEL_IOMMU
1830
	if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1831
		return true;
1832
#endif
1833
	return false;
1834
}
1835
 
2335 Serge 1836
int
1837
intel_pin_and_fence_fb_obj(struct drm_device *dev,
1838
			   struct drm_i915_gem_object *obj,
1839
			   struct intel_ring_buffer *pipelined)
1840
{
1841
	struct drm_i915_private *dev_priv = dev->dev_private;
1842
	u32 alignment;
1843
	int ret;
2327 Serge 1844
 
2335 Serge 1845
	switch (obj->tiling_mode) {
1846
	case I915_TILING_NONE:
1847
		if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1848
			alignment = 128 * 1024;
1849
		else if (INTEL_INFO(dev)->gen >= 4)
1850
			alignment = 4 * 1024;
1851
		else
1852
			alignment = 64 * 1024;
1853
		break;
1854
	case I915_TILING_X:
1855
		/* pin() will align the object as required by fence */
1856
		alignment = 0;
1857
		break;
1858
	case I915_TILING_Y:
3746 Serge 1859
		/* Despite that we check this in framebuffer_init userspace can
1860
		 * screw us over and change the tiling after the fact. Only
1861
		 * pinned buffers can't change their tiling. */
1862
		DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
2335 Serge 1863
		return -EINVAL;
1864
	default:
1865
		BUG();
1866
	}
2327 Serge 1867
 
3746 Serge 1868
	/* Note that the w/a also requires 64 PTE of padding following the
1869
	 * bo. We currently fill all unused PTE with the shadow page and so
1870
	 * we should always have valid PTE following the scanout preventing
1871
	 * the VT-d warning.
1872
	 */
1873
	if (need_vtd_wa(dev) && alignment < 256 * 1024)
1874
		alignment = 256 * 1024;
1875
 
2335 Serge 1876
	dev_priv->mm.interruptible = false;
1877
	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1878
	if (ret)
1879
		goto err_interruptible;
2327 Serge 1880
 
2335 Serge 1881
	/* Install a fence for tiled scan-out. Pre-i965 always needs a
1882
	 * fence, whereas 965+ only requires a fence if using
1883
	 * framebuffer compression.  For simplicity, we always install
1884
	 * a fence as the cost is not that onerous.
1885
	 */
3480 Serge 1886
	ret = i915_gem_object_get_fence(obj);
1887
	if (ret)
1888
		goto err_unpin;
2327 Serge 1889
 
3480 Serge 1890
	i915_gem_object_pin_fence(obj);
1891
 
2335 Serge 1892
	dev_priv->mm.interruptible = true;
1893
	return 0;
2327 Serge 1894
 
2335 Serge 1895
err_unpin:
4104 Serge 1896
	i915_gem_object_unpin_from_display_plane(obj);
2335 Serge 1897
err_interruptible:
1898
	dev_priv->mm.interruptible = true;
1899
	return ret;
1900
}
2327 Serge 1901
 
3031 serge 1902
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1903
{
1904
//	i915_gem_object_unpin_fence(obj);
1905
//	i915_gem_object_unpin(obj);
1906
}
1907
 
1908
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1909
 * is assumed to be a power-of-two. */
3480 Serge 1910
unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1911
					     unsigned int tiling_mode,
1912
					     unsigned int cpp,
3031 serge 1913
							unsigned int pitch)
1914
{
3480 Serge 1915
	if (tiling_mode != I915_TILING_NONE) {
1916
		unsigned int tile_rows, tiles;
3031 serge 1917
 
1918
	tile_rows = *y / 8;
1919
	*y %= 8;
1920
 
3480 Serge 1921
		tiles = *x / (512/cpp);
1922
		*x %= 512/cpp;
1923
 
3031 serge 1924
	return tile_rows * pitch * 8 + tiles * 4096;
3480 Serge 1925
	} else {
1926
		unsigned int offset;
1927
 
1928
		offset = *y * pitch + *x * cpp;
1929
		*y = 0;
1930
		*x = (offset & 4095) / cpp;
1931
		return offset & -4096;
1932
	}
3031 serge 1933
}
1934
 
2327 Serge 1935
static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1936
                 int x, int y)
1937
{
1938
    struct drm_device *dev = crtc->dev;
1939
    struct drm_i915_private *dev_priv = dev->dev_private;
1940
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1941
    struct intel_framebuffer *intel_fb;
1942
    struct drm_i915_gem_object *obj;
1943
    int plane = intel_crtc->plane;
3031 serge 1944
	unsigned long linear_offset;
2327 Serge 1945
    u32 dspcntr;
1946
    u32 reg;
1947
 
1948
    switch (plane) {
1949
    case 0:
1950
    case 1:
1951
        break;
1952
    default:
4104 Serge 1953
		DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2327 Serge 1954
        return -EINVAL;
1955
    }
1956
 
1957
    intel_fb = to_intel_framebuffer(fb);
1958
    obj = intel_fb->obj;
1959
 
1960
    reg = DSPCNTR(plane);
1961
    dspcntr = I915_READ(reg);
1962
    /* Mask out pixel format bits in case we change it */
1963
    dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
3243 Serge 1964
	switch (fb->pixel_format) {
1965
	case DRM_FORMAT_C8:
2327 Serge 1966
        dspcntr |= DISPPLANE_8BPP;
1967
        break;
3243 Serge 1968
	case DRM_FORMAT_XRGB1555:
1969
	case DRM_FORMAT_ARGB1555:
1970
		dspcntr |= DISPPLANE_BGRX555;
1971
		break;
1972
	case DRM_FORMAT_RGB565:
1973
		dspcntr |= DISPPLANE_BGRX565;
1974
		break;
1975
	case DRM_FORMAT_XRGB8888:
1976
	case DRM_FORMAT_ARGB8888:
1977
		dspcntr |= DISPPLANE_BGRX888;
1978
		break;
1979
	case DRM_FORMAT_XBGR8888:
1980
	case DRM_FORMAT_ABGR8888:
1981
		dspcntr |= DISPPLANE_RGBX888;
1982
		break;
1983
	case DRM_FORMAT_XRGB2101010:
1984
	case DRM_FORMAT_ARGB2101010:
1985
		dspcntr |= DISPPLANE_BGRX101010;
2327 Serge 1986
        break;
3243 Serge 1987
	case DRM_FORMAT_XBGR2101010:
1988
	case DRM_FORMAT_ABGR2101010:
1989
		dspcntr |= DISPPLANE_RGBX101010;
2327 Serge 1990
        break;
1991
    default:
3746 Serge 1992
		BUG();
2327 Serge 1993
    }
3243 Serge 1994
 
2327 Serge 1995
    if (INTEL_INFO(dev)->gen >= 4) {
1996
        if (obj->tiling_mode != I915_TILING_NONE)
1997
            dspcntr |= DISPPLANE_TILED;
1998
        else
1999
            dspcntr &= ~DISPPLANE_TILED;
2000
    }
2001
 
4104 Serge 2002
	if (IS_G4X(dev))
2003
		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2004
 
2327 Serge 2005
    I915_WRITE(reg, dspcntr);
2006
 
3031 serge 2007
	linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2327 Serge 2008
 
3031 serge 2009
	if (INTEL_INFO(dev)->gen >= 4) {
2010
		intel_crtc->dspaddr_offset =
3480 Serge 2011
			intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
3031 serge 2012
							   fb->bits_per_pixel / 8,
2013
							   fb->pitches[0]);
2014
		linear_offset -= intel_crtc->dspaddr_offset;
2015
	} else {
2016
		intel_crtc->dspaddr_offset = linear_offset;
2017
	}
2018
 
4104 Serge 2019
	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2020
		      i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2021
		      fb->pitches[0]);
2342 Serge 2022
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2327 Serge 2023
    if (INTEL_INFO(dev)->gen >= 4) {
3031 serge 2024
		I915_MODIFY_DISPBASE(DSPSURF(plane),
4104 Serge 2025
				     i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2327 Serge 2026
        I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3031 serge 2027
		I915_WRITE(DSPLINOFF(plane), linear_offset);
2327 Serge 2028
    } else
4104 Serge 2029
		I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2327 Serge 2030
    POSTING_READ(reg);
2031
 
2032
    return 0;
2033
}
2034
 
2035
static int ironlake_update_plane(struct drm_crtc *crtc,
2036
                 struct drm_framebuffer *fb, int x, int y)
2037
{
2038
    struct drm_device *dev = crtc->dev;
2039
    struct drm_i915_private *dev_priv = dev->dev_private;
2040
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2041
    struct intel_framebuffer *intel_fb;
2042
    struct drm_i915_gem_object *obj;
2043
    int plane = intel_crtc->plane;
3031 serge 2044
	unsigned long linear_offset;
2327 Serge 2045
    u32 dspcntr;
2046
    u32 reg;
2047
 
2048
    switch (plane) {
2049
    case 0:
2050
    case 1:
2342 Serge 2051
	case 2:
2327 Serge 2052
        break;
2053
    default:
4104 Serge 2054
		DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2327 Serge 2055
        return -EINVAL;
2056
    }
2057
 
2058
    intel_fb = to_intel_framebuffer(fb);
2059
    obj = intel_fb->obj;
2060
 
2061
    reg = DSPCNTR(plane);
2062
    dspcntr = I915_READ(reg);
2063
    /* Mask out pixel format bits in case we change it */
2064
    dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
3243 Serge 2065
	switch (fb->pixel_format) {
2066
	case DRM_FORMAT_C8:
2327 Serge 2067
        dspcntr |= DISPPLANE_8BPP;
2068
        break;
3243 Serge 2069
	case DRM_FORMAT_RGB565:
2070
		dspcntr |= DISPPLANE_BGRX565;
2327 Serge 2071
        break;
3243 Serge 2072
	case DRM_FORMAT_XRGB8888:
2073
	case DRM_FORMAT_ARGB8888:
2074
		dspcntr |= DISPPLANE_BGRX888;
2075
		break;
2076
	case DRM_FORMAT_XBGR8888:
2077
	case DRM_FORMAT_ABGR8888:
2078
		dspcntr |= DISPPLANE_RGBX888;
2079
		break;
2080
	case DRM_FORMAT_XRGB2101010:
2081
	case DRM_FORMAT_ARGB2101010:
2082
		dspcntr |= DISPPLANE_BGRX101010;
2083
		break;
2084
	case DRM_FORMAT_XBGR2101010:
2085
	case DRM_FORMAT_ABGR2101010:
2086
		dspcntr |= DISPPLANE_RGBX101010;
2327 Serge 2087
        break;
2088
    default:
3746 Serge 2089
		BUG();
2327 Serge 2090
    }
2091
 
3480 Serge 2092
	if (obj->tiling_mode != I915_TILING_NONE)
2093
		dspcntr |= DISPPLANE_TILED;
2094
	else
2327 Serge 2095
        dspcntr &= ~DISPPLANE_TILED;
2096
 
4104 Serge 2097
	if (IS_HASWELL(dev))
2098
		dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2099
	else
2327 Serge 2100
    dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2101
 
2102
    I915_WRITE(reg, dspcntr);
2103
 
3031 serge 2104
	linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2105
	intel_crtc->dspaddr_offset =
3480 Serge 2106
		intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
3031 serge 2107
						   fb->bits_per_pixel / 8,
2108
						   fb->pitches[0]);
2109
	linear_offset -= intel_crtc->dspaddr_offset;
2327 Serge 2110
 
4104 Serge 2111
	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2112
		      i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2113
		      fb->pitches[0]);
2342 Serge 2114
	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3031 serge 2115
	I915_MODIFY_DISPBASE(DSPSURF(plane),
4104 Serge 2116
			     i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
3243 Serge 2117
	if (IS_HASWELL(dev)) {
2118
		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2119
	} else {
2330 Serge 2120
	I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3031 serge 2121
	I915_WRITE(DSPLINOFF(plane), linear_offset);
3243 Serge 2122
	}
2330 Serge 2123
	POSTING_READ(reg);
2327 Serge 2124
 
2125
    return 0;
2126
}
2127
 
2128
/* Assume fb object is pinned & idle & fenced and just update base pointers */
2129
static int
2130
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2131
			   int x, int y, enum mode_set_atomic state)
2132
{
2133
	struct drm_device *dev = crtc->dev;
2134
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2135
 
2136
	if (dev_priv->display.disable_fbc)
2137
		dev_priv->display.disable_fbc(dev);
2138
	intel_increase_pllclock(crtc);
2139
 
2140
	return dev_priv->display.update_plane(crtc, fb, x, y);
2141
}
2142
 
2143
#if 0
4104 Serge 2144
void intel_display_handle_reset(struct drm_device *dev)
2145
{
2146
	struct drm_i915_private *dev_priv = dev->dev_private;
2147
	struct drm_crtc *crtc;
2148
 
2149
	/*
2150
	 * Flips in the rings have been nuked by the reset,
2151
	 * so complete all pending flips so that user space
2152
	 * will get its events and not get stuck.
2153
	 *
2154
	 * Also update the base address of all primary
2155
	 * planes to the the last fb to make sure we're
2156
	 * showing the correct fb after a reset.
2157
	 *
2158
	 * Need to make two loops over the crtcs so that we
2159
	 * don't try to grab a crtc mutex before the
2160
	 * pending_flip_queue really got woken up.
2161
	 */
2162
 
2163
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2164
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2165
		enum plane plane = intel_crtc->plane;
2166
 
2167
		intel_prepare_page_flip(dev, plane);
2168
		intel_finish_page_flip_plane(dev, plane);
2169
	}
2170
 
2171
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2172
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2173
 
2174
		mutex_lock(&crtc->mutex);
2175
		if (intel_crtc->active)
2176
			dev_priv->display.update_plane(crtc, crtc->fb,
2177
						       crtc->x, crtc->y);
2178
		mutex_unlock(&crtc->mutex);
2179
	}
2180
}
2181
 
3031 serge 2182
static int
2183
intel_finish_fb(struct drm_framebuffer *old_fb)
2184
{
2185
	struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2186
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2187
	bool was_interruptible = dev_priv->mm.interruptible;
2327 Serge 2188
	int ret;
2189
 
3031 serge 2190
	/* Big Hammer, we also need to ensure that any pending
2191
	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2192
	 * current scanout is retired before unpinning the old
2193
	 * framebuffer.
2194
	 *
2195
	 * This should only fail upon a hung GPU, in which case we
2196
	 * can safely continue.
2197
	 */
2198
	dev_priv->mm.interruptible = false;
2199
	ret = i915_gem_object_finish_gpu(obj);
2200
	dev_priv->mm.interruptible = was_interruptible;
2327 Serge 2201
 
3031 serge 2202
	return ret;
2327 Serge 2203
}
4104 Serge 2204
 
2205
static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2206
{
2207
	struct drm_device *dev = crtc->dev;
2208
	struct drm_i915_master_private *master_priv;
2209
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2210
 
2211
	if (!dev->primary->master)
2212
		return;
2213
 
2214
	master_priv = dev->primary->master->driver_priv;
2215
	if (!master_priv->sarea_priv)
2216
		return;
2217
 
2218
	switch (intel_crtc->pipe) {
2219
	case 0:
2220
		master_priv->sarea_priv->pipeA_x = x;
2221
		master_priv->sarea_priv->pipeA_y = y;
2222
		break;
2223
	case 1:
2224
		master_priv->sarea_priv->pipeB_x = x;
2225
		master_priv->sarea_priv->pipeB_y = y;
2226
		break;
2227
	default:
2228
		break;
2229
	}
2230
}
3031 serge 2231
#endif
2327 Serge 2232
 
2233
static int
2234
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
3031 serge 2235
		    struct drm_framebuffer *fb)
2327 Serge 2236
{
2237
	struct drm_device *dev = crtc->dev;
3031 serge 2238
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 2239
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 2240
	struct drm_framebuffer *old_fb;
2342 Serge 2241
	int ret;
2327 Serge 2242
 
2243
	/* no fb bound */
3031 serge 2244
	if (!fb) {
2327 Serge 2245
		DRM_ERROR("No FB bound\n");
2246
		return 0;
2247
	}
2248
 
3746 Serge 2249
	if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
4104 Serge 2250
		DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2251
			  plane_name(intel_crtc->plane),
3746 Serge 2252
				INTEL_INFO(dev)->num_pipes);
2327 Serge 2253
		return -EINVAL;
2254
	}
2255
 
2256
	mutex_lock(&dev->struct_mutex);
4280 Serge 2257
    ret = intel_pin_and_fence_fb_obj(dev,
2258
                    to_intel_framebuffer(fb)->obj,
2259
                    NULL);
2260
    if (ret != 0) {
2261
       mutex_unlock(&dev->struct_mutex);
2262
       DRM_ERROR("pin & fence failed\n");
2263
       return ret;
2264
    }
2327 Serge 2265
 
4280 Serge 2266
	/* Update pipe size and adjust fitter if needed */
2267
	if (i915_fastboot) {
2268
		I915_WRITE(PIPESRC(intel_crtc->pipe),
2269
			   ((crtc->mode.hdisplay - 1) << 16) |
2270
			   (crtc->mode.vdisplay - 1));
2271
		if (!intel_crtc->config.pch_pfit.enabled &&
2272
		    (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2273
		     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2274
			I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2275
			I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2276
			I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2277
		}
2278
	}
3031 serge 2279
 
2280
	ret = dev_priv->display.update_plane(crtc, fb, x, y);
2327 Serge 2281
	if (ret) {
3031 serge 2282
		intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2327 Serge 2283
		mutex_unlock(&dev->struct_mutex);
2284
		DRM_ERROR("failed to update base address\n");
3243 Serge 2285
        return ret;
2327 Serge 2286
	}
2287
 
3031 serge 2288
	old_fb = crtc->fb;
2289
	crtc->fb = fb;
2290
	crtc->x = x;
2291
	crtc->y = y;
2292
 
2293
	if (old_fb) {
4104 Serge 2294
		if (intel_crtc->active && old_fb != fb)
3031 serge 2295
		intel_wait_for_vblank(dev, intel_crtc->pipe);
2296
		intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2297
	}
2298
 
2299
	intel_update_fbc(dev);
4104 Serge 2300
	intel_edp_psr_update(dev);
2336 Serge 2301
	mutex_unlock(&dev->struct_mutex);
2327 Serge 2302
 
2336 Serge 2303
    return 0;
2327 Serge 2304
}
2305
 
2306
static void intel_fdi_normal_train(struct drm_crtc *crtc)
2307
{
2308
	struct drm_device *dev = crtc->dev;
2309
	struct drm_i915_private *dev_priv = dev->dev_private;
2310
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2311
	int pipe = intel_crtc->pipe;
2312
	u32 reg, temp;
2313
 
2314
	/* enable normal train */
2315
	reg = FDI_TX_CTL(pipe);
2316
	temp = I915_READ(reg);
2317
	if (IS_IVYBRIDGE(dev)) {
2318
		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2319
		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2320
	} else {
2321
		temp &= ~FDI_LINK_TRAIN_NONE;
2322
		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2323
	}
2324
	I915_WRITE(reg, temp);
2325
 
2326
	reg = FDI_RX_CTL(pipe);
2327
	temp = I915_READ(reg);
2328
	if (HAS_PCH_CPT(dev)) {
2329
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2330
		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2331
	} else {
2332
		temp &= ~FDI_LINK_TRAIN_NONE;
2333
		temp |= FDI_LINK_TRAIN_NONE;
2334
	}
2335
	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2336
 
2337
	/* wait one idle pattern time */
2338
	POSTING_READ(reg);
2339
	udelay(1000);
2340
 
2341
	/* IVB wants error correction enabled */
2342
	if (IS_IVYBRIDGE(dev))
2343
		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2344
			   FDI_FE_ERRC_ENABLE);
2345
}
2346
 
4280 Serge 2347
static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
4104 Serge 2348
{
4280 Serge 2349
	return crtc->base.enabled && crtc->active &&
2350
		crtc->config.has_pch_encoder;
4104 Serge 2351
}
2352
 
3243 Serge 2353
static void ivb_modeset_global_resources(struct drm_device *dev)
2327 Serge 2354
{
2355
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 2356
	struct intel_crtc *pipe_B_crtc =
2357
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2358
	struct intel_crtc *pipe_C_crtc =
2359
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2360
	uint32_t temp;
2327 Serge 2361
 
4104 Serge 2362
	/*
2363
	 * When everything is off disable fdi C so that we could enable fdi B
2364
	 * with all lanes. Note that we don't care about enabled pipes without
2365
	 * an enabled pch encoder.
2366
	 */
2367
	if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2368
	    !pipe_has_enabled_pch(pipe_C_crtc)) {
3243 Serge 2369
		WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2370
		WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2371
 
2372
		temp = I915_READ(SOUTH_CHICKEN1);
2373
		temp &= ~FDI_BC_BIFURCATION_SELECT;
2374
		DRM_DEBUG_KMS("disabling fdi C rx\n");
2375
		I915_WRITE(SOUTH_CHICKEN1, temp);
2376
	}
2327 Serge 2377
}
2378
 
2379
/* The FDI link training functions for ILK/Ibexpeak. */
2380
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2381
{
2382
    struct drm_device *dev = crtc->dev;
2383
    struct drm_i915_private *dev_priv = dev->dev_private;
2384
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2385
    int pipe = intel_crtc->pipe;
2386
    int plane = intel_crtc->plane;
2387
    u32 reg, temp, tries;
2388
 
2389
    /* FDI needs bits from pipe & plane first */
2390
    assert_pipe_enabled(dev_priv, pipe);
2391
    assert_plane_enabled(dev_priv, plane);
2392
 
2393
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2394
       for train result */
2395
    reg = FDI_RX_IMR(pipe);
2396
    temp = I915_READ(reg);
2397
    temp &= ~FDI_RX_SYMBOL_LOCK;
2398
    temp &= ~FDI_RX_BIT_LOCK;
2399
    I915_WRITE(reg, temp);
2400
    I915_READ(reg);
2401
    udelay(150);
2402
 
2403
    /* enable CPU FDI TX and PCH FDI RX */
2404
    reg = FDI_TX_CTL(pipe);
2405
    temp = I915_READ(reg);
4104 Serge 2406
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
2407
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2327 Serge 2408
    temp &= ~FDI_LINK_TRAIN_NONE;
2409
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2410
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
2411
 
2412
    reg = FDI_RX_CTL(pipe);
2413
    temp = I915_READ(reg);
2414
    temp &= ~FDI_LINK_TRAIN_NONE;
2415
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2416
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
2417
 
2418
    POSTING_READ(reg);
2419
    udelay(150);
2420
 
2421
    /* Ironlake workaround, enable clock pointer after FDI enable*/
2422
        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2423
        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2424
               FDI_RX_PHASE_SYNC_POINTER_EN);
2425
 
2426
    reg = FDI_RX_IIR(pipe);
2427
    for (tries = 0; tries < 5; tries++) {
2428
        temp = I915_READ(reg);
2429
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2430
 
2431
        if ((temp & FDI_RX_BIT_LOCK)) {
2432
            DRM_DEBUG_KMS("FDI train 1 done.\n");
2433
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2434
            break;
2435
        }
2436
    }
2437
    if (tries == 5)
2438
        DRM_ERROR("FDI train 1 fail!\n");
2439
 
2440
    /* Train 2 */
2441
    reg = FDI_TX_CTL(pipe);
2442
    temp = I915_READ(reg);
2443
    temp &= ~FDI_LINK_TRAIN_NONE;
2444
    temp |= FDI_LINK_TRAIN_PATTERN_2;
2445
    I915_WRITE(reg, temp);
2446
 
2447
    reg = FDI_RX_CTL(pipe);
2448
    temp = I915_READ(reg);
2449
    temp &= ~FDI_LINK_TRAIN_NONE;
2450
    temp |= FDI_LINK_TRAIN_PATTERN_2;
2451
    I915_WRITE(reg, temp);
2452
 
2453
    POSTING_READ(reg);
2454
    udelay(150);
2455
 
2456
    reg = FDI_RX_IIR(pipe);
2457
    for (tries = 0; tries < 5; tries++) {
2458
        temp = I915_READ(reg);
2459
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2460
 
2461
        if (temp & FDI_RX_SYMBOL_LOCK) {
2462
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2463
            DRM_DEBUG_KMS("FDI train 2 done.\n");
2464
            break;
2465
        }
2466
    }
2467
    if (tries == 5)
2468
        DRM_ERROR("FDI train 2 fail!\n");
2469
 
2470
    DRM_DEBUG_KMS("FDI train done\n");
2471
 
2472
}
2473
 
2342 Serge 2474
static const int snb_b_fdi_train_param[] = {
2327 Serge 2475
    FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2476
    FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2477
    FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2478
    FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2479
};
2480
 
2481
/* The FDI link training functions for SNB/Cougarpoint. */
2482
static void gen6_fdi_link_train(struct drm_crtc *crtc)
2483
{
2484
    struct drm_device *dev = crtc->dev;
2485
    struct drm_i915_private *dev_priv = dev->dev_private;
2486
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2487
    int pipe = intel_crtc->pipe;
3031 serge 2488
	u32 reg, temp, i, retry;
2327 Serge 2489
 
2490
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2491
       for train result */
2492
    reg = FDI_RX_IMR(pipe);
2493
    temp = I915_READ(reg);
2494
    temp &= ~FDI_RX_SYMBOL_LOCK;
2495
    temp &= ~FDI_RX_BIT_LOCK;
2496
    I915_WRITE(reg, temp);
2497
 
2498
    POSTING_READ(reg);
2499
    udelay(150);
2500
 
2501
    /* enable CPU FDI TX and PCH FDI RX */
2502
    reg = FDI_TX_CTL(pipe);
2503
    temp = I915_READ(reg);
4104 Serge 2504
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
2505
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2327 Serge 2506
    temp &= ~FDI_LINK_TRAIN_NONE;
2507
    temp |= FDI_LINK_TRAIN_PATTERN_1;
2508
    temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2509
    /* SNB-B */
2510
    temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2511
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
2512
 
3243 Serge 2513
	I915_WRITE(FDI_RX_MISC(pipe),
2514
		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2515
 
2327 Serge 2516
    reg = FDI_RX_CTL(pipe);
2517
    temp = I915_READ(reg);
2518
    if (HAS_PCH_CPT(dev)) {
2519
        temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2520
        temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2521
    } else {
2522
        temp &= ~FDI_LINK_TRAIN_NONE;
2523
        temp |= FDI_LINK_TRAIN_PATTERN_1;
2524
    }
2525
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
2526
 
2527
    POSTING_READ(reg);
2528
    udelay(150);
2529
 
2342 Serge 2530
	for (i = 0; i < 4; i++) {
2327 Serge 2531
        reg = FDI_TX_CTL(pipe);
2532
        temp = I915_READ(reg);
2533
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2534
        temp |= snb_b_fdi_train_param[i];
2535
        I915_WRITE(reg, temp);
2536
 
2537
        POSTING_READ(reg);
2538
        udelay(500);
2539
 
3031 serge 2540
		for (retry = 0; retry < 5; retry++) {
2327 Serge 2541
        reg = FDI_RX_IIR(pipe);
2542
        temp = I915_READ(reg);
2543
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2544
        if (temp & FDI_RX_BIT_LOCK) {
2545
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2546
            DRM_DEBUG_KMS("FDI train 1 done.\n");
2547
            break;
2548
        }
3031 serge 2549
			udelay(50);
2550
		}
2551
		if (retry < 5)
2552
			break;
2327 Serge 2553
    }
2554
    if (i == 4)
2555
        DRM_ERROR("FDI train 1 fail!\n");
2556
 
2557
    /* Train 2 */
2558
    reg = FDI_TX_CTL(pipe);
2559
    temp = I915_READ(reg);
2560
    temp &= ~FDI_LINK_TRAIN_NONE;
2561
    temp |= FDI_LINK_TRAIN_PATTERN_2;
2562
    if (IS_GEN6(dev)) {
2563
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2564
        /* SNB-B */
2565
        temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2566
    }
2567
    I915_WRITE(reg, temp);
2568
 
2569
    reg = FDI_RX_CTL(pipe);
2570
    temp = I915_READ(reg);
2571
    if (HAS_PCH_CPT(dev)) {
2572
        temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2573
        temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2574
    } else {
2575
        temp &= ~FDI_LINK_TRAIN_NONE;
2576
        temp |= FDI_LINK_TRAIN_PATTERN_2;
2577
    }
2578
    I915_WRITE(reg, temp);
2579
 
2580
    POSTING_READ(reg);
2581
    udelay(150);
2582
 
2342 Serge 2583
	for (i = 0; i < 4; i++) {
2327 Serge 2584
        reg = FDI_TX_CTL(pipe);
2585
        temp = I915_READ(reg);
2586
        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2587
        temp |= snb_b_fdi_train_param[i];
2588
        I915_WRITE(reg, temp);
2589
 
2590
        POSTING_READ(reg);
2591
        udelay(500);
2592
 
3031 serge 2593
		for (retry = 0; retry < 5; retry++) {
2327 Serge 2594
        reg = FDI_RX_IIR(pipe);
2595
        temp = I915_READ(reg);
2596
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2597
        if (temp & FDI_RX_SYMBOL_LOCK) {
2598
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2599
            DRM_DEBUG_KMS("FDI train 2 done.\n");
2600
            break;
2601
        }
3031 serge 2602
			udelay(50);
2603
		}
2604
		if (retry < 5)
2605
			break;
2327 Serge 2606
    }
2607
    if (i == 4)
2608
        DRM_ERROR("FDI train 2 fail!\n");
2609
 
2610
    DRM_DEBUG_KMS("FDI train done.\n");
2611
}
2612
 
2613
/* Manual link training for Ivy Bridge A0 parts */
2614
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2615
{
2616
    struct drm_device *dev = crtc->dev;
2617
    struct drm_i915_private *dev_priv = dev->dev_private;
2618
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2619
    int pipe = intel_crtc->pipe;
4104 Serge 2620
	u32 reg, temp, i, j;
2327 Serge 2621
 
2622
    /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2623
       for train result */
2624
    reg = FDI_RX_IMR(pipe);
2625
    temp = I915_READ(reg);
2626
    temp &= ~FDI_RX_SYMBOL_LOCK;
2627
    temp &= ~FDI_RX_BIT_LOCK;
2628
    I915_WRITE(reg, temp);
2629
 
2630
    POSTING_READ(reg);
2631
    udelay(150);
2632
 
3243 Serge 2633
	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2634
		      I915_READ(FDI_RX_IIR(pipe)));
2635
 
4104 Serge 2636
	/* Try each vswing and preemphasis setting twice before moving on */
2637
	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2638
		/* disable first in case we need to retry */
2639
		reg = FDI_TX_CTL(pipe);
2640
		temp = I915_READ(reg);
2641
		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2642
		temp &= ~FDI_TX_ENABLE;
2643
		I915_WRITE(reg, temp);
2644
 
2645
		reg = FDI_RX_CTL(pipe);
2646
		temp = I915_READ(reg);
2647
		temp &= ~FDI_LINK_TRAIN_AUTO;
2648
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2649
		temp &= ~FDI_RX_ENABLE;
2650
		I915_WRITE(reg, temp);
2651
 
2327 Serge 2652
    /* enable CPU FDI TX and PCH FDI RX */
2653
    reg = FDI_TX_CTL(pipe);
2654
    temp = I915_READ(reg);
4104 Serge 2655
	temp &= ~FDI_DP_PORT_WIDTH_MASK;
2656
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2327 Serge 2657
    temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2658
    temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4104 Serge 2659
		temp |= snb_b_fdi_train_param[j/2];
2342 Serge 2660
	temp |= FDI_COMPOSITE_SYNC;
2327 Serge 2661
    I915_WRITE(reg, temp | FDI_TX_ENABLE);
2662
 
3243 Serge 2663
	I915_WRITE(FDI_RX_MISC(pipe),
2664
		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2665
 
2327 Serge 2666
    reg = FDI_RX_CTL(pipe);
2667
    temp = I915_READ(reg);
2668
    temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2342 Serge 2669
	temp |= FDI_COMPOSITE_SYNC;
2327 Serge 2670
    I915_WRITE(reg, temp | FDI_RX_ENABLE);
2671
 
2672
    POSTING_READ(reg);
4104 Serge 2673
		udelay(1); /* should be 0.5us */
2327 Serge 2674
 
2342 Serge 2675
	for (i = 0; i < 4; i++) {
2327 Serge 2676
        reg = FDI_RX_IIR(pipe);
2677
        temp = I915_READ(reg);
2678
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2679
 
2680
        if (temp & FDI_RX_BIT_LOCK ||
2681
            (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2682
            I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4104 Serge 2683
				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2684
					      i);
2327 Serge 2685
            break;
2686
        }
4104 Serge 2687
			udelay(1); /* should be 0.5us */
2688
		}
2689
		if (i == 4) {
2690
			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2691
			continue;
2327 Serge 2692
    }
2693
 
2694
    /* Train 2 */
2695
    reg = FDI_TX_CTL(pipe);
2696
    temp = I915_READ(reg);
2697
    temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2698
    temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2699
    I915_WRITE(reg, temp);
2700
 
2701
    reg = FDI_RX_CTL(pipe);
2702
    temp = I915_READ(reg);
2703
    temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2704
    temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2705
    I915_WRITE(reg, temp);
2706
 
2707
    POSTING_READ(reg);
4104 Serge 2708
		udelay(2); /* should be 1.5us */
2327 Serge 2709
 
2342 Serge 2710
	for (i = 0; i < 4; i++) {
2327 Serge 2711
        reg = FDI_RX_IIR(pipe);
2712
        temp = I915_READ(reg);
2713
        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2714
 
4104 Serge 2715
			if (temp & FDI_RX_SYMBOL_LOCK ||
2716
			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2327 Serge 2717
            I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4104 Serge 2718
				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2719
					      i);
2720
				goto train_done;
2327 Serge 2721
        }
4104 Serge 2722
			udelay(2); /* should be 1.5us */
2327 Serge 2723
    }
2724
    if (i == 4)
4104 Serge 2725
			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2726
	}
2327 Serge 2727
 
4104 Serge 2728
train_done:
2327 Serge 2729
    DRM_DEBUG_KMS("FDI train done.\n");
2730
}
2731
 
3031 serge 2732
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2327 Serge 2733
{
3031 serge 2734
	struct drm_device *dev = intel_crtc->base.dev;
2327 Serge 2735
	struct drm_i915_private *dev_priv = dev->dev_private;
2736
	int pipe = intel_crtc->pipe;
2737
	u32 reg, temp;
2738
 
2739
 
2740
	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2741
	reg = FDI_RX_CTL(pipe);
2742
	temp = I915_READ(reg);
4104 Serge 2743
	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2744
	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3480 Serge 2745
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 2746
	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2747
 
2748
	POSTING_READ(reg);
2749
	udelay(200);
2750
 
2751
	/* Switch from Rawclk to PCDclk */
2752
	temp = I915_READ(reg);
2753
	I915_WRITE(reg, temp | FDI_PCDCLK);
2754
 
2755
	POSTING_READ(reg);
2756
	udelay(200);
2757
 
2758
	/* Enable CPU FDI TX PLL, always on for Ironlake */
2759
	reg = FDI_TX_CTL(pipe);
2760
	temp = I915_READ(reg);
2761
	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2762
		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2763
 
2764
		POSTING_READ(reg);
2765
		udelay(100);
2766
	}
2767
}
2768
 
3031 serge 2769
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2770
{
2771
	struct drm_device *dev = intel_crtc->base.dev;
2772
	struct drm_i915_private *dev_priv = dev->dev_private;
2773
	int pipe = intel_crtc->pipe;
2774
	u32 reg, temp;
2775
 
2776
	/* Switch from PCDclk to Rawclk */
2777
	reg = FDI_RX_CTL(pipe);
2778
	temp = I915_READ(reg);
2779
	I915_WRITE(reg, temp & ~FDI_PCDCLK);
2780
 
2781
	/* Disable CPU FDI TX PLL */
2782
	reg = FDI_TX_CTL(pipe);
2783
	temp = I915_READ(reg);
2784
	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2785
 
2786
	POSTING_READ(reg);
2787
	udelay(100);
2788
 
2789
	reg = FDI_RX_CTL(pipe);
2790
	temp = I915_READ(reg);
2791
	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2792
 
2793
	/* Wait for the clocks to turn off. */
2794
	POSTING_READ(reg);
2795
	udelay(100);
2796
}
2797
 
2327 Serge 2798
static void ironlake_fdi_disable(struct drm_crtc *crtc)
2799
{
2800
	struct drm_device *dev = crtc->dev;
2801
	struct drm_i915_private *dev_priv = dev->dev_private;
2802
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2803
	int pipe = intel_crtc->pipe;
2804
	u32 reg, temp;
2805
 
2806
	/* disable CPU FDI tx and PCH FDI rx */
2807
	reg = FDI_TX_CTL(pipe);
2808
	temp = I915_READ(reg);
2809
	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2810
	POSTING_READ(reg);
2811
 
2812
	reg = FDI_RX_CTL(pipe);
2813
	temp = I915_READ(reg);
2814
	temp &= ~(0x7 << 16);
3480 Serge 2815
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 2816
	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2817
 
2818
	POSTING_READ(reg);
2819
	udelay(100);
2820
 
2821
	/* Ironlake workaround, disable clock pointer after downing FDI */
2822
	if (HAS_PCH_IBX(dev)) {
2823
		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2824
	}
2825
 
2826
	/* still set train pattern 1 */
2827
	reg = FDI_TX_CTL(pipe);
2828
	temp = I915_READ(reg);
2829
	temp &= ~FDI_LINK_TRAIN_NONE;
2830
	temp |= FDI_LINK_TRAIN_PATTERN_1;
2831
	I915_WRITE(reg, temp);
2832
 
2833
	reg = FDI_RX_CTL(pipe);
2834
	temp = I915_READ(reg);
2835
	if (HAS_PCH_CPT(dev)) {
2836
		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2837
		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2838
	} else {
2839
		temp &= ~FDI_LINK_TRAIN_NONE;
2840
		temp |= FDI_LINK_TRAIN_PATTERN_1;
2841
	}
2842
	/* BPC in FDI rx is consistent with that in PIPECONF */
2843
	temp &= ~(0x07 << 16);
3480 Serge 2844
	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2327 Serge 2845
	I915_WRITE(reg, temp);
2846
 
2847
	POSTING_READ(reg);
2848
	udelay(100);
2849
}
2850
 
3031 serge 2851
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2327 Serge 2852
{
3031 serge 2853
	struct drm_device *dev = crtc->dev;
2327 Serge 2854
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 2855
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 2856
	unsigned long flags;
2857
	bool pending;
2327 Serge 2858
 
3480 Serge 2859
	if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2860
	    intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3031 serge 2861
		return false;
2327 Serge 2862
 
3031 serge 2863
	spin_lock_irqsave(&dev->event_lock, flags);
2864
	pending = to_intel_crtc(crtc)->unpin_work != NULL;
2865
	spin_unlock_irqrestore(&dev->event_lock, flags);
2866
 
2867
	return pending;
2327 Serge 2868
}
2869
 
3031 serge 2870
#if 0
2327 Serge 2871
static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2872
{
3031 serge 2873
	struct drm_device *dev = crtc->dev;
2874
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 2875
 
2876
	if (crtc->fb == NULL)
2877
		return;
2878
 
3480 Serge 2879
	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2880
 
2360 Serge 2881
	wait_event(dev_priv->pending_flip_queue,
3031 serge 2882
		   !intel_crtc_has_pending_flip(crtc));
2883
 
2884
	mutex_lock(&dev->struct_mutex);
2885
	intel_finish_fb(crtc->fb);
2886
	mutex_unlock(&dev->struct_mutex);
2327 Serge 2887
}
3031 serge 2888
#endif
2327 Serge 2889
 
3031 serge 2890
/* Program iCLKIP clock to the desired frequency */
2891
static void lpt_program_iclkip(struct drm_crtc *crtc)
2892
{
2893
	struct drm_device *dev = crtc->dev;
2894
	struct drm_i915_private *dev_priv = dev->dev_private;
2895
	u32 divsel, phaseinc, auxdiv, phasedir = 0;
2896
	u32 temp;
2897
 
3480 Serge 2898
	mutex_lock(&dev_priv->dpio_lock);
2899
 
3031 serge 2900
	/* It is necessary to ungate the pixclk gate prior to programming
2901
	 * the divisors, and gate it back when it is done.
2902
	 */
2903
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2904
 
2905
	/* Disable SSCCTL */
2906
	intel_sbi_write(dev_priv, SBI_SSCCTL6,
3243 Serge 2907
			intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2908
				SBI_SSCCTL_DISABLE,
2909
			SBI_ICLK);
3031 serge 2910
 
2911
	/* 20MHz is a corner case which is out of range for the 7-bit divisor */
2912
	if (crtc->mode.clock == 20000) {
2913
		auxdiv = 1;
2914
		divsel = 0x41;
2915
		phaseinc = 0x20;
2916
	} else {
2917
		/* The iCLK virtual clock root frequency is in MHz,
2918
		 * but the crtc->mode.clock in in KHz. To get the divisors,
2919
		 * it is necessary to divide one by another, so we
2920
		 * convert the virtual clock precision to KHz here for higher
2921
		 * precision.
2922
		 */
2923
		u32 iclk_virtual_root_freq = 172800 * 1000;
2924
		u32 iclk_pi_range = 64;
2925
		u32 desired_divisor, msb_divisor_value, pi_value;
2926
 
2927
		desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2928
		msb_divisor_value = desired_divisor / iclk_pi_range;
2929
		pi_value = desired_divisor % iclk_pi_range;
2930
 
2931
		auxdiv = 0;
2932
		divsel = msb_divisor_value - 2;
2933
		phaseinc = pi_value;
2934
	}
2935
 
2936
	/* This should not happen with any sane values */
2937
	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2938
		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2939
	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2940
		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2941
 
2942
	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2943
			crtc->mode.clock,
2944
			auxdiv,
2945
			divsel,
2946
			phasedir,
2947
			phaseinc);
2948
 
2949
	/* Program SSCDIVINTPHASE6 */
3243 Serge 2950
	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3031 serge 2951
	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2952
	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2953
	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2954
	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2955
	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2956
	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3243 Serge 2957
	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3031 serge 2958
 
2959
	/* Program SSCAUXDIV */
3243 Serge 2960
	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3031 serge 2961
	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2962
	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3243 Serge 2963
	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3031 serge 2964
 
