Subversion Repositories Kolibri OS

Rev

Rev 6660 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2332 Serge 1
/*
2
 * Copyright © 2010 Daniel Vetter
5060 serge 3
 * Copyright © 2011-2014 Intel Corporation
2332 Serge 4
 *
5
 * Permission is hereby granted, free of charge, to any person obtaining a
6
 * copy of this software and associated documentation files (the "Software"),
7
 * to deal in the Software without restriction, including without limitation
8
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
 * and/or sell copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following conditions:
11
 *
12
 * The above copyright notice and this permission notice (including the next
13
 * paragraph) shall be included in all copies or substantial portions of the
14
 * Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22
 * IN THE SOFTWARE.
23
 *
24
 */
25
 
5354 serge 26
#include 
3031 serge 27
#include 
28
#include 
2332 Serge 29
#include "i915_drv.h"
6084 serge 30
#include "i915_vgpu.h"
2351 Serge 31
#include "i915_trace.h"
2332 Serge 32
#include "intel_drv.h"
33
 
6084 serge 34
/**
35
 * DOC: Global GTT views
36
 *
37
 * Background and previous state
38
 *
39
 * Historically objects could exists (be bound) in global GTT space only as
40
 * singular instances with a view representing all of the object's backing pages
41
 * in a linear fashion. This view will be called a normal view.
42
 *
43
 * To support multiple views of the same object, where the number of mapped
44
 * pages is not equal to the backing store, or where the layout of the pages
45
 * is not linear, concept of a GGTT view was added.
46
 *
47
 * One example of an alternative view is a stereo display driven by a single
48
 * image. In this case we would have a framebuffer looking like this
49
 * (2x2 pages):
50
 *
51
 *    12
52
 *    34
53
 *
54
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55
 * rendering. In contrast, fed to the display engine would be an alternative
56
 * view which could look something like this:
57
 *
58
 *   1212
59
 *   3434
60
 *
61
 * In this example both the size and layout of pages in the alternative view is
62
 * different from the normal view.
63
 *
64
 * Implementation and usage
65
 *
66
 * GGTT views are implemented using VMAs and are distinguished via enum
67
 * i915_ggtt_view_type and struct i915_ggtt_view.
68
 *
69
 * A new flavour of core GEM functions which work with GGTT bound objects were
70
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
72
 * parameter encapsulating all metadata required to implement a view.
73
 *
74
 * As a helper for callers which are only interested in the normal view,
75
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
76
 * GEM API functions, the ones not taking the view parameter, are operating on,
77
 * or with the normal GGTT view.
78
 *
79
 * Code wanting to add or use a new GGTT view needs to:
80
 *
81
 * 1. Add a new enum with a suitable name.
82
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
83
 * 3. Add support to i915_get_vma_pages().
84
 *
85
 * New views are required to build a scatter-gather table from within the
86
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87
 * exists for the lifetime of an VMA.
88
 *
89
 * Core API is designed to have copy semantics which means that passed in
90
 * struct i915_ggtt_view does not need to be persistent (left around after
91
 * calling the core API functions).
92
 *
93
 */
3243 Serge 94
 
6084 serge 95
static int
96
i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
 
98
const struct i915_ggtt_view i915_ggtt_view_normal;
99
const struct i915_ggtt_view i915_ggtt_view_rotated = {
100
        .type = I915_GGTT_VIEW_ROTATED
101
};
102
 
5354 serge 103
static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
5060 serge 104
{
5354 serge 105
	bool has_aliasing_ppgtt;
106
	bool has_full_ppgtt;
6937 serge 107
	bool has_full_48bit_ppgtt;
3243 Serge 108
 
5354 serge 109
	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
110
	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
6937 serge 111
	has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
3243 Serge 112
 
6084 serge 113
	if (intel_vgpu_active(dev))
114
		has_full_ppgtt = false; /* emulation is too hard */
115
 
5354 serge 116
	/*
117
	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
118
	 * execlists, the sole mechanism available to submit work.
119
	 */
120
	if (INTEL_INFO(dev)->gen < 9 &&
121
	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
5060 serge 122
		return 0;
4104 Serge 123
 
5060 serge 124
	if (enable_ppgtt == 1)
125
		return 1;
4560 Serge 126
 
5354 serge 127
	if (enable_ppgtt == 2 && has_full_ppgtt)
5060 serge 128
		return 2;
4560 Serge 129
 
6937 serge 130
	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
131
		return 3;
132
 
5060 serge 133
#ifdef CONFIG_INTEL_IOMMU
134
	/* Disable ppgtt on SNB if VT-d is on. */
135
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
136
		DRM_INFO("Disabling PPGTT because VT-d is on\n");
137
		return 0;
138
	}
139
#endif
140
 
141
	/* Early VLV doesn't have this */
6937 serge 142
	if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
5060 serge 143
		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
144
		return 0;
145
	}
146
 
6084 serge 147
	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
6937 serge 148
		return has_full_48bit_ppgtt ? 3 : 2;
6084 serge 149
	else
150
		return has_aliasing_ppgtt ? 1 : 0;
5060 serge 151
}
152
 
6084 serge 153
static int ppgtt_bind_vma(struct i915_vma *vma,
154
			  enum i915_cache_level cache_level,
155
			  u32 unused)
156
{
157
	u32 pte_flags = 0;
5060 serge 158
 
6084 serge 159
	/* Currently applicable only to VLV */
160
	if (vma->obj->gt_ro)
161
		pte_flags |= PTE_READ_ONLY;
5060 serge 162
 
6084 serge 163
	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
164
				cache_level, pte_flags);
165
 
166
	return 0;
167
}
168
 
169
static void ppgtt_unbind_vma(struct i915_vma *vma)
4560 Serge 170
{
6084 serge 171
	vma->vm->clear_range(vma->vm,
172
			     vma->node.start,
173
			     vma->obj->base.size,
174
			     true);
175
}
176
 
177
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
178
				  enum i915_cache_level level,
179
				  bool valid)
180
{
181
	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
4560 Serge 182
	pte |= addr;
5060 serge 183
 
184
	switch (level) {
185
	case I915_CACHE_NONE:
186
		pte |= PPAT_UNCACHED_INDEX;
187
		break;
188
	case I915_CACHE_WT:
189
		pte |= PPAT_DISPLAY_ELLC_INDEX;
190
		break;
191
	default:
4560 Serge 192
		pte |= PPAT_CACHED_INDEX;
5060 serge 193
		break;
194
	}
195
 
4560 Serge 196
	return pte;
197
}
198
 
6084 serge 199
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
200
				  const enum i915_cache_level level)
4560 Serge 201
{
6084 serge 202
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
4560 Serge 203
	pde |= addr;
204
	if (level != I915_CACHE_NONE)
205
		pde |= PPAT_CACHED_PDE_INDEX;
206
	else
207
		pde |= PPAT_UNCACHED_INDEX;
208
	return pde;
209
}
210
 
6084 serge 211
#define gen8_pdpe_encode gen8_pde_encode
212
#define gen8_pml4e_encode gen8_pde_encode
213
 
214
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
215
				 enum i915_cache_level level,
216
				 bool valid, u32 unused)
4104 Serge 217
{
6084 serge 218
	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
4104 Serge 219
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
220
 
221
	switch (level) {
222
	case I915_CACHE_L3_LLC:
223
	case I915_CACHE_LLC:
224
		pte |= GEN6_PTE_CACHE_LLC;
225
		break;
226
	case I915_CACHE_NONE:
227
		pte |= GEN6_PTE_UNCACHED;
228
		break;
229
	default:
6084 serge 230
		MISSING_CASE(level);
4104 Serge 231
	}
232
 
233
	return pte;
234
}
235
 
6084 serge 236
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
237
				 enum i915_cache_level level,
238
				 bool valid, u32 unused)
3243 Serge 239
{
6084 serge 240
	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
3243 Serge 241
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
242
 
243
	switch (level) {
4104 Serge 244
	case I915_CACHE_L3_LLC:
245
		pte |= GEN7_PTE_CACHE_L3_LLC;
3243 Serge 246
		break;
247
	case I915_CACHE_LLC:
248
		pte |= GEN6_PTE_CACHE_LLC;
249
		break;
250
	case I915_CACHE_NONE:
6084 serge 251
		pte |= GEN6_PTE_UNCACHED;
3243 Serge 252
		break;
253
	default:
6084 serge 254
		MISSING_CASE(level);
3243 Serge 255
	}
256
 
