Subversion Repositories Kolibri OS

Rev

Rev 2342 | Rev 3480 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
29
#include 
30
#include 
31
#include 
2326 Serge 32
#include "i915_drv.h"
33
 
34
/** @file i915_gem_tiling.c
35
 *
36
 * Support for managing tiling state of buffer objects.
37
 *
38
 * The idea behind tiling is to increase cache hit rates by rearranging
39
 * pixel data so that a group of pixel accesses are in the same cacheline.
40
 * Performance improvement from doing this on the back/depth buffer are on
41
 * the order of 30%.
42
 *
43
 * Intel architectures make this somewhat more complicated, though, by
44
 * adjustments made to addressing of data when the memory is in interleaved
45
 * mode (matched pairs of DIMMS) to improve memory bandwidth.
46
 * For interleaved memory, the CPU sends every sequential 64 bytes
47
 * to an alternate memory channel so it can get the bandwidth from both.
48
 *
49
 * The GPU also rearranges its accesses for increased bandwidth to interleaved
50
 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
51
 * it does it a little differently, since one walks addresses not just in the
52
 * X direction but also Y.  So, along with alternating channels when bit
53
 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
54
 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
55
 * are common to both the 915 and 965-class hardware.
56
 *
57
 * The CPU also sometimes XORs in higher bits as well, to improve
58
 * bandwidth doing strided access like we do so frequently in graphics.  This
59
 * is called "Channel XOR Randomization" in the MCH documentation.  The result
60
 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
61
 * decode.
62
 *
63
 * All of this bit 6 XORing has an effect on our memory management,
64
 * as we need to make sure that the 3d driver can correctly address object
65
 * contents.
66
 *
67
 * If we don't have interleaved memory, all tiling is safe and no swizzling is
68
 * required.
69
 *
70
 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
71
 * 17 is not just a page offset, so as we page an objet out and back in,
72
 * individual pages in it will have different bit 17 addresses, resulting in
73
 * each 64 bytes being swapped with its neighbor!
74
 *
75
 * Otherwise, if interleaved, we have to tell the 3d driver what the address
76
 * swizzling it needs to do is, since it's writing with the CPU to the pages
77
 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
78
 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
79
 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
80
 * to match what the GPU expects.
81
 */
82
 
83
#define I915_TILING_NONE   0
84
#define I915_TILING_X       1
85
#define I915_TILING_Y       2
86
 
87
#define I915_BIT_6_SWIZZLE_NONE     0
88
#define I915_BIT_6_SWIZZLE_9        1
89
#define I915_BIT_6_SWIZZLE_9_10     2
90
#define I915_BIT_6_SWIZZLE_9_11     3
91
#define I915_BIT_6_SWIZZLE_9_10_11  4
92
/* Not seen by userland */
93
#define I915_BIT_6_SWIZZLE_UNKNOWN  5
94
/* Seen by userland. */
95
#define I915_BIT_6_SWIZZLE_9_17     6
96
#define I915_BIT_6_SWIZZLE_9_10_17  7
97
 
98
 
99
 
100
 
101
/**
102
 * Detects bit 6 swizzling of address lookup between IGD access and CPU
103
 * access through main memory.
104
 */
105
void
106
i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
107
{
108
	drm_i915_private_t *dev_priv = dev->dev_private;
109
	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
110
	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
111
 
3031 serge 112
	if (IS_VALLEYVIEW(dev)) {
2342 Serge 113
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
114
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
3031 serge 115
	} else if (INTEL_INFO(dev)->gen >= 6) {
116
		uint32_t dimm_c0, dimm_c1;
117
		dimm_c0 = I915_READ(MAD_DIMM_C0);
118
		dimm_c1 = I915_READ(MAD_DIMM_C1);
119
		dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
120
		dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
121
		/* Enable swizzling when the channels are populated with
122
		 * identically sized dimms. We don't need to check the 3rd
123
		 * channel because no cpu with gpu attached ships in that
124
		 * configuration. Also, swizzling only makes sense for 2
125
		 * channels anyway. */
126
		if (dimm_c0 == dimm_c1) {
127
			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
128
			swizzle_y = I915_BIT_6_SWIZZLE_9;
129
		} else {
130
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
131
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
132
		}
2342 Serge 133
	} else if (IS_GEN5(dev)) {
2326 Serge 134
		/* On Ironlake whatever DRAM config, GPU always do
135
		 * same swizzling setup.
136
		 */
137
		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
138
		swizzle_y = I915_BIT_6_SWIZZLE_9;
139
	} else if (IS_GEN2(dev)) {
140
		/* As far as we know, the 865 doesn't have these bit 6
141
		 * swizzling issues.
142
		 */
143
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
144
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
3031 serge 145
	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
2326 Serge 146
		uint32_t dcc;
147
 