2965
	/* Enable modulator and associated divider */
3243 Serge 2966
	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3031 serge 2967
	temp &= ~SBI_SSCCTL_DISABLE;
3243 Serge 2968
	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3031 serge 2969
 
2970
	/* Wait for initialization time */
2971
	udelay(24);
2972
 
2973
	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3480 Serge 2974
 
2975
	mutex_unlock(&dev_priv->dpio_lock);
3031 serge 2976
}
2977
 
4104 Serge 2978
static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2979
						enum pipe pch_transcoder)
2980
{
2981
	struct drm_device *dev = crtc->base.dev;
2982
	struct drm_i915_private *dev_priv = dev->dev_private;
2983
	enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2984
 
2985
	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2986
		   I915_READ(HTOTAL(cpu_transcoder)));
2987
	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2988
		   I915_READ(HBLANK(cpu_transcoder)));
2989
	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2990
		   I915_READ(HSYNC(cpu_transcoder)));
2991
 
2992
	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2993
		   I915_READ(VTOTAL(cpu_transcoder)));
2994
	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2995
		   I915_READ(VBLANK(cpu_transcoder)));
2996
	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2997
		   I915_READ(VSYNC(cpu_transcoder)));
2998
	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2999
		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
3000
}
3001
 
4280 Serge 3002
static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3003
{
3004
	struct drm_i915_private *dev_priv = dev->dev_private;
3005
	uint32_t temp;
3006
 
3007
	temp = I915_READ(SOUTH_CHICKEN1);
3008
	if (temp & FDI_BC_BIFURCATION_SELECT)
3009
		return;
3010
 
3011
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3012
	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3013
 
3014
	temp |= FDI_BC_BIFURCATION_SELECT;
3015
	DRM_DEBUG_KMS("enabling fdi C rx\n");
3016
	I915_WRITE(SOUTH_CHICKEN1, temp);
3017
	POSTING_READ(SOUTH_CHICKEN1);
3018
}
3019
 
3020
static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3021
{
3022
	struct drm_device *dev = intel_crtc->base.dev;
3023
	struct drm_i915_private *dev_priv = dev->dev_private;
3024
 
3025
	switch (intel_crtc->pipe) {
3026
	case PIPE_A:
3027
		break;
3028
	case PIPE_B:
3029
		if (intel_crtc->config.fdi_lanes > 2)
3030
			WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3031
		else
3032
			cpt_enable_fdi_bc_bifurcation(dev);
3033
 
3034
		break;
3035
	case PIPE_C:
3036
		cpt_enable_fdi_bc_bifurcation(dev);
3037
 
3038
		break;
3039
	default:
3040
		BUG();
3041
	}
3042
}
3043
 
2327 Serge 3044
/*
3045
 * Enable PCH resources required for PCH ports:
3046
 *   - PCH PLLs
3047
 *   - FDI training & RX/TX
3048
 *   - update transcoder timings
3049
 *   - DP transcoding bits
3050
 *   - transcoder
3051
 */
3052
static void ironlake_pch_enable(struct drm_crtc *crtc)
3053
{
3054
	struct drm_device *dev = crtc->dev;
3055
	struct drm_i915_private *dev_priv = dev->dev_private;
3056
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3057
	int pipe = intel_crtc->pipe;
3031 serge 3058
	u32 reg, temp;
2327 Serge 3059
 
4104 Serge 3060
	assert_pch_transcoder_disabled(dev_priv, pipe);
3031 serge 3061
 
4280 Serge 3062
	if (IS_IVYBRIDGE(dev))
3063
		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3064
 
3243 Serge 3065
	/* Write the TU size bits before fdi link training, so that error
3066
	 * detection works. */
3067
	I915_WRITE(FDI_RX_TUSIZE1(pipe),
3068
		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3069
 
2327 Serge 3070
	/* For PCH output, training FDI link */
3071
	dev_priv->display.fdi_link_train(crtc);
3072
 
4104 Serge 3073
	/* We need to program the right clock selection before writing the pixel
3074
	 * mutliplier into the DPLL. */
3243 Serge 3075
	if (HAS_PCH_CPT(dev)) {
3031 serge 3076
		u32 sel;
2342 Serge 3077
 
2327 Serge 3078
		temp = I915_READ(PCH_DPLL_SEL);
4104 Serge 3079
		temp |= TRANS_DPLL_ENABLE(pipe);
3080
		sel = TRANS_DPLLB_SEL(pipe);
3081
		if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3031 serge 3082
			temp |= sel;
3083
		else
3084
			temp &= ~sel;
2327 Serge 3085
		I915_WRITE(PCH_DPLL_SEL, temp);
3086
	}
3087
 
4104 Serge 3088
	/* XXX: pch pll's can be enabled any time before we enable the PCH
3089
	 * transcoder, and we actually should do this to not upset any PCH
3090
	 * transcoder that already use the clock when we share it.
3091
	 *
3092
	 * Note that enable_shared_dpll tries to do the right thing, but
3093
	 * get_shared_dpll unconditionally resets the pll - we need that to have
3094
	 * the right LVDS enable sequence. */
3095
	ironlake_enable_shared_dpll(intel_crtc);
3096
 
2327 Serge 3097
	/* set transcoder timing, panel must allow it */
3098
	assert_panel_unlocked(dev_priv, pipe);
4104 Serge 3099
	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
2327 Serge 3100
 
3101
	intel_fdi_normal_train(crtc);
3102
 
3103
	/* For PCH DP, enable TRANS_DP_CTL */
3104
	if (HAS_PCH_CPT(dev) &&
2342 Serge 3105
	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3106
	     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3480 Serge 3107
		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2327 Serge 3108
		reg = TRANS_DP_CTL(pipe);
3109
		temp = I915_READ(reg);
3110
		temp &= ~(TRANS_DP_PORT_SEL_MASK |
3111
			  TRANS_DP_SYNC_MASK |
3112
			  TRANS_DP_BPC_MASK);
3113
		temp |= (TRANS_DP_OUTPUT_ENABLE |
3114
			 TRANS_DP_ENH_FRAMING);
3115
		temp |= bpc << 9; /* same format but at 11:9 */
3116
 
3117
		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3118
			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3119
		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3120
			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3121
 
3122
		switch (intel_trans_dp_port_sel(crtc)) {
3123
		case PCH_DP_B:
3124
			temp |= TRANS_DP_PORT_SEL_B;
3125
			break;
3126
		case PCH_DP_C:
3127
			temp |= TRANS_DP_PORT_SEL_C;
3128
			break;
3129
		case PCH_DP_D:
3130
			temp |= TRANS_DP_PORT_SEL_D;
3131
			break;
3132
		default:
3243 Serge 3133
			BUG();
2327 Serge 3134
		}
3135
 
3136
		I915_WRITE(reg, temp);
3137
	}
3138
 
3243 Serge 3139
	ironlake_enable_pch_transcoder(dev_priv, pipe);
2327 Serge 3140
}
3141
 
3243 Serge 3142
static void lpt_pch_enable(struct drm_crtc *crtc)
3143
{
3144
	struct drm_device *dev = crtc->dev;
3145
	struct drm_i915_private *dev_priv = dev->dev_private;
3146
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 3147
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3243 Serge 3148
 
4104 Serge 3149
	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3243 Serge 3150
 
3151
	lpt_program_iclkip(crtc);
3152
 
3153
	/* Set transcoder timing. */
4104 Serge 3154
	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3243 Serge 3155
 
3156
	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3157
}
3158
 
4104 Serge 3159
static void intel_put_shared_dpll(struct intel_crtc *crtc)
3031 serge 3160
{
4104 Serge 3161
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3031 serge 3162
 
3163
	if (pll == NULL)
3164
		return;
3165
 
3166
	if (pll->refcount == 0) {
4104 Serge 3167
		WARN(1, "bad %s refcount\n", pll->name);
3031 serge 3168
		return;
3169
	}
3170
 
4104 Serge 3171
	if (--pll->refcount == 0) {
3172
		WARN_ON(pll->on);
3173
		WARN_ON(pll->active);
3174
	}
3175
 
3176
	crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3031 serge 3177
}
3178
 
4104 Serge 3179
static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3031 serge 3180
{
4104 Serge 3181
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3182
	struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3183
	enum intel_dpll_id i;
3031 serge 3184
 
3185
	if (pll) {
4104 Serge 3186
		DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3187
			      crtc->base.base.id, pll->name);
3188
		intel_put_shared_dpll(crtc);
3031 serge 3189
	}
3190
 
3191
	if (HAS_PCH_IBX(dev_priv->dev)) {
3192
		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4104 Serge 3193
		i = (enum intel_dpll_id) crtc->pipe;
3194
		pll = &dev_priv->shared_dplls[i];
3031 serge 3195
 
4104 Serge 3196
		DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3197
			      crtc->base.base.id, pll->name);
3031 serge 3198
 
3199
		goto found;
3200
	}
3201
 
4104 Serge 3202
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3203
		pll = &dev_priv->shared_dplls[i];
3031 serge 3204
 
3205
		/* Only want to check enabled timings first */
3206
		if (pll->refcount == 0)
3207
			continue;
3208
 
4104 Serge 3209
		if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3210
			   sizeof(pll->hw_state)) == 0) {
3211
			DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3212
				      crtc->base.base.id,
3213
				      pll->name, pll->refcount, pll->active);
3031 serge 3214
 
3215
			goto found;
3216
		}
3217
	}
3218
 
3219
	/* Ok no matching timings, maybe there's a free one? */
4104 Serge 3220
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3221
		pll = &dev_priv->shared_dplls[i];
3031 serge 3222
		if (pll->refcount == 0) {
4104 Serge 3223
			DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3224
				      crtc->base.base.id, pll->name);
3031 serge 3225
			goto found;
3226
		}
3227
	}
3228
 
3229
	return NULL;
3230
 
3231
found:
4104 Serge 3232
	crtc->config.shared_dpll = i;
3233
	DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3234
			 pipe_name(crtc->pipe));
3235
 
3236
	if (pll->active == 0) {
3237
		memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3238
		       sizeof(pll->hw_state));
3239
 
3240
		DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3241
		WARN_ON(pll->on);
3242
		assert_shared_dpll_disabled(dev_priv, pll);
3243
 
3244
		pll->mode_set(dev_priv, pll);
3245
	}
3031 serge 3246
	pll->refcount++;
3247
 
3248
	return pll;
3249
}
3250
 
4104 Serge 3251
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
2342 Serge 3252
{
3253
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 3254
	int dslreg = PIPEDSL(pipe);
2342 Serge 3255
	u32 temp;
3256
 
3257
	temp = I915_READ(dslreg);
3258
	udelay(500);
3259
	if (wait_for(I915_READ(dslreg) != temp, 5)) {
3260
		if (wait_for(I915_READ(dslreg) != temp, 5))
4104 Serge 3261
			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
2342 Serge 3262
	}
3263
}
3264
 
4104 Serge 3265
static void ironlake_pfit_enable(struct intel_crtc *crtc)
3266
{
3267
	struct drm_device *dev = crtc->base.dev;
3268
	struct drm_i915_private *dev_priv = dev->dev_private;
3269
	int pipe = crtc->pipe;
3270
 
3271
	if (crtc->config.pch_pfit.enabled) {
3272
		/* Force use of hard-coded filter coefficients
3273
		 * as some pre-programmed values are broken,
3274
		 * e.g. x201.
3275
		 */
3276
		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3277
			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3278
						 PF_PIPE_SEL_IVB(pipe));
3279
		else
3280
			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3281
		I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3282
		I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3283
	}
3284
}
3285
 
3286
static void intel_enable_planes(struct drm_crtc *crtc)
3287
{
3288
	struct drm_device *dev = crtc->dev;
3289
	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3290
	struct intel_plane *intel_plane;
3291
 
3292
	list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3293
		if (intel_plane->pipe == pipe)
3294
			intel_plane_restore(&intel_plane->base);
3295
}
3296
 
3297
static void intel_disable_planes(struct drm_crtc *crtc)
3298
{
3299
	struct drm_device *dev = crtc->dev;
3300
	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3301
	struct intel_plane *intel_plane;
3302
 
3303
	list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3304
		if (intel_plane->pipe == pipe)
3305
			intel_plane_disable(&intel_plane->base);
3306
}
3307
 
2327 Serge 3308
static void ironlake_crtc_enable(struct drm_crtc *crtc)
3309
{
3310
    struct drm_device *dev = crtc->dev;
3311
    struct drm_i915_private *dev_priv = dev->dev_private;
3312
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3313
	struct intel_encoder *encoder;
2327 Serge 3314
    int pipe = intel_crtc->pipe;
3315
    int plane = intel_crtc->plane;
3316
 
3031 serge 3317
	WARN_ON(!crtc->enabled);
3318
 
2327 Serge 3319
    if (intel_crtc->active)
3320
        return;
3321
 
3322
    intel_crtc->active = true;
4104 Serge 3323
 
3324
	intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3325
	intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3326
 
2327 Serge 3327
    intel_update_watermarks(dev);
3328
 
4104 Serge 3329
	for_each_encoder_on_crtc(dev, crtc, encoder)
3330
		if (encoder->pre_enable)
3331
			encoder->pre_enable(encoder);
2327 Serge 3332
 
3746 Serge 3333
	if (intel_crtc->config.has_pch_encoder) {
3243 Serge 3334
		/* Note: FDI PLL enabling _must_ be done before we enable the
3335
		 * cpu pipes, hence this is separate from all the other fdi/pch
3336
		 * enabling. */
3031 serge 3337
		ironlake_fdi_pll_enable(intel_crtc);
3338
	} else {
3339
		assert_fdi_tx_disabled(dev_priv, pipe);
3340
		assert_fdi_rx_disabled(dev_priv, pipe);
3341
	}
2327 Serge 3342
 
4104 Serge 3343
	ironlake_pfit_enable(intel_crtc);
3031 serge 3344
 
2327 Serge 3345
    /*
3346
     * On ILK+ LUT must be loaded before the pipe is running but with
3347
     * clocks enabled
3348
     */
3349
    intel_crtc_load_lut(crtc);
3350
 
3746 Serge 3351
	intel_enable_pipe(dev_priv, pipe,
3352
			  intel_crtc->config.has_pch_encoder);
2327 Serge 3353
    intel_enable_plane(dev_priv, plane, pipe);
4104 Serge 3354
	intel_enable_planes(crtc);
3355
//	intel_crtc_update_cursor(crtc, true);
2327 Serge 3356
 
3746 Serge 3357
	if (intel_crtc->config.has_pch_encoder)
2327 Serge 3358
        ironlake_pch_enable(crtc);
3359
 
3360
    mutex_lock(&dev->struct_mutex);
3361
    intel_update_fbc(dev);
3362
    mutex_unlock(&dev->struct_mutex);
3363
 
3031 serge 3364
	for_each_encoder_on_crtc(dev, crtc, encoder)
3365
		encoder->enable(encoder);
3366
 
3367
	if (HAS_PCH_CPT(dev))
4104 Serge 3368
		cpt_verify_modeset(dev, intel_crtc->pipe);
3031 serge 3369
 
3370
	/*
3371
	 * There seems to be a race in PCH platform hw (at least on some
3372
	 * outputs) where an enabled pipe still completes any pageflip right
3373
	 * away (as if the pipe is off) instead of waiting for vblank. As soon
3374
	 * as the first vblank happend, everything works as expected. Hence just
3375
	 * wait for one vblank before returning to avoid strange things
3376
	 * happening.
3377
	 */
3378
	intel_wait_for_vblank(dev, intel_crtc->pipe);
2327 Serge 3379
}
3380
 
4104 Serge 3381
/* IPS only exists on ULT machines and is tied to pipe A. */
3382
static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3383
{
3384
	return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3385
}
3386
 
3387
static void hsw_enable_ips(struct intel_crtc *crtc)
3388
{
3389
	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3390
 
3391
	if (!crtc->config.ips_enabled)
3392
		return;
3393
 
3394
	/* We can only enable IPS after we enable a plane and wait for a vblank.
3395
	 * We guarantee that the plane is enabled by calling intel_enable_ips
3396
	 * only after intel_enable_plane. And intel_enable_plane already waits
3397
	 * for a vblank, so all we need to do here is to enable the IPS bit. */
3398
	assert_plane_enabled(dev_priv, crtc->plane);
3399
	I915_WRITE(IPS_CTL, IPS_ENABLE);
3400
}
3401
 
3402
static void hsw_disable_ips(struct intel_crtc *crtc)
3403
{
3404
	struct drm_device *dev = crtc->base.dev;
3405
	struct drm_i915_private *dev_priv = dev->dev_private;
3406
 
3407
	if (!crtc->config.ips_enabled)
3408
		return;
3409
 
3410
	assert_plane_enabled(dev_priv, crtc->plane);
3411
	I915_WRITE(IPS_CTL, 0);
3412
 
3413
	/* We need to wait for a vblank before we can disable the plane. */
3414
	intel_wait_for_vblank(dev, crtc->pipe);
3415
}
3416
 
3243 Serge 3417
static void haswell_crtc_enable(struct drm_crtc *crtc)
3418
{
3419
	struct drm_device *dev = crtc->dev;
3420
	struct drm_i915_private *dev_priv = dev->dev_private;
3421
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3422
	struct intel_encoder *encoder;
3423
	int pipe = intel_crtc->pipe;
3424
	int plane = intel_crtc->plane;
3425
 
3426
	WARN_ON(!crtc->enabled);
3427
 
3428
	if (intel_crtc->active)
3429
		return;
3430
 
3431
	intel_crtc->active = true;
4104 Serge 3432
 
3433
	intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3434
	if (intel_crtc->config.has_pch_encoder)
3435
		intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3436
 
3243 Serge 3437
	intel_update_watermarks(dev);
3438
 
3746 Serge 3439
	if (intel_crtc->config.has_pch_encoder)
3243 Serge 3440
		dev_priv->display.fdi_link_train(crtc);
3441
 
3442
	for_each_encoder_on_crtc(dev, crtc, encoder)
3443
		if (encoder->pre_enable)
3444
			encoder->pre_enable(encoder);
3445
 
3446
	intel_ddi_enable_pipe_clock(intel_crtc);
3447
 
4104 Serge 3448
	ironlake_pfit_enable(intel_crtc);
3243 Serge 3449
 
3450
	/*
3451
	 * On ILK+ LUT must be loaded before the pipe is running but with
3452
	 * clocks enabled
3453
	 */
3454
	intel_crtc_load_lut(crtc);
3455
 
3456
	intel_ddi_set_pipe_settings(crtc);
3746 Serge 3457
	intel_ddi_enable_transcoder_func(crtc);
3243 Serge 3458
 
3746 Serge 3459
	intel_enable_pipe(dev_priv, pipe,
3460
			  intel_crtc->config.has_pch_encoder);
3243 Serge 3461
	intel_enable_plane(dev_priv, plane, pipe);
4104 Serge 3462
	intel_enable_planes(crtc);
3463
//	intel_crtc_update_cursor(crtc, true);
3243 Serge 3464
 
4104 Serge 3465
	hsw_enable_ips(intel_crtc);
3466
 
3746 Serge 3467
	if (intel_crtc->config.has_pch_encoder)
3243 Serge 3468
		lpt_pch_enable(crtc);
3469
 
3470
	mutex_lock(&dev->struct_mutex);
3471
	intel_update_fbc(dev);
3472
	mutex_unlock(&dev->struct_mutex);
3473
 
3474
	for_each_encoder_on_crtc(dev, crtc, encoder)
3475
		encoder->enable(encoder);
3476
 
3477
	/*
3478
	 * There seems to be a race in PCH platform hw (at least on some
3479
	 * outputs) where an enabled pipe still completes any pageflip right
3480
	 * away (as if the pipe is off) instead of waiting for vblank. As soon
3481
	 * as the first vblank happend, everything works as expected. Hence just
3482
	 * wait for one vblank before returning to avoid strange things
3483
	 * happening.
3484
	 */
3485
	intel_wait_for_vblank(dev, intel_crtc->pipe);
3486
}
3487
 
4104 Serge 3488
static void ironlake_pfit_disable(struct intel_crtc *crtc)
3489
{
3490
	struct drm_device *dev = crtc->base.dev;
3491
	struct drm_i915_private *dev_priv = dev->dev_private;
3492
	int pipe = crtc->pipe;
3493
 
3494
	/* To avoid upsetting the power well on haswell only disable the pfit if
3495
	 * it's in use. The hw state code will make sure we get this right. */
3496
	if (crtc->config.pch_pfit.enabled) {
3497
		I915_WRITE(PF_CTL(pipe), 0);
3498
		I915_WRITE(PF_WIN_POS(pipe), 0);
3499
		I915_WRITE(PF_WIN_SZ(pipe), 0);
3500
	}
3501
}
3502
 
2327 Serge 3503
static void ironlake_crtc_disable(struct drm_crtc *crtc)
3504
{
3505
    struct drm_device *dev = crtc->dev;
3506
    struct drm_i915_private *dev_priv = dev->dev_private;
3507
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3508
	struct intel_encoder *encoder;
2327 Serge 3509
    int pipe = intel_crtc->pipe;
3510
    int plane = intel_crtc->plane;
3511
    u32 reg, temp;
3512
 
3031 serge 3513
 
2327 Serge 3514
    if (!intel_crtc->active)
3515
        return;
3516
 
3031 serge 3517
	for_each_encoder_on_crtc(dev, crtc, encoder)
3518
		encoder->disable(encoder);
2336 Serge 3519
 
3031 serge 3520
//    intel_crtc_wait_for_pending_flips(crtc);
2327 Serge 3521
//    drm_vblank_off(dev, pipe);
3522
 
4104 Serge 3523
	if (dev_priv->fbc.plane == plane)
3524
		intel_disable_fbc(dev);
3525
 
3526
//	intel_crtc_update_cursor(crtc, false);
3527
	intel_disable_planes(crtc);
2327 Serge 3528
    intel_disable_plane(dev_priv, plane, pipe);
3529
 
4104 Serge 3530
	if (intel_crtc->config.has_pch_encoder)
3531
		intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
2327 Serge 3532
 
3533
    intel_disable_pipe(dev_priv, pipe);
3534
 
4104 Serge 3535
	ironlake_pfit_disable(intel_crtc);
2327 Serge 3536
 
3031 serge 3537
	for_each_encoder_on_crtc(dev, crtc, encoder)
3538
		if (encoder->post_disable)
3539
			encoder->post_disable(encoder);
3540
 
4104 Serge 3541
	if (intel_crtc->config.has_pch_encoder) {
2327 Serge 3542
    ironlake_fdi_disable(crtc);
3543
 
3243 Serge 3544
	ironlake_disable_pch_transcoder(dev_priv, pipe);
4104 Serge 3545
		intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
2327 Serge 3546
 
3547
    if (HAS_PCH_CPT(dev)) {
3548
        /* disable TRANS_DP_CTL */
3549
        reg = TRANS_DP_CTL(pipe);
3550
        temp = I915_READ(reg);
4104 Serge 3551
			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3552
				  TRANS_DP_PORT_SEL_MASK);
2327 Serge 3553
        temp |= TRANS_DP_PORT_SEL_NONE;
3554
        I915_WRITE(reg, temp);
3555
 
3556
        /* disable DPLL_SEL */
3557
        temp = I915_READ(PCH_DPLL_SEL);
4104 Serge 3558
			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
2327 Serge 3559
        I915_WRITE(PCH_DPLL_SEL, temp);
3560
    }
3561
 
3562
    /* disable PCH DPLL */
4104 Serge 3563
		intel_disable_shared_dpll(intel_crtc);
2327 Serge 3564
 
3031 serge 3565
	ironlake_fdi_pll_disable(intel_crtc);
4104 Serge 3566
	}
2327 Serge 3567
 
3568
    intel_crtc->active = false;
3569
    intel_update_watermarks(dev);
3570
 
3571
    mutex_lock(&dev->struct_mutex);
3572
    intel_update_fbc(dev);
3573
    mutex_unlock(&dev->struct_mutex);
3574
}
3575
 
3243 Serge 3576
static void haswell_crtc_disable(struct drm_crtc *crtc)
3577
{
3578
	struct drm_device *dev = crtc->dev;
3579
	struct drm_i915_private *dev_priv = dev->dev_private;
3580
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3581
	struct intel_encoder *encoder;
3582
	int pipe = intel_crtc->pipe;
3583
	int plane = intel_crtc->plane;
3746 Serge 3584
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3243 Serge 3585
 
3586
	if (!intel_crtc->active)
3587
		return;
3588
 
3589
	for_each_encoder_on_crtc(dev, crtc, encoder)
3590
		encoder->disable(encoder);
3591
 
3592
 
4104 Serge 3593
	/* FBC must be disabled before disabling the plane on HSW. */
3594
	if (dev_priv->fbc.plane == plane)
3595
		intel_disable_fbc(dev);
3596
 
3597
	hsw_disable_ips(intel_crtc);
3598
 
3599
//	intel_crtc_update_cursor(crtc, false);
3600
	intel_disable_planes(crtc);
3243 Serge 3601
	intel_disable_plane(dev_priv, plane, pipe);
3602
 
4104 Serge 3603
	if (intel_crtc->config.has_pch_encoder)
3604
		intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3243 Serge 3605
	intel_disable_pipe(dev_priv, pipe);
3606
 
3607
	intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3608
 
4104 Serge 3609
	ironlake_pfit_disable(intel_crtc);
3243 Serge 3610
 
3611
	intel_ddi_disable_pipe_clock(intel_crtc);
3612
 
3613
	for_each_encoder_on_crtc(dev, crtc, encoder)
3614
		if (encoder->post_disable)
3615
			encoder->post_disable(encoder);
3616
 
3746 Serge 3617
	if (intel_crtc->config.has_pch_encoder) {
3243 Serge 3618
		lpt_disable_pch_transcoder(dev_priv);
4104 Serge 3619
		intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3243 Serge 3620
		intel_ddi_fdi_disable(crtc);
3621
	}
3622
 
3623
	intel_crtc->active = false;
3624
	intel_update_watermarks(dev);
3625
 
3626
	mutex_lock(&dev->struct_mutex);
3627
	intel_update_fbc(dev);
3628
	mutex_unlock(&dev->struct_mutex);
3629
}
3630
 
3031 serge 3631
static void ironlake_crtc_off(struct drm_crtc *crtc)
2327 Serge 3632
{
3633
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104 Serge 3634
	intel_put_shared_dpll(intel_crtc);
2327 Serge 3635
}
3636
 
3243 Serge 3637
static void haswell_crtc_off(struct drm_crtc *crtc)
3638
{
3639
	intel_ddi_put_crtc_pll(crtc);
3640
}
3641
 
2327 Serge 3642
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3643
{
3644
	if (!enable && intel_crtc->overlay) {
3645
		struct drm_device *dev = intel_crtc->base.dev;
3646
		struct drm_i915_private *dev_priv = dev->dev_private;
3647
 
3648
		mutex_lock(&dev->struct_mutex);
3649
		dev_priv->mm.interruptible = false;
3650
//       (void) intel_overlay_switch_off(intel_crtc->overlay);
3651
		dev_priv->mm.interruptible = true;
3652
		mutex_unlock(&dev->struct_mutex);
3653
	}
3654
 
3655
	/* Let userspace switch the overlay on again. In most cases userspace
3656
	 * has to recompute where to put it anyway.
3657
	 */
3658
}
3659
 
3480 Serge 3660
/**
3661
 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3662
 * cursor plane briefly if not already running after enabling the display
3663
 * plane.
3664
 * This workaround avoids occasional blank screens when self refresh is
3665
 * enabled.
3666
 */
3667
static void
3668
g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3669
{
3670
	u32 cntl = I915_READ(CURCNTR(pipe));
3671
 
3672
	if ((cntl & CURSOR_MODE) == 0) {
3673
		u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3674
 
3675
		I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3676
		I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3677
		intel_wait_for_vblank(dev_priv->dev, pipe);
3678
		I915_WRITE(CURCNTR(pipe), cntl);
3679
		I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3680
		I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3681
	}
3682
}
3683
 
4104 Serge 3684
static void i9xx_pfit_enable(struct intel_crtc *crtc)
3685
{
3686
	struct drm_device *dev = crtc->base.dev;
3687
	struct drm_i915_private *dev_priv = dev->dev_private;
3688
	struct intel_crtc_config *pipe_config = &crtc->config;
3689
 
3690
	if (!crtc->config.gmch_pfit.control)
3691
		return;
3692
 
3693
	/*
3694
	 * The panel fitter should only be adjusted whilst the pipe is disabled,
3695
	 * according to register description and PRM.
3696
	 */
3697
	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3698
	assert_pipe_disabled(dev_priv, crtc->pipe);
3699
 
3700
	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3701
	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3702
 
3703
	/* Border color in case we don't scale up to the full screen. Black by
3704
	 * default, change to something else for debugging. */
3705
	I915_WRITE(BCLRPAT(crtc->pipe), 0);
3706
}
3707
 
3708
static void valleyview_crtc_enable(struct drm_crtc *crtc)
3709
{
3710
	struct drm_device *dev = crtc->dev;
3711
	struct drm_i915_private *dev_priv = dev->dev_private;
3712
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3713
	struct intel_encoder *encoder;
3714
	int pipe = intel_crtc->pipe;
3715
	int plane = intel_crtc->plane;
3716
 
3717
	WARN_ON(!crtc->enabled);
3718
 
3719
	if (intel_crtc->active)
3720
		return;
3721
 
3722
	intel_crtc->active = true;
3723
	intel_update_watermarks(dev);
3724
 
3725
	for_each_encoder_on_crtc(dev, crtc, encoder)
3726
		if (encoder->pre_pll_enable)
3727
			encoder->pre_pll_enable(encoder);
3728
 
3729
	vlv_enable_pll(intel_crtc);
3730
 
3731
	for_each_encoder_on_crtc(dev, crtc, encoder)
3732
		if (encoder->pre_enable)
3733
			encoder->pre_enable(encoder);
3734
 
3735
	i9xx_pfit_enable(intel_crtc);
3736
 
3737
	intel_crtc_load_lut(crtc);
3738
 
3739
	intel_enable_pipe(dev_priv, pipe, false);
3740
	intel_enable_plane(dev_priv, plane, pipe);
3741
	intel_enable_planes(crtc);
3742
//	intel_crtc_update_cursor(crtc, true);
3743
 
3744
	intel_update_fbc(dev);
3745
 
3746
	for_each_encoder_on_crtc(dev, crtc, encoder)
3747
		encoder->enable(encoder);
3748
}
3749
 
2327 Serge 3750
static void i9xx_crtc_enable(struct drm_crtc *crtc)
3751
{
3752
    struct drm_device *dev = crtc->dev;
3753
    struct drm_i915_private *dev_priv = dev->dev_private;
3754
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3755
	struct intel_encoder *encoder;
2327 Serge 3756
    int pipe = intel_crtc->pipe;
3757
    int plane = intel_crtc->plane;
3758
 
3031 serge 3759
	WARN_ON(!crtc->enabled);
3760
 
2327 Serge 3761
    if (intel_crtc->active)
3762
        return;
3763
 
3764
    intel_crtc->active = true;
3765
    intel_update_watermarks(dev);
3766
 
3480 Serge 3767
	for_each_encoder_on_crtc(dev, crtc, encoder)
3768
		if (encoder->pre_enable)
3769
			encoder->pre_enable(encoder);
3770
 
4104 Serge 3771
	i9xx_enable_pll(intel_crtc);
3772
 
3773
	i9xx_pfit_enable(intel_crtc);
3774
 
3775
	intel_crtc_load_lut(crtc);
3776
 
2327 Serge 3777
    intel_enable_pipe(dev_priv, pipe, false);
3778
    intel_enable_plane(dev_priv, plane, pipe);
4104 Serge 3779
	intel_enable_planes(crtc);
3780
	/* The fixup needs to happen before cursor is enabled */
3480 Serge 3781
	if (IS_G4X(dev))
3782
		g4x_fixup_plane(dev_priv, pipe);
4104 Serge 3783
//	intel_crtc_update_cursor(crtc, true);
2327 Serge 3784
 
3785
    /* Give the overlay scaler a chance to enable if it's on this pipe */
3786
    intel_crtc_dpms_overlay(intel_crtc, true);
3031 serge 3787
 
4104 Serge 3788
	intel_update_fbc(dev);
3789
 
3031 serge 3790
	for_each_encoder_on_crtc(dev, crtc, encoder)
3791
		encoder->enable(encoder);
2327 Serge 3792
}
3793
 
3746 Serge 3794
static void i9xx_pfit_disable(struct intel_crtc *crtc)
3795
{
3796
	struct drm_device *dev = crtc->base.dev;
3797
	struct drm_i915_private *dev_priv = dev->dev_private;
3798
 
4104 Serge 3799
	if (!crtc->config.gmch_pfit.control)
3800
		return;
3801
 
3746 Serge 3802
	assert_pipe_disabled(dev_priv, crtc->pipe);
3803
 
4104 Serge 3804
	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3805
			 I915_READ(PFIT_CONTROL));
3746 Serge 3806
		I915_WRITE(PFIT_CONTROL, 0);
3807
}
3808
 
2327 Serge 3809
static void i9xx_crtc_disable(struct drm_crtc *crtc)
3810
{
3811
    struct drm_device *dev = crtc->dev;
3812
    struct drm_i915_private *dev_priv = dev->dev_private;
3813
    struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 3814
	struct intel_encoder *encoder;
2327 Serge 3815
    int pipe = intel_crtc->pipe;
3816
    int plane = intel_crtc->plane;
3817
 
3818
    if (!intel_crtc->active)
3819
        return;
3820
 
3031 serge 3821
	for_each_encoder_on_crtc(dev, crtc, encoder)
3822
		encoder->disable(encoder);
3823
 
2327 Serge 3824
    /* Give the overlay scaler a chance to disable if it's on this pipe */
3031 serge 3825
//    intel_crtc_wait_for_pending_flips(crtc);
2327 Serge 3826
//    drm_vblank_off(dev, pipe);
3827
 
4104 Serge 3828
	if (dev_priv->fbc.plane == plane)
2327 Serge 3829
        intel_disable_fbc(dev);
3830
 
4104 Serge 3831
	intel_crtc_dpms_overlay(intel_crtc, false);
3832
//	intel_crtc_update_cursor(crtc, false);
3833
	intel_disable_planes(crtc);
2327 Serge 3834
    intel_disable_plane(dev_priv, plane, pipe);
4104 Serge 3835
 
2327 Serge 3836
    intel_disable_pipe(dev_priv, pipe);
3480 Serge 3837
 
3746 Serge 3838
	i9xx_pfit_disable(intel_crtc);
3480 Serge 3839
 
4104 Serge 3840
	for_each_encoder_on_crtc(dev, crtc, encoder)
3841
		if (encoder->post_disable)
3842
			encoder->post_disable(encoder);
2327 Serge 3843
 
4104 Serge 3844
	i9xx_disable_pll(dev_priv, pipe);
3845
 
2327 Serge 3846
    intel_crtc->active = false;
3847
    intel_update_fbc(dev);
3848
    intel_update_watermarks(dev);
3849
}
3850
 
3031 serge 3851
static void i9xx_crtc_off(struct drm_crtc *crtc)
2327 Serge 3852
{
3853
}
3854
 
3031 serge 3855
static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3856
				    bool enabled)
2330 Serge 3857
{
3858
	struct drm_device *dev = crtc->dev;
3859
	struct drm_i915_master_private *master_priv;
3860
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3861
	int pipe = intel_crtc->pipe;
2327 Serge 3862
 
3863
 
2340 Serge 3864
#if 0
2330 Serge 3865
	if (!dev->primary->master)
3866
		return;
2327 Serge 3867
 
2330 Serge 3868
	master_priv = dev->primary->master->driver_priv;
3869
	if (!master_priv->sarea_priv)
3870
		return;
2327 Serge 3871
 
2330 Serge 3872
	switch (pipe) {
3873
	case 0:
3874
		master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3875
		master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3876
		break;
3877
	case 1:
3878
		master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3879
		master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3880
		break;
3881
	default:
3882
		DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3883
		break;
3884
	}
2340 Serge 3885
#endif
3886
 
2330 Serge 3887
}
2327 Serge 3888
 
3031 serge 3889
/**
3890
 * Sets the power management mode of the pipe and plane.
3891
 */
3892
void intel_crtc_update_dpms(struct drm_crtc *crtc)
3893
{
3894
	struct drm_device *dev = crtc->dev;
3895
	struct drm_i915_private *dev_priv = dev->dev_private;
3896
	struct intel_encoder *intel_encoder;
3897
	bool enable = false;
3898
 
3899
	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3900
		enable |= intel_encoder->connectors_active;
3901
 
3902
	if (enable)
3903
		dev_priv->display.crtc_enable(crtc);
3904
	else
3905
		dev_priv->display.crtc_disable(crtc);
3906
 
3907
	intel_crtc_update_sarea(crtc, enable);
3908
}
3909
 
2330 Serge 3910
static void intel_crtc_disable(struct drm_crtc *crtc)
3911
{
3912
	struct drm_device *dev = crtc->dev;
3031 serge 3913
	struct drm_connector *connector;
3914
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 3915
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 3916
 
3031 serge 3917
	/* crtc should still be enabled when we disable it. */
3918
	WARN_ON(!crtc->enabled);
2327 Serge 3919
 
4104 Serge 3920
	dev_priv->display.crtc_disable(crtc);
3480 Serge 3921
	intel_crtc->eld_vld = false;
3031 serge 3922
	intel_crtc_update_sarea(crtc, false);
3923
	dev_priv->display.off(crtc);
3924
 
3925
	assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3926
	assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3927
 
4280 Serge 3928
	if (crtc->fb) {
3929
		mutex_lock(&dev->struct_mutex);
3930
		intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3931
		mutex_unlock(&dev->struct_mutex);
3932
		crtc->fb = NULL;
3933
	}
3031 serge 3934
 
3935
	/* Update computed state. */
3936
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3937
		if (!connector->encoder || !connector->encoder->crtc)
3938
			continue;
3939
 
3940
		if (connector->encoder->crtc != crtc)
3941
			continue;
3942
 
3943
		connector->dpms = DRM_MODE_DPMS_OFF;
3944
		to_intel_encoder(connector->encoder)->connectors_active = false;
2330 Serge 3945
	}
3946
}
2327 Serge 3947
 
3031 serge 3948
void intel_encoder_destroy(struct drm_encoder *encoder)
2330 Serge 3949
{
3031 serge 3950
	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3951
 
3952
	drm_encoder_cleanup(encoder);
3953
	kfree(intel_encoder);
2330 Serge 3954
}
2327 Serge 3955
 
4104 Serge 3956
/* Simple dpms helper for encoders with just one connector, no cloning and only
3031 serge 3957
 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3958
 * state of the entire output pipe. */
4104 Serge 3959
static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
2330 Serge 3960
{
3031 serge 3961
	if (mode == DRM_MODE_DPMS_ON) {
3962
		encoder->connectors_active = true;
3963
 
3964
		intel_crtc_update_dpms(encoder->base.crtc);
3965
	} else {
3966
		encoder->connectors_active = false;
3967
 
3968
		intel_crtc_update_dpms(encoder->base.crtc);
3969
	}
2330 Serge 3970
}
2327 Serge 3971
 
3031 serge 3972
/* Cross check the actual hw state with our own modeset state tracking (and it's
3973
 * internal consistency). */
3974
static void intel_connector_check_state(struct intel_connector *connector)
2330 Serge 3975
{
3031 serge 3976
	if (connector->get_hw_state(connector)) {
3977
		struct intel_encoder *encoder = connector->encoder;
3978
		struct drm_crtc *crtc;
3979
		bool encoder_enabled;
3980
		enum pipe pipe;
3981
 
3982
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3983
			      connector->base.base.id,
3984
			      drm_get_connector_name(&connector->base));
3985
 
3986
		WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3987
		     "wrong connector dpms state\n");
3988
		WARN(connector->base.encoder != &encoder->base,
3989
		     "active connector not linked to encoder\n");
3990
		WARN(!encoder->connectors_active,
3991
		     "encoder->connectors_active not set\n");
3992
 
3993
		encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3994
		WARN(!encoder_enabled, "encoder not enabled\n");
3995
		if (WARN_ON(!encoder->base.crtc))
3996
			return;
3997
 
3998
		crtc = encoder->base.crtc;
3999
 
4000
		WARN(!crtc->enabled, "crtc not enabled\n");
4001
		WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4002
		WARN(pipe != to_intel_crtc(crtc)->pipe,
4003
		     "encoder active on the wrong pipe\n");
4004
	}
2330 Serge 4005
}
2327 Serge 4006
 
3031 serge 4007
/* Even simpler default implementation, if there's really no special case to
4008
 * consider. */
4009
void intel_connector_dpms(struct drm_connector *connector, int mode)
2330 Serge 4010
{
3031 serge 4011
	/* All the simple cases only support two dpms states. */
4012
	if (mode != DRM_MODE_DPMS_ON)
4013
		mode = DRM_MODE_DPMS_OFF;
2342 Serge 4014
 
3031 serge 4015
	if (mode == connector->dpms)
4016
		return;
4017
 
4018
	connector->dpms = mode;
4019
 
4020
	/* Only need to change hw state when actually enabled */
4104 Serge 4021
	if (connector->encoder)
4022
		intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
3031 serge 4023
 
4024
	intel_modeset_check_state(connector->dev);
2330 Serge 4025
}
2327 Serge 4026
 
3031 serge 4027
/* Simple connector->get_hw_state implementation for encoders that support only
4028
 * one connector and no cloning and hence the encoder state determines the state
4029
 * of the connector. */
4030
bool intel_connector_get_hw_state(struct intel_connector *connector)
2330 Serge 4031
{
3031 serge 4032
	enum pipe pipe = 0;
4033
	struct intel_encoder *encoder = connector->encoder;
2330 Serge 4034
 
3031 serge 4035
	return encoder->get_hw_state(encoder, &pipe);
2330 Serge 4036
}
4037
 
4104 Serge 4038
static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4039
				     struct intel_crtc_config *pipe_config)
4040
{
4041
	struct drm_i915_private *dev_priv = dev->dev_private;
4042
	struct intel_crtc *pipe_B_crtc =
4043
		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4044
 
4045
	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4046
		      pipe_name(pipe), pipe_config->fdi_lanes);
4047
	if (pipe_config->fdi_lanes > 4) {
4048
		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4049
			      pipe_name(pipe), pipe_config->fdi_lanes);
4050
		return false;
4051
	}
4052
 