257
	return pte;
258
}
259
 
6084 serge 260
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
261
				 enum i915_cache_level level,
262
				 bool valid, u32 flags)
3746 Serge 263
{
6084 serge 264
	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
4104 Serge 265
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
266
 
5060 serge 267
	if (!(flags & PTE_READ_ONLY))
6084 serge 268
		pte |= BYT_PTE_WRITEABLE;
4104 Serge 269
 
270
	if (level != I915_CACHE_NONE)
271
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
272
 
273
	return pte;
274
}
275
 
6084 serge 276
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
277
				 enum i915_cache_level level,
278
				 bool valid, u32 unused)
4104 Serge 279
{
6084 serge 280
	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
4104 Serge 281
	pte |= HSW_PTE_ADDR_ENCODE(addr);
282
 
283
	if (level != I915_CACHE_NONE)
284
		pte |= HSW_WB_LLC_AGE3;
285
 
286
	return pte;
287
}
288
 
6084 serge 289
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
290
				  enum i915_cache_level level,
291
				  bool valid, u32 unused)
4104 Serge 292
{
6084 serge 293
	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
4104 Serge 294
	pte |= HSW_PTE_ADDR_ENCODE(addr);
295
 
296
	switch (level) {
297
	case I915_CACHE_NONE:
298
		break;
299
	case I915_CACHE_WT:
4560 Serge 300
		pte |= HSW_WT_ELLC_LLC_AGE3;
4104 Serge 301
		break;
302
	default:
4560 Serge 303
		pte |= HSW_WB_ELLC_LLC_AGE3;
4104 Serge 304
		break;
305
	}
306
 
307
	return pte;
308
}
309
 
6084 serge 310
static int __setup_page_dma(struct drm_device *dev,
311
			    struct i915_page_dma *p, gfp_t flags)
312
{
313
	struct device *device = &dev->pdev->dev;
314
 
315
	p->page = alloc_page(flags);
316
	if (!p->page)
317
		return -ENOMEM;
318
 
319
	p->daddr = page_to_phys(p->page);
320
 
321
	return 0;
322
}
323
 
324
static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
325
{
326
	return __setup_page_dma(dev, p, GFP_KERNEL);
327
}
328
 
329
static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
330
{
331
	if (WARN_ON(!p->page))
332
		return;
333
 
334
	__free_page(p->page);
335
	memset(p, 0, sizeof(*p));
336
}
337
 
338
static void *kmap_page_dma(struct i915_page_dma *p)
339
{
340
	return kmap_atomic(p->page);
341
}
342
 
343
/* We use the flushing unmap only with ppgtt structures:
344
 * page directories, page tables and scratch pages.
345
 */
346
static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
347
{
348
	/* There are only few exceptions for gen >=6. chv and bxt.
349
	 * And we are not sure about the latter so play safe for now.
350
	 */
351
	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
352
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
353
 
354
	kunmap_atomic(vaddr);
355
}
356
 
357
#define kmap_px(px) kmap_page_dma(px_base(px))
358
#define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
359
 
360
#define setup_px(dev, px) setup_page_dma((dev), px_base(px))
361
#define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
362
#define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
363
#define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
364
 
365
static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
366
			  const uint64_t val)
367
{
368
	int i;
369
	uint64_t * const vaddr = kmap_page_dma(p);
370
 
371
	for (i = 0; i < 512; i++)
372
		vaddr[i] = val;
373
 
374
	kunmap_page_dma(dev, vaddr);
375
}
376
 
377
static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
378
			     const uint32_t val32)
379
{
380
	uint64_t v = val32;
381
 
382
	v = v << 32 | val32;
383
 
384
	fill_page_dma(dev, p, v);
385
}
386
 
387
static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
388
{
389
	struct i915_page_scratch *sp;
390
	int ret;
391
 
392
	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
393
	if (sp == NULL)
394
		return ERR_PTR(-ENOMEM);
395
 
396
	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
397
	if (ret) {
398
		kfree(sp);
399
		return ERR_PTR(ret);
400
	}
401
 
402
//   set_pages_uc(px_page(sp), 1);
403
 
404
	return sp;
405
}
406
 
407
static void free_scratch_page(struct drm_device *dev,
408
			      struct i915_page_scratch *sp)
409
{
410
//   set_pages_wb(px_page(sp), 1);
411
 
412
	cleanup_px(dev, sp);
413
	kfree(sp);
414
}
415
 
416
static struct i915_page_table *alloc_pt(struct drm_device *dev)
417
{
418
	struct i915_page_table *pt;
419
	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
420
		GEN8_PTES : GEN6_PTES;
421
	int ret = -ENOMEM;
422
 
423
	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
424
	if (!pt)
425
		return ERR_PTR(-ENOMEM);
426
 
427
	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
428
				GFP_KERNEL);
429
 
430
	if (!pt->used_ptes)
431
		goto fail_bitmap;
432
 
433
	ret = setup_px(dev, pt);
434
	if (ret)
435
		goto fail_page_m;
436
 
437
	return pt;
438
 
439
fail_page_m:
440
	kfree(pt->used_ptes);
441
fail_bitmap:
442
	kfree(pt);
443
 
444
	return ERR_PTR(ret);
445
}
446
 
447
static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
448
{
449
	cleanup_px(dev, pt);
450
	kfree(pt->used_ptes);
451
	kfree(pt);
452
}
453
 
454
static void gen8_initialize_pt(struct i915_address_space *vm,
455
			       struct i915_page_table *pt)
456
{
457
	gen8_pte_t scratch_pte;
458
 
459
	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
460
				      I915_CACHE_LLC, true);
461
 
462
	fill_px(vm->dev, pt, scratch_pte);
463
}
464
 
465
static void gen6_initialize_pt(struct i915_address_space *vm,
466
			       struct i915_page_table *pt)
467
{
468
	gen6_pte_t scratch_pte;
469
 
470
	WARN_ON(px_dma(vm->scratch_page) == 0);
471
 
472
	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
473
				     I915_CACHE_LLC, true, 0);
474
 
475
	fill32_px(vm->dev, pt, scratch_pte);
476
}
477
 
478
static struct i915_page_directory *alloc_pd(struct drm_device *dev)
479
{
480
	struct i915_page_directory *pd;
481
	int ret = -ENOMEM;
482
 
483
	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
484
	if (!pd)
485
		return ERR_PTR(-ENOMEM);
486
 
487
	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
488
				sizeof(*pd->used_pdes), GFP_KERNEL);
489
	if (!pd->used_pdes)
490
		goto fail_bitmap;
491
 
492
	ret = setup_px(dev, pd);
493
	if (ret)
494
		goto fail_page_m;
495
 
496
	return pd;
497
 
498
fail_page_m:
499
	kfree(pd->used_pdes);
500
fail_bitmap:
501
	kfree(pd);
502
 
503
	return ERR_PTR(ret);
504
}
505
 
506
static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
507
{
508
	if (px_page(pd)) {
509
		cleanup_px(dev, pd);
510
		kfree(pd->used_pdes);
511
		kfree(pd);
512
	}
513
}
514
 
515
static void gen8_initialize_pd(struct i915_address_space *vm,
516
			       struct i915_page_directory *pd)
517
{
518
	gen8_pde_t scratch_pde;
519
 
520
	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
521
 
522
	fill_px(vm->dev, pd, scratch_pde);
523
}
524
 
525
static int __pdp_init(struct drm_device *dev,
526
		      struct i915_page_directory_pointer *pdp)
527
{
528
	size_t pdpes = I915_PDPES_PER_PDP(dev);
529
 
530
	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
531
				  sizeof(unsigned long),
532
				  GFP_KERNEL);
533
	if (!pdp->used_pdpes)
534
		return -ENOMEM;
535
 
536
	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
537
				      GFP_KERNEL);
538
	if (!pdp->page_directory) {
539
		kfree(pdp->used_pdpes);
540
		/* the PDP might be the statically allocated top level. Keep it
541
		 * as clean as possible */
542
		pdp->used_pdpes = NULL;
543
		return -ENOMEM;
544
	}
545
 
546
	return 0;
547
}
548
 
549
static void __pdp_fini(struct i915_page_directory_pointer *pdp)
550
{
551
	kfree(pdp->used_pdpes);
552
	kfree(pdp->page_directory);
553
	pdp->page_directory = NULL;
554
}
555
 
556
static struct
557
i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
558
{
559
	struct i915_page_directory_pointer *pdp;
560
	int ret = -ENOMEM;
561
 
562
	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
563
 
564
	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
565
	if (!pdp)
566
		return ERR_PTR(-ENOMEM);
567
 