3031 serge 148
		/* On 9xx chipsets, channel interleave by the CPU is
2326 Serge 149
		 * determined by DCC.  For single-channel, neither the CPU
150
		 * nor the GPU do swizzling.  For dual channel interleaved,
151
		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
152
		 * 9 for Y tiled.  The CPU's interleave is independent, and
153
		 * can be based on either bit 11 (haven't seen this yet) or
154
		 * bit 17 (common).
155
		 */
156
		dcc = I915_READ(DCC);
157
		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
158
		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
159
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
160
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
161
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
162
			break;
163
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
164
			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
165
				/* This is the base swizzling by the GPU for
166
				 * tiled buffers.
167
				 */
168
				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
169
				swizzle_y = I915_BIT_6_SWIZZLE_9;
170
			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
171
				/* Bit 11 swizzling by the CPU in addition. */
172
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
173
				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
174
			} else {
175
				/* Bit 17 swizzling by the CPU in addition. */
176
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
177
				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
178
			}
179
			break;
180
		}
181
		if (dcc == 0xffffffff) {
182
			DRM_ERROR("Couldn't read from MCHBAR.  "
183
				  "Disabling tiling.\n");
184
			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
185
			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
186
		}
187
	} else {
188
		/* The 965, G33, and newer, have a very flexible memory
189
		 * configuration.  It will enable dual-channel mode
190
		 * (interleaving) on as much memory as it can, and the GPU
191
		 * will additionally sometimes enable different bit 6
192
		 * swizzling for tiled objects from the CPU.
193
		 *
194
		 * Here's what I found on the G965:
195
		 *    slot fill         memory size  swizzling
196
		 * 0A   0B   1A   1B    1-ch   2-ch
197
		 * 512  0    0    0     512    0     O
198
		 * 512  0    512  0     16     1008  X
199
		 * 512  0    0    512   16     1008  X
200
		 * 0    512  0    512   16     1008  X
201
		 * 1024 1024 1024 0     2048   1024  O
202
		 *
203
		 * We could probably detect this based on either the DRB
204
		 * matching, which was the case for the swizzling required in
205
		 * the table above, or from the 1-ch value being less than
206
		 * the minimum size of a rank.
207
		 */
208
		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
209
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
210
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
211
		} else {
212
			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
213
			swizzle_y = I915_BIT_6_SWIZZLE_9;
214
		}
215
	}
216
 
217
	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
218
	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
219
}
220
 
221
#if 0
222
/* Check pitch constriants for all chips & tiling formats */
223
static bool
224
i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
225
{
226
	int tile_width;
227
 
228
	/* Linear is always fine */
229
	if (tiling_mode == I915_TILING_NONE)
230
		return true;
231
 
232
	if (IS_GEN2(dev) ||
233
	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
234
		tile_width = 128;
235
	else
236
		tile_width = 512;
237
 
238
	/* check maximum stride & object size */
239
	if (INTEL_INFO(dev)->gen >= 4) {
240
		/* i965 stores the end address of the gtt mapping in the fence
241
		 * reg, so dont bother to check the size */
242
		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
243
			return false;
244
	} else {
245
		if (stride > 8192)
246
			return false;
247
 
248
		if (IS_GEN3(dev)) {
249
			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
250
				return false;
251
		} else {
252
			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
253
				return false;
254
		}
255
	}
256
 
257
	/* 965+ just needs multiples of tile width */
258
	if (INTEL_INFO(dev)->gen >= 4) {
259
		if (stride & (tile_width - 1))
260
			return false;
261
		return true;
262
	}
263
 
264
	/* Pre-965 needs power of two tile widths */
265
	if (stride < tile_width)
266
		return false;
267
 
268
	if (stride & (stride - 1))
269
		return false;
270
 
271
	return true;
272
}
273
 
274
/* Is the current GTT allocation valid for the change in tiling? */
275
static bool
276
i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
277
{
278
	u32 size;
279
 