4053
	if (IS_HASWELL(dev)) {
4054
		if (pipe_config->fdi_lanes > 2) {
4055
			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4056
				      pipe_config->fdi_lanes);
4057
			return false;
4058
		} else {
4059
			return true;
4060
		}
4061
	}
4062
 
4063
	if (INTEL_INFO(dev)->num_pipes == 2)
4064
		return true;
4065
 
4066
	/* Ivybridge 3 pipe is really complicated */
4067
	switch (pipe) {
4068
	case PIPE_A:
4069
		return true;
4070
	case PIPE_B:
4071
		if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4072
		    pipe_config->fdi_lanes > 2) {
4073
			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4074
				      pipe_name(pipe), pipe_config->fdi_lanes);
4075
			return false;
4076
		}
4077
		return true;
4078
	case PIPE_C:
4079
		if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4080
		    pipe_B_crtc->config.fdi_lanes <= 2) {
4081
			if (pipe_config->fdi_lanes > 2) {
4082
				DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4083
					      pipe_name(pipe), pipe_config->fdi_lanes);
4084
				return false;
4085
			}
4086
		} else {
4087
			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4088
			return false;
4089
		}
4090
		return true;
4091
	default:
4092
		BUG();
4093
	}
4094
}
4095
 
4096
#define RETRY 1
4097
static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
3746 Serge 4098
				      struct intel_crtc_config *pipe_config)
2330 Serge 4099
{
4104 Serge 4100
	struct drm_device *dev = intel_crtc->base.dev;
3746 Serge 4101
	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4104 Serge 4102
	int lane, link_bw, fdi_dotclock;
4103
	bool setup_ok, needs_recompute = false;
2330 Serge 4104
 
4104 Serge 4105
retry:
4106
	/* FDI is a binary signal running at ~2.7GHz, encoding
4107
	 * each output octet as 10 bits. The actual frequency
4108
	 * is stored as a divider into a 100MHz clock, and the
4109
	 * mode pixel clock is stored in units of 1KHz.
4110
	 * Hence the bw of each lane in terms of the mode signal
4111
	 * is:
4112
	 */
4113
	link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4114
 
4115
	fdi_dotclock = adjusted_mode->clock;
4116
	fdi_dotclock /= pipe_config->pixel_multiplier;
4117
 
4118
	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4119
					   pipe_config->pipe_bpp);
4120
 
4121
	pipe_config->fdi_lanes = lane;
4122
 
4123
	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4124
			       link_bw, &pipe_config->fdi_m_n);
4125
 
4126
	setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4127
					    intel_crtc->pipe, pipe_config);
4128
	if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4129
		pipe_config->pipe_bpp -= 2*3;
4130
		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4131
			      pipe_config->pipe_bpp);
4132
		needs_recompute = true;
4133
		pipe_config->bw_constrained = true;
4134
 
4135
		goto retry;
4136
	}
4137
 
4138
	if (needs_recompute)
4139
		return RETRY;
4140
 
4141
	return setup_ok ? 0 : -EINVAL;
4142
}
4143
 
4144
static void hsw_compute_ips_config(struct intel_crtc *crtc,
4145
				   struct intel_crtc_config *pipe_config)
4146
{
4147
	pipe_config->ips_enabled = i915_enable_ips &&
4148
				   hsw_crtc_supports_ips(crtc) &&
4149
				   pipe_config->pipe_bpp <= 24;
4150
}
4151
 
4152
static int intel_crtc_compute_config(struct intel_crtc *crtc,
4153
				     struct intel_crtc_config *pipe_config)
4154
{
4155
	struct drm_device *dev = crtc->base.dev;
4156
	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4157
 
2330 Serge 4158
	if (HAS_PCH_SPLIT(dev)) {
4159
		/* FDI link clock is fixed at 2.7G */
3746 Serge 4160
		if (pipe_config->requested_mode.clock * 3
4161
		    > IRONLAKE_FDI_FREQ * 4)
4104 Serge 4162
			return -EINVAL;
2330 Serge 4163
	}
4164
 
4104 Serge 4165
	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
4166
	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
3031 serge 4167
	 */
4168
	if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4169
		adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4104 Serge 4170
		return -EINVAL;
3031 serge 4171
 
3746 Serge 4172
	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4173
		pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4174
	} else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4175
		/* only a 8bpc pipe, with 6bpc dither through the panel fitter
4176
		 * for lvds. */
4177
		pipe_config->pipe_bpp = 8*3;
4178
	}
4179
 
4104 Serge 4180
	if (HAS_IPS(dev))
4181
		hsw_compute_ips_config(crtc, pipe_config);
4182
 
4183
	/* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4184
	 * clock survives for now. */
4185
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4186
		pipe_config->shared_dpll = crtc->config.shared_dpll;
4187
 
4188
	if (pipe_config->has_pch_encoder)
4189
		return ironlake_fdi_compute_config(crtc, pipe_config);
4190
 
4191
	return 0;
2330 Serge 4192
}
4193
 
3031 serge 4194
static int valleyview_get_display_clock_speed(struct drm_device *dev)
4195
{
4196
	return 400000; /* FIXME */
4197
}
4198
 
2327 Serge 4199
static int i945_get_display_clock_speed(struct drm_device *dev)
4200
{
4201
	return 400000;
4202
}
4203
 
4204
static int i915_get_display_clock_speed(struct drm_device *dev)
4205
{
4206
	return 333000;
4207
}
4208
 
4209
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4210
{
4211
	return 200000;
4212
}
4213
 
4104 Serge 4214
static int pnv_get_display_clock_speed(struct drm_device *dev)
4215
{
4216
	u16 gcfgc = 0;
4217
 
4218
	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4219
 
4220
	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4221
	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4222
		return 267000;
4223
	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4224
		return 333000;
4225
	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4226
		return 444000;
4227
	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4228
		return 200000;
4229
	default:
4230
		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4231
	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4232
		return 133000;
4233
	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4234
		return 167000;
4235
	}
4236
}
4237
 
2327 Serge 4238
static int i915gm_get_display_clock_speed(struct drm_device *dev)
4239
{
4240
	u16 gcfgc = 0;
4241
 
4242
	pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4243
 
4244
	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4245
		return 133000;
4246
	else {
4247
		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4248
		case GC_DISPLAY_CLOCK_333_MHZ:
4249
			return 333000;
4250
		default:
4251
		case GC_DISPLAY_CLOCK_190_200_MHZ:
4252
			return 190000;
4253
		}
4254
	}
4255
}
4256
 
4257
static int i865_get_display_clock_speed(struct drm_device *dev)
4258
{
4259
	return 266000;
4260
}
4261
 
4262
static int i855_get_display_clock_speed(struct drm_device *dev)
4263
{
4264
	u16 hpllcc = 0;
4265
	/* Assume that the hardware is in the high speed state.  This
4266
	 * should be the default.
4267
	 */
4268
	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4269
	case GC_CLOCK_133_200:
4270
	case GC_CLOCK_100_200:
4271
		return 200000;
4272
	case GC_CLOCK_166_250:
4273
		return 250000;
4274
	case GC_CLOCK_100_133:
4275
		return 133000;
4276
	}
4277
 
4278
	/* Shouldn't happen */
4279
	return 0;
4280
}
4281
 
4282
static int i830_get_display_clock_speed(struct drm_device *dev)
4283
{
4284
	return 133000;
4285
}
4286
 
4287
static void
3746 Serge 4288
intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2327 Serge 4289
{
3746 Serge 4290
	while (*num > DATA_LINK_M_N_MASK ||
4291
	       *den > DATA_LINK_M_N_MASK) {
2327 Serge 4292
		*num >>= 1;
4293
		*den >>= 1;
4294
	}
4295
}
4296
 
3746 Serge 4297
static void compute_m_n(unsigned int m, unsigned int n,
4298
			uint32_t *ret_m, uint32_t *ret_n)
4299
{
4300
	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4301
	*ret_m = div_u64((uint64_t) m * *ret_n, n);
4302
	intel_reduce_m_n_ratio(ret_m, ret_n);
4303
}
4304
 
3480 Serge 4305
void
4306
intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4307
		       int pixel_clock, int link_clock,
4308
		       struct intel_link_m_n *m_n)
2327 Serge 4309
{
3480 Serge 4310
	m_n->tu = 64;
3746 Serge 4311
 
4312
	compute_m_n(bits_per_pixel * pixel_clock,
4313
		    link_clock * nlanes * 8,
4314
		    &m_n->gmch_m, &m_n->gmch_n);
4315
 
4316
	compute_m_n(pixel_clock, link_clock,
4317
		    &m_n->link_m, &m_n->link_n);
2327 Serge 4318
}
4319
 
4320
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4321
{
2342 Serge 4322
	if (i915_panel_use_ssc >= 0)
4323
		return i915_panel_use_ssc != 0;
4104 Serge 4324
	return dev_priv->vbt.lvds_use_ssc
2327 Serge 4325
		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4326
}
4327
 
3031 serge 4328
static int vlv_get_refclk(struct drm_crtc *crtc)
2327 Serge 4329
{
3031 serge 4330
	struct drm_device *dev = crtc->dev;
4331
	struct drm_i915_private *dev_priv = dev->dev_private;
4332
	int refclk = 27000; /* for DP & HDMI */
2327 Serge 4333
 
3031 serge 4334
	return 100000; /* only one validated so far */
2327 Serge 4335
 
3031 serge 4336
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4337
		refclk = 96000;
4338
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4339
		if (intel_panel_use_ssc(dev_priv))
4340
			refclk = 100000;
4341
		else
4342
			refclk = 96000;
4343
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4344
		refclk = 100000;
4345
	}
2327 Serge 4346
 
3031 serge 4347
	return refclk;
4348
}
2327 Serge 4349
 
3031 serge 4350
static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4351
{
4352
	struct drm_device *dev = crtc->dev;
4353
	struct drm_i915_private *dev_priv = dev->dev_private;
4354
	int refclk;
2327 Serge 4355
 
3031 serge 4356
	if (IS_VALLEYVIEW(dev)) {
4357
		refclk = vlv_get_refclk(crtc);
4358
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4359
	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4104 Serge 4360
		refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
3031 serge 4361
		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4362
			      refclk / 1000);
4363
	} else if (!IS_GEN2(dev)) {
4364
		refclk = 96000;
4365
	} else {
4366
		refclk = 48000;
4367
	}
2327 Serge 4368
 
3031 serge 4369
	return refclk;
4370
}
2327 Serge 4371
 
4104 Serge 4372
static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
3031 serge 4373
{
4104 Serge 4374
	return (1 << dpll->n) << 16 | dpll->m2;
4375
}
3746 Serge 4376
 
4104 Serge 4377
static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4378
{
4379
	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
3031 serge 4380
}
2327 Serge 4381
 
3746 Serge 4382
static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
3031 serge 4383
				     intel_clock_t *reduced_clock)
4384
{
3746 Serge 4385
	struct drm_device *dev = crtc->base.dev;
3031 serge 4386
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 4387
	int pipe = crtc->pipe;
3031 serge 4388
	u32 fp, fp2 = 0;
2327 Serge 4389
 
3031 serge 4390
	if (IS_PINEVIEW(dev)) {
4104 Serge 4391
		fp = pnv_dpll_compute_fp(&crtc->config.dpll);
3031 serge 4392
		if (reduced_clock)
4104 Serge 4393
			fp2 = pnv_dpll_compute_fp(reduced_clock);
3031 serge 4394
	} else {
4104 Serge 4395
		fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
3031 serge 4396
		if (reduced_clock)
4104 Serge 4397
			fp2 = i9xx_dpll_compute_fp(reduced_clock);
3031 serge 4398
	}
2327 Serge 4399
 
3031 serge 4400
	I915_WRITE(FP0(pipe), fp);
4104 Serge 4401
	crtc->config.dpll_hw_state.fp0 = fp;
2327 Serge 4402
 
3746 Serge 4403
	crtc->lowfreq_avail = false;
4404
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
3031 serge 4405
	    reduced_clock && i915_powersave) {
4406
		I915_WRITE(FP1(pipe), fp2);
4104 Serge 4407
		crtc->config.dpll_hw_state.fp1 = fp2;
3746 Serge 4408
		crtc->lowfreq_avail = true;
3031 serge 4409
	} else {
4410
		I915_WRITE(FP1(pipe), fp);
4104 Serge 4411
		crtc->config.dpll_hw_state.fp1 = fp;
3031 serge 4412
	}
4413
}
2327 Serge 4414
 
4104 Serge 4415
static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4416
{
4417
	u32 reg_val;
4418
 
4419
	/*
4420
	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4421
	 * and set it to a reasonable value instead.
4422
	 */
4423
	reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4424
	reg_val &= 0xffffff00;
4425
	reg_val |= 0x00000030;
4426
	vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4427
 
4428
	reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4429
	reg_val &= 0x8cffffff;
4430
	reg_val = 0x8c000000;
4431
	vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4432
 
4433
	reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4434
	reg_val &= 0xffffff00;
4435
	vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4436
 
4437
	reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4438
	reg_val &= 0x00ffffff;
4439
	reg_val |= 0xb0000000;
4440
	vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4441
}
4442
 
4443
static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4444
					 struct intel_link_m_n *m_n)
4445
{
4446
	struct drm_device *dev = crtc->base.dev;
4447
	struct drm_i915_private *dev_priv = dev->dev_private;
4448
	int pipe = crtc->pipe;
4449
 
4450
	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4451
	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4452
	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4453
	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4454
}
4455
 
4456
static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4457
					 struct intel_link_m_n *m_n)
4458
{
4459
	struct drm_device *dev = crtc->base.dev;
4460
	struct drm_i915_private *dev_priv = dev->dev_private;
4461
	int pipe = crtc->pipe;
4462
	enum transcoder transcoder = crtc->config.cpu_transcoder;
4463
 
4464
	if (INTEL_INFO(dev)->gen >= 5) {
4465
		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4466
		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4467
		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4468
		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4469
	} else {
4470
		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4471
		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4472
		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4473
		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4474
	}
4475
}
4476
 
3746 Serge 4477
static void intel_dp_set_m_n(struct intel_crtc *crtc)
3031 serge 4478
{
3746 Serge 4479
	if (crtc->config.has_pch_encoder)
4480
		intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4481
	else
4482
		intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4483
}
4484
 
4485
static void vlv_update_pll(struct intel_crtc *crtc)
4486
{
4487
	struct drm_device *dev = crtc->base.dev;
3031 serge 4488
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 4489
	int pipe = crtc->pipe;
4104 Serge 4490
	u32 dpll, mdiv;
3031 serge 4491
	u32 bestn, bestm1, bestm2, bestp1, bestp2;
4104 Serge 4492
	u32 coreclk, reg_val, dpll_md;
2327 Serge 4493
 
3480 Serge 4494
	mutex_lock(&dev_priv->dpio_lock);
4495
 
3746 Serge 4496
	bestn = crtc->config.dpll.n;
4497
	bestm1 = crtc->config.dpll.m1;
4498
	bestm2 = crtc->config.dpll.m2;
4499
	bestp1 = crtc->config.dpll.p1;
4500
	bestp2 = crtc->config.dpll.p2;
3031 serge 4501
 
4104 Serge 4502
	/* See eDP HDMI DPIO driver vbios notes doc */
4503
 
4504
	/* PLL B needs special handling */
4505
	if (pipe)
4506
		vlv_pllb_recal_opamp(dev_priv);
4507
 
4508
	/* Set up Tx target for periodic Rcomp update */
4509
	vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4510
 
4511
	/* Disable target IRef on PLL */
4512
	reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4513
	reg_val &= 0x00ffffff;
4514
	vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4515
 
4516
	/* Disable fast lock */
4517
	vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4518
 
4519
	/* Set idtafcrecal before PLL is enabled */
3031 serge 4520
	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4521
	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4522
	mdiv |= ((bestn << DPIO_N_SHIFT));
4523
	mdiv |= (1 << DPIO_K_SHIFT);
4104 Serge 4524
 
4525
	/*
4526
	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4527
	 * but we don't support that).
4528
	 * Note: don't use the DAC post divider as it seems unstable.
4529
	 */
4530
	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4531
	vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4532
 
3031 serge 4533
	mdiv |= DPIO_ENABLE_CALIBRATION;
4104 Serge 4534
	vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
3031 serge 4535
 
4104 Serge 4536
	/* Set HBR and RBR LPF coefficients */
4537
	if (crtc->config.port_clock == 162000 ||
4538
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4539
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4540
		vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4541
				 0x009f0003);
4542
	else
4543
		vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4544
				 0x00d0000f);
3031 serge 4545
 
4104 Serge 4546
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4547
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4548
		/* Use SSC source */
4549
		if (!pipe)
4550
			vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4551
					 0x0df40000);
4552
		else
4553
			vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4554
					 0x0df70000);
4555
	} else { /* HDMI or VGA */
4556
		/* Use bend source */
4557
		if (!pipe)
4558
			vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4559
					 0x0df70000);
4560
		else
4561
			vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4562
					 0x0df40000);
4563
	}
3031 serge 4564
 
4104 Serge 4565
	coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4566
	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4567
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4568
	    intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4569
		coreclk |= 0x01000000;
4570
	vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
3031 serge 4571
 
4104 Serge 4572
	vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4573
 
4574
	/* Enable DPIO clock input */
4575
	dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4576
		DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4398 Serge 4577
	/* We should never disable this, set it here for state tracking */
4578
	if (pipe == PIPE_B)
4104 Serge 4579
		dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
3031 serge 4580
	dpll |= DPLL_VCO_ENABLE;
4104 Serge 4581
	crtc->config.dpll_hw_state.dpll = dpll;
3031 serge 4582
 
4104 Serge 4583
	dpll_md = (crtc->config.pixel_multiplier - 1)
4584
		<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
4585
	crtc->config.dpll_hw_state.dpll_md = dpll_md;
3031 serge 4586
 
3746 Serge 4587
	if (crtc->config.has_dp_encoder)
4588
		intel_dp_set_m_n(crtc);
3243 Serge 4589
 
3480 Serge 4590
	mutex_unlock(&dev_priv->dpio_lock);
3031 serge 4591
}
4592
 
3746 Serge 4593
static void i9xx_update_pll(struct intel_crtc *crtc,
4594
			    intel_clock_t *reduced_clock,
3031 serge 4595
			    int num_connectors)
4596
{
3746 Serge 4597
	struct drm_device *dev = crtc->base.dev;
3031 serge 4598
	struct drm_i915_private *dev_priv = dev->dev_private;
4599
	u32 dpll;
4600
	bool is_sdvo;
3746 Serge 4601
	struct dpll *clock = &crtc->config.dpll;
3031 serge 4602
 
3746 Serge 4603
	i9xx_update_pll_dividers(crtc, reduced_clock);
3243 Serge 4604
 
3746 Serge 4605
	is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4606
		intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
3031 serge 4607
 
4608
	dpll = DPLL_VGA_MODE_DIS;
4609
 
3746 Serge 4610
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
3031 serge 4611
		dpll |= DPLLB_MODE_LVDS;
4612
	else
4613
		dpll |= DPLLB_MODE_DAC_SERIAL;
3746 Serge 4614
 
4104 Serge 4615
	if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
3746 Serge 4616
			dpll |= (crtc->config.pixel_multiplier - 1)
4617
				<< SDVO_MULTIPLIER_SHIFT_HIRES;
2342 Serge 4618
		}
4104 Serge 4619
 
4620
	if (is_sdvo)
4621
		dpll |= DPLL_SDVO_HIGH_SPEED;
4622
 
3746 Serge 4623
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4104 Serge 4624
		dpll |= DPLL_SDVO_HIGH_SPEED;
2342 Serge 4625
 
3031 serge 4626
	/* compute bitmask from p1 value */
4627
	if (IS_PINEVIEW(dev))
4628
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4629
	else {
4630
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4631
		if (IS_G4X(dev) && reduced_clock)
4632
			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4633
	}
4634
	switch (clock->p2) {
4635
	case 5:
4636
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4637
		break;
4638
	case 7:
4639
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4640
		break;
4641
	case 10:
4642
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4643
		break;
4644
	case 14:
4645
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4646
		break;
4647
	}
4648
	if (INTEL_INFO(dev)->gen >= 4)
4649
		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2327 Serge 4650
 
4104 Serge 4651
	if (crtc->config.sdvo_tv_clock)
3031 serge 4652
		dpll |= PLL_REF_INPUT_TVCLKINBC;
3746 Serge 4653
	else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
3031 serge 4654
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4655
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4656
	else
4657
		dpll |= PLL_REF_INPUT_DREFCLK;
2327 Serge 4658
 
3031 serge 4659
	dpll |= DPLL_VCO_ENABLE;
4104 Serge 4660
	crtc->config.dpll_hw_state.dpll = dpll;
2327 Serge 4661
 
4104 Serge 4662
	if (INTEL_INFO(dev)->gen >= 4) {
4663
		u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4664
					<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
4665
		crtc->config.dpll_hw_state.dpll_md = dpll_md;
4666
	}
2327 Serge 4667
 
3746 Serge 4668
	if (crtc->config.has_dp_encoder)
4669
		intel_dp_set_m_n(crtc);
3031 serge 4670
}
2327 Serge 4671
 
3746 Serge 4672
static void i8xx_update_pll(struct intel_crtc *crtc,
4673
			    intel_clock_t *reduced_clock,
3031 serge 4674
			    int num_connectors)
4675
{
3746 Serge 4676
	struct drm_device *dev = crtc->base.dev;
3031 serge 4677
	struct drm_i915_private *dev_priv = dev->dev_private;
4678
	u32 dpll;
3746 Serge 4679
	struct dpll *clock = &crtc->config.dpll;
2327 Serge 4680
 
3746 Serge 4681
	i9xx_update_pll_dividers(crtc, reduced_clock);
3243 Serge 4682
 
3031 serge 4683
	dpll = DPLL_VGA_MODE_DIS;
2327 Serge 4684
 
3746 Serge 4685
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
3031 serge 4686
		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4687
	} else {
4688
		if (clock->p1 == 2)
4689
			dpll |= PLL_P1_DIVIDE_BY_TWO;
4690
		else
4691
			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4692
		if (clock->p2 == 4)
4693
			dpll |= PLL_P2_DIVIDE_BY_4;
4694
	}
2327 Serge 4695
 
4104 Serge 4696
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4697
		dpll |= DPLL_DVO_2X_MODE;
4698
 
3746 Serge 4699
	if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
3031 serge 4700
		 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4701
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4702
	else
4703
		dpll |= PLL_REF_INPUT_DREFCLK;
4704
 
4705
	dpll |= DPLL_VCO_ENABLE;
4104 Serge 4706
	crtc->config.dpll_hw_state.dpll = dpll;
3031 serge 4707
}
4708
 
4104 Serge 4709
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
3243 Serge 4710
{
4711
	struct drm_device *dev = intel_crtc->base.dev;
4712
	struct drm_i915_private *dev_priv = dev->dev_private;
4713
	enum pipe pipe = intel_crtc->pipe;
3746 Serge 4714
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4104 Serge 4715
	struct drm_display_mode *adjusted_mode =
4716
		&intel_crtc->config.adjusted_mode;
4717
	struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4718
	uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
3243 Serge 4719
 
4104 Serge 4720
	/* We need to be careful not to changed the adjusted mode, for otherwise
4721
	 * the hw state checker will get angry at the mismatch. */
4722
	crtc_vtotal = adjusted_mode->crtc_vtotal;
4723
	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4724
 
3243 Serge 4725
	if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4726
		/* the chip adds 2 halflines automatically */
4104 Serge 4727
		crtc_vtotal -= 1;
4728
		crtc_vblank_end -= 1;
3243 Serge 4729
		vsyncshift = adjusted_mode->crtc_hsync_start
4730
			     - adjusted_mode->crtc_htotal / 2;
4731
	} else {
4732
		vsyncshift = 0;
4733
	}
4734
 
4735
	if (INTEL_INFO(dev)->gen > 3)
4736
		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4737
 
4738
	I915_WRITE(HTOTAL(cpu_transcoder),
4739
		   (adjusted_mode->crtc_hdisplay - 1) |
4740
		   ((adjusted_mode->crtc_htotal - 1) << 16));
4741
	I915_WRITE(HBLANK(cpu_transcoder),
4742
		   (adjusted_mode->crtc_hblank_start - 1) |
4743
		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
4744
	I915_WRITE(HSYNC(cpu_transcoder),
4745
		   (adjusted_mode->crtc_hsync_start - 1) |
4746
		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
4747
 
4748
	I915_WRITE(VTOTAL(cpu_transcoder),
4749
		   (adjusted_mode->crtc_vdisplay - 1) |
4104 Serge 4750
		   ((crtc_vtotal - 1) << 16));
3243 Serge 4751
	I915_WRITE(VBLANK(cpu_transcoder),
4752
		   (adjusted_mode->crtc_vblank_start - 1) |
4104 Serge 4753
		   ((crtc_vblank_end - 1) << 16));
3243 Serge 4754
	I915_WRITE(VSYNC(cpu_transcoder),
4755
		   (adjusted_mode->crtc_vsync_start - 1) |
4756
		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
4757
 
4758
	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4759
	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4760
	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4761
	 * bits. */
4762
	if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4763
	    (pipe == PIPE_B || pipe == PIPE_C))
4764
		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4765
 
4766
	/* pipesrc controls the size that is scaled from, which should
4767
	 * always be the user's requested size.
4768
	 */
4769
	I915_WRITE(PIPESRC(pipe),
4770
		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4771
}
4772
 
4104 Serge 4773
static void intel_get_pipe_timings(struct intel_crtc *crtc,
4774
				   struct intel_crtc_config *pipe_config)
4775
{
4776
	struct drm_device *dev = crtc->base.dev;
4777
	struct drm_i915_private *dev_priv = dev->dev_private;
4778
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4779
	uint32_t tmp;
4780
 
4781
	tmp = I915_READ(HTOTAL(cpu_transcoder));
4782
	pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4783
	pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4784
	tmp = I915_READ(HBLANK(cpu_transcoder));
4785
	pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4786
	pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4787
	tmp = I915_READ(HSYNC(cpu_transcoder));
4788
	pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4789
	pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4790
 
4791
	tmp = I915_READ(VTOTAL(cpu_transcoder));
4792
	pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4793
	pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4794
	tmp = I915_READ(VBLANK(cpu_transcoder));
4795
	pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4796
	pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4797
	tmp = I915_READ(VSYNC(cpu_transcoder));
4798
	pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4799
	pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4800
 
4801
	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4802
		pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4803
		pipe_config->adjusted_mode.crtc_vtotal += 1;
4804
		pipe_config->adjusted_mode.crtc_vblank_end += 1;
4805
	}
4806
 
4807
	tmp = I915_READ(PIPESRC(crtc->pipe));
4808
	pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4809
	pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4810
}
4811
 
4812
static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4813
					     struct intel_crtc_config *pipe_config)
4814
{
4815
	struct drm_crtc *crtc = &intel_crtc->base;
4816
 
4817
	crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4818
	crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4819
	crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4820
	crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4821
 
4822
	crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4823
	crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4824
	crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4825
	crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4826
 
4827
	crtc->mode.flags = pipe_config->adjusted_mode.flags;
4828
 
4829
	crtc->mode.clock = pipe_config->adjusted_mode.clock;
4830
	crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4831
}
4832
 
3746 Serge 4833
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4834
{
4835
	struct drm_device *dev = intel_crtc->base.dev;
4836
	struct drm_i915_private *dev_priv = dev->dev_private;
4837
	uint32_t pipeconf;
4838
 
4104 Serge 4839
	pipeconf = 0;
3746 Serge 4840
 
4104 Serge 4841
	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
4842
	    I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
4843
		pipeconf |= PIPECONF_ENABLE;
4844
 
3746 Serge 4845
	if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4846
		/* Enable pixel doubling when the dot clock is > 90% of the (display)
4847
		 * core speed.
4848
		 *
4849
		 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4850
		 * pipe == 0 check?
4851
		 */
4852
		if (intel_crtc->config.requested_mode.clock >
4853
		    dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4854
			pipeconf |= PIPECONF_DOUBLE_WIDE;
4855
	}
4856
 
4104 Serge 4857
	/* only g4x and later have fancy bpc/dither controls */
4858
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4859
		/* Bspec claims that we can't use dithering for 30bpp pipes. */
4860
		if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4861
			pipeconf |= PIPECONF_DITHER_EN |
3746 Serge 4862
				    PIPECONF_DITHER_TYPE_SP;
4863
 
4104 Serge 4864
		switch (intel_crtc->config.pipe_bpp) {
4865
		case 18:
4866
			pipeconf |= PIPECONF_6BPC;
4867
			break;
4868
		case 24:
4869
			pipeconf |= PIPECONF_8BPC;
4870
			break;
4871
		case 30:
4872
			pipeconf |= PIPECONF_10BPC;
4873
			break;
4874
		default:
4875
			/* Case prevented by intel_choose_pipe_bpp_dither. */
4876
			BUG();
3746 Serge 4877
		}
4878
	}
4879
 
4880
	if (HAS_PIPE_CXSR(dev)) {
4881
		if (intel_crtc->lowfreq_avail) {
4882
			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4883
			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4884
		} else {
4885
			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4886
		}
4887
	}
4888
 
4889
	if (!IS_GEN2(dev) &&
4890
	    intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4891
		pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4892
	else
4893
		pipeconf |= PIPECONF_PROGRESSIVE;
4894
 
4104 Serge 4895
	if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
3746 Serge 4896
			pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4897
 
4898
	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4899
	POSTING_READ(PIPECONF(intel_crtc->pipe));
4900
}
4901
 
3031 serge 4902
static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4903
			      int x, int y,
4904
			      struct drm_framebuffer *fb)
4905
{
4906
	struct drm_device *dev = crtc->dev;
4907
	struct drm_i915_private *dev_priv = dev->dev_private;
4908
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 4909
	struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
3031 serge 4910
	int pipe = intel_crtc->pipe;
4911
	int plane = intel_crtc->plane;
4912
	int refclk, num_connectors = 0;
4913
	intel_clock_t clock, reduced_clock;
3746 Serge 4914
	u32 dspcntr;
4104 Serge 4915
	bool ok, has_reduced_clock = false;
4916
	bool is_lvds = false;
3031 serge 4917
	struct intel_encoder *encoder;
4918
	const intel_limit_t *limit;
4919
	int ret;
4920
 
4921
	for_each_encoder_on_crtc(dev, crtc, encoder) {
4922
		switch (encoder->type) {
4923
		case INTEL_OUTPUT_LVDS:
4924
			is_lvds = true;
4925
			break;
4926
		}
4927
 
4928
		num_connectors++;
4929
	}
4930
 
4931
	refclk = i9xx_get_refclk(crtc, num_connectors);
4932
 
4933
	/*
4934
	 * Returns a set of divisors for the desired target clock with the given
4935
	 * refclk, or FALSE.  The returned values represent the clock equation:
4936
	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4937
	 */
4938
	limit = intel_limit(crtc, refclk);
4104 Serge 4939
	ok = dev_priv->display.find_dpll(limit, crtc,
4940
					 intel_crtc->config.port_clock,
4941
					 refclk, NULL, &clock);
4942
	if (!ok && !intel_crtc->config.clock_set) {
3031 serge 4943
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
4944
		return -EINVAL;
4945
	}
4946
 
4947
	if (is_lvds && dev_priv->lvds_downclock_avail) {
4948
		/*
4949
		 * Ensure we match the reduced clock's P to the target clock.
4950
		 * If the clocks don't match, we can't switch the display clock
4951
		 * by using the FP0/FP1. In such case we will disable the LVDS
4952
		 * downclock feature.
4953
		*/
4104 Serge 4954
		has_reduced_clock =
4955
			dev_priv->display.find_dpll(limit, crtc,
3031 serge 4956
						    dev_priv->lvds_downclock,
4104 Serge 4957
						    refclk, &clock,
3031 serge 4958
						    &reduced_clock);
4959
	}
3746 Serge 4960
	/* Compat-code for transition, will disappear. */
4961
	if (!intel_crtc->config.clock_set) {
4962
		intel_crtc->config.dpll.n = clock.n;
4963
		intel_crtc->config.dpll.m1 = clock.m1;
4964
		intel_crtc->config.dpll.m2 = clock.m2;
4965
		intel_crtc->config.dpll.p1 = clock.p1;
4966
		intel_crtc->config.dpll.p2 = clock.p2;
4967
	}
3031 serge 4968
 
4969
	if (IS_GEN2(dev))
4104 Serge 4970
		i8xx_update_pll(intel_crtc,
3243 Serge 4971
				has_reduced_clock ? &reduced_clock : NULL,
4972
				num_connectors);
3031 serge 4973
	else if (IS_VALLEYVIEW(dev))
3746 Serge 4974
		vlv_update_pll(intel_crtc);
3031 serge 4975
	else
3746 Serge 4976
		i9xx_update_pll(intel_crtc,
3031 serge 4977
				has_reduced_clock ? &reduced_clock : NULL,
4978
				num_connectors);
4979
 
4980
	/* Set up the display plane register */
4981
	dspcntr = DISPPLANE_GAMMA_ENABLE;
4982
 
3746 Serge 4983
	if (!IS_VALLEYVIEW(dev)) {
3031 serge 4984
	if (pipe == 0)
4985
		dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4986
	else
4987
		dspcntr |= DISPPLANE_SEL_PIPE_B;
3243 Serge 4988
	}
4989
 
4104 Serge 4990
	intel_set_pipe_timings(intel_crtc);
3031 serge 4991
 
4992
	/* pipesrc and dspsize control the size that is scaled from,
4993
	 * which should always be the user's requested size.
4994
	 */
4995
	I915_WRITE(DSPSIZE(plane),
4996
		   ((mode->vdisplay - 1) << 16) |
4997
		   (mode->hdisplay - 1));
4998
	I915_WRITE(DSPPOS(plane), 0);
2327 Serge 4999
 
3746 Serge 5000
	i9xx_set_pipeconf(intel_crtc);
5001
 
3031 serge 5002
	I915_WRITE(DSPCNTR(plane), dspcntr);
5003
	POSTING_READ(DSPCNTR(plane));
2327 Serge 5004
 
3031 serge 5005
	ret = intel_pipe_set_base(crtc, x, y, fb);
2327 Serge 5006
 
3031 serge 5007
	intel_update_watermarks(dev);
5008
 
2327 Serge 5009
    return ret;
5010
}
5011
 
4104 Serge 5012
static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5013
				 struct intel_crtc_config *pipe_config)
5014
{
5015
	struct drm_device *dev = crtc->base.dev;
5016
	struct drm_i915_private *dev_priv = dev->dev_private;
5017
	uint32_t tmp;
5018
 
5019
	tmp = I915_READ(PFIT_CONTROL);
5020
	if (!(tmp & PFIT_ENABLE))
5021
		return;
5022
 
5023
	/* Check whether the pfit is attached to our pipe. */
5024
	if (INTEL_INFO(dev)->gen < 4) {
5025
		if (crtc->pipe != PIPE_B)
5026
			return;
5027
	} else {
5028
		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5029
			return;
5030
	}
5031
 
5032
	pipe_config->gmch_pfit.control = tmp;
5033
	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5034
	if (INTEL_INFO(dev)->gen < 5)
5035
		pipe_config->gmch_pfit.lvds_border_bits =
5036
			I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5037
}
5038
 
4398 Serge 5039
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5040
			       struct intel_crtc_config *pipe_config)
5041
{
5042
	struct drm_device *dev = crtc->base.dev;
5043
	struct drm_i915_private *dev_priv = dev->dev_private;
5044
	int pipe = pipe_config->cpu_transcoder;
5045
	intel_clock_t clock;
5046
	u32 mdiv;
5047
	int refclk = 100000;
5048
 
5049
	mutex_lock(&dev_priv->dpio_lock);
5050
	mdiv = vlv_dpio_read(dev_priv, DPIO_DIV(pipe));
5051
	mutex_unlock(&dev_priv->dpio_lock);
5052
 
5053
	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5054
	clock.m2 = mdiv & DPIO_M2DIV_MASK;
5055
	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5056
	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5057
	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5058
 
5059
	clock.vco = refclk * clock.m1 * clock.m2 / clock.n;
5060
	clock.dot = 2 * clock.vco / (clock.p1 * clock.p2);
5061
 
5062
	pipe_config->adjusted_mode.clock = clock.dot / 10;
5063
}
5064
 
3746 Serge 5065
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5066
				 struct intel_crtc_config *pipe_config)
5067
{
5068
	struct drm_device *dev = crtc->base.dev;
5069
	struct drm_i915_private *dev_priv = dev->dev_private;
5070
	uint32_t tmp;
5071
 
4104 Serge 5072
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5073
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5074
 
3746 Serge 5075
	tmp = I915_READ(PIPECONF(crtc->pipe));
5076
	if (!(tmp & PIPECONF_ENABLE))
5077
		return false;
5078
 
4280 Serge 5079
	if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5080
		switch (tmp & PIPECONF_BPC_MASK) {
5081
		case PIPECONF_6BPC:
5082
			pipe_config->pipe_bpp = 18;
5083
			break;
5084
		case PIPECONF_8BPC:
5085
			pipe_config->pipe_bpp = 24;
5086
			break;
5087
		case PIPECONF_10BPC:
5088
			pipe_config->pipe_bpp = 30;
5089
			break;
5090
		default:
5091
			break;
5092
		}
5093
	}
5094
 
4104 Serge 5095
	intel_get_pipe_timings(crtc, pipe_config);
5096
 
5097
	i9xx_get_pfit_config(crtc, pipe_config);
5098
 
5099
	if (INTEL_INFO(dev)->gen >= 4) {
5100
		tmp = I915_READ(DPLL_MD(crtc->pipe));
5101
		pipe_config->pixel_multiplier =
5102
			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5103
			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5104
		pipe_config->dpll_hw_state.dpll_md = tmp;
5105
	} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5106
		tmp = I915_READ(DPLL(crtc->pipe));
5107
		pipe_config->pixel_multiplier =
5108
			((tmp & SDVO_MULTIPLIER_MASK)
5109
			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5110
	} else {
5111
		/* Note that on i915G/GM the pixel multiplier is in the sdvo
5112
		 * port and will be fixed up in the encoder->get_config
5113
		 * function. */
5114
		pipe_config->pixel_multiplier = 1;
5115
	}
5116
	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5117
	if (!IS_VALLEYVIEW(dev)) {
5118
		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5119
		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5120
	} else {
5121
		/* Mask out read-only status bits. */
5122
		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5123
						     DPLL_PORTC_READY_MASK |
5124
						     DPLL_PORTB_READY_MASK);
5125
	}
5126
 
3746 Serge 5127
	return true;
5128
}
5129
 
3243 Serge 5130
static void ironlake_init_pch_refclk(struct drm_device *dev)
2327 Serge 5131
{
5132
	struct drm_i915_private *dev_priv = dev->dev_private;
5133
	struct drm_mode_config *mode_config = &dev->mode_config;
5134
	struct intel_encoder *encoder;
3746 Serge 5135
	u32 val, final;
2327 Serge 5136
	bool has_lvds = false;
2342 Serge 5137
	bool has_cpu_edp = false;
5138
	bool has_panel = false;
5139
	bool has_ck505 = false;
5140
	bool can_ssc = false;
2327 Serge 5141
 
5142
	/* We need to take the global config into account */
5143
		list_for_each_entry(encoder, &mode_config->encoder_list,
5144
				    base.head) {
5145
			switch (encoder->type) {
5146
			case INTEL_OUTPUT_LVDS:
2342 Serge 5147
			has_panel = true;
2327 Serge 5148
				has_lvds = true;
2342 Serge 5149
			break;
2327 Serge 5150
			case INTEL_OUTPUT_EDP:
2342 Serge 5151
			has_panel = true;
4104 Serge 5152
			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
2342 Serge 5153
				has_cpu_edp = true;
2327 Serge 5154
				break;
5155
			}
5156
		}
2342 Serge 5157
 
5158
	if (HAS_PCH_IBX(dev)) {
4104 Serge 5159
		has_ck505 = dev_priv->vbt.display_clock_mode;
2342 Serge 5160
		can_ssc = has_ck505;
5161
	} else {
5162
		has_ck505 = false;
5163
		can_ssc = true;
2327 Serge 5164
	}
5165
 
4104 Serge 5166
	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5167
		      has_panel, has_lvds, has_ck505);
2342 Serge 5168
 
2327 Serge 5169
	/* Ironlake: try to setup display ref clock before DPLL
5170
	 * enabling. This is only under driver's control after
5171
	 * PCH B stepping, previous chipset stepping should be
5172
	 * ignoring this setting.
5173
	 */
3746 Serge 5174
	val = I915_READ(PCH_DREF_CONTROL);
5175
 
5176
	/* As we must carefully and slowly disable/enable each source in turn,
5177
	 * compute the final state we want first and check if we need to
5178
	 * make any changes at all.
5179
	 */
5180
	final = val;
5181
	final &= ~DREF_NONSPREAD_SOURCE_MASK;
5182
	if (has_ck505)
5183
		final |= DREF_NONSPREAD_CK505_ENABLE;
5184
	else
5185
		final |= DREF_NONSPREAD_SOURCE_ENABLE;
5186
 
5187
	final &= ~DREF_SSC_SOURCE_MASK;
5188
	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5189
	final &= ~DREF_SSC1_ENABLE;
5190
 
5191
	if (has_panel) {
5192
		final |= DREF_SSC_SOURCE_ENABLE;
5193
 
5194
		if (intel_panel_use_ssc(dev_priv) && can_ssc)
5195
			final |= DREF_SSC1_ENABLE;
5196
 
5197
		if (has_cpu_edp) {
5198
			if (intel_panel_use_ssc(dev_priv) && can_ssc)
5199
				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5200
			else
5201
				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5202
		} else
5203
			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5204
	} else {
5205
		final |= DREF_SSC_SOURCE_DISABLE;
5206
		final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5207
	}
5208
 
5209
	if (final == val)
5210
		return;
5211
 
2327 Serge 5212
	/* Always enable nonspread source */
3746 Serge 5213
	val &= ~DREF_NONSPREAD_SOURCE_MASK;
2342 Serge 5214
 