568
	ret = __pdp_init(dev, pdp);
569
	if (ret)
570
		goto fail_bitmap;
571
 
572
	ret = setup_px(dev, pdp);
573
	if (ret)
574
		goto fail_page_m;
575
 
576
	return pdp;
577
 
578
fail_page_m:
579
	__pdp_fini(pdp);
580
fail_bitmap:
581
	kfree(pdp);
582
 
583
	return ERR_PTR(ret);
584
}
585
 
586
static void free_pdp(struct drm_device *dev,
587
		     struct i915_page_directory_pointer *pdp)
588
{
589
	__pdp_fini(pdp);
590
	if (USES_FULL_48BIT_PPGTT(dev)) {
591
		cleanup_px(dev, pdp);
592
		kfree(pdp);
593
	}
594
}
595
 
596
static void gen8_initialize_pdp(struct i915_address_space *vm,
597
				struct i915_page_directory_pointer *pdp)
598
{
599
	gen8_ppgtt_pdpe_t scratch_pdpe;
600
 
601
	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
602
 
603
	fill_px(vm->dev, pdp, scratch_pdpe);
604
}
605
 
606
static void gen8_initialize_pml4(struct i915_address_space *vm,
607
				 struct i915_pml4 *pml4)
608
{
609
	gen8_ppgtt_pml4e_t scratch_pml4e;
610
 
611
	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
612
					  I915_CACHE_LLC);
613
 
614
	fill_px(vm->dev, pml4, scratch_pml4e);
615
}
616
 
617
static void
618
gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
619
			  struct i915_page_directory_pointer *pdp,
620
			  struct i915_page_directory *pd,
621
			  int index)
622
{
623
	gen8_ppgtt_pdpe_t *page_directorypo;
624
 
625
	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
626
		return;
627
 
628
	page_directorypo = kmap_px(pdp);
629
	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
630
	kunmap_px(ppgtt, page_directorypo);
631
}
632
 
633
static void
634
gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
635
				  struct i915_pml4 *pml4,
636
				  struct i915_page_directory_pointer *pdp,
637
				  int index)
638
{
639
	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
640
 
641
	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
642
	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
643
	kunmap_px(ppgtt, pagemap);
644
}
645
 
4560 Serge 646
/* Broadwell Page Directory Pointer Descriptors */
6084 serge 647
static int gen8_write_pdp(struct drm_i915_gem_request *req,
648
			  unsigned entry,
649
			  dma_addr_t addr)
4560 Serge 650
{
6084 serge 651
	struct intel_engine_cs *ring = req->ring;
4560 Serge 652
	int ret;
653
 
654
	BUG_ON(entry >= 4);
655
 
6084 serge 656
	ret = intel_ring_begin(req, 6);
4560 Serge 657
	if (ret)
658
		return ret;
659
 
660
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
6937 serge 661
	intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(ring, entry));
6084 serge 662
	intel_ring_emit(ring, upper_32_bits(addr));
4560 Serge 663
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
6937 serge 664
	intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(ring, entry));
6084 serge 665
	intel_ring_emit(ring, lower_32_bits(addr));
4560 Serge 666
	intel_ring_advance(ring);
667
 
668
	return 0;
669
}
670
 
6084 serge 671
static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
672
				 struct drm_i915_gem_request *req)
4560 Serge 673
{
5060 serge 674
	int i, ret;
4560 Serge 675
 
6084 serge 676
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
677
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
4560 Serge 678
 
6084 serge 679
		ret = gen8_write_pdp(req, i, pd_daddr);
680
		if (ret)
5060 serge 681
			return ret;
4560 Serge 682
	}
5060 serge 683
 
4560 Serge 684
	return 0;
685
}
686
 
6084 serge 687
static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
688
			      struct drm_i915_gem_request *req)
4560 Serge 689
{
6084 serge 690
	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
691
}
692
 
693
static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
694
				       struct i915_page_directory_pointer *pdp,
695
				       uint64_t start,
696
				       uint64_t length,
697
				       gen8_pte_t scratch_pte)
698
{
4560 Serge 699
	struct i915_hw_ppgtt *ppgtt =
700
		container_of(vm, struct i915_hw_ppgtt, base);
6084 serge 701
	gen8_pte_t *pt_vaddr;
702
	unsigned pdpe = gen8_pdpe_index(start);
703
	unsigned pde = gen8_pde_index(start);
704
	unsigned pte = gen8_pte_index(start);
5060 serge 705
	unsigned num_entries = length >> PAGE_SHIFT;
4560 Serge 706
	unsigned last_pte, i;
707
 
6084 serge 708
	if (WARN_ON(!pdp))
709
		return;
4560 Serge 710
 
711
	while (num_entries) {
6084 serge 712
		struct i915_page_directory *pd;
713
		struct i915_page_table *pt;
4560 Serge 714
 
6084 serge 715
		if (WARN_ON(!pdp->page_directory[pdpe]))
716
			break;
717
 
718
		pd = pdp->page_directory[pdpe];
719
 
720
		if (WARN_ON(!pd->page_table[pde]))
721
			break;
722
 
723
		pt = pd->page_table[pde];
724
 
725
		if (WARN_ON(!px_page(pt)))
726
			break;
727
 
5060 serge 728
		last_pte = pte + num_entries;
6084 serge 729
		if (last_pte > GEN8_PTES)
730
			last_pte = GEN8_PTES;
4560 Serge 731
 
6084 serge 732
		pt_vaddr = kmap_px(pt);
4560 Serge 733
 
5060 serge 734
		for (i = pte; i < last_pte; i++) {
4560 Serge 735
			pt_vaddr[i] = scratch_pte;
5060 serge 736
			num_entries--;
737
		}
4560 Serge 738
 
6084 serge 739
		kunmap_px(ppgtt, pt);
5060 serge 740
 
741
		pte = 0;
6084 serge 742
		if (++pde == I915_PDES) {
743
			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
744
				break;
5060 serge 745
			pde = 0;
746
		}
4560 Serge 747
	}
748
}
749
 
6084 serge 750
static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
751
				   uint64_t start,
752
				   uint64_t length,
753
				   bool use_scratch)
4560 Serge 754
{
755
	struct i915_hw_ppgtt *ppgtt =
756
		container_of(vm, struct i915_hw_ppgtt, base);
6084 serge 757
	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
758
						 I915_CACHE_LLC, use_scratch);
4560 Serge 759
 
6084 serge 760
	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
761
		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
762
					   scratch_pte);
763
	} else {
6937 serge 764
		uint64_t pml4e;
6084 serge 765
		struct i915_page_directory_pointer *pdp;
766
 
6937 serge 767
		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
6084 serge 768
			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
769
						   scratch_pte);
770
		}
771
	}
772
}
773
 
774
static void
775
gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
776
			      struct i915_page_directory_pointer *pdp,
777
			      struct sg_page_iter *sg_iter,
778
			      uint64_t start,
779
			      enum i915_cache_level cache_level)
780
{
781
	struct i915_hw_ppgtt *ppgtt =
782
		container_of(vm, struct i915_hw_ppgtt, base);
783
	gen8_pte_t *pt_vaddr;
784
	unsigned pdpe = gen8_pdpe_index(start);
785
	unsigned pde = gen8_pde_index(start);
786
	unsigned pte = gen8_pte_index(start);
787
 
5354 serge 788
	pt_vaddr = NULL;
4560 Serge 789
 
6084 serge 790
	while (__sg_page_iter_next(sg_iter)) {
791
		if (pt_vaddr == NULL) {
792
			struct i915_page_directory *pd = pdp->page_directory[pdpe];
793
			struct i915_page_table *pt = pd->page_table[pde];
794
			pt_vaddr = kmap_px(pt);
795
		}
4560 Serge 796
 
5060 serge 797
		pt_vaddr[pte] =
6084 serge 798
			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
4560 Serge 799
					cache_level, true);
6084 serge 800
		if (++pte == GEN8_PTES) {
801
			kunmap_px(ppgtt, pt_vaddr);
5354 serge 802
			pt_vaddr = NULL;
6084 serge 803
			if (++pde == I915_PDES) {
804
				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
805
					break;
5060 serge 806
				pde = 0;
807
			}
808
			pte = 0;
4560 Serge 809
		}
810
	}
6084 serge 811
 
812
	if (pt_vaddr)
813
		kunmap_px(ppgtt, pt_vaddr);
814
}
815
 
816
static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
817
				      struct sg_table *pages,
818
				      uint64_t start,
819
				      enum i915_cache_level cache_level,
820
				      u32 unused)
821
{
822
	struct i915_hw_ppgtt *ppgtt =
823
		container_of(vm, struct i915_hw_ppgtt, base);
824
	struct sg_page_iter sg_iter;
825
 