280
	if (tiling_mode == I915_TILING_NONE)
281
		return true;
282
 
283
	if (INTEL_INFO(obj->base.dev)->gen >= 4)
284
		return true;
285
 
286
	if (INTEL_INFO(obj->base.dev)->gen == 3) {
287
		if (obj->gtt_offset & ~I915_FENCE_START_MASK)
288
			return false;
289
	} else {
290
		if (obj->gtt_offset & ~I830_FENCE_START_MASK)
291
			return false;
292
	}
293
 
294
	/*
295
	 * Previous chips need to be aligned to the size of the smallest
296
	 * fence register that can contain the object.
297
	 */
298
	if (INTEL_INFO(obj->base.dev)->gen == 3)
299
		size = 1024*1024;
300
	else
301
		size = 512*1024;
302
 
303
	while (size < obj->base.size)
304
		size <<= 1;
305
 
306
	if (obj->gtt_space->size != size)
307
		return false;
308
 
309
	if (obj->gtt_offset & (size - 1))
310
		return false;
311
 
312
	return true;
313
}
314
 
315
/**
316
 * Sets the tiling mode of an object, returning the required swizzling of
317
 * bit 6 of addresses in the object.
318
 */
319
int
320
i915_gem_set_tiling(struct drm_device *dev, void *data,
321
		   struct drm_file *file)
322
{
323
	struct drm_i915_gem_set_tiling *args = data;
324
	drm_i915_private_t *dev_priv = dev->dev_private;
325
	struct drm_i915_gem_object *obj;
326
	int ret = 0;
327
 
328
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
329
	if (&obj->base == NULL)
330
		return -ENOENT;
331
 
332
	if (!i915_tiling_ok(dev,
333
			    args->stride, obj->base.size, args->tiling_mode)) {
334
		drm_gem_object_unreference_unlocked(&obj->base);
335
		return -EINVAL;
336
	}
337
 
338
	if (obj->pin_count) {
339
		drm_gem_object_unreference_unlocked(&obj->base);
340
		return -EBUSY;
341
	}
342
 
343
	if (args->tiling_mode == I915_TILING_NONE) {
344
		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
345
		args->stride = 0;
346
	} else {
347
		if (args->tiling_mode == I915_TILING_X)
348
			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
349
		else
350
			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
351
 
352
		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
353
		 * from aborting the application on sw fallbacks to bit 17,
354
		 * and we use the pread/pwrite bit17 paths to swizzle for it.
355
		 * If there was a user that was relying on the swizzle
356
		 * information for drm_intel_bo_map()ed reads/writes this would
357
		 * break it, but we don't have any of those.
358
		 */
359
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
360
			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
361
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
362
			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
363
 
364
		/* If we can't handle the swizzling, make it untiled. */
365
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
366
			args->tiling_mode = I915_TILING_NONE;
367
			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
368
			args->stride = 0;
369
		}
370
	}
371
 
372
	mutex_lock(&dev->struct_mutex);
373
	if (args->tiling_mode != obj->tiling_mode ||
374
	    args->stride != obj->stride) {
375
		/* We need to rebind the object if its current allocation
376
		 * no longer meets the alignment restrictions for its new
377
		 * tiling mode. Otherwise we can just leave it alone, but
3031 serge 378
		 * need to ensure that any fence register is updated before
379
		 * the next fenced (either through the GTT or by the BLT unit
380
		 * on older GPUs) access.
381
		 *
382
		 * After updating the tiling parameters, we then flag whether
383
		 * we need to update an associated fence register. Note this
384
		 * has to also include the unfenced register the GPU uses
385
		 * whilst executing a fenced command for an untiled object.
2326 Serge 386
		 */
387
 
388
		obj->map_and_fenceable =
389
			obj->gtt_space == NULL ||
390
			(obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
391
			 i915_gem_object_fence_ok(obj, args->tiling_mode));
392
 
393
		/* Rebind if we need a change of alignment */
394
		if (!obj->map_and_fenceable) {
395
			u32 unfenced_alignment =
396
				i915_gem_get_unfenced_gtt_alignment(dev,
397
								    obj->base.size,
398
								    args->tiling_mode);
399
			if (obj->gtt_offset & (unfenced_alignment - 1))
400
				ret = i915_gem_object_unbind(obj);
401
		}
402
 