5215
	if (has_ck505)
3746 Serge 5216
		val |= DREF_NONSPREAD_CK505_ENABLE;
2342 Serge 5217
	else
3746 Serge 5218
		val |= DREF_NONSPREAD_SOURCE_ENABLE;
2342 Serge 5219
 
5220
	if (has_panel) {
3746 Serge 5221
		val &= ~DREF_SSC_SOURCE_MASK;
5222
		val |= DREF_SSC_SOURCE_ENABLE;
2327 Serge 5223
 
2342 Serge 5224
		/* SSC must be turned on before enabling the CPU output  */
5225
		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5226
			DRM_DEBUG_KMS("Using SSC on panel\n");
3746 Serge 5227
			val |= DREF_SSC1_ENABLE;
3031 serge 5228
		} else
3746 Serge 5229
			val &= ~DREF_SSC1_ENABLE;
2327 Serge 5230
 
2342 Serge 5231
		/* Get SSC going before enabling the outputs */
3746 Serge 5232
		I915_WRITE(PCH_DREF_CONTROL, val);
2327 Serge 5233
			POSTING_READ(PCH_DREF_CONTROL);
5234
			udelay(200);
2342 Serge 5235
 
3746 Serge 5236
		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2327 Serge 5237
 
5238
		/* Enable CPU source on CPU attached eDP */
2342 Serge 5239
		if (has_cpu_edp) {
5240
			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5241
				DRM_DEBUG_KMS("Using SSC on eDP\n");
3746 Serge 5242
				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
2342 Serge 5243
			}
2327 Serge 5244
			else
3746 Serge 5245
				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
2342 Serge 5246
		} else
3746 Serge 5247
			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2342 Serge 5248
 
3746 Serge 5249
		I915_WRITE(PCH_DREF_CONTROL, val);
2342 Serge 5250
		POSTING_READ(PCH_DREF_CONTROL);
5251
		udelay(200);
2327 Serge 5252
		} else {
2342 Serge 5253
		DRM_DEBUG_KMS("Disabling SSC entirely\n");
5254
 
3746 Serge 5255
		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
2342 Serge 5256
 
5257
		/* Turn off CPU output */
3746 Serge 5258
		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
2342 Serge 5259
 
3746 Serge 5260
		I915_WRITE(PCH_DREF_CONTROL, val);
2327 Serge 5261
		POSTING_READ(PCH_DREF_CONTROL);
5262
		udelay(200);
2342 Serge 5263
 
5264
		/* Turn off the SSC source */
3746 Serge 5265
		val &= ~DREF_SSC_SOURCE_MASK;
5266
		val |= DREF_SSC_SOURCE_DISABLE;
2342 Serge 5267
 
5268
		/* Turn off SSC1 */
3746 Serge 5269
		val &= ~DREF_SSC1_ENABLE;
2342 Serge 5270
 
3746 Serge 5271
		I915_WRITE(PCH_DREF_CONTROL, val);
2342 Serge 5272
		POSTING_READ(PCH_DREF_CONTROL);
5273
		udelay(200);
2327 Serge 5274
	}
3746 Serge 5275
 
5276
	BUG_ON(val != final);
2327 Serge 5277
}
5278
 
4104 Serge 5279
static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
3243 Serge 5280
{
4104 Serge 5281
	uint32_t tmp;
3243 Serge 5282
 
5283
		tmp = I915_READ(SOUTH_CHICKEN2);
5284
		tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5285
		I915_WRITE(SOUTH_CHICKEN2, tmp);
5286
 
5287
		if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5288
				       FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5289
			DRM_ERROR("FDI mPHY reset assert timeout\n");
5290
 
5291
		tmp = I915_READ(SOUTH_CHICKEN2);
5292
		tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5293
		I915_WRITE(SOUTH_CHICKEN2, tmp);
5294
 
5295
		if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4104 Serge 5296
				FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
3243 Serge 5297
			DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4539 Serge 5298
}
3243 Serge 5299
 
4104 Serge 5300
/* WaMPhyProgramming:hsw */
5301
static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5302
{
5303
	uint32_t tmp;
5304
 
3243 Serge 5305
	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5306
	tmp &= ~(0xFF << 24);
5307
	tmp |= (0x12 << 24);
5308
	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5309
 
5310
	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5311
	tmp |= (1 << 11);
5312
	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5313
 
5314
	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5315
	tmp |= (1 << 11);
5316
	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5317
 
5318
	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5319
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5320
	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5321
 
5322
	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5323
	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5324
	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5325
 
5326
		tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5327
		tmp &= ~(7 << 13);
5328
		tmp |= (5 << 13);
5329
		intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5330
 
5331
		tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5332
		tmp &= ~(7 << 13);
5333
		tmp |= (5 << 13);
5334
		intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5335
 
5336
	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5337
	tmp &= ~0xFF;
5338
	tmp |= 0x1C;
5339
	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5340
 
5341
	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5342
	tmp &= ~0xFF;
5343
	tmp |= 0x1C;
5344
	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5345
 
5346
	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5347
	tmp &= ~(0xFF << 16);
5348
	tmp |= (0x1C << 16);
5349
	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5350
 
5351
	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5352
	tmp &= ~(0xFF << 16);
5353
	tmp |= (0x1C << 16);
5354
	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5355
 
5356
		tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5357
		tmp |= (1 << 27);
5358
		intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5359
 
5360
		tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5361
		tmp |= (1 << 27);
5362
		intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5363
 
5364
		tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5365
		tmp &= ~(0xF << 28);
5366
		tmp |= (4 << 28);
5367
		intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5368
 
5369
		tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5370
		tmp &= ~(0xF << 28);
5371
		tmp |= (4 << 28);
5372
		intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
4539 Serge 5373
}
3243 Serge 5374
 
4104 Serge 5375
/* Implements 3 different sequences from BSpec chapter "Display iCLK
5376
 * Programming" based on the parameters passed:
5377
 * - Sequence to enable CLKOUT_DP
5378
 * - Sequence to enable CLKOUT_DP without spread
5379
 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5380
 */
5381
static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5382
				 bool with_fdi)
5383
{
5384
	struct drm_i915_private *dev_priv = dev->dev_private;
5385
	uint32_t reg, tmp;
3480 Serge 5386
 
4104 Serge 5387
	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5388
		with_spread = true;
5389
	if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5390
		 with_fdi, "LP PCH doesn't have FDI\n"))
5391
		with_fdi = false;
5392
 
5393
	mutex_lock(&dev_priv->dpio_lock);
5394
 
5395
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5396
	tmp &= ~SBI_SSCCTL_DISABLE;
5397
	tmp |= SBI_SSCCTL_PATHALT;
5398
	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5399
 
5400
	udelay(24);
5401
 
5402
	if (with_spread) {
5403
		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5404
		tmp &= ~SBI_SSCCTL_PATHALT;
5405
		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5406
 
5407
		if (with_fdi) {
5408
			lpt_reset_fdi_mphy(dev_priv);
5409
			lpt_program_fdi_mphy(dev_priv);
5410
		}
5411
	}
5412
 
5413
	reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5414
	       SBI_GEN0 : SBI_DBUFF0;
5415
	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5416
	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5417
	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5418
 
3480 Serge 5419
	mutex_unlock(&dev_priv->dpio_lock);
3243 Serge 5420
}
5421
 
4104 Serge 5422
/* Sequence to disable CLKOUT_DP */
5423
static void lpt_disable_clkout_dp(struct drm_device *dev)
5424
{
5425
	struct drm_i915_private *dev_priv = dev->dev_private;
5426
	uint32_t reg, tmp;
5427
 
5428
	mutex_lock(&dev_priv->dpio_lock);
5429
 
5430
	reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5431
	       SBI_GEN0 : SBI_DBUFF0;
5432
	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5433
	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5434
	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5435
 
5436
	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5437
	if (!(tmp & SBI_SSCCTL_DISABLE)) {
5438
		if (!(tmp & SBI_SSCCTL_PATHALT)) {
5439
			tmp |= SBI_SSCCTL_PATHALT;
5440
			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5441
			udelay(32);
5442
		}
5443
		tmp |= SBI_SSCCTL_DISABLE;
5444
		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5445
	}
5446
 
5447
	mutex_unlock(&dev_priv->dpio_lock);
5448
}
5449
 
5450
static void lpt_init_pch_refclk(struct drm_device *dev)
5451
{
5452
	struct drm_mode_config *mode_config = &dev->mode_config;
5453
	struct intel_encoder *encoder;
5454
	bool has_vga = false;
5455
 
5456
	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5457
		switch (encoder->type) {
5458
		case INTEL_OUTPUT_ANALOG:
5459
			has_vga = true;
5460
			break;
5461
		}
5462
	}
5463
 
5464
	if (has_vga)
5465
		lpt_enable_clkout_dp(dev, true, true);
5466
	else
5467
		lpt_disable_clkout_dp(dev);
5468
}
5469
 
3243 Serge 5470
/*
5471
 * Initialize reference clocks when the driver loads
5472
 */
5473
void intel_init_pch_refclk(struct drm_device *dev)
5474
{
5475
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5476
		ironlake_init_pch_refclk(dev);
5477
	else if (HAS_PCH_LPT(dev))
5478
		lpt_init_pch_refclk(dev);
5479
}
5480
 
2342 Serge 5481
static int ironlake_get_refclk(struct drm_crtc *crtc)
5482
{
5483
	struct drm_device *dev = crtc->dev;
5484
	struct drm_i915_private *dev_priv = dev->dev_private;
5485
	struct intel_encoder *encoder;
5486
	int num_connectors = 0;
5487
	bool is_lvds = false;
5488
 
3031 serge 5489
	for_each_encoder_on_crtc(dev, crtc, encoder) {
2342 Serge 5490
		switch (encoder->type) {
5491
		case INTEL_OUTPUT_LVDS:
5492
			is_lvds = true;
5493
			break;
5494
		}
5495
		num_connectors++;
5496
	}
5497
 
5498
	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5499
		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4104 Serge 5500
			      dev_priv->vbt.lvds_ssc_freq);
5501
		return dev_priv->vbt.lvds_ssc_freq * 1000;
2342 Serge 5502
	}
5503
 
5504
	return 120000;
5505
}
5506
 
4104 Serge 5507
static void ironlake_set_pipeconf(struct drm_crtc *crtc)
3031 serge 5508
{
5509
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5510
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5511
	int pipe = intel_crtc->pipe;
5512
	uint32_t val;
5513
 
4104 Serge 5514
	val = 0;
3031 serge 5515
 
3746 Serge 5516
	switch (intel_crtc->config.pipe_bpp) {
3031 serge 5517
	case 18:
3480 Serge 5518
		val |= PIPECONF_6BPC;
3031 serge 5519
		break;
5520
	case 24:
3480 Serge 5521
		val |= PIPECONF_8BPC;
3031 serge 5522
		break;
5523
	case 30:
3480 Serge 5524
		val |= PIPECONF_10BPC;
3031 serge 5525
		break;
5526
	case 36:
3480 Serge 5527
		val |= PIPECONF_12BPC;
3031 serge 5528
		break;
5529
	default:
3243 Serge 5530
		/* Case prevented by intel_choose_pipe_bpp_dither. */
5531
		BUG();
3031 serge 5532
	}
5533
 
4104 Serge 5534
	if (intel_crtc->config.dither)
3031 serge 5535
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5536
 
4104 Serge 5537
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3031 serge 5538
		val |= PIPECONF_INTERLACED_ILK;
5539
	else
5540
		val |= PIPECONF_PROGRESSIVE;
5541
 
3746 Serge 5542
	if (intel_crtc->config.limited_color_range)
3480 Serge 5543
		val |= PIPECONF_COLOR_RANGE_SELECT;
5544
 
3031 serge 5545
	I915_WRITE(PIPECONF(pipe), val);
5546
	POSTING_READ(PIPECONF(pipe));
5547
}
5548
 
3480 Serge 5549
/*
5550
 * Set up the pipe CSC unit.
5551
 *
5552
 * Currently only full range RGB to limited range RGB conversion
5553
 * is supported, but eventually this should handle various
5554
 * RGB<->YCbCr scenarios as well.
5555
 */
3746 Serge 5556
static void intel_set_pipe_csc(struct drm_crtc *crtc)
3480 Serge 5557
{
5558
	struct drm_device *dev = crtc->dev;
5559
	struct drm_i915_private *dev_priv = dev->dev_private;
5560
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5561
	int pipe = intel_crtc->pipe;
5562
	uint16_t coeff = 0x7800; /* 1.0 */
5563
 
5564
	/*
5565
	 * TODO: Check what kind of values actually come out of the pipe
5566
	 * with these coeff/postoff values and adjust to get the best
5567
	 * accuracy. Perhaps we even need to take the bpc value into
5568
	 * consideration.
5569
	 */
5570
 
3746 Serge 5571
	if (intel_crtc->config.limited_color_range)
3480 Serge 5572
		coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5573
 
5574
	/*
5575
	 * GY/GU and RY/RU should be the other way around according
5576
	 * to BSpec, but reality doesn't agree. Just set them up in
5577
	 * a way that results in the correct picture.
5578
	 */
5579
	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5580
	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5581
 
5582
	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5583
	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5584
 
5585
	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5586
	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5587
 
5588
	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5589
	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5590
	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5591
 
5592
	if (INTEL_INFO(dev)->gen > 6) {
5593
		uint16_t postoff = 0;
5594
 
3746 Serge 5595
		if (intel_crtc->config.limited_color_range)
4398 Serge 5596
			postoff = (16 * (1 << 12) / 255) & 0x1fff;
3480 Serge 5597
 
5598
		I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5599
		I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5600
		I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5601
 
5602
		I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5603
	} else {
5604
		uint32_t mode = CSC_MODE_YUV_TO_RGB;
5605
 
3746 Serge 5606
		if (intel_crtc->config.limited_color_range)
3480 Serge 5607
			mode |= CSC_BLACK_SCREEN_OFFSET;
5608
 
5609
		I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5610
	}
5611
}
5612
 
4104 Serge 5613
static void haswell_set_pipeconf(struct drm_crtc *crtc)
3243 Serge 5614
{
5615
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5616
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 5617
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3243 Serge 5618
	uint32_t val;
5619
 
4104 Serge 5620
	val = 0;
3243 Serge 5621
 
4104 Serge 5622
	if (intel_crtc->config.dither)
3243 Serge 5623
		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5624
 
4104 Serge 5625
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3243 Serge 5626
		val |= PIPECONF_INTERLACED_ILK;
5627
	else
5628
		val |= PIPECONF_PROGRESSIVE;
5629
 
5630
	I915_WRITE(PIPECONF(cpu_transcoder), val);
5631
	POSTING_READ(PIPECONF(cpu_transcoder));
4104 Serge 5632
 
5633
	I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5634
	POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
3243 Serge 5635
}
5636
 
3031 serge 5637
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5638
				    intel_clock_t *clock,
5639
				    bool *has_reduced_clock,
5640
				    intel_clock_t *reduced_clock)
5641
{
5642
	struct drm_device *dev = crtc->dev;
5643
	struct drm_i915_private *dev_priv = dev->dev_private;
5644
	struct intel_encoder *intel_encoder;
5645
	int refclk;
5646
	const intel_limit_t *limit;
4104 Serge 5647
	bool ret, is_lvds = false;
3031 serge 5648
 
5649
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5650
		switch (intel_encoder->type) {
5651
		case INTEL_OUTPUT_LVDS:
5652
			is_lvds = true;
5653
			break;
5654
		}
5655
	}
5656
 
5657
	refclk = ironlake_get_refclk(crtc);
5658
 
5659
	/*
5660
	 * Returns a set of divisors for the desired target clock with the given
5661
	 * refclk, or FALSE.  The returned values represent the clock equation:
5662
	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5663
	 */
5664
	limit = intel_limit(crtc, refclk);
4104 Serge 5665
	ret = dev_priv->display.find_dpll(limit, crtc,
5666
					  to_intel_crtc(crtc)->config.port_clock,
5667
					  refclk, NULL, clock);
3031 serge 5668
	if (!ret)
5669
		return false;
5670
 
5671
	if (is_lvds && dev_priv->lvds_downclock_avail) {
5672
		/*
5673
		 * Ensure we match the reduced clock's P to the target clock.
5674
		 * If the clocks don't match, we can't switch the display clock
5675
		 * by using the FP0/FP1. In such case we will disable the LVDS
5676
		 * downclock feature.
5677
		*/
4104 Serge 5678
		*has_reduced_clock =
5679
			dev_priv->display.find_dpll(limit, crtc,
3031 serge 5680
						     dev_priv->lvds_downclock,
4104 Serge 5681
						    refclk, clock,
3031 serge 5682
						     reduced_clock);
5683
	}
5684
 
5685
	return true;
5686
}
5687
 
3243 Serge 5688
int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5689
{
5690
	/*
5691
	 * Account for spread spectrum to avoid
5692
	 * oversubscribing the link. Max center spread
5693
	 * is 2.5%; use 5% for safety's sake.
5694
	 */
5695
	u32 bps = target_clock * bpp * 21 / 20;
5696
	return bps / (link_bw * 8) + 1;
5697
}
5698
 
4104 Serge 5699
static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
2327 Serge 5700
{
4104 Serge 5701
	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
3746 Serge 5702
}
5703
 
3243 Serge 5704
static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
4104 Serge 5705
				      u32 *fp,
3746 Serge 5706
				      intel_clock_t *reduced_clock, u32 *fp2)
3243 Serge 5707
{
5708
	struct drm_crtc *crtc = &intel_crtc->base;
5709
	struct drm_device *dev = crtc->dev;
5710
	struct drm_i915_private *dev_priv = dev->dev_private;
5711
	struct intel_encoder *intel_encoder;
5712
	uint32_t dpll;
3746 Serge 5713
	int factor, num_connectors = 0;
4104 Serge 5714
	bool is_lvds = false, is_sdvo = false;
3243 Serge 5715
 
5716
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5717
		switch (intel_encoder->type) {
5718
		case INTEL_OUTPUT_LVDS:
5719
			is_lvds = true;
5720
			break;
5721
		case INTEL_OUTPUT_SDVO:
5722
		case INTEL_OUTPUT_HDMI:
5723
			is_sdvo = true;
5724
			break;
5725
		}
5726
 
5727
		num_connectors++;
5728
	}
5729
 
2327 Serge 5730
    /* Enable autotuning of the PLL clock (if permissible) */
5731
    factor = 21;
5732
    if (is_lvds) {
5733
        if ((intel_panel_use_ssc(dev_priv) &&
4104 Serge 5734
		     dev_priv->vbt.lvds_ssc_freq == 100) ||
3746 Serge 5735
		    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
2327 Serge 5736
            factor = 25;
4104 Serge 5737
	} else if (intel_crtc->config.sdvo_tv_clock)
2327 Serge 5738
        factor = 20;
5739
 
4104 Serge 5740
	if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
3746 Serge 5741
		*fp |= FP_CB_TUNE;
2327 Serge 5742
 
3746 Serge 5743
	if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5744
		*fp2 |= FP_CB_TUNE;
5745
 
2327 Serge 5746
    dpll = 0;
5747
 
5748
    if (is_lvds)
5749
        dpll |= DPLLB_MODE_LVDS;
5750
    else
5751
        dpll |= DPLLB_MODE_DAC_SERIAL;
4104 Serge 5752
 
3746 Serge 5753
			dpll |= (intel_crtc->config.pixel_multiplier - 1)
5754
				<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2327 Serge 5755
 
4104 Serge 5756
	if (is_sdvo)
5757
		dpll |= DPLL_SDVO_HIGH_SPEED;
5758
	if (intel_crtc->config.has_dp_encoder)
5759
		dpll |= DPLL_SDVO_HIGH_SPEED;
5760
 
2327 Serge 5761
    /* compute bitmask from p1 value */
4104 Serge 5762
	dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2327 Serge 5763
    /* also FPA1 */
4104 Serge 5764
	dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2327 Serge 5765
 
4104 Serge 5766
	switch (intel_crtc->config.dpll.p2) {
2327 Serge 5767
    case 5:
5768
        dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5769
        break;
5770
    case 7:
5771
        dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5772
        break;
5773
    case 10:
5774
        dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5775
        break;
5776
    case 14:
5777
        dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5778
        break;
5779
    }
5780
 
4104 Serge 5781
	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
2327 Serge 5782
        dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5783
    else
5784
        dpll |= PLL_REF_INPUT_DREFCLK;
5785
 
4104 Serge 5786
	return dpll | DPLL_VCO_ENABLE;
3243 Serge 5787
}
5788
 
5789
static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5790
				  int x, int y,
5791
				  struct drm_framebuffer *fb)
5792
{
5793
	struct drm_device *dev = crtc->dev;
5794
	struct drm_i915_private *dev_priv = dev->dev_private;
5795
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5796
	int pipe = intel_crtc->pipe;
5797
	int plane = intel_crtc->plane;
5798
	int num_connectors = 0;
5799
	intel_clock_t clock, reduced_clock;
4104 Serge 5800
	u32 dpll = 0, fp = 0, fp2 = 0;
3243 Serge 5801
	bool ok, has_reduced_clock = false;
3746 Serge 5802
	bool is_lvds = false;
3243 Serge 5803
	struct intel_encoder *encoder;
4104 Serge 5804
	struct intel_shared_dpll *pll;
3243 Serge 5805
	int ret;
5806
 
5807
	for_each_encoder_on_crtc(dev, crtc, encoder) {
5808
		switch (encoder->type) {
5809
		case INTEL_OUTPUT_LVDS:
5810
			is_lvds = true;
5811
			break;
5812
		}
5813
 
5814
		num_connectors++;
5815
	}
5816
 
5817
	WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5818
	     "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5819
 
4104 Serge 5820
	ok = ironlake_compute_clocks(crtc, &clock,
3243 Serge 5821
				     &has_reduced_clock, &reduced_clock);
4104 Serge 5822
	if (!ok && !intel_crtc->config.clock_set) {
3243 Serge 5823
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
5824
		return -EINVAL;
5825
	}
3746 Serge 5826
	/* Compat-code for transition, will disappear. */
5827
	if (!intel_crtc->config.clock_set) {
5828
		intel_crtc->config.dpll.n = clock.n;
5829
		intel_crtc->config.dpll.m1 = clock.m1;
5830
		intel_crtc->config.dpll.m2 = clock.m2;
5831
		intel_crtc->config.dpll.p1 = clock.p1;
5832
		intel_crtc->config.dpll.p2 = clock.p2;
5833
	}
3243 Serge 5834
 
4104 Serge 5835
	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5836
	if (intel_crtc->config.has_pch_encoder) {
5837
		fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
3243 Serge 5838
	if (has_reduced_clock)
4104 Serge 5839
			fp2 = i9xx_dpll_compute_fp(&reduced_clock);
3243 Serge 5840
 
4104 Serge 5841
		dpll = ironlake_compute_dpll(intel_crtc,
5842
					     &fp, &reduced_clock,
3746 Serge 5843
				     has_reduced_clock ? &fp2 : NULL);
3243 Serge 5844
 
4104 Serge 5845
		intel_crtc->config.dpll_hw_state.dpll = dpll;
5846
		intel_crtc->config.dpll_hw_state.fp0 = fp;
5847
		if (has_reduced_clock)
5848
			intel_crtc->config.dpll_hw_state.fp1 = fp2;
5849
		else
5850
			intel_crtc->config.dpll_hw_state.fp1 = fp;
2327 Serge 5851
 
4104 Serge 5852
		pll = intel_get_shared_dpll(intel_crtc);
3031 serge 5853
		if (pll == NULL) {
4104 Serge 5854
			DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5855
					 pipe_name(pipe));
2342 Serge 5856
			return -EINVAL;
2327 Serge 5857
        }
3031 serge 5858
	} else
4104 Serge 5859
		intel_put_shared_dpll(intel_crtc);
2327 Serge 5860
 
3746 Serge 5861
	if (intel_crtc->config.has_dp_encoder)
5862
		intel_dp_set_m_n(intel_crtc);
2342 Serge 5863
 
4104 Serge 5864
	if (is_lvds && has_reduced_clock && i915_powersave)
5865
		intel_crtc->lowfreq_avail = true;
5866
	else
5867
		intel_crtc->lowfreq_avail = false;
2327 Serge 5868
 
4104 Serge 5869
	if (intel_crtc->config.has_pch_encoder) {
5870
		pll = intel_crtc_to_shared_dpll(intel_crtc);
2327 Serge 5871
 
4104 Serge 5872
	}
2327 Serge 5873
 
4104 Serge 5874
	intel_set_pipe_timings(intel_crtc);
2327 Serge 5875
 
4104 Serge 5876
	if (intel_crtc->config.has_pch_encoder) {
5877
		intel_cpu_transcoder_set_m_n(intel_crtc,
5878
					     &intel_crtc->config.fdi_m_n);
2342 Serge 5879
	}
2327 Serge 5880
 
4104 Serge 5881
	ironlake_set_pipeconf(crtc);
3243 Serge 5882
 
5883
	/* Set up the display plane register */
5884
	I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5885
	POSTING_READ(DSPCNTR(plane));
5886
 
5887
	ret = intel_pipe_set_base(crtc, x, y, fb);
5888
 
5889
	intel_update_watermarks(dev);
5890
 
4104 Serge 5891
	return ret;
5892
}
3243 Serge 5893
 
4104 Serge 5894
static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5895
					struct intel_crtc_config *pipe_config)
5896
{
5897
	struct drm_device *dev = crtc->base.dev;
5898
	struct drm_i915_private *dev_priv = dev->dev_private;
5899
	enum transcoder transcoder = pipe_config->cpu_transcoder;
5900
 
5901
	pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5902
	pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5903
	pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5904
					& ~TU_SIZE_MASK;
5905
	pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5906
	pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5907
				   & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
3243 Serge 5908
}
5909
 
4104 Serge 5910
static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5911
				     struct intel_crtc_config *pipe_config)
5912
{
5913
	struct drm_device *dev = crtc->base.dev;
5914
	struct drm_i915_private *dev_priv = dev->dev_private;
5915
	uint32_t tmp;
5916
 
5917
	tmp = I915_READ(PF_CTL(crtc->pipe));
5918
 
5919
	if (tmp & PF_ENABLE) {
5920
		pipe_config->pch_pfit.enabled = true;
5921
		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5922
		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5923
 
5924
		/* We currently do not free assignements of panel fitters on
5925
		 * ivb/hsw (since we don't use the higher upscaling modes which
5926
		 * differentiates them) so just WARN about this case for now. */
5927
		if (IS_GEN7(dev)) {
5928
			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5929
				PF_PIPE_SEL_IVB(crtc->pipe));
5930
		}
5931
	}
5932
}
5933
 
3746 Serge 5934
static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5935
				     struct intel_crtc_config *pipe_config)
5936
{
5937
	struct drm_device *dev = crtc->base.dev;
5938
	struct drm_i915_private *dev_priv = dev->dev_private;
5939
	uint32_t tmp;
5940
 
4104 Serge 5941
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5942
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5943
 
3746 Serge 5944
	tmp = I915_READ(PIPECONF(crtc->pipe));
5945
	if (!(tmp & PIPECONF_ENABLE))
5946
		return false;
5947
 
4280 Serge 5948
	switch (tmp & PIPECONF_BPC_MASK) {
5949
	case PIPECONF_6BPC:
5950
		pipe_config->pipe_bpp = 18;
5951
		break;
5952
	case PIPECONF_8BPC:
5953
		pipe_config->pipe_bpp = 24;
5954
		break;
5955
	case PIPECONF_10BPC:
5956
		pipe_config->pipe_bpp = 30;
5957
		break;
5958
	case PIPECONF_12BPC:
5959
		pipe_config->pipe_bpp = 36;
5960
		break;
5961
	default:
5962
		break;
5963
	}
5964
 
4104 Serge 5965
	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5966
		struct intel_shared_dpll *pll;
5967
 
3746 Serge 5968
		pipe_config->has_pch_encoder = true;
5969
 
4104 Serge 5970
		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5971
		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5972
					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
5973
 
5974
		ironlake_get_fdi_m_n_config(crtc, pipe_config);
5975
 
5976
		if (HAS_PCH_IBX(dev_priv->dev)) {
5977
			pipe_config->shared_dpll =
5978
				(enum intel_dpll_id) crtc->pipe;
5979
		} else {
5980
			tmp = I915_READ(PCH_DPLL_SEL);
5981
			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5982
				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5983
			else
5984
				pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5985
		}
5986
 
5987
		pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5988
 
5989
		WARN_ON(!pll->get_hw_state(dev_priv, pll,
5990
					   &pipe_config->dpll_hw_state));
5991
 
5992
		tmp = pipe_config->dpll_hw_state.dpll;
5993
		pipe_config->pixel_multiplier =
5994
			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5995
			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5996
	} else {
5997
		pipe_config->pixel_multiplier = 1;
5998
	}
5999
 
6000
	intel_get_pipe_timings(crtc, pipe_config);
6001
 
6002
	ironlake_get_pfit_config(crtc, pipe_config);
6003
 
3746 Serge 6004
	return true;
6005
}
6006
 
4104 Serge 6007
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6008
{
6009
	struct drm_device *dev = dev_priv->dev;
6010
	struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6011
	struct intel_crtc *crtc;
6012
	unsigned long irqflags;
6013
	uint32_t val;
6014
 
6015
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
4539 Serge 6016
		WARN(crtc->active, "CRTC for pipe %c enabled\n",
4104 Serge 6017
		     pipe_name(crtc->pipe));
6018
 
6019
	WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6020
	WARN(plls->spll_refcount, "SPLL enabled\n");
6021
	WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6022
	WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6023
	WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6024
	WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6025
	     "CPU PWM1 enabled\n");
6026
	WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6027
	     "CPU PWM2 enabled\n");
6028
	WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6029
	     "PCH PWM1 enabled\n");
6030
	WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6031
	     "Utility pin enabled\n");
6032
	WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6033
 
6034
	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6035
	val = I915_READ(DEIMR);
6036
	WARN((val & ~DE_PCH_EVENT_IVB) != val,
6037
	     "Unexpected DEIMR bits enabled: 0x%x\n", val);
6038
	val = I915_READ(SDEIMR);
6039
	WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6040
	     "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6041
	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6042
}
6043
 
6044
/*
6045
 * This function implements pieces of two sequences from BSpec:
6046
 * - Sequence for display software to disable LCPLL
6047
 * - Sequence for display software to allow package C8+
6048
 * The steps implemented here are just the steps that actually touch the LCPLL
6049
 * register. Callers should take care of disabling all the display engine
6050
 * functions, doing the mode unset, fixing interrupts, etc.
6051
 */
6052
void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6053
		       bool switch_to_fclk, bool allow_power_down)
6054
{
6055
	uint32_t val;
6056
 
6057
	assert_can_disable_lcpll(dev_priv);
6058
 
6059
	val = I915_READ(LCPLL_CTL);
6060
 
6061
	if (switch_to_fclk) {
6062
		val |= LCPLL_CD_SOURCE_FCLK;
6063
		I915_WRITE(LCPLL_CTL, val);
6064
 
6065
		if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6066
				       LCPLL_CD_SOURCE_FCLK_DONE, 1))
6067
			DRM_ERROR("Switching to FCLK failed\n");
6068
 
6069
		val = I915_READ(LCPLL_CTL);
6070
	}
6071
 
6072
	val |= LCPLL_PLL_DISABLE;
6073
	I915_WRITE(LCPLL_CTL, val);
6074
	POSTING_READ(LCPLL_CTL);
6075
 
6076
	if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6077
		DRM_ERROR("LCPLL still locked\n");
6078
 
6079
	val = I915_READ(D_COMP);
6080
	val |= D_COMP_COMP_DISABLE;
6081
	I915_WRITE(D_COMP, val);
6082
	POSTING_READ(D_COMP);
6083
    udelay(100);
6084
 
6085
	if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6086
		DRM_ERROR("D_COMP RCOMP still in progress\n");
6087
 
6088
	if (allow_power_down) {
6089
		val = I915_READ(LCPLL_CTL);
6090
		val |= LCPLL_POWER_DOWN_ALLOW;
6091
		I915_WRITE(LCPLL_CTL, val);
6092
		POSTING_READ(LCPLL_CTL);
6093
	}
6094
}
6095
 
6096
/*
6097
 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6098
 * source.
6099
 */
6100
void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6101
{
6102
	uint32_t val;
6103
 
6104
	val = I915_READ(LCPLL_CTL);
6105
 
6106
	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6107
		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6108
		return;
6109
 
6110
	/* Make sure we're not on PC8 state before disabling PC8, otherwise
6111
	 * we'll hang the machine! */
4398 Serge 6112
	gen6_gt_force_wake_get(dev_priv);
4104 Serge 6113
 
6114
	if (val & LCPLL_POWER_DOWN_ALLOW) {
6115
		val &= ~LCPLL_POWER_DOWN_ALLOW;
6116
		I915_WRITE(LCPLL_CTL, val);
6117
		POSTING_READ(LCPLL_CTL);
6118
	}
6119
 
6120
	val = I915_READ(D_COMP);
6121
	val |= D_COMP_COMP_FORCE;
6122
	val &= ~D_COMP_COMP_DISABLE;
6123
	I915_WRITE(D_COMP, val);
6124
	POSTING_READ(D_COMP);
6125
 
6126
	val = I915_READ(LCPLL_CTL);
6127
	val &= ~LCPLL_PLL_DISABLE;
6128
	I915_WRITE(LCPLL_CTL, val);
6129
 
6130
	if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6131
		DRM_ERROR("LCPLL not locked yet\n");
6132
 
6133
	if (val & LCPLL_CD_SOURCE_FCLK) {
6134
		val = I915_READ(LCPLL_CTL);
6135
		val &= ~LCPLL_CD_SOURCE_FCLK;
6136
		I915_WRITE(LCPLL_CTL, val);
6137
 
6138
		if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6139
					LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6140
			DRM_ERROR("Switching back to LCPLL failed\n");
6141
	}
6142
 
4398 Serge 6143
	gen6_gt_force_wake_put(dev_priv);
4104 Serge 6144
}
6145
 
6146
void hsw_enable_pc8_work(struct work_struct *__work)
6147
{
6148
	struct drm_i915_private *dev_priv =
6149
		container_of(to_delayed_work(__work), struct drm_i915_private,
6150
			     pc8.enable_work);
6151
	struct drm_device *dev = dev_priv->dev;
6152
	uint32_t val;
6153
 
6154
	if (dev_priv->pc8.enabled)
6155
		return;
6156
 
6157
	DRM_DEBUG_KMS("Enabling package C8+\n");
6158
 
6159
	dev_priv->pc8.enabled = true;
6160
 
6161
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6162
		val = I915_READ(SOUTH_DSPCLK_GATE_D);
6163
		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6164
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6165
	}
6166
 
6167
	lpt_disable_clkout_dp(dev);
6168
	hsw_pc8_disable_interrupts(dev);
6169
	hsw_disable_lcpll(dev_priv, true, true);
6170
}
6171
 
6172
static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6173
{
6174
	WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6175
	WARN(dev_priv->pc8.disable_count < 1,
6176
	     "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6177
 
6178
	dev_priv->pc8.disable_count--;
6179
	if (dev_priv->pc8.disable_count != 0)
6180
		return;
6181
 
6182
	schedule_delayed_work(&dev_priv->pc8.enable_work,
6183
			      msecs_to_jiffies(i915_pc8_timeout));
6184
}
6185
 
6186
static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6187
{
6188
	struct drm_device *dev = dev_priv->dev;
6189
	uint32_t val;
6190
 
6191
	WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6192
	WARN(dev_priv->pc8.disable_count < 0,
6193
	     "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6194
 
6195
	dev_priv->pc8.disable_count++;
6196
	if (dev_priv->pc8.disable_count != 1)
6197
		return;
6198
 
4293 Serge 6199
	cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
4104 Serge 6200
	if (!dev_priv->pc8.enabled)
6201
		return;
6202
 
6203
	DRM_DEBUG_KMS("Disabling package C8+\n");
6204
 
6205
	hsw_restore_lcpll(dev_priv);
6206
	hsw_pc8_restore_interrupts(dev);
6207
	lpt_init_pch_refclk(dev);
6208
 
6209
	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6210
		val = I915_READ(SOUTH_DSPCLK_GATE_D);
6211
		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6212
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6213
	}
6214
 
6215
	intel_prepare_ddi(dev);
6216
	i915_gem_init_swizzling(dev);
6217
	mutex_lock(&dev_priv->rps.hw_lock);
6218
	gen6_update_ring_freq(dev);
6219
	mutex_unlock(&dev_priv->rps.hw_lock);
6220
	dev_priv->pc8.enabled = false;
6221
}
6222
 
6223
void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6224
{
6225
	mutex_lock(&dev_priv->pc8.lock);
6226
	__hsw_enable_package_c8(dev_priv);
6227
	mutex_unlock(&dev_priv->pc8.lock);
6228
}
6229
 
6230
void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6231
{
6232
	mutex_lock(&dev_priv->pc8.lock);
6233
	__hsw_disable_package_c8(dev_priv);
6234
	mutex_unlock(&dev_priv->pc8.lock);
6235
}
6236
 
6237
static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6238
{
6239
	struct drm_device *dev = dev_priv->dev;
6240
	struct intel_crtc *crtc;
6241
	uint32_t val;
6242
 
6243
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6244
		if (crtc->base.enabled)
6245
			return false;
6246
 
6247
	/* This case is still possible since we have the i915.disable_power_well
6248
	 * parameter and also the KVMr or something else might be requesting the
6249
	 * power well. */
6250
	val = I915_READ(HSW_PWR_WELL_DRIVER);
6251
	if (val != 0) {
6252
		DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6253
		return false;
6254
	}
6255
 
6256
	return true;
6257
}
6258
 
6259
/* Since we're called from modeset_global_resources there's no way to
6260
 * symmetrically increase and decrease the refcount, so we use
6261
 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6262
 * or not.
6263
 */
6264
static void hsw_update_package_c8(struct drm_device *dev)
6265
{
6266
	struct drm_i915_private *dev_priv = dev->dev_private;
6267
	bool allow;
6268
 
6269
	if (!i915_enable_pc8)
6270
		return;
6271
 
6272
	mutex_lock(&dev_priv->pc8.lock);
6273
 
6274
	allow = hsw_can_enable_package_c8(dev_priv);
6275
 
6276
	if (allow == dev_priv->pc8.requirements_met)
6277
		goto done;
6278
 
6279
	dev_priv->pc8.requirements_met = allow;
6280
 
6281
	if (allow)
6282
		__hsw_enable_package_c8(dev_priv);
6283
	else
6284
		__hsw_disable_package_c8(dev_priv);
6285
 
6286
done:
6287
	mutex_unlock(&dev_priv->pc8.lock);
6288
}
6289
 
6290
static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6291
{
6292
	if (!dev_priv->pc8.gpu_idle) {
6293
		dev_priv->pc8.gpu_idle = true;
6294
		hsw_enable_package_c8(dev_priv);
6295
	}
6296
}
6297
 
6298
static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6299
{
6300
	if (dev_priv->pc8.gpu_idle) {
6301
		dev_priv->pc8.gpu_idle = false;
6302
		hsw_disable_package_c8(dev_priv);
6303
	}
6304
}
6305
 
3480 Serge 6306
static void haswell_modeset_global_resources(struct drm_device *dev)
6307
{
6308
	bool enable = false;
6309
	struct intel_crtc *crtc;
6310
 
6311
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
4104 Serge 6312
		if (!crtc->base.enabled)
6313
			continue;
3480 Serge 6314
 
4104 Serge 6315
		if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
6316
		    crtc->config.cpu_transcoder != TRANSCODER_EDP)
3480 Serge 6317
			enable = true;
6318
	}
6319
 
4104 Serge 6320
	intel_set_power_well(dev, enable);
3480 Serge 6321
 
4104 Serge 6322
	hsw_update_package_c8(dev);
3480 Serge 6323
}
6324
 
3243 Serge 6325
static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6326
				 int x, int y,
6327
				 struct drm_framebuffer *fb)
6328
{
6329
	struct drm_device *dev = crtc->dev;
6330
	struct drm_i915_private *dev_priv = dev->dev_private;
6331
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6332
	int plane = intel_crtc->plane;
6333
	int ret;
6334
 
4104 Serge 6335
	if (!intel_ddi_pll_mode_set(crtc))
3243 Serge 6336
		return -EINVAL;
6337
 
3746 Serge 6338
	if (intel_crtc->config.has_dp_encoder)
6339
		intel_dp_set_m_n(intel_crtc);
2327 Serge 6340
 
3243 Serge 6341
	intel_crtc->lowfreq_avail = false;
2327 Serge 6342
 
4104 Serge 6343
	intel_set_pipe_timings(intel_crtc);
3243 Serge 6344
 
4104 Serge 6345
	if (intel_crtc->config.has_pch_encoder) {
6346
		intel_cpu_transcoder_set_m_n(intel_crtc,
6347
					     &intel_crtc->config.fdi_m_n);
6348
	}
3243 Serge 6349
 
4104 Serge 6350
	haswell_set_pipeconf(crtc);
2327 Serge 6351
 
3746 Serge 6352
	intel_set_pipe_csc(crtc);
3480 Serge 6353
 
3031 serge 6354
	/* Set up the display plane register */
3480 Serge 6355
	I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
2327 Serge 6356
    POSTING_READ(DSPCNTR(plane));
6357
 
3031 serge 6358
	ret = intel_pipe_set_base(crtc, x, y, fb);
2327 Serge 6359
 
6360
    intel_update_watermarks(dev);
6361
 
6362
    return ret;
6363
}
6364
 
3746 Serge 6365
static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6366
				    struct intel_crtc_config *pipe_config)
6367
{
6368
	struct drm_device *dev = crtc->base.dev;
6369
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 6370
	enum intel_display_power_domain pfit_domain;
3746 Serge 6371
	uint32_t tmp;
6372
 
4104 Serge 6373
	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6374
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6375
 
6376
	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6377
	if (tmp & TRANS_DDI_FUNC_ENABLE) {
6378
		enum pipe trans_edp_pipe;
6379
		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6380
		default:
6381
			WARN(1, "unknown pipe linked to edp transcoder\n");
6382
		case TRANS_DDI_EDP_INPUT_A_ONOFF:
6383
		case TRANS_DDI_EDP_INPUT_A_ON:
6384
			trans_edp_pipe = PIPE_A;
6385
			break;
6386
		case TRANS_DDI_EDP_INPUT_B_ONOFF:
6387
			trans_edp_pipe = PIPE_B;
6388
			break;
6389
		case TRANS_DDI_EDP_INPUT_C_ONOFF:
6390
			trans_edp_pipe = PIPE_C;
6391
			break;
6392
		}
6393
 