826
	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
827
 
828
	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
829
		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
830
					      cache_level);
831
	} else {
832
		struct i915_page_directory_pointer *pdp;
6937 serge 833
		uint64_t pml4e;
6084 serge 834
		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
835
 
6937 serge 836
		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
6084 serge 837
			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
838
						      start, cache_level);
839
		}
5354 serge 840
	}
4560 Serge 841
}
842
 
6084 serge 843
static void gen8_free_page_tables(struct drm_device *dev,
844
				  struct i915_page_directory *pd)
4560 Serge 845
{
5060 serge 846
	int i;
847
 
6084 serge 848
	if (!px_page(pd))
5060 serge 849
		return;
850
 
6084 serge 851
	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
852
		if (WARN_ON(!pd->page_table[i]))
853
			continue;
854
 
855
		free_pt(dev, pd->page_table[i]);
856
		pd->page_table[i] = NULL;
857
	}
5060 serge 858
}
859
 
6084 serge 860
static int gen8_init_scratch(struct i915_address_space *vm)
5060 serge 861
{
6084 serge 862
	struct drm_device *dev = vm->dev;
863
 
864
	vm->scratch_page = alloc_scratch_page(dev);
865
	if (IS_ERR(vm->scratch_page))
866
		return PTR_ERR(vm->scratch_page);
867
 
868
	vm->scratch_pt = alloc_pt(dev);
869
	if (IS_ERR(vm->scratch_pt)) {
870
		free_scratch_page(dev, vm->scratch_page);
871
		return PTR_ERR(vm->scratch_pt);
872
	}
873
 
874
	vm->scratch_pd = alloc_pd(dev);
875
	if (IS_ERR(vm->scratch_pd)) {
876
		free_pt(dev, vm->scratch_pt);
877
		free_scratch_page(dev, vm->scratch_page);
878
		return PTR_ERR(vm->scratch_pd);
879
	}
880
 
881
	if (USES_FULL_48BIT_PPGTT(dev)) {
882
		vm->scratch_pdp = alloc_pdp(dev);
883
		if (IS_ERR(vm->scratch_pdp)) {
884
			free_pd(dev, vm->scratch_pd);
885
			free_pt(dev, vm->scratch_pt);
886
			free_scratch_page(dev, vm->scratch_page);
887
			return PTR_ERR(vm->scratch_pdp);
888
		}
889
	}
890
 
891
	gen8_initialize_pt(vm, vm->scratch_pt);
892
	gen8_initialize_pd(vm, vm->scratch_pd);
893
	if (USES_FULL_48BIT_PPGTT(dev))
894
		gen8_initialize_pdp(vm, vm->scratch_pdp);
895
 
896
	return 0;
897
}
898
 
899
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
900
{
901
	enum vgt_g2v_type msg;
902
	struct drm_device *dev = ppgtt->base.dev;
903
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 904
	int i;
905
 
6084 serge 906
	if (USES_FULL_48BIT_PPGTT(dev)) {
907
		u64 daddr = px_dma(&ppgtt->pml4);
908
 
6937 serge 909
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
910
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
6084 serge 911
 
912
		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
913
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
914
	} else {
915
		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
916
			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
917
 
6937 serge 918
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
919
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
6084 serge 920
		}
921
 
922
		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
923
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
5060 serge 924
	}
925
 
6084 serge 926
	I915_WRITE(vgtif_reg(g2v_notify), msg);
927
 
928
	return 0;
5060 serge 929
}
930
 
6084 serge 931
static void gen8_free_scratch(struct i915_address_space *vm)
5060 serge 932
{
6084 serge 933
	struct drm_device *dev = vm->dev;
4560 Serge 934
 
6084 serge 935
	if (USES_FULL_48BIT_PPGTT(dev))
936
		free_pdp(dev, vm->scratch_pdp);
937
	free_pd(dev, vm->scratch_pd);
938
	free_pt(dev, vm->scratch_pt);
939
	free_scratch_page(dev, vm->scratch_page);
940
}
941
 
942
static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
943
				    struct i915_page_directory_pointer *pdp)
944
{
945
	int i;
946
 
947
	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
948
		if (WARN_ON(!pdp->page_directory[i]))
5060 serge 949
			continue;
4560 Serge 950
 
6084 serge 951
		gen8_free_page_tables(dev, pdp->page_directory[i]);
952
		free_pd(dev, pdp->page_directory[i]);
953
	}
4560 Serge 954
 
6084 serge 955
	free_pdp(dev, pdp);
956
}
957
 
958
static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
959
{
960
	int i;
961
 
962
	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
963
		if (WARN_ON(!ppgtt->pml4.pdps[i]))
964
			continue;
965
 
966
		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
5060 serge 967
	}
6084 serge 968
 
969
	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
5060 serge 970
}
4560 Serge 971
 
5060 serge 972
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
973
{
974
	struct i915_hw_ppgtt *ppgtt =
975
		container_of(vm, struct i915_hw_ppgtt, base);
976
 
6084 serge 977
	if (intel_vgpu_active(vm->dev))
978
		gen8_ppgtt_notify_vgt(ppgtt, false);
979
 
980
	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
981
		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
982
	else
983
		gen8_ppgtt_cleanup_4lvl(ppgtt);
984
 
985
	gen8_free_scratch(vm);
5060 serge 986
}
987
 
6084 serge 988
/**
989
 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
990
 * @vm:	Master vm structure.
991
 * @pd:	Page directory for this address range.
992
 * @start:	Starting virtual address to begin allocations.
993
 * @length:	Size of the allocations.
994
 * @new_pts:	Bitmap set by function with new allocations. Likely used by the
995
 *		caller to free on error.
996
 *
997
 * Allocate the required number of page tables. Extremely similar to
998
 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
999
 * the page directory boundary (instead of the page directory pointer). That
1000
 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1001
 * possible, and likely that the caller will need to use multiple calls of this
1002
 * function to achieve the appropriate allocation.
1003
 *
1004
 * Return: 0 if success; negative error code otherwise.
1005
 */
1006
static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1007
				     struct i915_page_directory *pd,
1008
				     uint64_t start,
1009
				     uint64_t length,
1010
				     unsigned long *new_pts)
5060 serge 1011
{
6084 serge 1012
	struct drm_device *dev = vm->dev;
1013
	struct i915_page_table *pt;
1014
	uint32_t pde;
5060 serge 1015
 
6937 serge 1016
	gen8_for_each_pde(pt, pd, start, length, pde) {
6084 serge 1017
		/* Don't reallocate page tables */
1018
		if (test_bit(pde, pd->used_pdes)) {
1019
			/* Scratch is never allocated this way */
1020
			WARN_ON(pt == vm->scratch_pt);
1021
			continue;
1022
		}
5060 serge 1023
 
6084 serge 1024
		pt = alloc_pt(dev);
1025
		if (IS_ERR(pt))
1026
			goto unwind_out;
5060 serge 1027
 
6084 serge 1028
		gen8_initialize_pt(vm, pt);
1029
		pd->page_table[pde] = pt;
1030
		__set_bit(pde, new_pts);
1031
		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1032
	}
5060 serge 1033
 
6084 serge 1034
	return 0;
1035
 
1036
unwind_out:
1037
	for_each_set_bit(pde, new_pts, I915_PDES)
1038
		free_pt(dev, pd->page_table[pde]);
1039
 
1040
	return -ENOMEM;
5060 serge 1041
}
1042
 
6084 serge 1043
/**
1044
 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1045
 * @vm:	Master vm structure.
1046
 * @pdp:	Page directory pointer for this address range.
1047
 * @start:	Starting virtual address to begin allocations.
1048
 * @length:	Size of the allocations.
1049
 * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1050
 *		caller to free on error.
1051
 *
1052
 * Allocate the required number of page directories starting at the pde index of
1053
 * @start, and ending at the pde index @start + @length. This function will skip
1054
 * over already allocated page directories within the range, and only allocate
1055
 * new ones, setting the appropriate pointer within the pdp as well as the
1056
 * correct position in the bitmap @new_pds.
1057
 *
1058
 * The function will only allocate the pages within the range for a give page
1059
 * directory pointer. In other words, if @start + @length straddles a virtually
1060
 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1061
 * required by the caller, This is not currently possible, and the BUG in the
1062
 * code will prevent it.
1063
 *
1064
 * Return: 0 if success; negative error code otherwise.
1065
 */
1066
static int
1067
gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1068
				  struct i915_page_directory_pointer *pdp,
1069
				  uint64_t start,
1070
				  uint64_t length,
1071
				  unsigned long *new_pds)
5060 serge 1072
{
6084 serge 1073
	struct drm_device *dev = vm->dev;
1074
	struct i915_page_directory *pd;
1075
	uint32_t pdpe;
1076
	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
5060 serge 1077
 