403
		if (ret == 0) {
3031 serge 404
			obj->fence_dirty =
405
				obj->fenced_gpu_access ||
406
				obj->fence_reg != I915_FENCE_REG_NONE;
407
 
2326 Serge 408
			obj->tiling_mode = args->tiling_mode;
409
			obj->stride = args->stride;
3031 serge 410
 
411
			/* Force the fence to be reacquired for GTT access */
412
			i915_gem_release_mmap(obj);
2326 Serge 413
		}
414
	}
415
	/* we have to maintain this existing ABI... */
416
	args->stride = obj->stride;
417
	args->tiling_mode = obj->tiling_mode;
418
	drm_gem_object_unreference(&obj->base);
419
	mutex_unlock(&dev->struct_mutex);
420
 
421
	return ret;
422
}
423
 
424
/**
425
 * Returns the current tiling mode and required bit 6 swizzling for the object.
426
 */
427
int
428
i915_gem_get_tiling(struct drm_device *dev, void *data,
429
		   struct drm_file *file)
430
{
431
	struct drm_i915_gem_get_tiling *args = data;
432
	drm_i915_private_t *dev_priv = dev->dev_private;
433
	struct drm_i915_gem_object *obj;
434
 
435
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
436
	if (&obj->base == NULL)
437
		return -ENOENT;
438
 
439
	mutex_lock(&dev->struct_mutex);
440
 
441
	args->tiling_mode = obj->tiling_mode;
442
	switch (obj->tiling_mode) {
443
	case I915_TILING_X:
444
		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
445
		break;
446
	case I915_TILING_Y:
447
		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
448
		break;
449
	case I915_TILING_NONE:
450
		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
451
		break;
452
	default:
453
		DRM_ERROR("unknown tiling mode\n");
454
	}
455
 
456
	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
457
	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
458
		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
459
	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
460
		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
461
 
462
	drm_gem_object_unreference(&obj->base);
463
	mutex_unlock(&dev->struct_mutex);
464
 
465
	return 0;
466
}
467
 
468
/**
469
 * Swap every 64 bytes of this page around, to account for it having a new
470
 * bit 17 of its physical address and therefore being interpreted differently
471
 * by the GPU.
472
 */
473
static void
474
i915_gem_swizzle_page(struct page *page)
475
{
476
	char temp[64];
477
	char *vaddr;
478
	int i;
479
 
480
	vaddr = kmap(page);
481
 
482
	for (i = 0; i < PAGE_SIZE; i += 128) {
483
		memcpy(temp, &vaddr[i], 64);
484
		memcpy(&vaddr[i], &vaddr[i + 64], 64);
485
		memcpy(&vaddr[i + 64], temp, 64);
486
	}
487
 
488
	kunmap(page);
489
}
490
 
491
void
492
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
493
{
3031 serge 494
	struct scatterlist *sg;
2326 Serge 495
	int page_count = obj->base.size >> PAGE_SHIFT;
496
	int i;
497
 
498
	if (obj->bit_17 == NULL)
499
		return;
500
 
3031 serge 501
	for_each_sg(obj->pages->sgl, sg, page_count, i) {
502
		struct page *page = sg_page(sg);
503
		char new_bit_17 = page_to_phys(page) >> 17;
2326 Serge 504
		if ((new_bit_17 & 0x1) !=
505
		    (test_bit(i, obj->bit_17) != 0)) {
3031 serge 506
			i915_gem_swizzle_page(page);
507
			set_page_dirty(page);
2326 Serge 508
		}
509
	}
510
}
511
 
512
void
513
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
514
{
3031 serge 515
	struct scatterlist *sg;
2326 Serge 516
	int page_count = obj->base.size >> PAGE_SHIFT;
517
	int i;
518
 
519
	if (obj->bit_17 == NULL) {
520
		obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
521
					   sizeof(long), GFP_KERNEL);
522
		if (obj->bit_17 == NULL) {
523
			DRM_ERROR("Failed to allocate memory for bit 17 "
524
				  "record\n");
525
			return;
526
		}
527
	}
528
 
3031 serge 529
	for_each_sg(obj->pages->sgl, sg, page_count, i) {
530
		struct page *page = sg_page(sg);
531
		if (page_to_phys(page) & (1 << 17))
2326 Serge 532
			__set_bit(i, obj->bit_17);
533
		else
534
			__clear_bit(i, obj->bit_17);
535
	}
536
}
537
 
538
#endif