6394
		if (trans_edp_pipe == crtc->pipe)
6395
			pipe_config->cpu_transcoder = TRANSCODER_EDP;
6396
	}
6397
 
6398
	if (!intel_display_power_enabled(dev,
6399
			POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6400
		return false;
6401
 
6402
	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
3746 Serge 6403
	if (!(tmp & PIPECONF_ENABLE))
6404
		return false;
6405
 
6406
	/*
4104 Serge 6407
	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
3746 Serge 6408
	 * DDI E. So just check whether this pipe is wired to DDI E and whether
6409
	 * the PCH transcoder is on.
6410
	 */
4104 Serge 6411
	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
3746 Serge 6412
	if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
4104 Serge 6413
	    I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
3746 Serge 6414
		pipe_config->has_pch_encoder = true;
6415
 
4104 Serge 6416
		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6417
		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6418
					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
3746 Serge 6419
 
4104 Serge 6420
		ironlake_get_fdi_m_n_config(crtc, pipe_config);
6421
	}
6422
 
6423
	intel_get_pipe_timings(crtc, pipe_config);
6424
 
6425
	pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6426
	if (intel_display_power_enabled(dev, pfit_domain))
6427
		ironlake_get_pfit_config(crtc, pipe_config);
6428
 
6429
	pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6430
				   (I915_READ(IPS_CTL) & IPS_ENABLE);
6431
 
6432
	pipe_config->pixel_multiplier = 1;
6433
 
3746 Serge 6434
	return true;
6435
}
6436
 
2330 Serge 6437
static int intel_crtc_mode_set(struct drm_crtc *crtc,
6438
			       int x, int y,
3031 serge 6439
			       struct drm_framebuffer *fb)
2330 Serge 6440
{
6441
	struct drm_device *dev = crtc->dev;
6442
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 6443
	struct intel_encoder *encoder;
2330 Serge 6444
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 6445
	struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
2330 Serge 6446
	int pipe = intel_crtc->pipe;
6447
	int ret;
2327 Serge 6448
 
3031 serge 6449
	drm_vblank_pre_modeset(dev, pipe);
2327 Serge 6450
 
3746 Serge 6451
	ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6452
 
3031 serge 6453
	drm_vblank_post_modeset(dev, pipe);
2327 Serge 6454
 
3243 Serge 6455
	if (ret != 0)
2330 Serge 6456
	return ret;
3243 Serge 6457
 
6458
	for_each_encoder_on_crtc(dev, crtc, encoder) {
6459
		DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6460
			encoder->base.base.id,
6461
			drm_get_encoder_name(&encoder->base),
6462
			mode->base.id, mode->name);
3746 Serge 6463
			encoder->mode_set(encoder);
3243 Serge 6464
	}
6465
 
6466
	return 0;
2330 Serge 6467
}
2327 Serge 6468
 
2342 Serge 6469
static bool intel_eld_uptodate(struct drm_connector *connector,
6470
			       int reg_eldv, uint32_t bits_eldv,
6471
			       int reg_elda, uint32_t bits_elda,
6472
			       int reg_edid)
6473
{
6474
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6475
	uint8_t *eld = connector->eld;
6476
	uint32_t i;
6477
 
6478
	i = I915_READ(reg_eldv);
6479
	i &= bits_eldv;
6480
 
6481
	if (!eld[0])
6482
		return !i;
6483
 
6484
	if (!i)
6485
		return false;
6486
 
6487
	i = I915_READ(reg_elda);
6488
	i &= ~bits_elda;
6489
	I915_WRITE(reg_elda, i);
6490
 
6491
	for (i = 0; i < eld[2]; i++)
6492
		if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6493
			return false;
6494
 
6495
	return true;
6496
}
6497
 
6498
static void g4x_write_eld(struct drm_connector *connector,
6499
			  struct drm_crtc *crtc)
6500
{
6501
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6502
	uint8_t *eld = connector->eld;
6503
	uint32_t eldv;
6504
	uint32_t len;
6505
	uint32_t i;
6506
 
6507
	i = I915_READ(G4X_AUD_VID_DID);
6508
 
6509
	if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6510
		eldv = G4X_ELDV_DEVCL_DEVBLC;
6511
	else
6512
		eldv = G4X_ELDV_DEVCTG;
6513
 
6514
	if (intel_eld_uptodate(connector,
6515
			       G4X_AUD_CNTL_ST, eldv,
6516
			       G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6517
			       G4X_HDMIW_HDMIEDID))
6518
		return;
6519
 
6520
	i = I915_READ(G4X_AUD_CNTL_ST);
6521
	i &= ~(eldv | G4X_ELD_ADDR);
6522
	len = (i >> 9) & 0x1f;		/* ELD buffer size */
6523
	I915_WRITE(G4X_AUD_CNTL_ST, i);
6524
 
6525
	if (!eld[0])
6526
		return;
6527
 
6528
	len = min_t(uint8_t, eld[2], len);
6529
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
6530
	for (i = 0; i < len; i++)
6531
		I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6532
 
6533
	i = I915_READ(G4X_AUD_CNTL_ST);
6534
	i |= eldv;
6535
	I915_WRITE(G4X_AUD_CNTL_ST, i);
6536
}
6537
 
3031 serge 6538
static void haswell_write_eld(struct drm_connector *connector,
6539
				     struct drm_crtc *crtc)
6540
{
6541
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6542
	uint8_t *eld = connector->eld;
6543
	struct drm_device *dev = crtc->dev;
3480 Serge 6544
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031 serge 6545
	uint32_t eldv;
6546
	uint32_t i;
6547
	int len;
6548
	int pipe = to_intel_crtc(crtc)->pipe;
6549
	int tmp;
6550
 
6551
	int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6552
	int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6553
	int aud_config = HSW_AUD_CFG(pipe);
6554
	int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6555
 
6556
 
6557
	DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6558
 
6559
	/* Audio output enable */
6560
	DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6561
	tmp = I915_READ(aud_cntrl_st2);
6562
	tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6563
	I915_WRITE(aud_cntrl_st2, tmp);
6564
 
6565
	/* Wait for 1 vertical blank */
6566
	intel_wait_for_vblank(dev, pipe);
6567
 
6568
	/* Set ELD valid state */
6569
	tmp = I915_READ(aud_cntrl_st2);
4104 Serge 6570
	DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
3031 serge 6571
	tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6572
	I915_WRITE(aud_cntrl_st2, tmp);
6573
	tmp = I915_READ(aud_cntrl_st2);
4104 Serge 6574
	DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
3031 serge 6575
 
6576
	/* Enable HDMI mode */
6577
	tmp = I915_READ(aud_config);
4104 Serge 6578
	DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
3031 serge 6579
	/* clear N_programing_enable and N_value_index */
6580
	tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6581
	I915_WRITE(aud_config, tmp);
6582
 
6583
	DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6584
 
6585
	eldv = AUDIO_ELD_VALID_A << (pipe * 4);
3480 Serge 6586
	intel_crtc->eld_vld = true;
3031 serge 6587
 
6588
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6589
		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6590
		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
6591
		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6592
	} else
6593
		I915_WRITE(aud_config, 0);
6594
 
6595
	if (intel_eld_uptodate(connector,
6596
			       aud_cntrl_st2, eldv,
6597
			       aud_cntl_st, IBX_ELD_ADDRESS,
6598
			       hdmiw_hdmiedid))
6599
		return;
6600
 
6601
	i = I915_READ(aud_cntrl_st2);
6602
	i &= ~eldv;
6603
	I915_WRITE(aud_cntrl_st2, i);
6604
 
6605
	if (!eld[0])
6606
		return;
6607
 
6608
	i = I915_READ(aud_cntl_st);
6609
	i &= ~IBX_ELD_ADDRESS;
6610
	I915_WRITE(aud_cntl_st, i);
6611
	i = (i >> 29) & DIP_PORT_SEL_MASK;		/* DIP_Port_Select, 0x1 = PortB */
6612
	DRM_DEBUG_DRIVER("port num:%d\n", i);
6613
 
6614
	len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */
6615
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
6616
	for (i = 0; i < len; i++)
6617
		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6618
 
6619
	i = I915_READ(aud_cntrl_st2);
6620
	i |= eldv;
6621
	I915_WRITE(aud_cntrl_st2, i);
6622
 
6623
}
6624
 
2342 Serge 6625
static void ironlake_write_eld(struct drm_connector *connector,
6626
				     struct drm_crtc *crtc)
6627
{
6628
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6629
	uint8_t *eld = connector->eld;
6630
	uint32_t eldv;
6631
	uint32_t i;
6632
	int len;
6633
	int hdmiw_hdmiedid;
3031 serge 6634
	int aud_config;
2342 Serge 6635
	int aud_cntl_st;
6636
	int aud_cntrl_st2;
3031 serge 6637
	int pipe = to_intel_crtc(crtc)->pipe;
2342 Serge 6638
 
6639
	if (HAS_PCH_IBX(connector->dev)) {
3031 serge 6640
		hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6641
		aud_config = IBX_AUD_CFG(pipe);
6642
		aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
2342 Serge 6643
		aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6644
	} else {
3031 serge 6645
		hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6646
		aud_config = CPT_AUD_CFG(pipe);
6647
		aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
2342 Serge 6648
		aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6649
	}
6650
 
3031 serge 6651
	DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
2342 Serge 6652
 
6653
	i = I915_READ(aud_cntl_st);
3031 serge 6654
	i = (i >> 29) & DIP_PORT_SEL_MASK;		/* DIP_Port_Select, 0x1 = PortB */
2342 Serge 6655
	if (!i) {
6656
		DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6657
		/* operate blindly on all ports */
6658
		eldv = IBX_ELD_VALIDB;
6659
		eldv |= IBX_ELD_VALIDB << 4;
6660
		eldv |= IBX_ELD_VALIDB << 8;
6661
	} else {
4104 Serge 6662
		DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
2342 Serge 6663
		eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6664
	}
6665
 
6666
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6667
		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6668
		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
3031 serge 6669
		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6670
	} else
6671
		I915_WRITE(aud_config, 0);
2342 Serge 6672
 
6673
	if (intel_eld_uptodate(connector,
6674
			       aud_cntrl_st2, eldv,
6675
			       aud_cntl_st, IBX_ELD_ADDRESS,
6676
			       hdmiw_hdmiedid))
6677
		return;
6678
 
6679
	i = I915_READ(aud_cntrl_st2);
6680
	i &= ~eldv;
6681
	I915_WRITE(aud_cntrl_st2, i);
6682
 
6683
	if (!eld[0])
6684
		return;
6685
 
6686
	i = I915_READ(aud_cntl_st);
6687
	i &= ~IBX_ELD_ADDRESS;
6688
	I915_WRITE(aud_cntl_st, i);
6689
 
6690
	len = min_t(uint8_t, eld[2], 21);	/* 84 bytes of hw ELD buffer */
6691
	DRM_DEBUG_DRIVER("ELD size %d\n", len);
6692
	for (i = 0; i < len; i++)
6693
		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6694
 
6695
	i = I915_READ(aud_cntrl_st2);
6696
	i |= eldv;
6697
	I915_WRITE(aud_cntrl_st2, i);
6698
}
6699
 
6700
void intel_write_eld(struct drm_encoder *encoder,
6701
		     struct drm_display_mode *mode)
6702
{
6703
	struct drm_crtc *crtc = encoder->crtc;
6704
	struct drm_connector *connector;
6705
	struct drm_device *dev = encoder->dev;
6706
	struct drm_i915_private *dev_priv = dev->dev_private;
6707
 
6708
	connector = drm_select_eld(encoder, mode);
6709
	if (!connector)
6710
		return;
6711
 
6712
	DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6713
			 connector->base.id,
6714
			 drm_get_connector_name(connector),
6715
			 connector->encoder->base.id,
6716
			 drm_get_encoder_name(connector->encoder));
6717
 
6718
	connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6719
 
6720
	if (dev_priv->display.write_eld)
6721
		dev_priv->display.write_eld(connector, crtc);
6722
}
6723
 
2327 Serge 6724
/** Loads the palette/gamma unit for the CRTC with the prepared values */
6725
void intel_crtc_load_lut(struct drm_crtc *crtc)
6726
{
6727
	struct drm_device *dev = crtc->dev;
6728
	struct drm_i915_private *dev_priv = dev->dev_private;
6729
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104 Serge 6730
	enum pipe pipe = intel_crtc->pipe;
6731
	int palreg = PALETTE(pipe);
2327 Serge 6732
	int i;
4104 Serge 6733
	bool reenable_ips = false;
2327 Serge 6734
 
6735
	/* The clocks have to be on to load the palette. */
3031 serge 6736
	if (!crtc->enabled || !intel_crtc->active)
2327 Serge 6737
		return;
6738
 
4104 Serge 6739
	if (!HAS_PCH_SPLIT(dev_priv->dev))
6740
		assert_pll_enabled(dev_priv, pipe);
6741
 
2327 Serge 6742
	/* use legacy palette for Ironlake */
6743
	if (HAS_PCH_SPLIT(dev))
4104 Serge 6744
		palreg = LGC_PALETTE(pipe);
2327 Serge 6745
 
4104 Serge 6746
	/* Workaround : Do not read or write the pipe palette/gamma data while
6747
	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6748
	 */
6749
	if (intel_crtc->config.ips_enabled &&
6750
	    ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6751
	     GAMMA_MODE_MODE_SPLIT)) {
6752
		hsw_disable_ips(intel_crtc);
6753
		reenable_ips = true;
6754
	}
6755
 
2327 Serge 6756
	for (i = 0; i < 256; i++) {
6757
		I915_WRITE(palreg + 4 * i,
6758
			   (intel_crtc->lut_r[i] << 16) |
6759
			   (intel_crtc->lut_g[i] << 8) |
6760
			   intel_crtc->lut_b[i]);
6761
	}
4104 Serge 6762
 
6763
	if (reenable_ips)
6764
		hsw_enable_ips(intel_crtc);
2327 Serge 6765
}
6766
 
3031 serge 6767
#if 0
6768
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6769
{
6770
	struct drm_device *dev = crtc->dev;
6771
	struct drm_i915_private *dev_priv = dev->dev_private;
6772
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6773
	bool visible = base != 0;
6774
	u32 cntl;
2327 Serge 6775
 
3031 serge 6776
	if (intel_crtc->cursor_visible == visible)
6777
		return;
2327 Serge 6778
 
3031 serge 6779
	cntl = I915_READ(_CURACNTR);
6780
	if (visible) {
6781
		/* On these chipsets we can only modify the base whilst
6782
		 * the cursor is disabled.
6783
		 */
6784
		I915_WRITE(_CURABASE, base);
2327 Serge 6785
 
3031 serge 6786
		cntl &= ~(CURSOR_FORMAT_MASK);
6787
		/* XXX width must be 64, stride 256 => 0x00 << 28 */
6788
		cntl |= CURSOR_ENABLE |
6789
			CURSOR_GAMMA_ENABLE |
6790
			CURSOR_FORMAT_ARGB;
6791
	} else
6792
		cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6793
	I915_WRITE(_CURACNTR, cntl);
2327 Serge 6794
 
3031 serge 6795
	intel_crtc->cursor_visible = visible;
6796
}
2327 Serge 6797
 
3031 serge 6798
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6799
{
6800
	struct drm_device *dev = crtc->dev;
6801
	struct drm_i915_private *dev_priv = dev->dev_private;
6802
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6803
	int pipe = intel_crtc->pipe;
6804
	bool visible = base != 0;
2327 Serge 6805
 
3031 serge 6806
	if (intel_crtc->cursor_visible != visible) {
6807
		uint32_t cntl = I915_READ(CURCNTR(pipe));
6808
		if (base) {
6809
			cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6810
			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6811
			cntl |= pipe << 28; /* Connect to correct pipe */
6812
		} else {
6813
			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6814
			cntl |= CURSOR_MODE_DISABLE;
6815
		}
6816
		I915_WRITE(CURCNTR(pipe), cntl);
2327 Serge 6817
 
3031 serge 6818
		intel_crtc->cursor_visible = visible;
6819
	}
6820
	/* and commit changes on next vblank */
4371 Serge 6821
	POSTING_READ(CURCNTR(pipe));
3031 serge 6822
	I915_WRITE(CURBASE(pipe), base);
4371 Serge 6823
	POSTING_READ(CURBASE(pipe));
3031 serge 6824
}
2327 Serge 6825
 
3031 serge 6826
static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6827
{
6828
	struct drm_device *dev = crtc->dev;
6829
	struct drm_i915_private *dev_priv = dev->dev_private;
6830
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6831
	int pipe = intel_crtc->pipe;
6832
	bool visible = base != 0;
2327 Serge 6833
 
3031 serge 6834
	if (intel_crtc->cursor_visible != visible) {
6835
		uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6836
		if (base) {
6837
			cntl &= ~CURSOR_MODE;
6838
			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6839
		} else {
6840
			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6841
			cntl |= CURSOR_MODE_DISABLE;
6842
		}
4104 Serge 6843
		if (IS_HASWELL(dev)) {
3480 Serge 6844
			cntl |= CURSOR_PIPE_CSC_ENABLE;
4104 Serge 6845
			cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6846
		}
3031 serge 6847
		I915_WRITE(CURCNTR_IVB(pipe), cntl);
2327 Serge 6848
 
3031 serge 6849
		intel_crtc->cursor_visible = visible;
6850
	}
6851
	/* and commit changes on next vblank */
4371 Serge 6852
	POSTING_READ(CURCNTR_IVB(pipe));
3031 serge 6853
	I915_WRITE(CURBASE_IVB(pipe), base);
4371 Serge 6854
	POSTING_READ(CURBASE_IVB(pipe));
3031 serge 6855
}
2327 Serge 6856
 
3031 serge 6857
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6858
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6859
				     bool on)
6860
{
6861
	struct drm_device *dev = crtc->dev;
6862
	struct drm_i915_private *dev_priv = dev->dev_private;
6863
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6864
	int pipe = intel_crtc->pipe;
6865
	int x = intel_crtc->cursor_x;
6866
	int y = intel_crtc->cursor_y;
6867
	u32 base, pos;
6868
	bool visible;
2327 Serge 6869
 
3031 serge 6870
	pos = 0;
2327 Serge 6871
 
3031 serge 6872
	if (on && crtc->enabled && crtc->fb) {
6873
		base = intel_crtc->cursor_addr;
6874
		if (x > (int) crtc->fb->width)
6875
			base = 0;
2327 Serge 6876
 
3031 serge 6877
		if (y > (int) crtc->fb->height)
6878
			base = 0;
6879
	} else
6880
		base = 0;
2327 Serge 6881
 
3031 serge 6882
	if (x < 0) {
6883
		if (x + intel_crtc->cursor_width < 0)
6884
			base = 0;
2327 Serge 6885
 
3031 serge 6886
		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6887
		x = -x;
6888
	}
6889
	pos |= x << CURSOR_X_SHIFT;
2327 Serge 6890
 
3031 serge 6891
	if (y < 0) {
6892
		if (y + intel_crtc->cursor_height < 0)
6893
			base = 0;
2327 Serge 6894
 
3031 serge 6895
		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6896
		y = -y;
6897
	}
6898
	pos |= y << CURSOR_Y_SHIFT;
2327 Serge 6899
 
3031 serge 6900
	visible = base != 0;
6901
	if (!visible && !intel_crtc->cursor_visible)
6902
		return;
2327 Serge 6903
 
3031 serge 6904
	if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6905
		I915_WRITE(CURPOS_IVB(pipe), pos);
6906
		ivb_update_cursor(crtc, base);
6907
	} else {
6908
		I915_WRITE(CURPOS(pipe), pos);
6909
		if (IS_845G(dev) || IS_I865G(dev))
6910
			i845_update_cursor(crtc, base);
6911
		else
6912
			i9xx_update_cursor(crtc, base);
6913
	}
6914
}
2327 Serge 6915
 
3031 serge 6916
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6917
				 struct drm_file *file,
6918
				 uint32_t handle,
6919
				 uint32_t width, uint32_t height)
6920
{
6921
	struct drm_device *dev = crtc->dev;
6922
	struct drm_i915_private *dev_priv = dev->dev_private;
6923
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6924
	struct drm_i915_gem_object *obj;
6925
	uint32_t addr;
6926
	int ret;
2327 Serge 6927
 
3031 serge 6928
	/* if we want to turn off the cursor ignore width and height */
6929
	if (!handle) {
6930
		DRM_DEBUG_KMS("cursor off\n");
6931
		addr = 0;
6932
		obj = NULL;
6933
		mutex_lock(&dev->struct_mutex);
6934
		goto finish;
6935
	}
2327 Serge 6936
 
3031 serge 6937
	/* Currently we only support 64x64 cursors */
6938
	if (width != 64 || height != 64) {
6939
		DRM_ERROR("we currently only support 64x64 cursors\n");
6940
		return -EINVAL;
6941
	}
2327 Serge 6942
 
3031 serge 6943
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6944
	if (&obj->base == NULL)
6945
		return -ENOENT;
2327 Serge 6946
 
3031 serge 6947
	if (obj->base.size < width * height * 4) {
6948
		DRM_ERROR("buffer is to small\n");
6949
		ret = -ENOMEM;
6950
		goto fail;
6951
	}
2327 Serge 6952
 
3031 serge 6953
	/* we only need to pin inside GTT if cursor is non-phy */
6954
	mutex_lock(&dev->struct_mutex);
6955
	if (!dev_priv->info->cursor_needs_physical) {
3746 Serge 6956
		unsigned alignment;
6957
 
3031 serge 6958
		if (obj->tiling_mode) {
6959
			DRM_ERROR("cursor cannot be tiled\n");
6960
			ret = -EINVAL;
6961
			goto fail_locked;
6962
		}
2327 Serge 6963
 
3746 Serge 6964
		/* Note that the w/a also requires 2 PTE of padding following
6965
		 * the bo. We currently fill all unused PTE with the shadow
6966
		 * page and so we should always have valid PTE following the
6967
		 * cursor preventing the VT-d warning.
6968
		 */
6969
		alignment = 0;
6970
		if (need_vtd_wa(dev))
6971
			alignment = 64*1024;
6972
 
6973
		ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
3031 serge 6974
		if (ret) {
6975
			DRM_ERROR("failed to move cursor bo into the GTT\n");
6976
			goto fail_locked;
6977
		}
2327 Serge 6978
 
3031 serge 6979
		ret = i915_gem_object_put_fence(obj);
6980
		if (ret) {
6981
			DRM_ERROR("failed to release fence for cursor");
6982
			goto fail_unpin;
6983
		}
2327 Serge 6984
 
4104 Serge 6985
		addr = i915_gem_obj_ggtt_offset(obj);
3031 serge 6986
	} else {
6987
		int align = IS_I830(dev) ? 16 * 1024 : 256;
6988
		ret = i915_gem_attach_phys_object(dev, obj,
6989
						  (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6990
						  align);
6991
		if (ret) {
6992
			DRM_ERROR("failed to attach phys object\n");
6993
			goto fail_locked;
6994
		}
6995
		addr = obj->phys_obj->handle->busaddr;
6996
	}
2327 Serge 6997
 
3031 serge 6998
	if (IS_GEN2(dev))
6999
		I915_WRITE(CURSIZE, (height << 12) | width);
2327 Serge 7000
 
3031 serge 7001
 finish:
7002
	if (intel_crtc->cursor_bo) {
7003
		if (dev_priv->info->cursor_needs_physical) {
7004
			if (intel_crtc->cursor_bo != obj)
7005
				i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7006
		} else
4104 Serge 7007
			i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3031 serge 7008
		drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7009
	}
2327 Serge 7010
 
3031 serge 7011
	mutex_unlock(&dev->struct_mutex);
2327 Serge 7012
 
3031 serge 7013
	intel_crtc->cursor_addr = addr;
7014
	intel_crtc->cursor_bo = obj;
7015
	intel_crtc->cursor_width = width;
7016
	intel_crtc->cursor_height = height;
2327 Serge 7017
 
4104 Serge 7018
	if (intel_crtc->active)
7019
		intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
2327 Serge 7020
 
3031 serge 7021
	return 0;
7022
fail_unpin:
4104 Serge 7023
	i915_gem_object_unpin_from_display_plane(obj);
3031 serge 7024
fail_locked:
7025
	mutex_unlock(&dev->struct_mutex);
7026
fail:
7027
	drm_gem_object_unreference_unlocked(&obj->base);
7028
	return ret;
7029
}
2327 Serge 7030
 
3031 serge 7031
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7032
{
7033
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7034
 
7035
	intel_crtc->cursor_x = x;
7036
	intel_crtc->cursor_y = y;
7037
 
4104 Serge 7038
	if (intel_crtc->active)
7039
		intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
3031 serge 7040
 
7041
	return 0;
7042
}
7043
#endif
7044
 
2332 Serge 7045
/** Sets the color ramps on behalf of RandR */
7046
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
7047
				 u16 blue, int regno)
7048
{
7049
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 7050
 
2332 Serge 7051
	intel_crtc->lut_r[regno] = red >> 8;
7052
	intel_crtc->lut_g[regno] = green >> 8;
7053
	intel_crtc->lut_b[regno] = blue >> 8;
7054
}
2327 Serge 7055
 
2332 Serge 7056
void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
7057
			     u16 *blue, int regno)
7058
{
7059
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 7060
 
2332 Serge 7061
	*red = intel_crtc->lut_r[regno] << 8;
7062
	*green = intel_crtc->lut_g[regno] << 8;
7063
	*blue = intel_crtc->lut_b[regno] << 8;
7064
}
2327 Serge 7065
 
2330 Serge 7066
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7067
				 u16 *blue, uint32_t start, uint32_t size)
7068
{
7069
	int end = (start + size > 256) ? 256 : start + size, i;
7070
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 7071
 
2330 Serge 7072
	for (i = start; i < end; i++) {
7073
		intel_crtc->lut_r[i] = red[i] >> 8;
7074
		intel_crtc->lut_g[i] = green[i] >> 8;
7075
		intel_crtc->lut_b[i] = blue[i] >> 8;
7076
	}
2327 Serge 7077
 
2330 Serge 7078
	intel_crtc_load_lut(crtc);
7079
}
2327 Serge 7080
 
2330 Serge 7081
/* VESA 640x480x72Hz mode to set on the pipe */
7082
static struct drm_display_mode load_detect_mode = {
7083
	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7084
		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7085
};
2327 Serge 7086
 
3031 serge 7087
static struct drm_framebuffer *
7088
intel_framebuffer_create(struct drm_device *dev,
7089
			 struct drm_mode_fb_cmd2 *mode_cmd,
7090
			 struct drm_i915_gem_object *obj)
7091
{
7092
	struct intel_framebuffer *intel_fb;
7093
	int ret;
2327 Serge 7094
 
3031 serge 7095
	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7096
	if (!intel_fb) {
7097
		drm_gem_object_unreference_unlocked(&obj->base);
7098
		return ERR_PTR(-ENOMEM);
7099
	}
2327 Serge 7100
 
3031 serge 7101
	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7102
	if (ret) {
7103
		drm_gem_object_unreference_unlocked(&obj->base);
7104
		kfree(intel_fb);
7105
		return ERR_PTR(ret);
7106
	}
2327 Serge 7107
 
3031 serge 7108
	return &intel_fb->base;
7109
}
2327 Serge 7110
 
2330 Serge 7111
static u32
7112
intel_framebuffer_pitch_for_width(int width, int bpp)
7113
{
7114
	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7115
	return ALIGN(pitch, 64);
7116
}
2327 Serge 7117
 
2330 Serge 7118
static u32
7119
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7120
{
7121
	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7122
	return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7123
}
2327 Serge 7124
 
2330 Serge 7125
static struct drm_framebuffer *
7126
intel_framebuffer_create_for_mode(struct drm_device *dev,
7127
				  struct drm_display_mode *mode,
7128
				  int depth, int bpp)
7129
{
7130
	struct drm_i915_gem_object *obj;
3243 Serge 7131
	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2327 Serge 7132
 
4104 Serge 7133
	return NULL;
2330 Serge 7134
}
2327 Serge 7135
 
2330 Serge 7136
static struct drm_framebuffer *
7137
mode_fits_in_fbdev(struct drm_device *dev,
7138
		   struct drm_display_mode *mode)
7139
{
7140
	struct drm_i915_private *dev_priv = dev->dev_private;
7141
	struct drm_i915_gem_object *obj;
7142
	struct drm_framebuffer *fb;
2327 Serge 7143
 
4280 Serge 7144
	if (dev_priv->fbdev == NULL)
7145
		return NULL;
2327 Serge 7146
 
4280 Serge 7147
	obj = dev_priv->fbdev->ifb.obj;
7148
	if (obj == NULL)
2330 Serge 7149
		return NULL;
2327 Serge 7150
 
4280 Serge 7151
	fb = &dev_priv->fbdev->ifb.base;
3031 serge 7152
	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7153
							       fb->bits_per_pixel))
4280 Serge 7154
		return NULL;
2327 Serge 7155
 
3031 serge 7156
	if (obj->base.size < mode->vdisplay * fb->pitches[0])
7157
		return NULL;
7158
 
4280 Serge 7159
	return fb;
2330 Serge 7160
}
2327 Serge 7161
 
3031 serge 7162
bool intel_get_load_detect_pipe(struct drm_connector *connector,
2330 Serge 7163
				struct drm_display_mode *mode,
7164
				struct intel_load_detect_pipe *old)
7165
{
7166
	struct intel_crtc *intel_crtc;
3031 serge 7167
	struct intel_encoder *intel_encoder =
7168
		intel_attached_encoder(connector);
2330 Serge 7169
	struct drm_crtc *possible_crtc;
7170
	struct drm_encoder *encoder = &intel_encoder->base;
7171
	struct drm_crtc *crtc = NULL;
7172
	struct drm_device *dev = encoder->dev;
3031 serge 7173
	struct drm_framebuffer *fb;
2330 Serge 7174
	int i = -1;
2327 Serge 7175
 
2330 Serge 7176
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7177
		      connector->base.id, drm_get_connector_name(connector),
7178
		      encoder->base.id, drm_get_encoder_name(encoder));
2327 Serge 7179
 
2330 Serge 7180
	/*
7181
	 * Algorithm gets a little messy:
7182
	 *
7183
	 *   - if the connector already has an assigned crtc, use it (but make
7184
	 *     sure it's on first)
7185
	 *
7186
	 *   - try to find the first unused crtc that can drive this connector,
7187
	 *     and use that if we find one
7188
	 */
2327 Serge 7189
 
2330 Serge 7190
	/* See if we already have a CRTC for this connector */
7191
	if (encoder->crtc) {
7192
		crtc = encoder->crtc;
2327 Serge 7193
 
3480 Serge 7194
		mutex_lock(&crtc->mutex);
7195
 
3031 serge 7196
		old->dpms_mode = connector->dpms;
2330 Serge 7197
		old->load_detect_temp = false;
2327 Serge 7198
 
2330 Serge 7199
		/* Make sure the crtc and connector are running */
3031 serge 7200
		if (connector->dpms != DRM_MODE_DPMS_ON)
7201
			connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
2327 Serge 7202
 
2330 Serge 7203
		return true;
7204
	}
2327 Serge 7205
 
2330 Serge 7206
	/* Find an unused one (if possible) */
7207
	list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7208
		i++;
7209
		if (!(encoder->possible_crtcs & (1 << i)))
7210
			continue;
7211
		if (!possible_crtc->enabled) {
7212
			crtc = possible_crtc;
7213
			break;
7214
		}
7215
	}
2327 Serge 7216
 
2330 Serge 7217
	/*
7218
	 * If we didn't find an unused CRTC, don't use any.
7219
	 */
7220
	if (!crtc) {
7221
		DRM_DEBUG_KMS("no pipe available for load-detect\n");
7222
		return false;
7223
	}
2327 Serge 7224
 
3480 Serge 7225
	mutex_lock(&crtc->mutex);
3031 serge 7226
	intel_encoder->new_crtc = to_intel_crtc(crtc);
7227
	to_intel_connector(connector)->new_encoder = intel_encoder;
2327 Serge 7228
 
2330 Serge 7229
	intel_crtc = to_intel_crtc(crtc);
3031 serge 7230
	old->dpms_mode = connector->dpms;
2330 Serge 7231
	old->load_detect_temp = true;
7232
	old->release_fb = NULL;
2327 Serge 7233
 
2330 Serge 7234
	if (!mode)
7235
		mode = &load_detect_mode;
2327 Serge 7236
 
2330 Serge 7237
	/* We need a framebuffer large enough to accommodate all accesses
7238
	 * that the plane may generate whilst we perform load detection.
7239
	 * We can not rely on the fbcon either being present (we get called
7240
	 * during its initialisation to detect all boot displays, or it may
7241
	 * not even exist) or that it is large enough to satisfy the
7242
	 * requested mode.
7243
	 */
3031 serge 7244
	fb = mode_fits_in_fbdev(dev, mode);
7245
	if (fb == NULL) {
2330 Serge 7246
		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
3031 serge 7247
		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7248
		old->release_fb = fb;
2330 Serge 7249
	} else
7250
		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
3031 serge 7251
	if (IS_ERR(fb)) {
2330 Serge 7252
		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
3480 Serge 7253
		mutex_unlock(&crtc->mutex);
3243 Serge 7254
		return false;
2330 Serge 7255
	}
2327 Serge 7256
 
3480 Serge 7257
	if (intel_set_mode(crtc, mode, 0, 0, fb)) {
2330 Serge 7258
		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7259
		if (old->release_fb)
7260
			old->release_fb->funcs->destroy(old->release_fb);
3480 Serge 7261
		mutex_unlock(&crtc->mutex);
3243 Serge 7262
		return false;
2330 Serge 7263
	}
2327 Serge 7264
 
2330 Serge 7265
	/* let the connector get through one full cycle before testing */
7266
	intel_wait_for_vblank(dev, intel_crtc->pipe);
7267
	return true;
7268
}
2327 Serge 7269
 
3031 serge 7270
void intel_release_load_detect_pipe(struct drm_connector *connector,
2330 Serge 7271
				    struct intel_load_detect_pipe *old)
7272
{
3031 serge 7273
	struct intel_encoder *intel_encoder =
7274
		intel_attached_encoder(connector);
2330 Serge 7275
	struct drm_encoder *encoder = &intel_encoder->base;
3480 Serge 7276
	struct drm_crtc *crtc = encoder->crtc;
2327 Serge 7277
 
2330 Serge 7278
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7279
		      connector->base.id, drm_get_connector_name(connector),
7280
		      encoder->base.id, drm_get_encoder_name(encoder));
2327 Serge 7281
 
2330 Serge 7282
	if (old->load_detect_temp) {
3031 serge 7283
		to_intel_connector(connector)->new_encoder = NULL;
7284
		intel_encoder->new_crtc = NULL;
7285
		intel_set_mode(crtc, NULL, 0, 0, NULL);
7286
 
3480 Serge 7287
		if (old->release_fb) {
7288
			drm_framebuffer_unregister_private(old->release_fb);
7289
			drm_framebuffer_unreference(old->release_fb);
7290
		}
2327 Serge 7291
 
3480 Serge 7292
		mutex_unlock(&crtc->mutex);
2330 Serge 7293
		return;
7294
	}
2327 Serge 7295
 
2330 Serge 7296
	/* Switch crtc and encoder back off if necessary */
3031 serge 7297
	if (old->dpms_mode != DRM_MODE_DPMS_ON)
7298
		connector->funcs->dpms(connector, old->dpms_mode);
3480 Serge 7299
 
7300
	mutex_unlock(&crtc->mutex);
2330 Serge 7301
}
2327 Serge 7302
 
2330 Serge 7303
/* Returns the clock of the currently programmed mode of the given pipe. */
4104 Serge 7304
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7305
				struct intel_crtc_config *pipe_config)
2330 Serge 7306
{
4104 Serge 7307
	struct drm_device *dev = crtc->base.dev;
2330 Serge 7308
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 7309
	int pipe = pipe_config->cpu_transcoder;
2330 Serge 7310
	u32 dpll = I915_READ(DPLL(pipe));
7311
	u32 fp;
7312
	intel_clock_t clock;
2327 Serge 7313
 
2330 Serge 7314
	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7315
		fp = I915_READ(FP0(pipe));
7316
	else
7317
		fp = I915_READ(FP1(pipe));
2327 Serge 7318
 
2330 Serge 7319
	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7320
	if (IS_PINEVIEW(dev)) {
7321
		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7322
		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7323
	} else {
7324
		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7325
		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7326
	}
2327 Serge 7327
 
2330 Serge 7328
	if (!IS_GEN2(dev)) {
7329
		if (IS_PINEVIEW(dev))
7330
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7331
				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7332
		else
7333
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7334
			       DPLL_FPA01_P1_POST_DIV_SHIFT);
2327 Serge 7335
 
2330 Serge 7336
		switch (dpll & DPLL_MODE_MASK) {
7337
		case DPLLB_MODE_DAC_SERIAL:
7338
			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7339
				5 : 10;
7340
			break;
7341
		case DPLLB_MODE_LVDS:
7342
			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7343
				7 : 14;
7344
			break;
7345
		default:
7346
			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7347
				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
4104 Serge 7348
			pipe_config->adjusted_mode.clock = 0;
7349
			return;
2330 Serge 7350
		}
2327 Serge 7351
 
4104 Serge 7352
		if (IS_PINEVIEW(dev))
7353
			pineview_clock(96000, &clock);
7354
		else
7355
			i9xx_clock(96000, &clock);
2330 Serge 7356
	} else {
7357
		bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2327 Serge 7358
 
2330 Serge 7359
		if (is_lvds) {
7360
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7361
				       DPLL_FPA01_P1_POST_DIV_SHIFT);
7362
			clock.p2 = 14;
2327 Serge 7363
 
2330 Serge 7364
			if ((dpll & PLL_REF_INPUT_MASK) ==
7365
			    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7366
				/* XXX: might not be 66MHz */
4104 Serge 7367
				i9xx_clock(66000, &clock);
2330 Serge 7368
			} else
4104 Serge 7369
				i9xx_clock(48000, &clock);
2330 Serge 7370
		} else {
7371
			if (dpll & PLL_P1_DIVIDE_BY_TWO)
7372
				clock.p1 = 2;
7373
			else {
7374
				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7375
					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7376
			}
7377
			if (dpll & PLL_P2_DIVIDE_BY_4)
7378
				clock.p2 = 4;
7379
			else
7380
				clock.p2 = 2;
2327 Serge 7381
 
4104 Serge 7382
			i9xx_clock(48000, &clock);
2330 Serge 7383
		}
7384
	}
2327 Serge 7385
 
4104 Serge 7386
	pipe_config->adjusted_mode.clock = clock.dot;
7387
}
7388
 
7389
static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7390
				    struct intel_crtc_config *pipe_config)
7391
{
7392
	struct drm_device *dev = crtc->base.dev;
7393
	struct drm_i915_private *dev_priv = dev->dev_private;
7394
	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7395
	int link_freq, repeat;
7396
	u64 clock;
7397
	u32 link_m, link_n;
7398
 
7399
	repeat = pipe_config->pixel_multiplier;
7400
 
7401
	/*
7402
	 * The calculation for the data clock is:
7403
	 * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7404
	 * But we want to avoid losing precison if possible, so:
7405
	 * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7406
	 *
7407
	 * and the link clock is simpler:
7408
	 * link_clock = (m * link_clock * repeat) / n
2330 Serge 7409
	 */
2327 Serge 7410
 
4104 Serge 7411
	/*
7412
	 * We need to get the FDI or DP link clock here to derive
7413
	 * the M/N dividers.
7414
	 *
7415
	 * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7416
	 * For DP, it's either 1.62GHz or 2.7GHz.
7417
	 * We do our calculations in 10*MHz since we don't need much precison.
7418
	 */
7419
	if (pipe_config->has_pch_encoder)
7420
		link_freq = intel_fdi_link_freq(dev) * 10000;
7421
	else
7422
		link_freq = pipe_config->port_clock;
7423
 
7424
	link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7425
	link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7426
 
7427
	if (!link_m || !link_n)
7428
		return;
7429
 
7430
	clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7431
	do_div(clock, link_n);
7432
 
7433
	pipe_config->adjusted_mode.clock = clock;
2330 Serge 7434
}
2327 Serge 7435
 
2330 Serge 7436
/** Returns the currently programmed mode of the given pipe. */
7437
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7438
					     struct drm_crtc *crtc)
7439
{
7440
	struct drm_i915_private *dev_priv = dev->dev_private;
7441
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3746 Serge 7442
	enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
2330 Serge 7443
	struct drm_display_mode *mode;
4104 Serge 7444
	struct intel_crtc_config pipe_config;
3243 Serge 7445
	int htot = I915_READ(HTOTAL(cpu_transcoder));
7446
	int hsync = I915_READ(HSYNC(cpu_transcoder));
7447
	int vtot = I915_READ(VTOTAL(cpu_transcoder));
7448
	int vsync = I915_READ(VSYNC(cpu_transcoder));
2327 Serge 7449
 
2330 Serge 7450
	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7451
	if (!mode)
7452
		return NULL;
7453
 
4104 Serge 7454
	/*
7455
	 * Construct a pipe_config sufficient for getting the clock info
7456
	 * back out of crtc_clock_get.
7457
	 *
7458
	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7459
	 * to use a real value here instead.
7460
	 */
7461
	pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7462
	pipe_config.pixel_multiplier = 1;
7463
	i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7464
 
7465
	mode->clock = pipe_config.adjusted_mode.clock;
2330 Serge 7466
	mode->hdisplay = (htot & 0xffff) + 1;
7467
	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7468
	mode->hsync_start = (hsync & 0xffff) + 1;
7469
	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7470
	mode->vdisplay = (vtot & 0xffff) + 1;
7471
	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7472
	mode->vsync_start = (vsync & 0xffff) + 1;
7473
	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7474
 
7475
	drm_mode_set_name(mode);
7476
 
7477
	return mode;
7478
}
7479
 
2327 Serge 7480
static void intel_increase_pllclock(struct drm_crtc *crtc)
7481
{
7482
	struct drm_device *dev = crtc->dev;
7483
	drm_i915_private_t *dev_priv = dev->dev_private;
7484
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7485
	int pipe = intel_crtc->pipe;
7486
	int dpll_reg = DPLL(pipe);
7487
	int dpll;
7488
 