6084 serge 1078
	WARN_ON(!bitmap_empty(new_pds, pdpes));
1079
 
6937 serge 1080
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
6084 serge 1081
		if (test_bit(pdpe, pdp->used_pdpes))
1082
			continue;
1083
 
1084
		pd = alloc_pd(dev);
1085
		if (IS_ERR(pd))
5060 serge 1086
			goto unwind_out;
6084 serge 1087
 
1088
		gen8_initialize_pd(vm, pd);
1089
		pdp->page_directory[pdpe] = pd;
1090
		__set_bit(pdpe, new_pds);
1091
		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
4560 Serge 1092
	}
1093
 
5060 serge 1094
	return 0;
1095
 
1096
unwind_out:
6084 serge 1097
	for_each_set_bit(pdpe, new_pds, pdpes)
1098
		free_pd(dev, pdp->page_directory[pdpe]);
5060 serge 1099
 
6084 serge 1100
	return -ENOMEM;
4560 Serge 1101
}
1102
 
6084 serge 1103
/**
1104
 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1105
 * @vm:	Master vm structure.
1106
 * @pml4:	Page map level 4 for this address range.
1107
 * @start:	Starting virtual address to begin allocations.
1108
 * @length:	Size of the allocations.
1109
 * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1110
 *		caller to free on error.
1111
 *
1112
 * Allocate the required number of page directory pointers. Extremely similar to
1113
 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1114
 * The main difference is here we are limited by the pml4 boundary (instead of
1115
 * the page directory pointer).
1116
 *
1117
 * Return: 0 if success; negative error code otherwise.
1118
 */
1119
static int
1120
gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1121
				  struct i915_pml4 *pml4,
1122
				  uint64_t start,
1123
				  uint64_t length,
1124
				  unsigned long *new_pdps)
5060 serge 1125
{
6084 serge 1126
	struct drm_device *dev = vm->dev;
1127
	struct i915_page_directory_pointer *pdp;
1128
	uint32_t pml4e;
5060 serge 1129
 
6084 serge 1130
	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1131
 
6937 serge 1132
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
6084 serge 1133
		if (!test_bit(pml4e, pml4->used_pml4es)) {
1134
			pdp = alloc_pdp(dev);
1135
			if (IS_ERR(pdp))
1136
				goto unwind_out;
1137
 
1138
			gen8_initialize_pdp(vm, pdp);
1139
			pml4->pdps[pml4e] = pdp;
1140
			__set_bit(pml4e, new_pdps);
1141
			trace_i915_page_directory_pointer_entry_alloc(vm,
1142
								      pml4e,
1143
								      start,
1144
								      GEN8_PML4E_SHIFT);
5060 serge 1145
		}
6084 serge 1146
	}
5060 serge 1147
 
1148
	return 0;
6084 serge 1149
 
1150
unwind_out:
1151
	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1152
		free_pdp(dev, pml4->pdps[pml4e]);
1153
 
1154
	return -ENOMEM;
5060 serge 1155
}
1156
 
6084 serge 1157
static void
1158
free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
5060 serge 1159
{
6084 serge 1160
	kfree(new_pts);
1161
	kfree(new_pds);
1162
}
1163
 
1164
/* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1165
 * of these are based on the number of PDPEs in the system.
1166
 */
1167
static
1168
int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1169
					 unsigned long **new_pts,
1170
					 uint32_t pdpes)
1171
{
1172
	unsigned long *pds;
1173
	unsigned long *pts;
1174
 
1175
	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1176
	if (!pds)
5060 serge 1177
		return -ENOMEM;
1178
 
6084 serge 1179
	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1180
		      GFP_TEMPORARY);
1181
	if (!pts)
1182
		goto err_out;
5060 serge 1183
 
6084 serge 1184
	*new_pds = pds;
1185
	*new_pts = pts;
1186
 
5060 serge 1187
	return 0;
6084 serge 1188
 
1189
err_out:
1190
	free_gen8_temp_bitmaps(pds, pts);
1191
	return -ENOMEM;
5060 serge 1192
}
1193
 
6084 serge 1194
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1195
 * the page table structures, we mark them dirty so that
1196
 * context switching/execlist queuing code takes extra steps
1197
 * to ensure that tlbs are flushed.
1198
 */
1199
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
5060 serge 1200
{
6084 serge 1201
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1202
}
1203
 
1204
static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1205
				    struct i915_page_directory_pointer *pdp,
1206
				    uint64_t start,
1207
				    uint64_t length)
1208
{
1209
	struct i915_hw_ppgtt *ppgtt =
1210
		container_of(vm, struct i915_hw_ppgtt, base);
1211
	unsigned long *new_page_dirs, *new_page_tables;
1212
	struct drm_device *dev = vm->dev;
1213
	struct i915_page_directory *pd;
1214
	const uint64_t orig_start = start;
1215
	const uint64_t orig_length = length;
1216
	uint32_t pdpe;
1217
	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
5060 serge 1218
	int ret;
1219
 
6084 serge 1220
	/* Wrap is never okay since we can only represent 48b, and we don't
1221
	 * actually use the other side of the canonical address space.
1222
	 */
1223
	if (WARN_ON(start + length < start))
1224
		return -ENODEV;
1225
 
1226
	if (WARN_ON(start + length > vm->total))
1227
		return -ENODEV;
1228
 
1229
	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
5060 serge 1230
	if (ret)
1231
		return ret;
1232
 
6084 serge 1233
	/* Do the allocations first so we can easily bail out */
1234
	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1235
						new_page_dirs);
5060 serge 1236
	if (ret) {
6084 serge 1237
		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
5060 serge 1238
		return ret;
1239
	}
1240
 
6084 serge 1241
	/* For every page directory referenced, allocate page tables */
6937 serge 1242
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
6084 serge 1243
		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1244
						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1245
		if (ret)
1246
			goto err_out;
1247
	}
5060 serge 1248
 
6084 serge 1249
	start = orig_start;
1250
	length = orig_length;
5060 serge 1251
 
6084 serge 1252
	/* Allocations have completed successfully, so set the bitmaps, and do
1253
	 * the mappings. */
6937 serge 1254
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
6084 serge 1255
		gen8_pde_t *const page_directory = kmap_px(pd);
1256
		struct i915_page_table *pt;
1257
		uint64_t pd_len = length;
1258
		uint64_t pd_start = start;
1259
		uint32_t pde;
1260
 
1261
		/* Every pd should be allocated, we just did that above. */
1262
		WARN_ON(!pd);
1263
 
6937 serge 1264
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
6084 serge 1265
			/* Same reasoning as pd */
1266
			WARN_ON(!pt);
1267
			WARN_ON(!pd_len);
1268
			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1269
 
1270
			/* Set our used ptes within the page table */
1271
			bitmap_set(pt->used_ptes,
1272
				   gen8_pte_index(pd_start),
1273
				   gen8_pte_count(pd_start, pd_len));
1274
 
1275
			/* Our pde is now pointing to the pagetable, pt */
1276
			__set_bit(pde, pd->used_pdes);
1277
 
1278
			/* Map the PDE to the page table */
1279
			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1280
							      I915_CACHE_LLC);
1281
			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1282
							gen8_pte_index(start),
1283
							gen8_pte_count(start, length),
1284
							GEN8_PTES);
1285
 
1286
			/* NB: We haven't yet mapped ptes to pages. At this
1287
			 * point we're still relying on insert_entries() */
1288
		}
1289
 
1290
		kunmap_px(ppgtt, page_directory);
1291
		__set_bit(pdpe, pdp->used_pdpes);
1292
		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1293
	}
1294
 
1295
	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1296
	mark_tlbs_dirty(ppgtt);
1297
	return 0;
1298
 
1299
err_out:
1300
	while (pdpe--) {
6937 serge 1301
		unsigned long temp;
1302
 
6084 serge 1303
		for_each_set_bit(temp, new_page_tables + pdpe *
1304
				BITS_TO_LONGS(I915_PDES), I915_PDES)
1305
			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1306
	}
1307
 
1308
	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1309
		free_pd(dev, pdp->page_directory[pdpe]);
1310
 
1311
	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1312
	mark_tlbs_dirty(ppgtt);
5060 serge 1313
	return ret;
1314
}
1315
 
6084 serge 1316
static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1317
				    struct i915_pml4 *pml4,
1318
				    uint64_t start,
1319
				    uint64_t length)
5060 serge 1320
{
6084 serge 1321
	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1322
	struct i915_hw_ppgtt *ppgtt =
1323
			container_of(vm, struct i915_hw_ppgtt, base);
1324
	struct i915_page_directory_pointer *pdp;
6937 serge 1325
	uint64_t pml4e;
6084 serge 1326
	int ret = 0;
5060 serge 1327
 
6084 serge 1328
	/* Do the pml4 allocations first, so we don't need to track the newly
1329
	 * allocated tables below the pdp */
1330
	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
5060 serge 1331
 
6084 serge 1332
	/* The pagedirectory and pagetable allocations are done in the shared 3
1333
	 * and 4 level code. Just allocate the pdps.
1334
	 */
1335
	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1336
						new_pdps);
1337
	if (ret)
1338
		return ret;
5060 serge 1339
 
6084 serge 1340
	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1341
	     "The allocation has spanned more than 512GB. "
1342
	     "It is highly likely this is incorrect.");
5060 serge 1343
 
6937 serge 1344
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
6084 serge 1345
		WARN_ON(!pdp);
1346
 
1347
		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1348
		if (ret)
1349
			goto err_out;
1350
 
1351
		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1352
	}
1353
 
1354
	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1355
		  GEN8_PML4ES_PER_PML4);
1356
 
5060 serge 1357
	return 0;
6084 serge 1358
 
1359
err_out:
1360
	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1361
		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1362
 
1363
	return ret;
5060 serge 1364
}
1365
 
6084 serge 1366
static int gen8_alloc_va_range(struct i915_address_space *vm,
1367
			       uint64_t start, uint64_t length)
5060 serge 1368
{
6084 serge 1369
	struct i915_hw_ppgtt *ppgtt =
1370
		container_of(vm, struct i915_hw_ppgtt, base);
1371
 
1372
	if (USES_FULL_48BIT_PPGTT(vm->dev))
1373
		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1374
	else
1375
		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1376
}
1377
 
1378
static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1379
			  uint64_t start, uint64_t length,
1380
			  gen8_pte_t scratch_pte,
1381
			  struct seq_file *m)
1382
{
1383
	struct i915_page_directory *pd;
1384
	uint32_t pdpe;
1385
 
6937 serge 1386
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
6084 serge 1387
		struct i915_page_table *pt;
1388
		uint64_t pd_len = length;
1389
		uint64_t pd_start = start;
1390
		uint32_t pde;
1391
 
1392
		if (!test_bit(pdpe, pdp->used_pdpes))
1393
			continue;
1394
 
1395
		seq_printf(m, "\tPDPE #%d\n", pdpe);
6937 serge 1396
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
6084 serge 1397
			uint32_t  pte;
1398
			gen8_pte_t *pt_vaddr;
1399
 
1400
			if (!test_bit(pde, pd->used_pdes))
1401
				continue;
1402
 
1403
			pt_vaddr = kmap_px(pt);
1404
			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1405
				uint64_t va =
1406
					(pdpe << GEN8_PDPE_SHIFT) |
1407
					(pde << GEN8_PDE_SHIFT) |
1408
					(pte << GEN8_PTE_SHIFT);
1409
				int i;
1410
				bool found = false;
1411
 
1412
				for (i = 0; i < 4; i++)
1413
					if (pt_vaddr[pte + i] != scratch_pte)
1414
						found = true;
1415
				if (!found)
1416
					continue;
1417
 
1418
				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1419
				for (i = 0; i < 4; i++) {
1420
					if (pt_vaddr[pte + i] != scratch_pte)
1421
						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1422
					else
1423
						seq_puts(m, "  SCRATCH ");
1424
				}
1425
				seq_puts(m, "\n");
1426
			}
1427
			/* don't use kunmap_px, it could trigger
1428
			 * an unnecessary flush.
1429
			 */
1430
			kunmap_atomic(pt_vaddr);
1431
		}
1432
	}
1433
}
1434
 
1435
static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1436
{
1437
	struct i915_address_space *vm = &ppgtt->base;
1438
	uint64_t start = ppgtt->base.start;
1439
	uint64_t length = ppgtt->base.total;
1440
	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1441
						 I915_CACHE_LLC, true);
1442
 
1443
	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1444
		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1445
	} else {
6937 serge 1446
		uint64_t pml4e;
6084 serge 1447
		struct i915_pml4 *pml4 = &ppgtt->pml4;
1448
		struct i915_page_directory_pointer *pdp;
1449
 
6937 serge 1450
		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
6084 serge 1451
			if (!test_bit(pml4e, pml4->used_pml4es))
1452
				continue;
1453
 
1454
			seq_printf(m, "    PML4E #%llu\n", pml4e);
1455
			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1456
		}
1457
	}
1458
}
1459
 
1460
static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1461
{
1462
	unsigned long *new_page_dirs, *new_page_tables;
1463
	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
5060 serge 1464
	int ret;
1465
 
6084 serge 1466
	/* We allocate temp bitmap for page tables for no gain
1467
	 * but as this is for init only, lets keep the things simple
1468
	 */
1469
	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1470
	if (ret)
1471
		return ret;
5060 serge 1472
 
6084 serge 1473
	/* Allocate for all pdps regardless of how the ppgtt
1474
	 * was defined.
1475
	 */
1476
	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1477
						0, 1ULL << 32,
1478
						new_page_dirs);
1479
	if (!ret)
1480
		*ppgtt->pdp.used_pdpes = *new_page_dirs;
5060 serge 1481
 
6084 serge 1482
	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1483
 
1484
	return ret;
5060 serge 1485
}
1486
 
6084 serge 1487
/*
5060 serge 1488
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1489
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1490
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1491
 * space.
4560 Serge 1492
 *
5060 serge 1493
 */
6084 serge 1494
static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
4560 Serge 1495
{
6084 serge 1496
	int ret;
4560 Serge 1497
 
6084 serge 1498
	ret = gen8_init_scratch(&ppgtt->base);
5060 serge 1499
	if (ret)
1500
		return ret;
4560 Serge 1501
 
6084 serge 1502
	ppgtt->base.start = 0;
1503
	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1504
	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1505
	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1506
	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1507
	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1508
	ppgtt->base.bind_vma = ppgtt_bind_vma;
1509
	ppgtt->debug_dump = gen8_dump_ppgtt;
1510
 
1511
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1512
		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
5060 serge 1513
		if (ret)
6084 serge 1514
			goto free_scratch;
4560 Serge 1515
 
6084 serge 1516
		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1517
 
1518
		ppgtt->base.total = 1ULL << 48;
1519
		ppgtt->switch_mm = gen8_48b_mm_switch;
1520
	} else {
1521
		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1522
		if (ret)
1523
			goto free_scratch;
1524
 
1525
		ppgtt->base.total = 1ULL << 32;
1526
		ppgtt->switch_mm = gen8_legacy_mm_switch;
1527
		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1528
							      0, 0,
1529
							      GEN8_PML4E_SHIFT);
1530
 
1531
		if (intel_vgpu_active(ppgtt->base.dev)) {
1532
			ret = gen8_preallocate_top_level_pdps(ppgtt);
5060 serge 1533
			if (ret)
6084 serge 1534
				goto free_scratch;
4560 Serge 1535
		}
1536
	}
1537
 
6084 serge 1538
	if (intel_vgpu_active(ppgtt->base.dev))
1539
		gen8_ppgtt_notify_vgt(ppgtt, true);
4560 Serge 1540
 
1541
	return 0;
1542
 
6084 serge 1543
free_scratch:
1544
	gen8_free_scratch(&ppgtt->base);
4560 Serge 1545
	return ret;
1546
}
1547
 
6084 serge 1548
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
4104 Serge 1549
{
6084 serge 1550
	struct i915_address_space *vm = &ppgtt->base;
1551
	struct i915_page_table *unused;
1552
	gen6_pte_t scratch_pte;
3746 Serge 1553
	uint32_t pd_entry;
6084 serge 1554
	uint32_t  pte, pde, temp;
1555
	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
3746 Serge 1556
 
6084 serge 1557
	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1558
				     I915_CACHE_LLC, true, 0);
3746 Serge 1559
 