7489
	if (HAS_PCH_SPLIT(dev))
7490
		return;
7491
 
7492
	if (!dev_priv->lvds_downclock_avail)
7493
		return;
7494
 
7495
	dpll = I915_READ(dpll_reg);
7496
	if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7497
		DRM_DEBUG_DRIVER("upclocking LVDS\n");
7498
 
3031 serge 7499
		assert_panel_unlocked(dev_priv, pipe);
2327 Serge 7500
 
7501
		dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7502
		I915_WRITE(dpll_reg, dpll);
7503
		intel_wait_for_vblank(dev, pipe);
7504
 
7505
		dpll = I915_READ(dpll_reg);
7506
		if (dpll & DISPLAY_RATE_SELECT_FPA1)
7507
			DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7508
	}
7509
}
7510
 
3031 serge 7511
static void intel_decrease_pllclock(struct drm_crtc *crtc)
7512
{
7513
	struct drm_device *dev = crtc->dev;
7514
	drm_i915_private_t *dev_priv = dev->dev_private;
7515
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2327 Serge 7516
 
3031 serge 7517
	if (HAS_PCH_SPLIT(dev))
7518
		return;
2327 Serge 7519
 
3031 serge 7520
	if (!dev_priv->lvds_downclock_avail)
7521
		return;
2327 Serge 7522
 
3031 serge 7523
	/*
7524
	 * Since this is called by a timer, we should never get here in
7525
	 * the manual case.
7526
	 */
7527
	if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7528
		int pipe = intel_crtc->pipe;
7529
		int dpll_reg = DPLL(pipe);
7530
		int dpll;
2327 Serge 7531
 
3031 serge 7532
		DRM_DEBUG_DRIVER("downclocking LVDS\n");
2327 Serge 7533
 
3031 serge 7534
		assert_panel_unlocked(dev_priv, pipe);
2327 Serge 7535
 
3031 serge 7536
		dpll = I915_READ(dpll_reg);
7537
		dpll |= DISPLAY_RATE_SELECT_FPA1;
7538
		I915_WRITE(dpll_reg, dpll);
7539
		intel_wait_for_vblank(dev, pipe);
7540
		dpll = I915_READ(dpll_reg);
7541
		if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7542
			DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7543
	}
2327 Serge 7544
 
3031 serge 7545
}
2327 Serge 7546
 
3031 serge 7547
void intel_mark_busy(struct drm_device *dev)
7548
{
4104 Serge 7549
	struct drm_i915_private *dev_priv = dev->dev_private;
7550
 
7551
	hsw_package_c8_gpu_busy(dev_priv);
7552
	i915_update_gfx_val(dev_priv);
3031 serge 7553
}
2327 Serge 7554
 
3031 serge 7555
void intel_mark_idle(struct drm_device *dev)
7556
{
4104 Serge 7557
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 7558
	struct drm_crtc *crtc;
2327 Serge 7559
 
4104 Serge 7560
	hsw_package_c8_gpu_idle(dev_priv);
7561
 
3031 serge 7562
	if (!i915_powersave)
7563
		return;
2327 Serge 7564
 
3031 serge 7565
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7566
		if (!crtc->fb)
7567
			continue;
2327 Serge 7568
 
3480 Serge 7569
		intel_decrease_pllclock(crtc);
3031 serge 7570
	}
7571
}
2327 Serge 7572
 
4104 Serge 7573
void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7574
			struct intel_ring_buffer *ring)
3031 serge 7575
{
7576
	struct drm_device *dev = obj->base.dev;
7577
	struct drm_crtc *crtc;
2327 Serge 7578
 
3031 serge 7579
	if (!i915_powersave)
7580
		return;
2327 Serge 7581
 
3031 serge 7582
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7583
		if (!crtc->fb)
7584
			continue;
2327 Serge 7585
 
4104 Serge 7586
		if (to_intel_framebuffer(crtc->fb)->obj != obj)
7587
			continue;
7588
 
3480 Serge 7589
			intel_increase_pllclock(crtc);
4104 Serge 7590
		if (ring && intel_fbc_enabled(dev))
7591
			ring->fbc_dirty = true;
3031 serge 7592
	}
7593
}
2327 Serge 7594
 
2330 Serge 7595
static void intel_crtc_destroy(struct drm_crtc *crtc)
7596
{
7597
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7598
	struct drm_device *dev = crtc->dev;
7599
	struct intel_unpin_work *work;
7600
	unsigned long flags;
2327 Serge 7601
 
2330 Serge 7602
	spin_lock_irqsave(&dev->event_lock, flags);
7603
	work = intel_crtc->unpin_work;
7604
	intel_crtc->unpin_work = NULL;
7605
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 7606
 
2330 Serge 7607
	if (work) {
4293 Serge 7608
		cancel_work_sync(&work->work);
2330 Serge 7609
		kfree(work);
7610
	}
2327 Serge 7611
 
2330 Serge 7612
	drm_crtc_cleanup(crtc);
2327 Serge 7613
 
2330 Serge 7614
	kfree(intel_crtc);
7615
}
2327 Serge 7616
 
3031 serge 7617
#if 0
7618
static void intel_unpin_work_fn(struct work_struct *__work)
7619
{
7620
	struct intel_unpin_work *work =
7621
		container_of(__work, struct intel_unpin_work, work);
3243 Serge 7622
	struct drm_device *dev = work->crtc->dev;
2327 Serge 7623
 
3243 Serge 7624
	mutex_lock(&dev->struct_mutex);
3031 serge 7625
	intel_unpin_fb_obj(work->old_fb_obj);
7626
	drm_gem_object_unreference(&work->pending_flip_obj->base);
7627
	drm_gem_object_unreference(&work->old_fb_obj->base);
2327 Serge 7628
 
3243 Serge 7629
	intel_update_fbc(dev);
7630
	mutex_unlock(&dev->struct_mutex);
7631
 
7632
	BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7633
	atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7634
 
3031 serge 7635
	kfree(work);
7636
}
2327 Serge 7637
 
3031 serge 7638
static void do_intel_finish_page_flip(struct drm_device *dev,
7639
				      struct drm_crtc *crtc)
7640
{
7641
	drm_i915_private_t *dev_priv = dev->dev_private;
7642
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7643
	struct intel_unpin_work *work;
7644
	unsigned long flags;
2327 Serge 7645
 
3031 serge 7646
	/* Ignore early vblank irqs */
7647
	if (intel_crtc == NULL)
7648
		return;
2327 Serge 7649
 
3031 serge 7650
	spin_lock_irqsave(&dev->event_lock, flags);
7651
	work = intel_crtc->unpin_work;
3243 Serge 7652
 
7653
	/* Ensure we don't miss a work->pending update ... */
7654
	smp_rmb();
7655
 
7656
	if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
3031 serge 7657
		spin_unlock_irqrestore(&dev->event_lock, flags);
7658
		return;
7659
	}
2327 Serge 7660
 
3243 Serge 7661
	/* and that the unpin work is consistent wrt ->pending. */
7662
	smp_rmb();
7663
 
3031 serge 7664
	intel_crtc->unpin_work = NULL;
2327 Serge 7665
 
3243 Serge 7666
	if (work->event)
7667
		drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
2327 Serge 7668
 
3031 serge 7669
	drm_vblank_put(dev, intel_crtc->pipe);
2327 Serge 7670
 
3031 serge 7671
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 7672
 
3480 Serge 7673
	wake_up_all(&dev_priv->pending_flip_queue);
2327 Serge 7674
 
3243 Serge 7675
	queue_work(dev_priv->wq, &work->work);
7676
 
3031 serge 7677
	trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7678
}
2327 Serge 7679
 
3031 serge 7680
void intel_finish_page_flip(struct drm_device *dev, int pipe)
7681
{
7682
	drm_i915_private_t *dev_priv = dev->dev_private;
7683
	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2327 Serge 7684
 
3031 serge 7685
	do_intel_finish_page_flip(dev, crtc);
7686
}
2327 Serge 7687
 
3031 serge 7688
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7689
{
7690
	drm_i915_private_t *dev_priv = dev->dev_private;
7691
	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
2327 Serge 7692
 
3031 serge 7693
	do_intel_finish_page_flip(dev, crtc);
7694
}
2327 Serge 7695
 
3031 serge 7696
void intel_prepare_page_flip(struct drm_device *dev, int plane)
7697
{
7698
	drm_i915_private_t *dev_priv = dev->dev_private;
7699
	struct intel_crtc *intel_crtc =
7700
		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7701
	unsigned long flags;
2327 Serge 7702
 
3243 Serge 7703
	/* NB: An MMIO update of the plane base pointer will also
7704
	 * generate a page-flip completion irq, i.e. every modeset
7705
	 * is also accompanied by a spurious intel_prepare_page_flip().
7706
	 */
3031 serge 7707
	spin_lock_irqsave(&dev->event_lock, flags);
3243 Serge 7708
	if (intel_crtc->unpin_work)
7709
		atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
3031 serge 7710
	spin_unlock_irqrestore(&dev->event_lock, flags);
7711
}
2327 Serge 7712
 
3243 Serge 7713
inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7714
{
7715
	/* Ensure that the work item is consistent when activating it ... */
7716
	smp_wmb();
7717
	atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7718
	/* and that it is marked active as soon as the irq could fire. */
7719
	smp_wmb();
7720
}
7721
 
3031 serge 7722
static int intel_gen2_queue_flip(struct drm_device *dev,
7723
				 struct drm_crtc *crtc,
7724
				 struct drm_framebuffer *fb,
4104 Serge 7725
				 struct drm_i915_gem_object *obj,
7726
				 uint32_t flags)
3031 serge 7727
{
7728
	struct drm_i915_private *dev_priv = dev->dev_private;
7729
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7730
	u32 flip_mask;
7731
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7732
	int ret;
2327 Serge 7733
 
3031 serge 7734
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7735
	if (ret)
7736
		goto err;
2327 Serge 7737
 
3031 serge 7738
	ret = intel_ring_begin(ring, 6);
7739
	if (ret)
7740
		goto err_unpin;
2327 Serge 7741
 
3031 serge 7742
	/* Can't queue multiple flips, so wait for the previous
7743
	 * one to finish before executing the next.
7744
	 */
7745
	if (intel_crtc->plane)
7746
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7747
	else
7748
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7749
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7750
	intel_ring_emit(ring, MI_NOOP);
7751
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
7752
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7753
	intel_ring_emit(ring, fb->pitches[0]);
4104 Serge 7754
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
3031 serge 7755
	intel_ring_emit(ring, 0); /* aux display base address, unused */
3243 Serge 7756
 
7757
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7758
	intel_ring_advance(ring);
7759
	return 0;
2327 Serge 7760
 
3031 serge 7761
err_unpin:
7762
	intel_unpin_fb_obj(obj);
7763
err:
7764
	return ret;
7765
}
2327 Serge 7766
 
3031 serge 7767
static int intel_gen3_queue_flip(struct drm_device *dev,
7768
				 struct drm_crtc *crtc,
7769
				 struct drm_framebuffer *fb,
4104 Serge 7770
				 struct drm_i915_gem_object *obj,
7771
				 uint32_t flags)
3031 serge 7772
{
7773
	struct drm_i915_private *dev_priv = dev->dev_private;
7774
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7775
	u32 flip_mask;
7776
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7777
	int ret;
2327 Serge 7778
 
3031 serge 7779
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7780
	if (ret)
7781
		goto err;
2327 Serge 7782
 
3031 serge 7783
	ret = intel_ring_begin(ring, 6);
7784
	if (ret)
7785
		goto err_unpin;
2327 Serge 7786
 
3031 serge 7787
	if (intel_crtc->plane)
7788
		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7789
	else
7790
		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7791
	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7792
	intel_ring_emit(ring, MI_NOOP);
7793
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7794
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7795
	intel_ring_emit(ring, fb->pitches[0]);
4104 Serge 7796
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
3031 serge 7797
	intel_ring_emit(ring, MI_NOOP);
2327 Serge 7798
 
3243 Serge 7799
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7800
	intel_ring_advance(ring);
7801
	return 0;
2327 Serge 7802
 
3031 serge 7803
err_unpin:
7804
	intel_unpin_fb_obj(obj);
7805
err:
7806
	return ret;
7807
}
2327 Serge 7808
 
3031 serge 7809
static int intel_gen4_queue_flip(struct drm_device *dev,
7810
				 struct drm_crtc *crtc,
7811
				 struct drm_framebuffer *fb,
4104 Serge 7812
				 struct drm_i915_gem_object *obj,
7813
				 uint32_t flags)
3031 serge 7814
{
7815
	struct drm_i915_private *dev_priv = dev->dev_private;
7816
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7817
	uint32_t pf, pipesrc;
7818
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7819
	int ret;
2327 Serge 7820
 
3031 serge 7821
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7822
	if (ret)
7823
		goto err;
2327 Serge 7824
 
3031 serge 7825
	ret = intel_ring_begin(ring, 4);
7826
	if (ret)
7827
		goto err_unpin;
2327 Serge 7828
 
3031 serge 7829
	/* i965+ uses the linear or tiled offsets from the
7830
	 * Display Registers (which do not change across a page-flip)
7831
	 * so we need only reprogram the base address.
7832
	 */
7833
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
7834
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7835
	intel_ring_emit(ring, fb->pitches[0]);
7836
	intel_ring_emit(ring,
4104 Serge 7837
			(i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
3031 serge 7838
			obj->tiling_mode);
2327 Serge 7839
 
3031 serge 7840
	/* XXX Enabling the panel-fitter across page-flip is so far
7841
	 * untested on non-native modes, so ignore it for now.
7842
	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7843
	 */
7844
	pf = 0;
7845
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7846
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 7847
 
7848
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7849
	intel_ring_advance(ring);
7850
	return 0;
2327 Serge 7851
 
3031 serge 7852
err_unpin:
7853
	intel_unpin_fb_obj(obj);
7854
err:
7855
	return ret;
7856
}
2327 Serge 7857
 
3031 serge 7858
static int intel_gen6_queue_flip(struct drm_device *dev,
7859
				 struct drm_crtc *crtc,
7860
				 struct drm_framebuffer *fb,
4104 Serge 7861
				 struct drm_i915_gem_object *obj,
7862
				 uint32_t flags)
3031 serge 7863
{
7864
	struct drm_i915_private *dev_priv = dev->dev_private;
7865
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7866
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7867
	uint32_t pf, pipesrc;
7868
	int ret;
2327 Serge 7869
 
3031 serge 7870
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7871
	if (ret)
7872
		goto err;
2327 Serge 7873
 
3031 serge 7874
	ret = intel_ring_begin(ring, 4);
7875
	if (ret)
7876
		goto err_unpin;
2327 Serge 7877
 
3031 serge 7878
	intel_ring_emit(ring, MI_DISPLAY_FLIP |
7879
			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7880
	intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
4104 Serge 7881
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2327 Serge 7882
 
3031 serge 7883
	/* Contrary to the suggestions in the documentation,
7884
	 * "Enable Panel Fitter" does not seem to be required when page
7885
	 * flipping with a non-native mode, and worse causes a normal
7886
	 * modeset to fail.
7887
	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7888
	 */
7889
	pf = 0;
7890
	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7891
	intel_ring_emit(ring, pf | pipesrc);
3243 Serge 7892
 
7893
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7894
	intel_ring_advance(ring);
7895
	return 0;
2327 Serge 7896
 
3031 serge 7897
err_unpin:
7898
	intel_unpin_fb_obj(obj);
7899
err:
7900
	return ret;
7901
}
2327 Serge 7902
 
3031 serge 7903
static int intel_gen7_queue_flip(struct drm_device *dev,
7904
				 struct drm_crtc *crtc,
7905
				 struct drm_framebuffer *fb,
4104 Serge 7906
				 struct drm_i915_gem_object *obj,
7907
				 uint32_t flags)
3031 serge 7908
{
7909
	struct drm_i915_private *dev_priv = dev->dev_private;
7910
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104 Serge 7911
	struct intel_ring_buffer *ring;
3031 serge 7912
	uint32_t plane_bit = 0;
4104 Serge 7913
	int len, ret;
2327 Serge 7914
 
4104 Serge 7915
	ring = obj->ring;
7916
	if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
7917
		ring = &dev_priv->ring[BCS];
7918
 
3031 serge 7919
	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7920
	if (ret)
7921
		goto err;
2327 Serge 7922
 
3031 serge 7923
	switch(intel_crtc->plane) {
7924
	case PLANE_A:
7925
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7926
		break;
7927
	case PLANE_B:
7928
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7929
		break;
7930
	case PLANE_C:
7931
		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7932
		break;
7933
	default:
7934
		WARN_ONCE(1, "unknown plane in flip command\n");
7935
		ret = -ENODEV;
7936
		goto err_unpin;
7937
	}
2327 Serge 7938
 
4104 Serge 7939
	len = 4;
7940
	if (ring->id == RCS)
7941
		len += 6;
7942
 
7943
	ret = intel_ring_begin(ring, len);
3031 serge 7944
	if (ret)
7945
		goto err_unpin;
2327 Serge 7946
 
4104 Serge 7947
	/* Unmask the flip-done completion message. Note that the bspec says that
7948
	 * we should do this for both the BCS and RCS, and that we must not unmask
7949
	 * more than one flip event at any time (or ensure that one flip message
7950
	 * can be sent by waiting for flip-done prior to queueing new flips).
7951
	 * Experimentation says that BCS works despite DERRMR masking all
7952
	 * flip-done completion events and that unmasking all planes at once
7953
	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
7954
	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
7955
	 */
7956
	if (ring->id == RCS) {
7957
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
7958
		intel_ring_emit(ring, DERRMR);
7959
		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
7960
					DERRMR_PIPEB_PRI_FLIP_DONE |
7961
					DERRMR_PIPEC_PRI_FLIP_DONE));
7962
		intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
7963
		intel_ring_emit(ring, DERRMR);
7964
		intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
7965
	}
7966
 
3031 serge 7967
	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7968
	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
4104 Serge 7969
	intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
3031 serge 7970
	intel_ring_emit(ring, (MI_NOOP));
3243 Serge 7971
 
7972
	intel_mark_page_flip_active(intel_crtc);
3031 serge 7973
	intel_ring_advance(ring);
7974
	return 0;
2327 Serge 7975
 
3031 serge 7976
err_unpin:
7977
	intel_unpin_fb_obj(obj);
7978
err:
7979
	return ret;
7980
}
2327 Serge 7981
 
3031 serge 7982
static int intel_default_queue_flip(struct drm_device *dev,
7983
				    struct drm_crtc *crtc,
7984
				    struct drm_framebuffer *fb,
4104 Serge 7985
				    struct drm_i915_gem_object *obj,
7986
				    uint32_t flags)
3031 serge 7987
{
7988
	return -ENODEV;
7989
}
2327 Serge 7990
 
3031 serge 7991
static int intel_crtc_page_flip(struct drm_crtc *crtc,
7992
				struct drm_framebuffer *fb,
4104 Serge 7993
				struct drm_pending_vblank_event *event,
7994
				uint32_t page_flip_flags)
3031 serge 7995
{
7996
	struct drm_device *dev = crtc->dev;
7997
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 7998
	struct drm_framebuffer *old_fb = crtc->fb;
7999
	struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
3031 serge 8000
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8001
	struct intel_unpin_work *work;
8002
	unsigned long flags;
8003
	int ret;
2327 Serge 8004
 
3031 serge 8005
	/* Can't change pixel format via MI display flips. */
8006
	if (fb->pixel_format != crtc->fb->pixel_format)
8007
		return -EINVAL;
2327 Serge 8008
 
3031 serge 8009
	/*
8010
	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8011
	 * Note that pitch changes could also affect these register.
8012
	 */
8013
	if (INTEL_INFO(dev)->gen > 3 &&
8014
	    (fb->offsets[0] != crtc->fb->offsets[0] ||
8015
	     fb->pitches[0] != crtc->fb->pitches[0]))
8016
		return -EINVAL;
2327 Serge 8017
 
3031 serge 8018
	work = kzalloc(sizeof *work, GFP_KERNEL);
8019
	if (work == NULL)
8020
		return -ENOMEM;
2327 Serge 8021
 
3031 serge 8022
	work->event = event;
3243 Serge 8023
	work->crtc = crtc;
3480 Serge 8024
	work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
3031 serge 8025
	INIT_WORK(&work->work, intel_unpin_work_fn);
2327 Serge 8026
 
3031 serge 8027
	ret = drm_vblank_get(dev, intel_crtc->pipe);
8028
	if (ret)
8029
		goto free_work;
2327 Serge 8030
 
3031 serge 8031
	/* We borrow the event spin lock for protecting unpin_work */
8032
	spin_lock_irqsave(&dev->event_lock, flags);
8033
	if (intel_crtc->unpin_work) {
8034
		spin_unlock_irqrestore(&dev->event_lock, flags);
8035
		kfree(work);
8036
		drm_vblank_put(dev, intel_crtc->pipe);
2327 Serge 8037
 
3031 serge 8038
		DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8039
		return -EBUSY;
8040
	}
8041
	intel_crtc->unpin_work = work;
8042
	spin_unlock_irqrestore(&dev->event_lock, flags);
2327 Serge 8043
 
3243 Serge 8044
	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8045
		flush_workqueue(dev_priv->wq);
8046
 
3031 serge 8047
	ret = i915_mutex_lock_interruptible(dev);
8048
	if (ret)
8049
		goto cleanup;
2327 Serge 8050
 
3031 serge 8051
	/* Reference the objects for the scheduled work. */
8052
	drm_gem_object_reference(&work->old_fb_obj->base);
8053
	drm_gem_object_reference(&obj->base);
2327 Serge 8054
 
3031 serge 8055
	crtc->fb = fb;
2327 Serge 8056
 
3031 serge 8057
	work->pending_flip_obj = obj;
2327 Serge 8058
 
3031 serge 8059
	work->enable_stall_check = true;
8060
 
3243 Serge 8061
	atomic_inc(&intel_crtc->unpin_work_count);
3480 Serge 8062
	intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 8063
 
4104 Serge 8064
	ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
3031 serge 8065
	if (ret)
8066
		goto cleanup_pending;
8067
 
8068
	intel_disable_fbc(dev);
4104 Serge 8069
	intel_mark_fb_busy(obj, NULL);
3031 serge 8070
	mutex_unlock(&dev->struct_mutex);
8071
 
8072
	trace_i915_flip_request(intel_crtc->plane, obj);
8073
 
8074
	return 0;
8075
 
8076
cleanup_pending:
3243 Serge 8077
	atomic_dec(&intel_crtc->unpin_work_count);
3480 Serge 8078
	crtc->fb = old_fb;
3031 serge 8079
	drm_gem_object_unreference(&work->old_fb_obj->base);
8080
	drm_gem_object_unreference(&obj->base);
8081
	mutex_unlock(&dev->struct_mutex);
8082
 
8083
cleanup:
8084
	spin_lock_irqsave(&dev->event_lock, flags);
8085
	intel_crtc->unpin_work = NULL;
8086
	spin_unlock_irqrestore(&dev->event_lock, flags);
8087
 
8088
	drm_vblank_put(dev, intel_crtc->pipe);
8089
free_work:
8090
	kfree(work);
8091
 
8092
	return ret;
8093
}
8094
#endif
8095
 
8096
static struct drm_crtc_helper_funcs intel_helper_funcs = {
8097
	.mode_set_base_atomic = intel_pipe_set_base_atomic,
8098
	.load_lut = intel_crtc_load_lut,
8099
};
8100
 
8101
static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8102
				  struct drm_crtc *crtc)
8103
{
8104
	struct drm_device *dev;
8105
	struct drm_crtc *tmp;
8106
	int crtc_mask = 1;
8107
 
8108
	WARN(!crtc, "checking null crtc?\n");
8109
 
8110
	dev = crtc->dev;
8111
 
8112
	list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8113
		if (tmp == crtc)
8114
			break;
8115
		crtc_mask <<= 1;
8116
	}
8117
 
8118
	if (encoder->possible_crtcs & crtc_mask)
8119
		return true;
8120
	return false;
8121
}
8122
 
8123
/**
8124
 * intel_modeset_update_staged_output_state
8125
 *
8126
 * Updates the staged output configuration state, e.g. after we've read out the
8127
 * current hw state.
8128
 */
8129
static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8130
{
8131
	struct intel_encoder *encoder;
8132
	struct intel_connector *connector;
8133
 
8134
	list_for_each_entry(connector, &dev->mode_config.connector_list,
8135
			    base.head) {
8136
		connector->new_encoder =
8137
			to_intel_encoder(connector->base.encoder);
8138
	}
8139
 
8140
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8141
			    base.head) {
8142
		encoder->new_crtc =
8143
			to_intel_crtc(encoder->base.crtc);
8144
	}
8145
}
8146
 
8147
/**
8148
 * intel_modeset_commit_output_state
8149
 *
8150
 * This function copies the stage display pipe configuration to the real one.
8151
 */
8152
static void intel_modeset_commit_output_state(struct drm_device *dev)
8153
{
8154
	struct intel_encoder *encoder;
8155
	struct intel_connector *connector;
8156
 
8157
	list_for_each_entry(connector, &dev->mode_config.connector_list,
8158
			    base.head) {
8159
		connector->base.encoder = &connector->new_encoder->base;
8160
	}
8161
 
8162
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8163
			    base.head) {
8164
		encoder->base.crtc = &encoder->new_crtc->base;
8165
	}
8166
}
8167
 
4104 Serge 8168
static void
8169
connected_sink_compute_bpp(struct intel_connector * connector,
8170
			   struct intel_crtc_config *pipe_config)
8171
{
8172
	int bpp = pipe_config->pipe_bpp;
8173
 
8174
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8175
		connector->base.base.id,
8176
		drm_get_connector_name(&connector->base));
8177
 
8178
	/* Don't use an invalid EDID bpc value */
8179
	if (connector->base.display_info.bpc &&
8180
	    connector->base.display_info.bpc * 3 < bpp) {
8181
		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8182
			      bpp, connector->base.display_info.bpc*3);
8183
		pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8184
	}
8185
 
8186
	/* Clamp bpp to 8 on screens without EDID 1.4 */
8187
	if (connector->base.display_info.bpc == 0 && bpp > 24) {
8188
		DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8189
			      bpp);
8190
		pipe_config->pipe_bpp = 24;
8191
	}
8192
}
8193
 
3746 Serge 8194
static int
4104 Serge 8195
compute_baseline_pipe_bpp(struct intel_crtc *crtc,
3746 Serge 8196
		    struct drm_framebuffer *fb,
8197
		    struct intel_crtc_config *pipe_config)
8198
{
4104 Serge 8199
	struct drm_device *dev = crtc->base.dev;
8200
	struct intel_connector *connector;
3746 Serge 8201
	int bpp;
8202
 
8203
	switch (fb->pixel_format) {
8204
	case DRM_FORMAT_C8:
8205
		bpp = 8*3; /* since we go through a colormap */
8206
		break;
8207
	case DRM_FORMAT_XRGB1555:
8208
	case DRM_FORMAT_ARGB1555:
8209
		/* checked in intel_framebuffer_init already */
8210
		if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8211
			return -EINVAL;
8212
	case DRM_FORMAT_RGB565:
8213
		bpp = 6*3; /* min is 18bpp */
8214
		break;
8215
	case DRM_FORMAT_XBGR8888:
8216
	case DRM_FORMAT_ABGR8888:
8217
		/* checked in intel_framebuffer_init already */
8218
		if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8219
			return -EINVAL;
8220
	case DRM_FORMAT_XRGB8888:
8221
	case DRM_FORMAT_ARGB8888:
8222
		bpp = 8*3;
8223
		break;
8224
	case DRM_FORMAT_XRGB2101010:
8225
	case DRM_FORMAT_ARGB2101010:
8226
	case DRM_FORMAT_XBGR2101010:
8227
	case DRM_FORMAT_ABGR2101010:
8228
		/* checked in intel_framebuffer_init already */
8229
		if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8230
			return -EINVAL;
8231
		bpp = 10*3;
8232
		break;
8233
	/* TODO: gen4+ supports 16 bpc floating point, too. */
8234
	default:
8235
		DRM_DEBUG_KMS("unsupported depth\n");
8236
		return -EINVAL;
8237
	}
8238
 
8239
	pipe_config->pipe_bpp = bpp;
8240
 
8241
	/* Clamp display bpp to EDID value */
8242
	list_for_each_entry(connector, &dev->mode_config.connector_list,
4104 Serge 8243
			    base.head) {
8244
		if (!connector->new_encoder ||
8245
		    connector->new_encoder->new_crtc != crtc)
3746 Serge 8246
			continue;
8247
 
4104 Serge 8248
		connected_sink_compute_bpp(connector, pipe_config);
3746 Serge 8249
	}
8250
 
8251
	return bpp;
8252
}
8253
 
4104 Serge 8254
static void intel_dump_pipe_config(struct intel_crtc *crtc,
8255
				   struct intel_crtc_config *pipe_config,
8256
				   const char *context)
8257
{
8258
	DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8259
		      context, pipe_name(crtc->pipe));
8260
 
8261
	DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8262
	DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8263
		      pipe_config->pipe_bpp, pipe_config->dither);
8264
	DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8265
		      pipe_config->has_pch_encoder,
8266
		      pipe_config->fdi_lanes,
8267
		      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8268
		      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8269
		      pipe_config->fdi_m_n.tu);
8270
	DRM_DEBUG_KMS("requested mode:\n");
8271
	drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8272
	DRM_DEBUG_KMS("adjusted mode:\n");
8273
	drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8274
	DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8275
		      pipe_config->gmch_pfit.control,
8276
		      pipe_config->gmch_pfit.pgm_ratios,
8277
		      pipe_config->gmch_pfit.lvds_border_bits);
8278
	DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8279
		      pipe_config->pch_pfit.pos,
8280
		      pipe_config->pch_pfit.size,
8281
		      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8282
	DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8283
}
8284
 
8285
static bool check_encoder_cloning(struct drm_crtc *crtc)
8286
{
8287
	int num_encoders = 0;
8288
	bool uncloneable_encoders = false;
8289
	struct intel_encoder *encoder;
8290
 
8291
	list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8292
			    base.head) {
8293
		if (&encoder->new_crtc->base != crtc)
8294
			continue;
8295
 
8296
		num_encoders++;
8297
		if (!encoder->cloneable)
8298
			uncloneable_encoders = true;
8299
	}
8300
 
8301
	return !(num_encoders > 1 && uncloneable_encoders);
8302
}
8303
 
3746 Serge 8304
static struct intel_crtc_config *
8305
intel_modeset_pipe_config(struct drm_crtc *crtc,
8306
			  struct drm_framebuffer *fb,
3031 serge 8307
			    struct drm_display_mode *mode)
8308
{
8309
	struct drm_device *dev = crtc->dev;
8310
	struct intel_encoder *encoder;
3746 Serge 8311
	struct intel_crtc_config *pipe_config;
4104 Serge 8312
	int plane_bpp, ret = -EINVAL;
8313
	bool retry = true;
3031 serge 8314
 
4104 Serge 8315
	if (!check_encoder_cloning(crtc)) {
8316
		DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8317
		return ERR_PTR(-EINVAL);
8318
	}
8319
 
3746 Serge 8320
	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8321
	if (!pipe_config)
3031 serge 8322
		return ERR_PTR(-ENOMEM);
8323
 
3746 Serge 8324
	drm_mode_copy(&pipe_config->adjusted_mode, mode);
8325
	drm_mode_copy(&pipe_config->requested_mode, mode);
4104 Serge 8326
	pipe_config->cpu_transcoder =
8327
		(enum transcoder) to_intel_crtc(crtc)->pipe;
8328
	pipe_config->shared_dpll = DPLL_ID_PRIVATE;
3746 Serge 8329
 
4104 Serge 8330
	/*
8331
	 * Sanitize sync polarity flags based on requested ones. If neither
8332
	 * positive or negative polarity is requested, treat this as meaning
8333
	 * negative polarity.
8334
	 */
8335
	if (!(pipe_config->adjusted_mode.flags &
8336
	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8337
		pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8338
 
8339
	if (!(pipe_config->adjusted_mode.flags &
8340
	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8341
		pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8342
 
8343
	/* Compute a starting value for pipe_config->pipe_bpp taking the source
8344
	 * plane pixel format and any sink constraints into account. Returns the
8345
	 * source plane bpp so that dithering can be selected on mismatches
8346
	 * after encoders and crtc also have had their say. */
8347
	plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8348
					      fb, pipe_config);
3746 Serge 8349
	if (plane_bpp < 0)
8350
		goto fail;
8351
 
4104 Serge 8352
encoder_retry:
8353
	/* Ensure the port clock defaults are reset when retrying. */
8354
	pipe_config->port_clock = 0;
8355
	pipe_config->pixel_multiplier = 1;
8356
 
8357
	/* Fill in default crtc timings, allow encoders to overwrite them. */
8358
	drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8359
 
3031 serge 8360
	/* Pass our mode to the connectors and the CRTC to give them a chance to
8361
	 * adjust it according to limitations or connector properties, and also
8362
	 * a chance to reject the mode entirely.
2330 Serge 8363
	 */
3031 serge 8364
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8365
			    base.head) {
2327 Serge 8366
 
3031 serge 8367
		if (&encoder->new_crtc->base != crtc)
8368
			continue;
3746 Serge 8369
 
8370
			if (!(encoder->compute_config(encoder, pipe_config))) {
8371
				DRM_DEBUG_KMS("Encoder config failure\n");
8372
				goto fail;
8373
			}
8374
		}
8375
 
4104 Serge 8376
	/* Set default port clock if not overwritten by the encoder. Needs to be
8377
	 * done afterwards in case the encoder adjusts the mode. */
8378
	if (!pipe_config->port_clock)
8379
		pipe_config->port_clock = pipe_config->adjusted_mode.clock;
2327 Serge 8380
 
4104 Serge 8381
	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8382
	if (ret < 0) {
3031 serge 8383
		DRM_DEBUG_KMS("CRTC fixup failed\n");
8384
		goto fail;
8385
	}
2327 Serge 8386
 
4104 Serge 8387
	if (ret == RETRY) {
8388
		if (WARN(!retry, "loop in pipe configuration computation\n")) {
8389
			ret = -EINVAL;
8390
			goto fail;
8391
		}
8392
 
8393
		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8394
		retry = false;
8395
		goto encoder_retry;
8396
	}
8397
 
3746 Serge 8398
	pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8399
	DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8400
		      plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8401
 
8402
	return pipe_config;
3031 serge 8403
fail:
3746 Serge 8404
	kfree(pipe_config);
4104 Serge 8405
	return ERR_PTR(ret);
3031 serge 8406
}
2327 Serge 8407
 
3031 serge 8408
/* Computes which crtcs are affected and sets the relevant bits in the mask. For
8409
 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8410
static void
8411
intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8412
			     unsigned *prepare_pipes, unsigned *disable_pipes)
8413
{
8414
	struct intel_crtc *intel_crtc;
8415
	struct drm_device *dev = crtc->dev;
8416
	struct intel_encoder *encoder;
8417
	struct intel_connector *connector;
8418
	struct drm_crtc *tmp_crtc;
8419
 
8420
	*disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8421
 
8422
	/* Check which crtcs have changed outputs connected to them, these need
8423
	 * to be part of the prepare_pipes mask. We don't (yet) support global
8424
	 * modeset across multiple crtcs, so modeset_pipes will only have one
8425
	 * bit set at most. */
8426
	list_for_each_entry(connector, &dev->mode_config.connector_list,
8427
			    base.head) {
8428
		if (connector->base.encoder == &connector->new_encoder->base)
8429
			continue;
8430
 
8431
		if (connector->base.encoder) {
8432
			tmp_crtc = connector->base.encoder->crtc;
8433
 
8434
			*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8435
		}
8436
 
8437
		if (connector->new_encoder)
8438
			*prepare_pipes |=
8439
				1 << connector->new_encoder->new_crtc->pipe;
8440
	}
8441
 
8442
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8443
			    base.head) {
8444
		if (encoder->base.crtc == &encoder->new_crtc->base)
8445
			continue;
8446
 
8447
		if (encoder->base.crtc) {
8448
			tmp_crtc = encoder->base.crtc;
8449
 
8450
			*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8451
		}
8452
 
8453
		if (encoder->new_crtc)
8454
			*prepare_pipes |= 1 << encoder->new_crtc->pipe;
8455
	}
8456
 
8457
	/* Check for any pipes that will be fully disabled ... */
8458
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8459
			    base.head) {
8460
		bool used = false;
8461
 
8462
		/* Don't try to disable disabled crtcs. */
8463
		if (!intel_crtc->base.enabled)
8464
			continue;
8465
 
8466
		list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8467
				    base.head) {
8468
			if (encoder->new_crtc == intel_crtc)
8469
				used = true;
8470
		}
8471
 
8472
		if (!used)
8473
			*disable_pipes |= 1 << intel_crtc->pipe;
8474
	}
8475
 
8476
 
8477
	/* set_mode is also used to update properties on life display pipes. */
8478
	intel_crtc = to_intel_crtc(crtc);
8479
	if (crtc->enabled)
8480
		*prepare_pipes |= 1 << intel_crtc->pipe;
8481
 
3746 Serge 8482
	/*
8483
	 * For simplicity do a full modeset on any pipe where the output routing
8484
	 * changed. We could be more clever, but that would require us to be
8485
	 * more careful with calling the relevant encoder->mode_set functions.
8486
	 */
3031 serge 8487
	if (*prepare_pipes)
8488
		*modeset_pipes = *prepare_pipes;
8489
 
8490
	/* ... and mask these out. */
8491
	*modeset_pipes &= ~(*disable_pipes);
8492
	*prepare_pipes &= ~(*disable_pipes);
3746 Serge 8493
 
8494
	/*
8495
	 * HACK: We don't (yet) fully support global modesets. intel_set_config
8496
	 * obies this rule, but the modeset restore mode of
8497
	 * intel_modeset_setup_hw_state does not.
8498
	 */
8499
	*modeset_pipes &= 1 << intel_crtc->pipe;
8500
	*prepare_pipes &= 1 << intel_crtc->pipe;
4104 Serge 8501
 
8502
	DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8503
		      *modeset_pipes, *prepare_pipes, *disable_pipes);
2330 Serge 8504
}
2327 Serge 8505
 
3031 serge 8506
static bool intel_crtc_in_use(struct drm_crtc *crtc)
2330 Serge 8507
{
3031 serge 8508
	struct drm_encoder *encoder;
2330 Serge 8509
	struct drm_device *dev = crtc->dev;
2327 Serge 8510
 
3031 serge 8511
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8512
		if (encoder->crtc == crtc)
8513
			return true;
8514
 
8515
	return false;
8516
}
8517
 
8518
static void
8519
intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8520
{
8521
	struct intel_encoder *intel_encoder;
8522
	struct intel_crtc *intel_crtc;
8523
	struct drm_connector *connector;
8524
 
8525
	list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8526
			    base.head) {
8527
		if (!intel_encoder->base.crtc)
8528
			continue;
8529
 
8530
		intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8531
 
8532
		if (prepare_pipes & (1 << intel_crtc->pipe))
8533
			intel_encoder->connectors_active = false;
8534
	}
8535
 
8536
	intel_modeset_commit_output_state(dev);
8537
 
8538
	/* Update computed state. */
8539
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8540
			    base.head) {
8541
		intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8542
	}
8543
 
8544
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8545
		if (!connector->encoder || !connector->encoder->crtc)
8546
			continue;
8547
 
8548
		intel_crtc = to_intel_crtc(connector->encoder->crtc);
8549
 
8550
		if (prepare_pipes & (1 << intel_crtc->pipe)) {
8551
			struct drm_property *dpms_property =
8552
				dev->mode_config.dpms_property;
8553
 
8554
			connector->dpms = DRM_MODE_DPMS_ON;
3243 Serge 8555
			drm_object_property_set_value(&connector->base,
3031 serge 8556
							 dpms_property,
8557
							 DRM_MODE_DPMS_ON);
8558
 
8559
			intel_encoder = to_intel_encoder(connector->encoder);
8560
			intel_encoder->connectors_active = true;
8561
		}
8562
	}
8563
 
8564
}
8565
 
4104 Serge 8566
static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8567
				    struct intel_crtc_config *new)
8568
{
8569
	int clock1, clock2, diff;
8570
 
8571
	clock1 = cur->adjusted_mode.clock;
8572
	clock2 = new->adjusted_mode.clock;
8573
 
8574
	if (clock1 == clock2)
8575
		return true;
8576
 
8577
	if (!clock1 || !clock2)
8578
		return false;
8579
 
8580
	diff = abs(clock1 - clock2);
8581
 
8582
	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8583
		return true;
8584
 
8585
	return false;
8586
}
8587
 
3031 serge 8588
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8589
	list_for_each_entry((intel_crtc), \
8590
			    &(dev)->mode_config.crtc_list, \
8591
			    base.head) \
4104 Serge 8592
		if (mask & (1 <<(intel_crtc)->pipe))
3031 serge 8593
 
3746 Serge 8594
static bool
4104 Serge 8595
intel_pipe_config_compare(struct drm_device *dev,
8596
			  struct intel_crtc_config *current_config,
3746 Serge 8597
			  struct intel_crtc_config *pipe_config)
8598
{
4104 Serge 8599
#define PIPE_CONF_CHECK_X(name)	\
8600
	if (current_config->name != pipe_config->name) { \
8601
		DRM_ERROR("mismatch in " #name " " \
8602
			  "(expected 0x%08x, found 0x%08x)\n", \
8603
			  current_config->name, \
8604
			  pipe_config->name); \
8605
		return false; \
3746 Serge 8606
	}
8607
 
4104 Serge 8608
#define PIPE_CONF_CHECK_I(name)	\
8609
	if (current_config->name != pipe_config->name) { \
8610
		DRM_ERROR("mismatch in " #name " " \
8611
			  "(expected %i, found %i)\n", \
8612
			  current_config->name, \
8613
			  pipe_config->name); \
8614
		return false; \
8615
	}
8616
 
8617
#define PIPE_CONF_CHECK_FLAGS(name, mask)	\
8618
	if ((current_config->name ^ pipe_config->name) & (mask)) { \
8619
		DRM_ERROR("mismatch in " #name "(" #mask ") "	   \
8620
			  "(expected %i, found %i)\n", \
8621
			  current_config->name & (mask), \
8622
			  pipe_config->name & (mask)); \
8623
		return false; \
8624
	}
8625
 