6084 serge 1560
	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1561
		u32 expected;
1562
		gen6_pte_t *pt_vaddr;
1563
		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1564
		pd_entry = readl(ppgtt->pd_addr + pde);
1565
		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
3746 Serge 1566
 
6084 serge 1567
		if (pd_entry != expected)
1568
			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1569
				   pde,
1570
				   pd_entry,
1571
				   expected);
1572
		seq_printf(m, "\tPDE: %x\n", pd_entry);
1573
 
1574
		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1575
 
1576
		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1577
			unsigned long va =
1578
				(pde * PAGE_SIZE * GEN6_PTES) +
1579
				(pte * PAGE_SIZE);
1580
			int i;
1581
			bool found = false;
1582
			for (i = 0; i < 4; i++)
1583
				if (pt_vaddr[pte + i] != scratch_pte)
1584
					found = true;
1585
			if (!found)
1586
				continue;
1587
 
1588
			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1589
			for (i = 0; i < 4; i++) {
1590
				if (pt_vaddr[pte + i] != scratch_pte)
1591
					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1592
				else
1593
					seq_puts(m, "  SCRATCH ");
1594
			}
1595
			seq_puts(m, "\n");
1596
		}
1597
		kunmap_px(ppgtt, pt_vaddr);
3746 Serge 1598
	}
4104 Serge 1599
}
3746 Serge 1600
 
6084 serge 1601
/* Write pde (index) from the page directory @pd to the page table @pt */
1602
static void gen6_write_pde(struct i915_page_directory *pd,
1603
			    const int pde, struct i915_page_table *pt)
1604
{
1605
	/* Caller needs to make sure the write completes if necessary */
1606
	struct i915_hw_ppgtt *ppgtt =
1607
		container_of(pd, struct i915_hw_ppgtt, pd);
1608
	u32 pd_entry;
1609
 
1610
	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1611
	pd_entry |= GEN6_PDE_VALID;
1612
 
1613
	writel(pd_entry, ppgtt->pd_addr + pde);
1614
}
1615
 
1616
/* Write all the page tables found in the ppgtt structure to incrementing page
1617
 * directories. */
1618
static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1619
				  struct i915_page_directory *pd,
1620
				  uint32_t start, uint32_t length)
1621
{
1622
	struct i915_page_table *pt;
1623
	uint32_t pde, temp;
1624
 
1625
	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1626
		gen6_write_pde(pd, pde, pt);
1627
 
1628
	/* Make sure write is complete before other code can use this page
1629
	 * table. Also require for WC mapped PTEs */
1630
	readl(dev_priv->gtt.gsm);
1631
}
1632
 
5060 serge 1633
static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
4104 Serge 1634
{
6084 serge 1635
	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
4104 Serge 1636
 
6084 serge 1637
	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
5060 serge 1638
}
4104 Serge 1639
 
5060 serge 1640
static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
6084 serge 1641
			 struct drm_i915_gem_request *req)
5060 serge 1642
{
6084 serge 1643
	struct intel_engine_cs *ring = req->ring;
5060 serge 1644
	int ret;
3746 Serge 1645
 
5060 serge 1646
	/* NB: TLBs must be flushed and invalidated before a switch */
6084 serge 1647
	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
5060 serge 1648
	if (ret)
1649
		return ret;
3746 Serge 1650
 
6084 serge 1651
	ret = intel_ring_begin(req, 6);
5060 serge 1652
	if (ret)
1653
		return ret;
3746 Serge 1654
 
5060 serge 1655
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
6937 serge 1656
	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
5060 serge 1657
	intel_ring_emit(ring, PP_DIR_DCLV_2G);
6937 serge 1658
	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
5060 serge 1659
	intel_ring_emit(ring, get_pd_offset(ppgtt));
1660
	intel_ring_emit(ring, MI_NOOP);
1661
	intel_ring_advance(ring);
1662
 
1663
	return 0;
1664
}
1665
 
6084 serge 1666
static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1667
			  struct drm_i915_gem_request *req)
1668
{
1669
	struct intel_engine_cs *ring = req->ring;
1670
	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1671
 
1672
	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1673
	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1674
	return 0;
1675
}
1676
 
5060 serge 1677
static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
6084 serge 1678
			  struct drm_i915_gem_request *req)
5060 serge 1679
{
6084 serge 1680
	struct intel_engine_cs *ring = req->ring;
5060 serge 1681
	int ret;
1682
 
1683
	/* NB: TLBs must be flushed and invalidated before a switch */
6084 serge 1684
	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
5060 serge 1685
	if (ret)
1686
		return ret;
1687
 
6084 serge 1688
	ret = intel_ring_begin(req, 6);
5060 serge 1689
	if (ret)
1690
		return ret;
1691
 
1692
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
6937 serge 1693
	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
5060 serge 1694
	intel_ring_emit(ring, PP_DIR_DCLV_2G);
6937 serge 1695
	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
5060 serge 1696
	intel_ring_emit(ring, get_pd_offset(ppgtt));
1697
	intel_ring_emit(ring, MI_NOOP);
1698
	intel_ring_advance(ring);
1699
 
1700
	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1701
	if (ring->id != RCS) {
6084 serge 1702
		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
5060 serge 1703
		if (ret)
1704
			return ret;
1705
	}
1706
 
1707
	return 0;
1708
}
1709
 
1710
static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
6084 serge 1711
			  struct drm_i915_gem_request *req)
5060 serge 1712
{
6084 serge 1713
	struct intel_engine_cs *ring = req->ring;
5060 serge 1714
	struct drm_device *dev = ppgtt->base.dev;
1715
	struct drm_i915_private *dev_priv = dev->dev_private;
1716
 
1717
 
1718
	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1719
	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1720
 
1721
	POSTING_READ(RING_PP_DIR_DCLV(ring));
1722
 
1723
	return 0;
1724
}
1725
 
5354 serge 1726
static void gen8_ppgtt_enable(struct drm_device *dev)
5060 serge 1727
{
1728
	struct drm_i915_private *dev_priv = dev->dev_private;
1729
	struct intel_engine_cs *ring;
5354 serge 1730
	int j;
5060 serge 1731
 
1732
	for_each_ring(ring, dev_priv, j) {
6084 serge 1733
		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
5060 serge 1734
		I915_WRITE(RING_MODE_GEN7(ring),
6084 serge 1735
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
5060 serge 1736
	}
1737
}
1738
 
5354 serge 1739
static void gen7_ppgtt_enable(struct drm_device *dev)
5060 serge 1740
{
1741
	struct drm_i915_private *dev_priv = dev->dev_private;
1742
	struct intel_engine_cs *ring;
6084 serge 1743
	uint32_t ecochk, ecobits;
5060 serge 1744
	int i;
3746 Serge 1745
 
6084 serge 1746
	ecobits = I915_READ(GAC_ECO_BITS);
1747
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3746 Serge 1748
 
6084 serge 1749
	ecochk = I915_READ(GAM_ECOCHK);
1750
	if (IS_HASWELL(dev)) {
1751
		ecochk |= ECOCHK_PPGTT_WB_HSW;
1752
	} else {
1753
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1754
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1755
	}
1756
	I915_WRITE(GAM_ECOCHK, ecochk);
3746 Serge 1757
 
1758
	for_each_ring(ring, dev_priv, i) {
5060 serge 1759
		/* GFX_MODE is per-ring on gen7+ */
6084 serge 1760
		I915_WRITE(RING_MODE_GEN7(ring),
1761
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3746 Serge 1762
	}
1763
}
1764
 
5354 serge 1765
static void gen6_ppgtt_enable(struct drm_device *dev)
5060 serge 1766
{
1767
	struct drm_i915_private *dev_priv = dev->dev_private;
1768
	uint32_t ecochk, gab_ctl, ecobits;
1769
 
1770
	ecobits = I915_READ(GAC_ECO_BITS);
1771
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1772
		   ECOBITS_PPGTT_CACHE64B);
1773
 
1774
	gab_ctl = I915_READ(GAB_CTL);
1775
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1776
 
1777
	ecochk = I915_READ(GAM_ECOCHK);
1778
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1779
 
1780
	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1781
}
1782
 
3031 serge 1783
/* PPGTT support for Sandybdrige/Gen6 and later */
4104 Serge 1784
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
5060 serge 1785
				   uint64_t start,
1786
				   uint64_t length,
4280 Serge 1787
				   bool use_scratch)
3031 serge 1788
{
4104 Serge 1789
	struct i915_hw_ppgtt *ppgtt =
1790
		container_of(vm, struct i915_hw_ppgtt, base);
6084 serge 1791
	gen6_pte_t *pt_vaddr, scratch_pte;
5060 serge 1792
	unsigned first_entry = start >> PAGE_SHIFT;
1793
	unsigned num_entries = length >> PAGE_SHIFT;
6084 serge 1794
	unsigned act_pt = first_entry / GEN6_PTES;
1795
	unsigned first_pte = first_entry % GEN6_PTES;
3031 serge 1796
	unsigned last_pte, i;
1797
 