8626
#define PIPE_CONF_QUIRK(quirk)	\
8627
	((current_config->quirks | pipe_config->quirks) & (quirk))
8628
 
8629
	PIPE_CONF_CHECK_I(cpu_transcoder);
8630
 
8631
	PIPE_CONF_CHECK_I(has_pch_encoder);
8632
	PIPE_CONF_CHECK_I(fdi_lanes);
8633
	PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8634
	PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8635
	PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8636
	PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8637
	PIPE_CONF_CHECK_I(fdi_m_n.tu);
8638
 
8639
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8640
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8641
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8642
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8643
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8644
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8645
 
8646
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8647
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8648
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8649
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8650
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8651
	PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8652
 
8653
		PIPE_CONF_CHECK_I(pixel_multiplier);
8654
 
8655
	PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8656
			      DRM_MODE_FLAG_INTERLACE);
8657
 
8658
	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8659
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8660
				      DRM_MODE_FLAG_PHSYNC);
8661
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8662
				      DRM_MODE_FLAG_NHSYNC);
8663
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8664
				      DRM_MODE_FLAG_PVSYNC);
8665
		PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8666
				      DRM_MODE_FLAG_NVSYNC);
8667
	}
8668
 
8669
	PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8670
	PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8671
 
8672
	PIPE_CONF_CHECK_I(gmch_pfit.control);
8673
	/* pfit ratios are autocomputed by the hw on gen4+ */
8674
	if (INTEL_INFO(dev)->gen < 4)
8675
		PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8676
	PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8677
	PIPE_CONF_CHECK_I(pch_pfit.enabled);
8678
	if (current_config->pch_pfit.enabled) {
8679
	PIPE_CONF_CHECK_I(pch_pfit.pos);
8680
	PIPE_CONF_CHECK_I(pch_pfit.size);
8681
	}
8682
 
8683
	PIPE_CONF_CHECK_I(ips_enabled);
8684
 
8685
	PIPE_CONF_CHECK_I(shared_dpll);
8686
	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8687
	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8688
	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8689
	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8690
 
4280 Serge 8691
	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
8692
		PIPE_CONF_CHECK_I(pipe_bpp);
8693
 
4104 Serge 8694
#undef PIPE_CONF_CHECK_X
8695
#undef PIPE_CONF_CHECK_I
8696
#undef PIPE_CONF_CHECK_FLAGS
8697
#undef PIPE_CONF_QUIRK
8698
 
8699
	if (!IS_HASWELL(dev)) {
8700
		if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8701
			DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8702
				  current_config->adjusted_mode.clock,
8703
				  pipe_config->adjusted_mode.clock);
8704
			return false;
8705
		}
8706
	}
8707
 
3746 Serge 8708
	return true;
8709
}
8710
 
4104 Serge 8711
static void
8712
check_connector_state(struct drm_device *dev)
3031 serge 8713
{
8714
	struct intel_connector *connector;
8715
 
8716
	list_for_each_entry(connector, &dev->mode_config.connector_list,
8717
			    base.head) {
8718
		/* This also checks the encoder/connector hw state with the
8719
		 * ->get_hw_state callbacks. */
8720
		intel_connector_check_state(connector);
8721
 
8722
		WARN(&connector->new_encoder->base != connector->base.encoder,
8723
		     "connector's staged encoder doesn't match current encoder\n");
8724
	}
4104 Serge 8725
}
3031 serge 8726
 
4104 Serge 8727
static void
8728
check_encoder_state(struct drm_device *dev)
8729
{
8730
	struct intel_encoder *encoder;
8731
	struct intel_connector *connector;
8732
 
3031 serge 8733
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8734
			    base.head) {
8735
		bool enabled = false;
8736
		bool active = false;
8737
		enum pipe pipe, tracked_pipe;
8738
 
8739
		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8740
			      encoder->base.base.id,
8741
			      drm_get_encoder_name(&encoder->base));
8742
 
8743
		WARN(&encoder->new_crtc->base != encoder->base.crtc,
8744
		     "encoder's stage crtc doesn't match current crtc\n");
8745
		WARN(encoder->connectors_active && !encoder->base.crtc,
8746
		     "encoder's active_connectors set, but no crtc\n");
8747
 
8748
		list_for_each_entry(connector, &dev->mode_config.connector_list,
8749
				    base.head) {
8750
			if (connector->base.encoder != &encoder->base)
8751
				continue;
8752
			enabled = true;
8753
			if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8754
				active = true;
8755
		}
8756
		WARN(!!encoder->base.crtc != enabled,
8757
		     "encoder's enabled state mismatch "
8758
		     "(expected %i, found %i)\n",
8759
		     !!encoder->base.crtc, enabled);
8760
		WARN(active && !encoder->base.crtc,
8761
		     "active encoder with no crtc\n");
8762
 
8763
		WARN(encoder->connectors_active != active,
8764
		     "encoder's computed active state doesn't match tracked active state "
8765
		     "(expected %i, found %i)\n", active, encoder->connectors_active);
8766
 
8767
		active = encoder->get_hw_state(encoder, &pipe);
8768
		WARN(active != encoder->connectors_active,
8769
		     "encoder's hw state doesn't match sw tracking "
8770
		     "(expected %i, found %i)\n",
8771
		     encoder->connectors_active, active);
8772
 
8773
		if (!encoder->base.crtc)
8774
			continue;
8775
 
8776
		tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8777
		WARN(active && pipe != tracked_pipe,
8778
		     "active encoder's pipe doesn't match"
8779
		     "(expected %i, found %i)\n",
8780
		     tracked_pipe, pipe);
8781
 
8782
	}
4104 Serge 8783
}
3031 serge 8784
 
4104 Serge 8785
static void
8786
check_crtc_state(struct drm_device *dev)
8787
{
8788
	drm_i915_private_t *dev_priv = dev->dev_private;
8789
	struct intel_crtc *crtc;
8790
	struct intel_encoder *encoder;
8791
	struct intel_crtc_config pipe_config;
8792
 
3031 serge 8793
	list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8794
			    base.head) {
8795
		bool enabled = false;
8796
		bool active = false;
8797
 
4104 Serge 8798
		memset(&pipe_config, 0, sizeof(pipe_config));
8799
 
3031 serge 8800
		DRM_DEBUG_KMS("[CRTC:%d]\n",
8801
			      crtc->base.base.id);
8802
 
8803
		WARN(crtc->active && !crtc->base.enabled,
8804
		     "active crtc, but not enabled in sw tracking\n");
8805
 
8806
		list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8807
				    base.head) {
8808
			if (encoder->base.crtc != &crtc->base)
8809
				continue;
8810
			enabled = true;
8811
			if (encoder->connectors_active)
8812
				active = true;
8813
		}
4104 Serge 8814
 
3031 serge 8815
		WARN(active != crtc->active,
8816
		     "crtc's computed active state doesn't match tracked active state "
8817
		     "(expected %i, found %i)\n", active, crtc->active);
8818
		WARN(enabled != crtc->base.enabled,
8819
		     "crtc's computed enabled state doesn't match tracked enabled state "
8820
		     "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8821
 
3746 Serge 8822
		active = dev_priv->display.get_pipe_config(crtc,
8823
							   &pipe_config);
8824
 
8825
		/* hw state is inconsistent with the pipe A quirk */
8826
		if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8827
			active = crtc->active;
8828
 
4104 Serge 8829
		list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8830
				    base.head) {
8831
			enum pipe pipe;
8832
			if (encoder->base.crtc != &crtc->base)
8833
				continue;
8834
			if (encoder->get_config &&
8835
			    encoder->get_hw_state(encoder, &pipe))
8836
				encoder->get_config(encoder, &pipe_config);
8837
		}
8838
 
8839
		if (dev_priv->display.get_clock)
8840
			dev_priv->display.get_clock(crtc, &pipe_config);
8841
 
3746 Serge 8842
		WARN(crtc->active != active,
8843
		     "crtc active state doesn't match with hw state "
8844
		     "(expected %i, found %i)\n", crtc->active, active);
8845
 
4104 Serge 8846
		if (active &&
8847
		    !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8848
			WARN(1, "pipe state doesn't match!\n");
8849
			intel_dump_pipe_config(crtc, &pipe_config,
8850
					       "[hw state]");
8851
			intel_dump_pipe_config(crtc, &crtc->config,
8852
					       "[sw state]");
8853
		}
3031 serge 8854
	}
8855
}
8856
 
4104 Serge 8857
static void
8858
check_shared_dpll_state(struct drm_device *dev)
8859
{
8860
	drm_i915_private_t *dev_priv = dev->dev_private;
8861
	struct intel_crtc *crtc;
8862
	struct intel_dpll_hw_state dpll_hw_state;
8863
	int i;
8864
 
8865
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8866
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8867
		int enabled_crtcs = 0, active_crtcs = 0;
8868
		bool active;
8869
 
8870
		memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8871
 
8872
		DRM_DEBUG_KMS("%s\n", pll->name);
8873
 
8874
		active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8875
 
8876
		WARN(pll->active > pll->refcount,
8877
		     "more active pll users than references: %i vs %i\n",
8878
		     pll->active, pll->refcount);
8879
		WARN(pll->active && !pll->on,
8880
		     "pll in active use but not on in sw tracking\n");
8881
		WARN(pll->on && !pll->active,
8882
		     "pll in on but not on in use in sw tracking\n");
8883
		WARN(pll->on != active,
8884
		     "pll on state mismatch (expected %i, found %i)\n",
8885
		     pll->on, active);
8886
 
8887
		list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8888
				    base.head) {
8889
			if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8890
				enabled_crtcs++;
8891
			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8892
				active_crtcs++;
8893
		}
8894
		WARN(pll->active != active_crtcs,
8895
		     "pll active crtcs mismatch (expected %i, found %i)\n",
8896
		     pll->active, active_crtcs);
8897
		WARN(pll->refcount != enabled_crtcs,
8898
		     "pll enabled crtcs mismatch (expected %i, found %i)\n",
8899
		     pll->refcount, enabled_crtcs);
8900
 
8901
		WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8902
				       sizeof(dpll_hw_state)),
8903
		     "pll hw state mismatch\n");
8904
	}
8905
}
8906
 
8907
void
8908
intel_modeset_check_state(struct drm_device *dev)
8909
{
8910
	check_connector_state(dev);
8911
	check_encoder_state(dev);
8912
	check_crtc_state(dev);
8913
	check_shared_dpll_state(dev);
8914
}
8915
 
3746 Serge 8916
static int __intel_set_mode(struct drm_crtc *crtc,
3031 serge 8917
		    struct drm_display_mode *mode,
8918
		    int x, int y, struct drm_framebuffer *fb)
8919
{
8920
	struct drm_device *dev = crtc->dev;
8921
	drm_i915_private_t *dev_priv = dev->dev_private;
3746 Serge 8922
	struct drm_display_mode *saved_mode, *saved_hwmode;
8923
	struct intel_crtc_config *pipe_config = NULL;
3031 serge 8924
	struct intel_crtc *intel_crtc;
8925
	unsigned disable_pipes, prepare_pipes, modeset_pipes;
3480 Serge 8926
	int ret = 0;
3031 serge 8927
 
3480 Serge 8928
	saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8929
	if (!saved_mode)
8930
		return -ENOMEM;
8931
	saved_hwmode = saved_mode + 1;
8932
 
3031 serge 8933
	intel_modeset_affected_pipes(crtc, &modeset_pipes,
8934
				     &prepare_pipes, &disable_pipes);
8935
 
3480 Serge 8936
	*saved_hwmode = crtc->hwmode;
8937
	*saved_mode = crtc->mode;
3031 serge 8938
 
8939
	/* Hack: Because we don't (yet) support global modeset on multiple
8940
	 * crtcs, we don't keep track of the new mode for more than one crtc.
8941
	 * Hence simply check whether any bit is set in modeset_pipes in all the
8942
	 * pieces of code that are not yet converted to deal with mutliple crtcs
8943
	 * changing their mode at the same time. */
8944
	if (modeset_pipes) {
3746 Serge 8945
		pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8946
		if (IS_ERR(pipe_config)) {
8947
			ret = PTR_ERR(pipe_config);
8948
			pipe_config = NULL;
8949
 
3480 Serge 8950
			goto out;
3031 serge 8951
		}
4104 Serge 8952
		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8953
				       "[modeset]");
3031 serge 8954
	}
8955
 
3746 Serge 8956
	for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8957
		intel_crtc_disable(&intel_crtc->base);
8958
 
3031 serge 8959
	for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8960
		if (intel_crtc->base.enabled)
8961
			dev_priv->display.crtc_disable(&intel_crtc->base);
8962
	}
8963
 
8964
	/* crtc->mode is already used by the ->mode_set callbacks, hence we need
8965
	 * to set it here already despite that we pass it down the callchain.
2330 Serge 8966
	 */
3746 Serge 8967
	if (modeset_pipes) {
3031 serge 8968
		crtc->mode = *mode;
3746 Serge 8969
		/* mode_set/enable/disable functions rely on a correct pipe
8970
		 * config. */
8971
		to_intel_crtc(crtc)->config = *pipe_config;
8972
	}
2327 Serge 8973
 
3031 serge 8974
	/* Only after disabling all output pipelines that will be changed can we
8975
	 * update the the output configuration. */
8976
	intel_modeset_update_state(dev, prepare_pipes);
8977
 
3243 Serge 8978
	if (dev_priv->display.modeset_global_resources)
8979
		dev_priv->display.modeset_global_resources(dev);
8980
 
3031 serge 8981
	/* Set up the DPLL and any encoders state that needs to adjust or depend
8982
	 * on the DPLL.
2330 Serge 8983
	 */
3031 serge 8984
	for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
3480 Serge 8985
		ret = intel_crtc_mode_set(&intel_crtc->base,
3031 serge 8986
					   x, y, fb);
3480 Serge 8987
		if (ret)
3031 serge 8988
		    goto done;
8989
	}
8990
 
8991
	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
8992
	for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8993
		dev_priv->display.crtc_enable(&intel_crtc->base);
8994
 
8995
	if (modeset_pipes) {
8996
		/* Store real post-adjustment hardware mode. */
3746 Serge 8997
		crtc->hwmode = pipe_config->adjusted_mode;
3031 serge 8998
 
8999
		/* Calculate and store various constants which
9000
		 * are later needed by vblank and swap-completion
9001
		 * timestamping. They are derived from true hwmode.
9002
		 */
9003
		drm_calc_timestamping_constants(crtc);
9004
	}
9005
 
9006
	/* FIXME: add subpixel order */
9007
done:
3480 Serge 9008
	if (ret && crtc->enabled) {
9009
		crtc->hwmode = *saved_hwmode;
9010
		crtc->mode = *saved_mode;
3031 serge 9011
	}
9012
 
3480 Serge 9013
out:
3746 Serge 9014
	kfree(pipe_config);
3480 Serge 9015
	kfree(saved_mode);
3031 serge 9016
	return ret;
2330 Serge 9017
}
2327 Serge 9018
 
4104 Serge 9019
static int intel_set_mode(struct drm_crtc *crtc,
3746 Serge 9020
		     struct drm_display_mode *mode,
9021
		     int x, int y, struct drm_framebuffer *fb)
9022
{
9023
	int ret;
9024
 
9025
	ret = __intel_set_mode(crtc, mode, x, y, fb);
9026
 
9027
	if (ret == 0)
9028
		intel_modeset_check_state(crtc->dev);
9029
 
9030
	return ret;
9031
}
9032
 
3480 Serge 9033
void intel_crtc_restore_mode(struct drm_crtc *crtc)
9034
{
9035
	intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9036
}
9037
 
3031 serge 9038
#undef for_each_intel_crtc_masked
2327 Serge 9039
 
3031 serge 9040
static void intel_set_config_free(struct intel_set_config *config)
9041
{
9042
	if (!config)
9043
		return;
9044
 
9045
	kfree(config->save_connector_encoders);
9046
	kfree(config->save_encoder_crtcs);
9047
	kfree(config);
9048
}
9049
 
9050
static int intel_set_config_save_state(struct drm_device *dev,
9051
				       struct intel_set_config *config)
9052
{
9053
	struct drm_encoder *encoder;
9054
	struct drm_connector *connector;
9055
	int count;
9056
 
9057
	config->save_encoder_crtcs =
9058
		kcalloc(dev->mode_config.num_encoder,
9059
			sizeof(struct drm_crtc *), GFP_KERNEL);
9060
	if (!config->save_encoder_crtcs)
9061
		return -ENOMEM;
9062
 
9063
	config->save_connector_encoders =
9064
		kcalloc(dev->mode_config.num_connector,
9065
			sizeof(struct drm_encoder *), GFP_KERNEL);
9066
	if (!config->save_connector_encoders)
9067
		return -ENOMEM;
9068
 
9069
	/* Copy data. Note that driver private data is not affected.
9070
	 * Should anything bad happen only the expected state is
9071
	 * restored, not the drivers personal bookkeeping.
9072
	 */
9073
	count = 0;
9074
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9075
		config->save_encoder_crtcs[count++] = encoder->crtc;
9076
	}
9077
 
9078
	count = 0;
9079
	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9080
		config->save_connector_encoders[count++] = connector->encoder;
9081
	}
9082
 
9083
	return 0;
9084
}
9085
 
9086
static void intel_set_config_restore_state(struct drm_device *dev,
9087
					   struct intel_set_config *config)
9088
{
9089
	struct intel_encoder *encoder;
9090
	struct intel_connector *connector;
9091
	int count;
9092
 
9093
	count = 0;
9094
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9095
		encoder->new_crtc =
9096
			to_intel_crtc(config->save_encoder_crtcs[count++]);
9097
	}
9098
 
9099
	count = 0;
9100
	list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9101
		connector->new_encoder =
9102
			to_intel_encoder(config->save_connector_encoders[count++]);
9103
	}
9104
}
9105
 
3746 Serge 9106
static bool
4104 Serge 9107
is_crtc_connector_off(struct drm_mode_set *set)
3746 Serge 9108
{
9109
	int i;
9110
 
4104 Serge 9111
	if (set->num_connectors == 0)
9112
		return false;
9113
 
9114
	if (WARN_ON(set->connectors == NULL))
9115
		return false;
9116
 
9117
	for (i = 0; i < set->num_connectors; i++)
9118
		if (set->connectors[i]->encoder &&
9119
		    set->connectors[i]->encoder->crtc == set->crtc &&
9120
		    set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
3746 Serge 9121
			return true;
9122
 
9123
	return false;
9124
}
9125
 
3031 serge 9126
static void
9127
intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9128
				      struct intel_set_config *config)
9129
{
9130
 
9131
	/* We should be able to check here if the fb has the same properties
9132
	 * and then just flip_or_move it */
4104 Serge 9133
	if (is_crtc_connector_off(set)) {
3746 Serge 9134
			config->mode_changed = true;
9135
	} else if (set->crtc->fb != set->fb) {
3031 serge 9136
		/* If we have no fb then treat it as a full mode set */
9137
		if (set->crtc->fb == NULL) {
4104 Serge 9138
			struct intel_crtc *intel_crtc =
9139
				to_intel_crtc(set->crtc);
9140
 
9141
			if (intel_crtc->active && i915_fastboot) {
9142
				DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9143
				config->fb_changed = true;
9144
			} else {
9145
				DRM_DEBUG_KMS("inactive crtc, full mode set\n");
3031 serge 9146
			config->mode_changed = true;
4104 Serge 9147
			}
3031 serge 9148
		} else if (set->fb == NULL) {
9149
			config->mode_changed = true;
3746 Serge 9150
		} else if (set->fb->pixel_format !=
9151
			   set->crtc->fb->pixel_format) {
3031 serge 9152
			config->mode_changed = true;
3746 Serge 9153
		} else {
3031 serge 9154
			config->fb_changed = true;
9155
	}
3746 Serge 9156
	}
3031 serge 9157
 
9158
	if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9159
		config->fb_changed = true;
9160
 
9161
	if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9162
		DRM_DEBUG_KMS("modes are different, full mode set\n");
9163
		drm_mode_debug_printmodeline(&set->crtc->mode);
9164
		drm_mode_debug_printmodeline(set->mode);
9165
		config->mode_changed = true;
9166
	}
4104 Serge 9167
 
9168
	DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9169
			set->crtc->base.id, config->mode_changed, config->fb_changed);
3031 serge 9170
}
9171
 
9172
static int
9173
intel_modeset_stage_output_state(struct drm_device *dev,
9174
				 struct drm_mode_set *set,
9175
				 struct intel_set_config *config)
9176
{
9177
	struct drm_crtc *new_crtc;
9178
	struct intel_connector *connector;
9179
	struct intel_encoder *encoder;
4104 Serge 9180
	int ro;
3031 serge 9181
 
3480 Serge 9182
	/* The upper layers ensure that we either disable a crtc or have a list
3031 serge 9183
	 * of connectors. For paranoia, double-check this. */
9184
	WARN_ON(!set->fb && (set->num_connectors != 0));
9185
	WARN_ON(set->fb && (set->num_connectors == 0));
9186
 
9187
	list_for_each_entry(connector, &dev->mode_config.connector_list,
9188
			    base.head) {
9189
		/* Otherwise traverse passed in connector list and get encoders
9190
		 * for them. */
9191
		for (ro = 0; ro < set->num_connectors; ro++) {
9192
			if (set->connectors[ro] == &connector->base) {
9193
				connector->new_encoder = connector->encoder;
9194
				break;
9195
			}
9196
		}
9197
 
9198
		/* If we disable the crtc, disable all its connectors. Also, if
9199
		 * the connector is on the changing crtc but not on the new
9200
		 * connector list, disable it. */
9201
		if ((!set->fb || ro == set->num_connectors) &&
9202
		    connector->base.encoder &&
9203
		    connector->base.encoder->crtc == set->crtc) {
9204
			connector->new_encoder = NULL;
9205
 
9206
			DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9207
				connector->base.base.id,
9208
				drm_get_connector_name(&connector->base));
9209
		}
9210
 
9211
 
9212
		if (&connector->new_encoder->base != connector->base.encoder) {
9213
			DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9214
			config->mode_changed = true;
9215
		}
9216
	}
9217
	/* connector->new_encoder is now updated for all connectors. */
9218
 
9219
	/* Update crtc of enabled connectors. */
9220
	list_for_each_entry(connector, &dev->mode_config.connector_list,
9221
			    base.head) {
9222
		if (!connector->new_encoder)
9223
			continue;
9224
 
9225
		new_crtc = connector->new_encoder->base.crtc;
9226
 
9227
		for (ro = 0; ro < set->num_connectors; ro++) {
9228
			if (set->connectors[ro] == &connector->base)
9229
				new_crtc = set->crtc;
9230
		}
9231
 
9232
		/* Make sure the new CRTC will work with the encoder */
9233
		if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9234
					   new_crtc)) {
9235
			return -EINVAL;
9236
		}
9237
		connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9238
 
9239
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9240
			connector->base.base.id,
9241
			drm_get_connector_name(&connector->base),
9242
			new_crtc->base.id);
9243
	}
9244
 
9245
	/* Check for any encoders that needs to be disabled. */
9246
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9247
			    base.head) {
9248
		list_for_each_entry(connector,
9249
				    &dev->mode_config.connector_list,
9250
				    base.head) {
9251
			if (connector->new_encoder == encoder) {
9252
				WARN_ON(!connector->new_encoder->new_crtc);
9253
 
9254
				goto next_encoder;
9255
			}
9256
		}
9257
		encoder->new_crtc = NULL;
9258
next_encoder:
9259
		/* Only now check for crtc changes so we don't miss encoders
9260
		 * that will be disabled. */
9261
		if (&encoder->new_crtc->base != encoder->base.crtc) {
9262
			DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9263
			config->mode_changed = true;
9264
		}
9265
	}
9266
	/* Now we've also updated encoder->new_crtc for all encoders. */
9267
 
9268
	return 0;
9269
}
9270
 
9271
static int intel_crtc_set_config(struct drm_mode_set *set)
9272
{
9273
	struct drm_device *dev;
9274
	struct drm_mode_set save_set;
9275
	struct intel_set_config *config;
9276
	int ret;
9277
 
9278
	BUG_ON(!set);
9279
	BUG_ON(!set->crtc);
9280
	BUG_ON(!set->crtc->helper_private);
9281
 
3480 Serge 9282
	/* Enforce sane interface api - has been abused by the fb helper. */
9283
	BUG_ON(!set->mode && set->fb);
9284
	BUG_ON(set->fb && set->num_connectors == 0);
3031 serge 9285
 
9286
	if (set->fb) {
9287
		DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9288
				set->crtc->base.id, set->fb->base.id,
9289
				(int)set->num_connectors, set->x, set->y);
9290
	} else {
9291
		DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9292
	}
9293
 
9294
	dev = set->crtc->dev;
9295
 
9296
	ret = -ENOMEM;
9297
	config = kzalloc(sizeof(*config), GFP_KERNEL);
9298
	if (!config)
9299
		goto out_config;
9300
 
9301
	ret = intel_set_config_save_state(dev, config);
9302
	if (ret)
9303
		goto out_config;
9304
 
9305
	save_set.crtc = set->crtc;
9306
	save_set.mode = &set->crtc->mode;
9307
	save_set.x = set->crtc->x;
9308
	save_set.y = set->crtc->y;
9309
	save_set.fb = set->crtc->fb;
9310
 
9311
	/* Compute whether we need a full modeset, only an fb base update or no
9312
	 * change at all. In the future we might also check whether only the
9313
	 * mode changed, e.g. for LVDS where we only change the panel fitter in
9314
	 * such cases. */
9315
	intel_set_config_compute_mode_changes(set, config);
9316
 
9317
	ret = intel_modeset_stage_output_state(dev, set, config);
9318
	if (ret)
9319
		goto fail;
9320
 
9321
	if (config->mode_changed) {
3480 Serge 9322
		ret = intel_set_mode(set->crtc, set->mode,
9323
				     set->x, set->y, set->fb);
3031 serge 9324
	} else if (config->fb_changed) {
3746 Serge 9325
//       intel_crtc_wait_for_pending_flips(set->crtc);
9326
 
3031 serge 9327
		ret = intel_pipe_set_base(set->crtc,
9328
					  set->x, set->y, set->fb);
9329
	}
9330
 
3746 Serge 9331
	if (ret) {
4104 Serge 9332
		DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
3746 Serge 9333
			  set->crtc->base.id, ret);
3031 serge 9334
fail:
9335
	intel_set_config_restore_state(dev, config);
9336
 
9337
	/* Try to restore the config */
9338
	if (config->mode_changed &&
3480 Serge 9339
	    intel_set_mode(save_set.crtc, save_set.mode,
3031 serge 9340
			    save_set.x, save_set.y, save_set.fb))
9341
		DRM_ERROR("failed to restore config after modeset failure\n");
3746 Serge 9342
	}
3031 serge 9343
 
9344
out_config:
9345
	intel_set_config_free(config);
9346
	return ret;
9347
}
9348
 
2330 Serge 9349
static const struct drm_crtc_funcs intel_crtc_funcs = {
9350
//	.cursor_set = intel_crtc_cursor_set,
9351
//	.cursor_move = intel_crtc_cursor_move,
9352
	.gamma_set = intel_crtc_gamma_set,
3031 serge 9353
	.set_config = intel_crtc_set_config,
2330 Serge 9354
	.destroy = intel_crtc_destroy,
9355
//	.page_flip = intel_crtc_page_flip,
9356
};
2327 Serge 9357
 
3243 Serge 9358
static void intel_cpu_pll_init(struct drm_device *dev)
9359
{
3480 Serge 9360
	if (HAS_DDI(dev))
3243 Serge 9361
		intel_ddi_pll_init(dev);
9362
}
9363
 
4104 Serge 9364
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9365
				      struct intel_shared_dpll *pll,
9366
				      struct intel_dpll_hw_state *hw_state)
3031 serge 9367
{
4104 Serge 9368
	uint32_t val;
3031 serge 9369
 
4104 Serge 9370
	val = I915_READ(PCH_DPLL(pll->id));
9371
	hw_state->dpll = val;
9372
	hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9373
	hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9374
 
9375
	return val & DPLL_VCO_ENABLE;
9376
}
9377
 
9378
static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9379
				  struct intel_shared_dpll *pll)
9380
{
9381
	I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9382
	I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9383
}
9384
 
9385
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9386
				struct intel_shared_dpll *pll)
9387
{
9388
	/* PCH refclock must be enabled first */
9389
	assert_pch_refclk_enabled(dev_priv);
9390
 
9391
	I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9392
 
9393
	/* Wait for the clocks to stabilize. */
9394
	POSTING_READ(PCH_DPLL(pll->id));
9395
	udelay(150);
9396
 
9397
	/* The pixel multiplier can only be updated once the
9398
	 * DPLL is enabled and the clocks are stable.
9399
	 *
9400
	 * So write it again.
9401
	 */
9402
	I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9403
	POSTING_READ(PCH_DPLL(pll->id));
9404
	udelay(200);
9405
}
9406
 
9407
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9408
				 struct intel_shared_dpll *pll)
9409
{
9410
	struct drm_device *dev = dev_priv->dev;
9411
	struct intel_crtc *crtc;
9412
 
9413
	/* Make sure no transcoder isn't still depending on us. */
9414
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9415
		if (intel_crtc_to_shared_dpll(crtc) == pll)
9416
			assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
3031 serge 9417
	}
9418
 
4104 Serge 9419
	I915_WRITE(PCH_DPLL(pll->id), 0);
9420
	POSTING_READ(PCH_DPLL(pll->id));
9421
	udelay(200);
9422
}
9423
 
9424
static char *ibx_pch_dpll_names[] = {
9425
	"PCH DPLL A",
9426
	"PCH DPLL B",
9427
};
9428
 
9429
static void ibx_pch_dpll_init(struct drm_device *dev)
9430
{
9431
	struct drm_i915_private *dev_priv = dev->dev_private;
9432
	int i;
9433
 
9434
	dev_priv->num_shared_dpll = 2;
9435
 
9436
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9437
		dev_priv->shared_dplls[i].id = i;
9438
		dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9439
		dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9440
		dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9441
		dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9442
		dev_priv->shared_dplls[i].get_hw_state =
9443
			ibx_pch_dpll_get_hw_state;
3031 serge 9444
	}
9445
}
9446
 
4104 Serge 9447
static void intel_shared_dpll_init(struct drm_device *dev)
9448
{
9449
	struct drm_i915_private *dev_priv = dev->dev_private;
9450
 
9451
	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9452
		ibx_pch_dpll_init(dev);
9453
	else
9454
		dev_priv->num_shared_dpll = 0;
9455
 
9456
	BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9457
	DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9458
		      dev_priv->num_shared_dpll);
9459
}
9460
 
2330 Serge 9461
static void intel_crtc_init(struct drm_device *dev, int pipe)
9462
{
9463
	drm_i915_private_t *dev_priv = dev->dev_private;
9464
	struct intel_crtc *intel_crtc;
9465
	int i;
2327 Serge 9466
 
2330 Serge 9467
	intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9468
	if (intel_crtc == NULL)
9469
		return;
2327 Serge 9470
 
2330 Serge 9471
	drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
2327 Serge 9472
 
2330 Serge 9473
	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9474
	for (i = 0; i < 256; i++) {
9475
		intel_crtc->lut_r[i] = i;
9476
		intel_crtc->lut_g[i] = i;
9477
		intel_crtc->lut_b[i] = i;
9478
	}
2327 Serge 9479
 
2330 Serge 9480
	/* Swap pipes & planes for FBC on pre-965 */
9481
	intel_crtc->pipe = pipe;
9482
	intel_crtc->plane = pipe;
9483
	if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9484
		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9485
		intel_crtc->plane = !pipe;
9486
	}
2327 Serge 9487
 
2330 Serge 9488
	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9489
	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9490
	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9491
	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
2327 Serge 9492
 
2330 Serge 9493
	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9494
}
2327 Serge 9495
 
3031 serge 9496
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9497
				struct drm_file *file)
9498
{
9499
	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9500
	struct drm_mode_object *drmmode_obj;
9501
	struct intel_crtc *crtc;
2327 Serge 9502
 
3482 Serge 9503
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
9504
		return -ENODEV;
9505
 
3031 serge 9506
	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9507
			DRM_MODE_OBJECT_CRTC);
2327 Serge 9508
 
3031 serge 9509
	if (!drmmode_obj) {
9510
		DRM_ERROR("no such CRTC id\n");
9511
		return -EINVAL;
9512
	}
2327 Serge 9513
 
3031 serge 9514
	crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9515
	pipe_from_crtc_id->pipe = crtc->pipe;
2327 Serge 9516
 
3031 serge 9517
	return 0;
9518
}
2327 Serge 9519
 
3031 serge 9520
static int intel_encoder_clones(struct intel_encoder *encoder)
2330 Serge 9521
{
3031 serge 9522
	struct drm_device *dev = encoder->base.dev;
9523
	struct intel_encoder *source_encoder;
2330 Serge 9524
	int index_mask = 0;
9525
	int entry = 0;
2327 Serge 9526
 
3031 serge 9527
	list_for_each_entry(source_encoder,
9528
			    &dev->mode_config.encoder_list, base.head) {
9529
 
9530
		if (encoder == source_encoder)
2330 Serge 9531
			index_mask |= (1 << entry);
3031 serge 9532
 
9533
		/* Intel hw has only one MUX where enocoders could be cloned. */
9534
		if (encoder->cloneable && source_encoder->cloneable)
9535
			index_mask |= (1 << entry);
9536
 
2330 Serge 9537
		entry++;
9538
	}
2327 Serge 9539
 
2330 Serge 9540
	return index_mask;
9541
}
2327 Serge 9542
 
2330 Serge 9543
static bool has_edp_a(struct drm_device *dev)
9544
{
9545
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 9546
 
2330 Serge 9547
	if (!IS_MOBILE(dev))
9548
		return false;
2327 Serge 9549
 
2330 Serge 9550
	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9551
		return false;
2327 Serge 9552
 
2330 Serge 9553
	if (IS_GEN5(dev) &&
9554
	    (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9555
		return false;
2327 Serge 9556
 
2330 Serge 9557
	return true;
9558
}
2327 Serge 9559
 
2330 Serge 9560
static void intel_setup_outputs(struct drm_device *dev)
9561
{
9562
	struct drm_i915_private *dev_priv = dev->dev_private;
9563
	struct intel_encoder *encoder;
9564
	bool dpd_is_edp = false;
2327 Serge 9565
 
4104 Serge 9566
	intel_lvds_init(dev);
2327 Serge 9567
 
3746 Serge 9568
	if (!IS_ULT(dev))
2330 Serge 9569
	intel_crt_init(dev);
2327 Serge 9570
 
3480 Serge 9571
	if (HAS_DDI(dev)) {
2330 Serge 9572
		int found;
2327 Serge 9573
 
3031 serge 9574
		/* Haswell uses DDI functions to detect digital outputs */
9575
		found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9576
		/* DDI A only supports eDP */
9577
		if (found)
9578
			intel_ddi_init(dev, PORT_A);
9579
 
9580
		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
9581
		 * register */
9582
		found = I915_READ(SFUSE_STRAP);
9583
 
9584
		if (found & SFUSE_STRAP_DDIB_DETECTED)
9585
			intel_ddi_init(dev, PORT_B);
9586
		if (found & SFUSE_STRAP_DDIC_DETECTED)
9587
			intel_ddi_init(dev, PORT_C);
9588
		if (found & SFUSE_STRAP_DDID_DETECTED)
9589
			intel_ddi_init(dev, PORT_D);
9590
	} else if (HAS_PCH_SPLIT(dev)) {
9591
		int found;
3243 Serge 9592
		dpd_is_edp = intel_dpd_is_edp(dev);
3031 serge 9593
 
3243 Serge 9594
		if (has_edp_a(dev))
9595
			intel_dp_init(dev, DP_A, PORT_A);
9596
 
3746 Serge 9597
		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
2330 Serge 9598
			/* PCH SDVOB multiplex with HDMIB */
3031 serge 9599
			found = intel_sdvo_init(dev, PCH_SDVOB, true);
2330 Serge 9600
			if (!found)
3746 Serge 9601
				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
2330 Serge 9602
			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3031 serge 9603
				intel_dp_init(dev, PCH_DP_B, PORT_B);
2330 Serge 9604
		}
2327 Serge 9605
 
3746 Serge 9606
		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9607
			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
2327 Serge 9608
 
3746 Serge 9609
		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9610
			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
2327 Serge 9611
 
2330 Serge 9612
		if (I915_READ(PCH_DP_C) & DP_DETECTED)
3031 serge 9613
			intel_dp_init(dev, PCH_DP_C, PORT_C);
2327 Serge 9614
 
3243 Serge 9615
		if (I915_READ(PCH_DP_D) & DP_DETECTED)
3031 serge 9616
			intel_dp_init(dev, PCH_DP_D, PORT_D);
9617
	} else if (IS_VALLEYVIEW(dev)) {
3243 Serge 9618
		/* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
4104 Serge 9619
		if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9620
			intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9621
					PORT_C);
3480 Serge 9622
		if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
4104 Serge 9623
				intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9624
					      PORT_C);
9625
		}
3243 Serge 9626
 
3746 Serge 9627
		if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9628
			intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9629
					PORT_B);
3480 Serge 9630
			if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9631
				intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
3031 serge 9632
		}
2330 Serge 9633
	} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9634
		bool found = false;
2327 Serge 9635
 
3746 Serge 9636
		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
2330 Serge 9637
			DRM_DEBUG_KMS("probing SDVOB\n");
3746 Serge 9638
			found = intel_sdvo_init(dev, GEN3_SDVOB, true);
2330 Serge 9639
			if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9640
				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
3746 Serge 9641
				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
2330 Serge 9642
			}
2327 Serge 9643
 
4104 Serge 9644
			if (!found && SUPPORTS_INTEGRATED_DP(dev))
3031 serge 9645
				intel_dp_init(dev, DP_B, PORT_B);
2330 Serge 9646
			}
2327 Serge 9647
 
2330 Serge 9648
		/* Before G4X SDVOC doesn't have its own detect register */
2327 Serge 9649
 
3746 Serge 9650
		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
2330 Serge 9651
			DRM_DEBUG_KMS("probing SDVOC\n");
3746 Serge 9652
			found = intel_sdvo_init(dev, GEN3_SDVOC, false);
2330 Serge 9653
		}
2327 Serge 9654
 
3746 Serge 9655
		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
2327 Serge 9656
 
2330 Serge 9657
			if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9658
				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
3746 Serge 9659
				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
2330 Serge 9660
			}
4104 Serge 9661
			if (SUPPORTS_INTEGRATED_DP(dev))
3031 serge 9662
				intel_dp_init(dev, DP_C, PORT_C);
2330 Serge 9663
			}
2327 Serge 9664
 
2330 Serge 9665
		if (SUPPORTS_INTEGRATED_DP(dev) &&
4104 Serge 9666
		    (I915_READ(DP_D) & DP_DETECTED))
3031 serge 9667
			intel_dp_init(dev, DP_D, PORT_D);
2330 Serge 9668
	} else if (IS_GEN2(dev))
9669
		intel_dvo_init(dev);
2327 Serge 9670
 
2330 Serge 9671
//   if (SUPPORTS_TV(dev))
9672
//       intel_tv_init(dev);
2327 Serge 9673
 
2330 Serge 9674
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9675
		encoder->base.possible_crtcs = encoder->crtc_mask;
9676
		encoder->base.possible_clones =
3031 serge 9677
			intel_encoder_clones(encoder);
2330 Serge 9678
	}
2327 Serge 9679
 
3243 Serge 9680
	intel_init_pch_refclk(dev);
9681
 
9682
	drm_helper_move_panel_connectors_to_head(dev);
2330 Serge 9683
}
9684
 
9685
 
9686
 
2335 Serge 9687
static const struct drm_framebuffer_funcs intel_fb_funcs = {
9688
//	.destroy = intel_user_framebuffer_destroy,
9689
//	.create_handle = intel_user_framebuffer_create_handle,
9690
};
2327 Serge 9691
 
2335 Serge 9692
int intel_framebuffer_init(struct drm_device *dev,
9693
			   struct intel_framebuffer *intel_fb,
2342 Serge 9694
			   struct drm_mode_fb_cmd2 *mode_cmd,
2335 Serge 9695
			   struct drm_i915_gem_object *obj)
9696
{
4104 Serge 9697
	int pitch_limit;
2335 Serge 9698
	int ret;
2327 Serge 9699
 
3243 Serge 9700
	if (obj->tiling_mode == I915_TILING_Y) {
9701
		DRM_DEBUG("hardware does not support tiling Y\n");
2335 Serge 9702
		return -EINVAL;
3243 Serge 9703
	}
2327 Serge 9704
 
3243 Serge 9705
	if (mode_cmd->pitches[0] & 63) {
9706
		DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9707
			  mode_cmd->pitches[0]);
9708
		return -EINVAL;
9709
	}
9710
 
4104 Serge 9711
	if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9712
		pitch_limit = 32*1024;
9713
	} else if (INTEL_INFO(dev)->gen >= 4) {
9714
		if (obj->tiling_mode)
9715
			pitch_limit = 16*1024;
9716
		else
9717
			pitch_limit = 32*1024;
9718
	} else if (INTEL_INFO(dev)->gen >= 3) {
9719
		if (obj->tiling_mode)
9720
			pitch_limit = 8*1024;
9721
		else
9722
			pitch_limit = 16*1024;
9723
	} else
9724
		/* XXX DSPC is limited to 4k tiled */
9725
		pitch_limit = 8*1024;
9726
 
9727
	if (mode_cmd->pitches[0] > pitch_limit) {
9728
		DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9729
			  obj->tiling_mode ? "tiled" : "linear",
9730
			  mode_cmd->pitches[0], pitch_limit);
3243 Serge 9731
		return -EINVAL;
9732
	}
9733
 
9734
	if (obj->tiling_mode != I915_TILING_NONE &&
9735
	    mode_cmd->pitches[0] != obj->stride) {
9736
		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9737
			  mode_cmd->pitches[0], obj->stride);
2335 Serge 9738
			return -EINVAL;
3243 Serge 9739
	}
2327 Serge 9740
 
3243 Serge 9741
	/* Reject formats not supported by any plane early. */
2342 Serge 9742
	switch (mode_cmd->pixel_format) {
3243 Serge 9743
	case DRM_FORMAT_C8:
2342 Serge 9744
	case DRM_FORMAT_RGB565:
9745
	case DRM_FORMAT_XRGB8888:
3243 Serge 9746
	case DRM_FORMAT_ARGB8888:
9747
		break;
9748
	case DRM_FORMAT_XRGB1555:
9749
	case DRM_FORMAT_ARGB1555:
9750
		if (INTEL_INFO(dev)->gen > 3) {
4104 Serge 9751
			DRM_DEBUG("unsupported pixel format: %s\n",
9752
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 9753
			return -EINVAL;
9754
		}
9755
		break;
3031 serge 9756
	case DRM_FORMAT_XBGR8888:
3243 Serge 9757
	case DRM_FORMAT_ABGR8888:
2342 Serge 9758
	case DRM_FORMAT_XRGB2101010:
9759
	case DRM_FORMAT_ARGB2101010:
3243 Serge 9760
	case DRM_FORMAT_XBGR2101010:
9761
	case DRM_FORMAT_ABGR2101010:
9762
		if (INTEL_INFO(dev)->gen < 4) {
4104 Serge 9763
			DRM_DEBUG("unsupported pixel format: %s\n",
9764
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 9765
			return -EINVAL;
9766
		}
2335 Serge 9767
		break;
2342 Serge 9768
	case DRM_FORMAT_YUYV:
9769
	case DRM_FORMAT_UYVY:
9770
	case DRM_FORMAT_YVYU:
9771
	case DRM_FORMAT_VYUY:
3243 Serge 9772
		if (INTEL_INFO(dev)->gen < 5) {
4104 Serge 9773
			DRM_DEBUG("unsupported pixel format: %s\n",
9774
				  drm_get_format_name(mode_cmd->pixel_format));
3243 Serge 9775
			return -EINVAL;
9776
		}
2342 Serge 9777
		break;
2335 Serge 9778
	default:
4104 Serge 9779
		DRM_DEBUG("unsupported pixel format: %s\n",
9780
			  drm_get_format_name(mode_cmd->pixel_format));
2335 Serge 9781
		return -EINVAL;
9782
	}
2327 Serge 9783
 
3243 Serge 9784
	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9785
	if (mode_cmd->offsets[0] != 0)
9786
		return -EINVAL;
9787
 
3480 Serge 9788
	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9789
	intel_fb->obj = obj;
9790
 
2335 Serge 9791
	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9792
	if (ret) {
9793
		DRM_ERROR("framebuffer init failed %d\n", ret);
9794
		return ret;
9795
	}
2327 Serge 9796
 
2335 Serge 9797
	return 0;
9798
}
2327 Serge 9799
 
9800
 
2360 Serge 9801
static const struct drm_mode_config_funcs intel_mode_funcs = {
9802
	.fb_create = NULL /*intel_user_framebuffer_create*/,
3480 Serge 9803
	.output_poll_changed = intel_fb_output_poll_changed,
2360 Serge 9804
};
2327 Serge 9805
 
3031 serge 9806
/* Set up chip specific display functions */
9807
static void intel_init_display(struct drm_device *dev)
9808
{
9809
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 9810
 
4104 Serge 9811
	if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9812
		dev_priv->display.find_dpll = g4x_find_best_dpll;
9813
	else if (IS_VALLEYVIEW(dev))
9814
		dev_priv->display.find_dpll = vlv_find_best_dpll;
9815
	else if (IS_PINEVIEW(dev))
9816
		dev_priv->display.find_dpll = pnv_find_best_dpll;
9817
	else
9818
		dev_priv->display.find_dpll = i9xx_find_best_dpll;
9819
 
3480 Serge 9820
	if (HAS_DDI(dev)) {
3746 Serge 9821
		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
3243 Serge 9822
		dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9823
		dev_priv->display.crtc_enable = haswell_crtc_enable;
9824
		dev_priv->display.crtc_disable = haswell_crtc_disable;
9825
		dev_priv->display.off = haswell_crtc_off;
9826
		dev_priv->display.update_plane = ironlake_update_plane;
9827
	} else if (HAS_PCH_SPLIT(dev)) {
3746 Serge 9828
		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4104 Serge 9829
		dev_priv->display.get_clock = ironlake_crtc_clock_get;
3031 serge 9830
		dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9831
		dev_priv->display.crtc_enable = ironlake_crtc_enable;
9832
		dev_priv->display.crtc_disable = ironlake_crtc_disable;
9833
		dev_priv->display.off = ironlake_crtc_off;
9834
		dev_priv->display.update_plane = ironlake_update_plane;
4104 Serge 9835
	} else if (IS_VALLEYVIEW(dev)) {
9836
		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
4398 Serge 9837
		dev_priv->display.get_clock = vlv_crtc_clock_get;
4104 Serge 9838
		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9839
		dev_priv->display.crtc_enable = valleyview_crtc_enable;
9840
		dev_priv->display.crtc_disable = i9xx_crtc_disable;
9841
		dev_priv->display.off = i9xx_crtc_off;
9842
		dev_priv->display.update_plane = i9xx_update_plane;
3031 serge 9843
	} else {
3746 Serge 9844
		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
4104 Serge 9845
		dev_priv->display.get_clock = i9xx_crtc_clock_get;
3031 serge 9846
		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9847
		dev_priv->display.crtc_enable = i9xx_crtc_enable;
9848
		dev_priv->display.crtc_disable = i9xx_crtc_disable;
9849
		dev_priv->display.off = i9xx_crtc_off;
9850
		dev_priv->display.update_plane = i9xx_update_plane;
9851
	}
2327 Serge 9852
 
3031 serge 9853
	/* Returns the core display clock speed */
9854
	if (IS_VALLEYVIEW(dev))
9855
		dev_priv->display.get_display_clock_speed =
9856
			valleyview_get_display_clock_speed;
9857
	else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9858
		dev_priv->display.get_display_clock_speed =
9859
			i945_get_display_clock_speed;
9860
	else if (IS_I915G(dev))
9861
		dev_priv->display.get_display_clock_speed =
9862
			i915_get_display_clock_speed;
4104 Serge 9863
	else if (IS_I945GM(dev) || IS_845G(dev))
3031 serge 9864
		dev_priv->display.get_display_clock_speed =
9865
			i9xx_misc_get_display_clock_speed;
4104 Serge 9866
	else if (IS_PINEVIEW(dev))
9867
		dev_priv->display.get_display_clock_speed =
9868
			pnv_get_display_clock_speed;
3031 serge 9869
	else if (IS_I915GM(dev))
9870
		dev_priv->display.get_display_clock_speed =
9871
			i915gm_get_display_clock_speed;
9872
	else if (IS_I865G(dev))
9873
		dev_priv->display.get_display_clock_speed =
9874
			i865_get_display_clock_speed;
9875
	else if (IS_I85X(dev))
9876
		dev_priv->display.get_display_clock_speed =
9877
			i855_get_display_clock_speed;
9878
	else /* 852, 830 */
9879
		dev_priv->display.get_display_clock_speed =
9880
			i830_get_display_clock_speed;
2327 Serge 9881
 
3031 serge 9882
	if (HAS_PCH_SPLIT(dev)) {
9883
		if (IS_GEN5(dev)) {
9884
			dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9885
			dev_priv->display.write_eld = ironlake_write_eld;
9886
		} else if (IS_GEN6(dev)) {
9887
			dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9888
			dev_priv->display.write_eld = ironlake_write_eld;
9889
		} else if (IS_IVYBRIDGE(dev)) {
9890
			/* FIXME: detect B0+ stepping and use auto training */
9891
			dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9892
			dev_priv->display.write_eld = ironlake_write_eld;
3243 Serge 9893
			dev_priv->display.modeset_global_resources =
9894
				ivb_modeset_global_resources;
3031 serge 9895
		} else if (IS_HASWELL(dev)) {
9896
			dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9897
			dev_priv->display.write_eld = haswell_write_eld;
3480 Serge 9898
			dev_priv->display.modeset_global_resources =
9899
				haswell_modeset_global_resources;
9900
		}
3031 serge 9901
	} else if (IS_G4X(dev)) {
9902
		dev_priv->display.write_eld = g4x_write_eld;
9903
	}
2327 Serge 9904
 
3031 serge 9905
	/* Default just returns -ENODEV to indicate unsupported */
9906
//	dev_priv->display.queue_flip = intel_default_queue_flip;
2327 Serge 9907
 
9908
 
9909
 
9910
 
3031 serge 9911
}
9912
 
9913
/*
9914
 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9915
 * resume, or other times.  This quirk makes sure that's the case for
9916
 * affected systems.
9917
 */
9918
static void quirk_pipea_force(struct drm_device *dev)
2330 Serge 9919
{
9920
	struct drm_i915_private *dev_priv = dev->dev_private;
2327 Serge 9921
 
3031 serge 9922
	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9923
	DRM_INFO("applying pipe a force quirk\n");
9924
}
2327 Serge 9925
 
3031 serge 9926
/*
9927
 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9928
 */
9929
static void quirk_ssc_force_disable(struct drm_device *dev)
9930
{
9931
	struct drm_i915_private *dev_priv = dev->dev_private;
9932
	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9933
	DRM_INFO("applying lvds SSC disable quirk\n");
2330 Serge 9934
}
2327 Serge 9935
 
3031 serge 9936
/*
9937
 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9938
 * brightness value
9939
 */
9940
static void quirk_invert_brightness(struct drm_device *dev)
2330 Serge 9941
{
9942
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 9943
	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9944
	DRM_INFO("applying inverted panel brightness quirk\n");
9945
}
2327 Serge 9946
 
4104 Serge 9947
/*
9948
 * Some machines (Dell XPS13) suffer broken backlight controls if
9949
 * BLM_PCH_PWM_ENABLE is set.
9950
 */
9951
static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9952
{
9953
	struct drm_i915_private *dev_priv = dev->dev_private;
9954
	dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9955
	DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9956
}
9957
 
3031 serge 9958
struct intel_quirk {
9959
	int device;
9960
	int subsystem_vendor;
9961
	int subsystem_device;
9962
	void (*hook)(struct drm_device *dev);
9963
};
2327 Serge 9964
 
3031 serge 9965
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9966
struct intel_dmi_quirk {
9967
	void (*hook)(struct drm_device *dev);
9968
	const struct dmi_system_id (*dmi_id_list)[];
9969
};
2327 Serge 9970
 
3031 serge 9971
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9972
{
9973
	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9974
	return 1;
2330 Serge 9975
}
2327 Serge 9976
 
3031 serge 9977
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9978
	{
9979
		.dmi_id_list = &(const struct dmi_system_id[]) {
9980
			{
9981
				.callback = intel_dmi_reverse_brightness,
9982
				.ident = "NCR Corporation",
9983
				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9984
					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
9985
				},
9986
			},
9987
			{ }  /* terminating entry */
9988
		},
9989
		.hook = quirk_invert_brightness,
9990
	},
9991
};
2327 Serge 9992
 
3031 serge 9993
static struct intel_quirk intel_quirks[] = {
9994
	/* HP Mini needs pipe A force quirk (LP: #322104) */
9995
	{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
2327 Serge 9996
 
3031 serge 9997
	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9998
	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
2327 Serge 9999
 
3031 serge 10000
	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10001
	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
2327 Serge 10002
 
3031 serge 10003
	/* 830/845 need to leave pipe A & dpll A up */
10004
	{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10005
	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
2327 Serge 10006
 
3031 serge 10007
	/* Lenovo U160 cannot use SSC on LVDS */
10008
	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
2327 Serge 10009
 
3031 serge 10010
	/* Sony Vaio Y cannot use SSC on LVDS */
10011
	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
2327 Serge 10012
 
3031 serge 10013
	/* Acer Aspire 5734Z must invert backlight brightness */
10014
	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
3480 Serge 10015
 
10016
	/* Acer/eMachines G725 */
10017
	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
10018
 
10019
	/* Acer/eMachines e725 */
10020
	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
10021
 
10022
	/* Acer/Packard Bell NCL20 */
10023
	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
10024
 
10025
	/* Acer Aspire 4736Z */
10026
	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
4104 Serge 10027
 
10028
	/* Dell XPS13 HD Sandy Bridge */
10029
	{ 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10030
	/* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10031
	{ 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
3031 serge 10032
};
2327 Serge 10033
 
3031 serge 10034
static void intel_init_quirks(struct drm_device *dev)
2330 Serge 10035
{
3031 serge 10036
	struct pci_dev *d = dev->pdev;
10037
	int i;
2327 Serge 10038
 
3031 serge 10039
	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10040
		struct intel_quirk *q = &intel_quirks[i];
2327 Serge 10041
 
3031 serge 10042
		if (d->device == q->device &&
10043
		    (d->subsystem_vendor == q->subsystem_vendor ||
10044
		     q->subsystem_vendor == PCI_ANY_ID) &&
10045
		    (d->subsystem_device == q->subsystem_device ||
10046
		     q->subsystem_device == PCI_ANY_ID))
10047
			q->hook(dev);
10048
	}
2330 Serge 10049
}
2327 Serge 10050
 
3031 serge 10051
/* Disable the VGA plane that we never use */
10052
static void i915_disable_vga(struct drm_device *dev)
2330 Serge 10053
{
10054
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10055
	u8 sr1;
3480 Serge 10056
	u32 vga_reg = i915_vgacntrl_reg(dev);
2327 Serge 10057
 
3031 serge 10058
//   vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10059
    out8(SR01, VGA_SR_INDEX);
10060
    sr1 = in8(VGA_SR_DATA);
10061
    out8(sr1 | 1<<5, VGA_SR_DATA);
10062
//   vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10063
	udelay(300);
2327 Serge 10064
 
3031 serge 10065
	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10066
	POSTING_READ(vga_reg);
2330 Serge 10067
}
10068
 
3031 serge 10069
void intel_modeset_init_hw(struct drm_device *dev)
2342 Serge 10070
{
4398 Serge 10071
	struct drm_i915_private *dev_priv = dev->dev_private;
10072
 
3480 Serge 10073
	intel_init_power_well(dev);
2342 Serge 10074
 
3031 serge 10075
	intel_prepare_ddi(dev);
2342 Serge 10076
 
3031 serge 10077
	intel_init_clock_gating(dev);
10078
 
4398 Serge 10079
	/* Enable the CRI clock source so we can get at the display */
10080
	if (IS_VALLEYVIEW(dev))
10081
		I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
10082
			   DPLL_INTEGRATED_CRI_CLK_VLV);
10083
 
3482 Serge 10084
    mutex_lock(&dev->struct_mutex);
10085
    intel_enable_gt_powersave(dev);
10086
    mutex_unlock(&dev->struct_mutex);
2342 Serge 10087
}
10088
 
4398 Serge 10089
void intel_modeset_suspend_hw(struct drm_device *dev)
10090
{
10091
	intel_suspend_hw(dev);
10092
}
10093
 
3031 serge 10094
void intel_modeset_init(struct drm_device *dev)
2330 Serge 10095
{
3031 serge 10096
	struct drm_i915_private *dev_priv = dev->dev_private;
3746 Serge 10097
	int i, j, ret;
2330 Serge 10098
 
3031 serge 10099
	drm_mode_config_init(dev);
2330 Serge 10100
 
3031 serge 10101
	dev->mode_config.min_width = 0;
10102
	dev->mode_config.min_height = 0;
2330 Serge 10103
 
3031 serge 10104
	dev->mode_config.preferred_depth = 24;
10105
	dev->mode_config.prefer_shadow = 1;
2330 Serge 10106
 
3031 serge 10107
	dev->mode_config.funcs = &intel_mode_funcs;
2330 Serge 10108
 
3031 serge 10109
	intel_init_quirks(dev);
2330 Serge 10110
 
3031 serge 10111
	intel_init_pm(dev);
2330 Serge 10112
 
3746 Serge 10113
	if (INTEL_INFO(dev)->num_pipes == 0)
10114
		return;
10115
 
3031 serge 10116
	intel_init_display(dev);
2330 Serge 10117
 
3031 serge 10118
	if (IS_GEN2(dev)) {
10119
		dev->mode_config.max_width = 2048;
10120
		dev->mode_config.max_height = 2048;
10121
	} else if (IS_GEN3(dev)) {
10122
		dev->mode_config.max_width = 4096;
10123
		dev->mode_config.max_height = 4096;
10124
	} else {
10125
		dev->mode_config.max_width = 8192;
10126
		dev->mode_config.max_height = 8192;
10127
	}
3480 Serge 10128
	dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
2330 Serge 10129
 
3031 serge 10130
	DRM_DEBUG_KMS("%d display pipe%s available.\n",
3746 Serge 10131
		      INTEL_INFO(dev)->num_pipes,
10132
		      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
2330 Serge 10133
 
4104 Serge 10134
	for_each_pipe(i) {
3031 serge 10135
		intel_crtc_init(dev, i);
3746 Serge 10136
		for (j = 0; j < dev_priv->num_plane; j++) {
10137
			ret = intel_plane_init(dev, i, j);
3031 serge 10138
		if (ret)
4104 Serge 10139
				DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10140
					      pipe_name(i), sprite_name(i, j), ret);
3746 Serge 10141
		}
2330 Serge 10142
	}
10143
 
3243 Serge 10144
	intel_cpu_pll_init(dev);
4104 Serge 10145
	intel_shared_dpll_init(dev);
2330 Serge 10146
 
3031 serge 10147
	/* Just disable it once at startup */
10148
	i915_disable_vga(dev);
10149
	intel_setup_outputs(dev);
3480 Serge 10150
 
10151
	/* Just in case the BIOS is doing something questionable. */
10152
	intel_disable_fbc(dev);
3031 serge 10153
}
2330 Serge 10154
 
3031 serge 10155
static void
10156
intel_connector_break_all_links(struct intel_connector *connector)
10157
{
10158
	connector->base.dpms = DRM_MODE_DPMS_OFF;
10159
	connector->base.encoder = NULL;
10160
	connector->encoder->connectors_active = false;
10161
	connector->encoder->base.crtc = NULL;
2330 Serge 10162
}
10163
 
3031 serge 10164
static void intel_enable_pipe_a(struct drm_device *dev)
2330 Serge 10165
{
3031 serge 10166
	struct intel_connector *connector;
10167
	struct drm_connector *crt = NULL;
10168
	struct intel_load_detect_pipe load_detect_temp;
2330 Serge 10169
 
3031 serge 10170
	/* We can't just switch on the pipe A, we need to set things up with a
10171
	 * proper mode and output configuration. As a gross hack, enable pipe A
10172
	 * by enabling the load detect pipe once. */
10173
	list_for_each_entry(connector,
10174
			    &dev->mode_config.connector_list,
10175
			    base.head) {
10176
		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10177
			crt = &connector->base;
10178
			break;
2330 Serge 10179
		}
10180
	}
10181
 
3031 serge 10182
	if (!crt)
10183
		return;
2330 Serge 10184
 
3031 serge 10185
	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10186
		intel_release_load_detect_pipe(crt, &load_detect_temp);
2327 Serge 10187
 
10188
 
10189
}
10190
 
3031 serge 10191
static bool
10192
intel_check_plane_mapping(struct intel_crtc *crtc)
2327 Serge 10193
{
3746 Serge 10194
	struct drm_device *dev = crtc->base.dev;
10195
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10196
	u32 reg, val;
2327 Serge 10197
 
3746 Serge 10198
	if (INTEL_INFO(dev)->num_pipes == 1)
3031 serge 10199
		return true;
2327 Serge 10200
 
3031 serge 10201
	reg = DSPCNTR(!crtc->plane);
10202
	val = I915_READ(reg);
2327 Serge 10203
 
3031 serge 10204
	if ((val & DISPLAY_PLANE_ENABLE) &&
10205
	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10206
		return false;
2327 Serge 10207
 
3031 serge 10208
	return true;
2327 Serge 10209
}
10210
 
3031 serge 10211
static void intel_sanitize_crtc(struct intel_crtc *crtc)
2327 Serge 10212
{
3031 serge 10213
	struct drm_device *dev = crtc->base.dev;
2327 Serge 10214
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10215
	u32 reg;
2327 Serge 10216
 
3031 serge 10217
	/* Clear any frame start delays used for debugging left by the BIOS */
3746 Serge 10218
	reg = PIPECONF(crtc->config.cpu_transcoder);
3031 serge 10219
	I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
2327 Serge 10220
 
3031 serge 10221
	/* We need to sanitize the plane -> pipe mapping first because this will
10222
	 * disable the crtc (and hence change the state) if it is wrong. Note
10223
	 * that gen4+ has a fixed plane -> pipe mapping.  */
10224
	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10225
		struct intel_connector *connector;
10226
		bool plane;
2327 Serge 10227
 
3031 serge 10228
		DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10229
			      crtc->base.base.id);
2327 Serge 10230
 
3031 serge 10231
		/* Pipe has the wrong plane attached and the plane is active.
10232
		 * Temporarily change the plane mapping and disable everything
10233
		 * ...  */
10234
		plane = crtc->plane;
10235
		crtc->plane = !plane;
10236
		dev_priv->display.crtc_disable(&crtc->base);
10237
		crtc->plane = plane;
2342 Serge 10238
 
3031 serge 10239
		/* ... and break all links. */
10240
		list_for_each_entry(connector, &dev->mode_config.connector_list,
10241
				    base.head) {
10242
			if (connector->encoder->base.crtc != &crtc->base)
10243
				continue;
2327 Serge 10244
 
3031 serge 10245
			intel_connector_break_all_links(connector);
10246
		}
2327 Serge 10247
 
3031 serge 10248
		WARN_ON(crtc->active);
10249
		crtc->base.enabled = false;
10250
	}
2327 Serge 10251
 
3031 serge 10252
	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10253
	    crtc->pipe == PIPE_A && !crtc->active) {
10254
		/* BIOS forgot to enable pipe A, this mostly happens after
10255
		 * resume. Force-enable the pipe to fix this, the update_dpms
10256
		 * call below we restore the pipe to the right state, but leave
10257
		 * the required bits on. */
10258
		intel_enable_pipe_a(dev);
10259
	}
2327 Serge 10260
 
3031 serge 10261
	/* Adjust the state of the output pipe according to whether we
10262
	 * have active connectors/encoders. */
10263
	intel_crtc_update_dpms(&crtc->base);
2327 Serge 10264
 
3031 serge 10265
	if (crtc->active != crtc->base.enabled) {
10266
		struct intel_encoder *encoder;
2327 Serge 10267
 
3031 serge 10268
		/* This can happen either due to bugs in the get_hw_state
10269
		 * functions or because the pipe is force-enabled due to the
10270
		 * pipe A quirk. */
10271
		DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10272
			      crtc->base.base.id,
10273
			      crtc->base.enabled ? "enabled" : "disabled",
10274
			      crtc->active ? "enabled" : "disabled");
2327 Serge 10275
 
3031 serge 10276
		crtc->base.enabled = crtc->active;
2327 Serge 10277
 
3031 serge 10278
		/* Because we only establish the connector -> encoder ->
10279
		 * crtc links if something is active, this means the
10280
		 * crtc is now deactivated. Break the links. connector
10281
		 * -> encoder links are only establish when things are
10282
		 *  actually up, hence no need to break them. */
10283
		WARN_ON(crtc->active);
2327 Serge 10284
 
3031 serge 10285
		for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10286
			WARN_ON(encoder->connectors_active);
10287
			encoder->base.crtc = NULL;
10288
		}
10289
	}
2327 Serge 10290
}
10291
 
3031 serge 10292
static void intel_sanitize_encoder(struct intel_encoder *encoder)
2327 Serge 10293
{
3031 serge 10294
	struct intel_connector *connector;
10295
	struct drm_device *dev = encoder->base.dev;
2327 Serge 10296
 
3031 serge 10297
	/* We need to check both for a crtc link (meaning that the
10298
	 * encoder is active and trying to read from a pipe) and the
10299
	 * pipe itself being active. */
10300
	bool has_active_crtc = encoder->base.crtc &&
10301
		to_intel_crtc(encoder->base.crtc)->active;
2327 Serge 10302
 
3031 serge 10303
	if (encoder->connectors_active && !has_active_crtc) {
10304
		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10305
			      encoder->base.base.id,
10306
			      drm_get_encoder_name(&encoder->base));
2327 Serge 10307
 
3031 serge 10308
		/* Connector is active, but has no active pipe. This is
10309
		 * fallout from our resume register restoring. Disable
10310
		 * the encoder manually again. */
10311
		if (encoder->base.crtc) {
10312
			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10313
				      encoder->base.base.id,
10314
				      drm_get_encoder_name(&encoder->base));
10315
			encoder->disable(encoder);
10316
		}
2327 Serge 10317
 
3031 serge 10318
		/* Inconsistent output/port/pipe state happens presumably due to
10319
		 * a bug in one of the get_hw_state functions. Or someplace else
10320
		 * in our code, like the register restore mess on resume. Clamp
10321
		 * things to off as a safer default. */
10322
		list_for_each_entry(connector,
10323
				    &dev->mode_config.connector_list,
10324
				    base.head) {
10325
			if (connector->encoder != encoder)
10326
				continue;
2327 Serge 10327
 
3031 serge 10328
			intel_connector_break_all_links(connector);
10329
		}
10330
	}
10331
	/* Enabled encoders without active connectors will be fixed in
10332
	 * the crtc fixup. */
2327 Serge 10333
}
10334
 
3746 Serge 10335
void i915_redisable_vga(struct drm_device *dev)
10336
{
10337
	struct drm_i915_private *dev_priv = dev->dev_private;
10338
	u32 vga_reg = i915_vgacntrl_reg(dev);
10339
 
4104 Serge 10340
	/* This function can be called both from intel_modeset_setup_hw_state or
10341
	 * at a very early point in our resume sequence, where the power well
10342
	 * structures are not yet restored. Since this function is at a very
10343
	 * paranoid "someone might have enabled VGA while we were not looking"
10344
	 * level, just check if the power well is enabled instead of trying to
10345
	 * follow the "don't touch the power well if we don't need it" policy
10346
	 * the rest of the driver uses. */
10347
	if (HAS_POWER_WELL(dev) &&
10348
	    (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10349
		return;
10350
 
3746 Serge 10351
	if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10352
		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10353
		i915_disable_vga(dev);
10354
	}
10355
}
10356
 
4104 Serge 10357
static void intel_modeset_readout_hw_state(struct drm_device *dev)
2332 Serge 10358
{
10359
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 10360
	enum pipe pipe;
10361
	struct intel_crtc *crtc;
10362
	struct intel_encoder *encoder;
10363
	struct intel_connector *connector;
4104 Serge 10364
	int i;
2327 Serge 10365
 
3746 Serge 10366
	list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10367
			    base.head) {
10368
		memset(&crtc->config, 0, sizeof(crtc->config));
2327 Serge 10369
 
3746 Serge 10370
		crtc->active = dev_priv->display.get_pipe_config(crtc,
10371
								 &crtc->config);
2327 Serge 10372
 
3031 serge 10373
		crtc->base.enabled = crtc->active;
2330 Serge 10374
 
3031 serge 10375
		DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10376
			      crtc->base.base.id,
10377
			      crtc->active ? "enabled" : "disabled");
2339 Serge 10378
	}
2332 Serge 10379
 
4104 Serge 10380
	/* FIXME: Smash this into the new shared dpll infrastructure. */
3480 Serge 10381
	if (HAS_DDI(dev))
3243 Serge 10382
		intel_ddi_setup_hw_pll_state(dev);
10383
 
4104 Serge 10384
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10385
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10386
 
10387
		pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10388
		pll->active = 0;
10389
		list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10390
				    base.head) {
10391
			if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10392
				pll->active++;
10393
		}
10394
		pll->refcount = pll->active;
10395
 
10396
		DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10397
			      pll->name, pll->refcount, pll->on);
10398
	}
10399
 
3031 serge 10400
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10401
			    base.head) {
10402
		pipe = 0;
2332 Serge 10403
 
3031 serge 10404
		if (encoder->get_hw_state(encoder, &pipe)) {
4104 Serge 10405
			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10406
			encoder->base.crtc = &crtc->base;
10407
			if (encoder->get_config)
10408
				encoder->get_config(encoder, &crtc->config);
3031 serge 10409
		} else {
10410
			encoder->base.crtc = NULL;
10411
		}
2332 Serge 10412
 
3031 serge 10413
		encoder->connectors_active = false;
10414
		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10415
			      encoder->base.base.id,
10416
			      drm_get_encoder_name(&encoder->base),
10417
			      encoder->base.crtc ? "enabled" : "disabled",
10418
			      pipe);
10419
	}
2332 Serge 10420
 
4104 Serge 10421
	list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10422
			    base.head) {
10423
		if (!crtc->active)
10424
			continue;
10425
		if (dev_priv->display.get_clock)
10426
			dev_priv->display.get_clock(crtc,
10427
						    &crtc->config);
10428
	}
10429
 
3031 serge 10430
	list_for_each_entry(connector, &dev->mode_config.connector_list,
10431
			    base.head) {
10432
		if (connector->get_hw_state(connector)) {
10433
			connector->base.dpms = DRM_MODE_DPMS_ON;
10434
			connector->encoder->connectors_active = true;
10435
			connector->base.encoder = &connector->encoder->base;
10436
		} else {
10437
			connector->base.dpms = DRM_MODE_DPMS_OFF;
10438
			connector->base.encoder = NULL;
10439
		}
10440
		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10441
			      connector->base.base.id,
10442
			      drm_get_connector_name(&connector->base),
10443
			      connector->base.encoder ? "enabled" : "disabled");
2332 Serge 10444
	}
4104 Serge 10445
}
2332 Serge 10446
 
4104 Serge 10447
/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10448
 * and i915 state tracking structures. */
10449
void intel_modeset_setup_hw_state(struct drm_device *dev,
10450
				  bool force_restore)
10451
{
10452
	struct drm_i915_private *dev_priv = dev->dev_private;
10453
	enum pipe pipe;
10454
	struct drm_plane *plane;
10455
	struct intel_crtc *crtc;
10456
	struct intel_encoder *encoder;
10457
	int i;
10458
 
10459
	intel_modeset_readout_hw_state(dev);
10460
 
10461
	/*
10462
	 * Now that we have the config, copy it to each CRTC struct
10463
	 * Note that this could go away if we move to using crtc_config
10464
	 * checking everywhere.
10465
	 */
10466
	list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10467
			    base.head) {
10468
		if (crtc->active && i915_fastboot) {
10469
			intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10470
 
10471
			DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10472
				      crtc->base.base.id);
10473
			drm_mode_debug_printmodeline(&crtc->base.mode);
10474
		}
10475
	}
10476
 
3031 serge 10477
	/* HW state is read out, now we need to sanitize this mess. */
10478
	list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10479
			    base.head) {
10480
		intel_sanitize_encoder(encoder);
2332 Serge 10481
	}
10482
 
3031 serge 10483
	for_each_pipe(pipe) {
10484
		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10485
		intel_sanitize_crtc(crtc);
4104 Serge 10486
		intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
2332 Serge 10487
	}
10488
 
4104 Serge 10489
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10490
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10491
 
10492
		if (!pll->on || pll->active)
10493
			continue;
10494
 
10495
		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10496
 
10497
		pll->disable(dev_priv, pll);
10498
		pll->on = false;
10499
	}
10500
 
3243 Serge 10501
	if (force_restore) {
3746 Serge 10502
		/*
10503
		 * We need to use raw interfaces for restoring state to avoid
10504
		 * checking (bogus) intermediate states.
10505
		 */
3243 Serge 10506
		for_each_pipe(pipe) {
3746 Serge 10507
			struct drm_crtc *crtc =
10508
				dev_priv->pipe_to_crtc_mapping[pipe];
10509
 
10510
			__intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10511
					 crtc->fb);
3243 Serge 10512
		}
3746 Serge 10513
		list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10514
			intel_plane_restore(plane);
3243 Serge 10515
 
3746 Serge 10516
		i915_redisable_vga(dev);
3243 Serge 10517
	} else {
3031 serge 10518
	intel_modeset_update_staged_output_state(dev);
3243 Serge 10519
	}
2332 Serge 10520
 
3031 serge 10521
	intel_modeset_check_state(dev);
3243 Serge 10522
 
10523
	drm_mode_config_reset(dev);
2332 Serge 10524
}
10525
 
3031 serge 10526
void intel_modeset_gem_init(struct drm_device *dev)
2330 Serge 10527
{
3031 serge 10528
	intel_modeset_init_hw(dev);
2330 Serge 10529
 
3031 serge 10530
//   intel_setup_overlay(dev);
2330 Serge 10531
 
4539 Serge 10532
	mutex_lock(&dev->mode_config.mutex);
3243 Serge 10533
	intel_modeset_setup_hw_state(dev, false);
4539 Serge 10534
	mutex_unlock(&dev->mode_config.mutex);
2330 Serge 10535
}
10536
 
3031 serge 10537
void intel_modeset_cleanup(struct drm_device *dev)
2327 Serge 10538
{
3031 serge 10539
#if 0
10540
	struct drm_i915_private *dev_priv = dev->dev_private;
10541
	struct drm_crtc *crtc;
2327 Serge 10542
 
4104 Serge 10543
	/*
10544
	 * Interrupts and polling as the first thing to avoid creating havoc.
10545
	 * Too much stuff here (turning of rps, connectors, ...) would
10546
	 * experience fancy races otherwise.
10547
	 */
10548
	drm_irq_uninstall(dev);
10549
	cancel_work_sync(&dev_priv->hotplug_work);
10550
	/*
10551
	 * Due to the hpd irq storm handling the hotplug work can re-arm the
10552
	 * poll handlers. Hence disable polling after hpd handling is shut down.
10553
	 */
3031 serge 10554
//   drm_kms_helper_poll_fini(dev);
4104 Serge 10555
 
3031 serge 10556
	mutex_lock(&dev->struct_mutex);
2327 Serge 10557
 
3031 serge 10558
//   intel_unregister_dsm_handler();
2327 Serge 10559
 
3031 serge 10560
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10561
		/* Skip inactive CRTCs */
10562
		if (!crtc->fb)
10563
			continue;
2342 Serge 10564
 
3031 serge 10565
		intel_increase_pllclock(crtc);
10566
	}
2342 Serge 10567
 
3031 serge 10568
	intel_disable_fbc(dev);
2342 Serge 10569
 
3031 serge 10570
	intel_disable_gt_powersave(dev);
2342 Serge 10571
 
3031 serge 10572
	ironlake_teardown_rc6(dev);
2327 Serge 10573
 
3031 serge 10574
	mutex_unlock(&dev->struct_mutex);
2327 Serge 10575
 
4104 Serge 10576
	/* flush any delayed tasks or pending work */
10577
	flush_scheduled_work();
2327 Serge 10578
 
4280 Serge 10579
	/* destroy backlight, if any, before the connectors */
10580
	intel_panel_destroy_backlight(dev);
2327 Serge 10581
 
3031 serge 10582
	drm_mode_config_cleanup(dev);
2327 Serge 10583
#endif
10584
}
10585
 
10586
/*
3031 serge 10587
 * Return which encoder is currently attached for connector.
2327 Serge 10588
 */
3031 serge 10589
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
2327 Serge 10590
{
3031 serge 10591
	return &intel_attached_encoder(connector)->base;
10592
}
2327 Serge 10593
 
3031 serge 10594
void intel_connector_attach_encoder(struct intel_connector *connector,
10595
				    struct intel_encoder *encoder)
10596
{
10597
	connector->encoder = encoder;
10598
	drm_mode_connector_attach_encoder(&connector->base,
10599
					  &encoder->base);
2327 Serge 10600
}
10601
 
10602
/*
3031 serge 10603
 * set vga decode state - true == enable VGA decode
2327 Serge 10604
 */
3031 serge 10605
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
2327 Serge 10606
{
2330 Serge 10607
	struct drm_i915_private *dev_priv = dev->dev_private;
4539 Serge 10608
	unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
3031 serge 10609
	u16 gmch_ctrl;
2327 Serge 10610
 
4539 Serge 10611
	pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl);
3031 serge 10612
	if (state)
10613
		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
2330 Serge 10614
	else
3031 serge 10615
		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4539 Serge 10616
	pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl);
3031 serge 10617
	return 0;
2330 Serge 10618
}
10619
 
3031 serge 10620
#ifdef CONFIG_DEBUG_FS
10621
#include 
2327 Serge 10622
 
3031 serge 10623
struct intel_display_error_state {
4104 Serge 10624
 
10625
	u32 power_well_driver;
10626
 
10627
	int num_transcoders;
10628
 
3031 serge 10629
	struct intel_cursor_error_state {
10630
		u32 control;
10631
		u32 position;
10632
		u32 base;
10633
		u32 size;
10634
	} cursor[I915_MAX_PIPES];
2327 Serge 10635
 
3031 serge 10636
	struct intel_pipe_error_state {
10637
		u32 source;
10638
	} pipe[I915_MAX_PIPES];
2327 Serge 10639
 
3031 serge 10640
	struct intel_plane_error_state {
10641
		u32 control;
10642
		u32 stride;
10643
		u32 size;
10644
		u32 pos;
10645
		u32 addr;
10646
		u32 surface;
10647
		u32 tile_offset;
10648
	} plane[I915_MAX_PIPES];
4104 Serge 10649
 
10650
	struct intel_transcoder_error_state {
10651
		enum transcoder cpu_transcoder;
10652
 
10653
		u32 conf;
10654
 
10655
		u32 htotal;
10656
		u32 hblank;
10657
		u32 hsync;
10658
		u32 vtotal;
10659
		u32 vblank;
10660
		u32 vsync;
10661
	} transcoder[4];
3031 serge 10662
};
2327 Serge 10663
 
3031 serge 10664
struct intel_display_error_state *
10665
intel_display_capture_error_state(struct drm_device *dev)
10666
{
10667
	drm_i915_private_t *dev_priv = dev->dev_private;
10668
	struct intel_display_error_state *error;
4104 Serge 10669
	int transcoders[] = {
10670
		TRANSCODER_A,
10671
		TRANSCODER_B,
10672
		TRANSCODER_C,
10673
		TRANSCODER_EDP,
10674
	};
3031 serge 10675
	int i;
2327 Serge 10676
 
4104 Serge 10677
	if (INTEL_INFO(dev)->num_pipes == 0)
10678
		return NULL;
10679
 
3031 serge 10680
	error = kmalloc(sizeof(*error), GFP_ATOMIC);
10681
	if (error == NULL)
10682
		return NULL;
2327 Serge 10683
 
4104 Serge 10684
	if (HAS_POWER_WELL(dev))
10685
		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10686
 
3031 serge 10687
	for_each_pipe(i) {
3746 Serge 10688
		if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
3031 serge 10689
		error->cursor[i].control = I915_READ(CURCNTR(i));
10690
		error->cursor[i].position = I915_READ(CURPOS(i));
10691
		error->cursor[i].base = I915_READ(CURBASE(i));
3746 Serge 10692
		} else {
10693
			error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10694
			error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10695
			error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10696
		}
2327 Serge 10697
 
3031 serge 10698
		error->plane[i].control = I915_READ(DSPCNTR(i));
10699
		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
3746 Serge 10700
		if (INTEL_INFO(dev)->gen <= 3) {
3031 serge 10701
		error->plane[i].size = I915_READ(DSPSIZE(i));
10702
		error->plane[i].pos = I915_READ(DSPPOS(i));
3746 Serge 10703
		}
10704
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
3031 serge 10705
		error->plane[i].addr = I915_READ(DSPADDR(i));
10706
		if (INTEL_INFO(dev)->gen >= 4) {
10707
			error->plane[i].surface = I915_READ(DSPSURF(i));
10708
			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10709
		}
2327 Serge 10710
 
3031 serge 10711
		error->pipe[i].source = I915_READ(PIPESRC(i));
10712
	}
2327 Serge 10713
 
4104 Serge 10714
	error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10715
	if (HAS_DDI(dev_priv->dev))
10716
		error->num_transcoders++; /* Account for eDP. */
10717
 
10718
	for (i = 0; i < error->num_transcoders; i++) {
10719
		enum transcoder cpu_transcoder = transcoders[i];
10720
 
10721
		error->transcoder[i].cpu_transcoder = cpu_transcoder;
10722
 
10723
		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10724
		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10725
		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10726
		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10727
		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10728
		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10729
		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10730
	}
10731
 
10732
	/* In the code above we read the registers without checking if the power
10733
	 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10734
	 * prevent the next I915_WRITE from detecting it and printing an error
10735
	 * message. */
10736
	intel_uncore_clear_errors(dev);
10737
 
3031 serge 10738
	return error;
2330 Serge 10739
}
2327 Serge 10740
 
4104 Serge 10741
#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10742
 
3031 serge 10743
void
4104 Serge 10744
intel_display_print_error_state(struct drm_i915_error_state_buf *m,
3031 serge 10745
				struct drm_device *dev,
10746
				struct intel_display_error_state *error)
2332 Serge 10747
{
3031 serge 10748
	int i;
2330 Serge 10749
 
4104 Serge 10750
	if (!error)
10751
		return;
10752
 
10753
	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10754
	if (HAS_POWER_WELL(dev))
10755
		err_printf(m, "PWR_WELL_CTL2: %08x\n",
10756
			   error->power_well_driver);
3031 serge 10757
	for_each_pipe(i) {
4104 Serge 10758
		err_printf(m, "Pipe [%d]:\n", i);
10759
		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
2332 Serge 10760
 
4104 Serge 10761
		err_printf(m, "Plane [%d]:\n", i);
10762
		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10763
		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
3746 Serge 10764
		if (INTEL_INFO(dev)->gen <= 3) {
4104 Serge 10765
			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10766
			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
3746 Serge 10767
		}
10768
		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
4104 Serge 10769
			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
3031 serge 10770
		if (INTEL_INFO(dev)->gen >= 4) {
4104 Serge 10771
			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10772
			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
3031 serge 10773
		}
2332 Serge 10774
 
4104 Serge 10775
		err_printf(m, "Cursor [%d]:\n", i);
10776
		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10777
		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10778
		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
3031 serge 10779
	}
4104 Serge 10780
 
10781
	for (i = 0; i < error->num_transcoders; i++) {
10782
		err_printf(m, "  CPU transcoder: %c\n",
10783
			   transcoder_name(error->transcoder[i].cpu_transcoder));
10784
		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
10785
		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
10786
		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
10787
		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
10788
		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
10789
		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
10790
		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
10791
	}
2327 Serge 10792
}
3031 serge 10793
#endif