6084 serge 1798
	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1799
				     I915_CACHE_LLC, true, 0);
3031 serge 1800
 
3480 Serge 1801
	while (num_entries) {
6084 serge 1802
		last_pte = first_pte + num_entries;
1803
		if (last_pte > GEN6_PTES)
1804
			last_pte = GEN6_PTES;
3031 serge 1805
 
6084 serge 1806
		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
3031 serge 1807
 
6084 serge 1808
		for (i = first_pte; i < last_pte; i++)
1809
			pt_vaddr[i] = scratch_pte;
3031 serge 1810
 
6084 serge 1811
		kunmap_px(ppgtt, pt_vaddr);
5354 serge 1812
 
6084 serge 1813
		num_entries -= last_pte - first_pte;
1814
		first_pte = 0;
1815
		act_pt++;
5354 serge 1816
	}
3480 Serge 1817
}
1818
 
4104 Serge 1819
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
3480 Serge 1820
				      struct sg_table *pages,
5060 serge 1821
				      uint64_t start,
1822
				      enum i915_cache_level cache_level, u32 flags)
3480 Serge 1823
{
4104 Serge 1824
	struct i915_hw_ppgtt *ppgtt =
1825
		container_of(vm, struct i915_hw_ppgtt, base);
6084 serge 1826
	gen6_pte_t *pt_vaddr;
5060 serge 1827
	unsigned first_entry = start >> PAGE_SHIFT;
6084 serge 1828
	unsigned act_pt = first_entry / GEN6_PTES;
1829
	unsigned act_pte = first_entry % GEN6_PTES;
3746 Serge 1830
	struct sg_page_iter sg_iter;
3480 Serge 1831
 
5354 serge 1832
	pt_vaddr = NULL;
3746 Serge 1833
	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
5354 serge 1834
		if (pt_vaddr == NULL)
6084 serge 1835
			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
3480 Serge 1836
 
4560 Serge 1837
		pt_vaddr[act_pte] =
1838
			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
5060 serge 1839
				       cache_level, true, flags);
1840
 
6084 serge 1841
		if (++act_pte == GEN6_PTES) {
1842
			kunmap_px(ppgtt, pt_vaddr);
5354 serge 1843
			pt_vaddr = NULL;
3746 Serge 1844
			act_pt++;
1845
			act_pte = 0;
3480 Serge 1846
		}
6084 serge 1847
	}
5354 serge 1848
	if (pt_vaddr)
6084 serge 1849
		kunmap_px(ppgtt, pt_vaddr);
3031 serge 1850
}
1851
 
6084 serge 1852
static int gen6_alloc_va_range(struct i915_address_space *vm,
1853
			       uint64_t start_in, uint64_t length_in)
3031 serge 1854
{
6084 serge 1855
	DECLARE_BITMAP(new_page_tables, I915_PDES);
1856
	struct drm_device *dev = vm->dev;
1857
	struct drm_i915_private *dev_priv = dev->dev_private;
1858
	struct i915_hw_ppgtt *ppgtt =
1859
				container_of(vm, struct i915_hw_ppgtt, base);
1860
	struct i915_page_table *pt;
1861
	uint32_t start, length, start_save, length_save;
1862
	uint32_t pde, temp;
1863
	int ret;
3480 Serge 1864
 
6084 serge 1865
	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1866
		return -ENODEV;
1867
 
1868
	start = start_save = start_in;
1869
	length = length_save = length_in;
1870
 
1871
	bitmap_zero(new_page_tables, I915_PDES);
1872
 
1873
	/* The allocation is done in two stages so that we can bail out with
1874
	 * minimal amount of pain. The first stage finds new page tables that
1875
	 * need allocation. The second stage marks use ptes within the page
1876
	 * tables.
1877
	 */
1878
	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1879
		if (pt != vm->scratch_pt) {
1880
			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1881
			continue;
1882
		}
1883
 
1884
		/* We've already allocated a page table */
1885
		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1886
 
1887
		pt = alloc_pt(dev);
1888
		if (IS_ERR(pt)) {
1889
			ret = PTR_ERR(pt);
1890
			goto unwind_out;
1891
		}
1892
 
1893
		gen6_initialize_pt(vm, pt);
1894
 
1895
		ppgtt->pd.page_table[pde] = pt;
1896
		__set_bit(pde, new_page_tables);
1897
		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
3480 Serge 1898
	}
6084 serge 1899
 
1900
	start = start_save;
1901
	length = length_save;
1902
 
1903
	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1904
		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1905
 
1906
		bitmap_zero(tmp_bitmap, GEN6_PTES);
1907
		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1908
			   gen6_pte_count(start, length));
1909
 
1910
		if (__test_and_clear_bit(pde, new_page_tables))
1911
			gen6_write_pde(&ppgtt->pd, pde, pt);
1912
 
1913
		trace_i915_page_table_entry_map(vm, pde, pt,
1914
					 gen6_pte_index(start),
1915
					 gen6_pte_count(start, length),
1916
					 GEN6_PTES);
1917
		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1918
				GEN6_PTES);
1919
	}
1920
 
1921
	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1922
 
1923
	/* Make sure write is complete before other code can use this page
1924
	 * table. Also require for WC mapped PTEs */
1925
	readl(dev_priv->gtt.gsm);
1926
 
1927
	mark_tlbs_dirty(ppgtt);
1928
	return 0;
1929
 
1930
unwind_out:
1931
	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1932
		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1933
 
1934
		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1935
		free_pt(vm->dev, pt);
1936
	}
1937
 
1938
	mark_tlbs_dirty(ppgtt);
1939
	return ret;
5060 serge 1940
}
3480 Serge 1941
 
6084 serge 1942
static int gen6_init_scratch(struct i915_address_space *vm)
5060 serge 1943
{
6084 serge 1944
	struct drm_device *dev = vm->dev;
5060 serge 1945
 
6084 serge 1946
	vm->scratch_page = alloc_scratch_page(dev);
1947
	if (IS_ERR(vm->scratch_page))
1948
		return PTR_ERR(vm->scratch_page);
1949
 
1950
	vm->scratch_pt = alloc_pt(dev);
1951
	if (IS_ERR(vm->scratch_pt)) {
1952
		free_scratch_page(dev, vm->scratch_page);
1953
		return PTR_ERR(vm->scratch_pt);
1954
	}
1955
 
1956
	gen6_initialize_pt(vm, vm->scratch_pt);
1957
 
1958
	return 0;
3480 Serge 1959
}
1960
 
6084 serge 1961
static void gen6_free_scratch(struct i915_address_space *vm)
1962
{
1963
	struct drm_device *dev = vm->dev;
1964
 
1965
	free_pt(dev, vm->scratch_pt);
1966
	free_scratch_page(dev, vm->scratch_page);
1967
}
1968
 
5060 serge 1969
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
3480 Serge 1970
{
5060 serge 1971
	struct i915_hw_ppgtt *ppgtt =
1972
		container_of(vm, struct i915_hw_ppgtt, base);
6084 serge 1973
	struct i915_page_table *pt;
1974
	uint32_t pde;
5060 serge 1975
 
1976
	drm_mm_remove_node(&ppgtt->node);
1977
 
6084 serge 1978
	gen6_for_all_pdes(pt, ppgtt, pde) {
1979
		if (pt != vm->scratch_pt)
1980
			free_pt(ppgtt->base.dev, pt);
1981
	}
1982
 
1983
	gen6_free_scratch(vm);
5060 serge 1984
}
1985
 
1986
static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1987
{
6084 serge 1988
	struct i915_address_space *vm = &ppgtt->base;
4104 Serge 1989
	struct drm_device *dev = ppgtt->base.dev;
3031 serge 1990
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1991
	bool retried = false;
1992
	int ret;
3031 serge 1993
 
5060 serge 1994
	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1995
	 * allocator works in address space sizes, so it's multiplied by page
1996
	 * size. We allocate at the top of the GTT to avoid fragmentation.
1997
	 */
1998
	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
6084 serge 1999
 
2000
	ret = gen6_init_scratch(vm);
2001
	if (ret)
2002
		return ret;
2003
 
5060 serge 2004
alloc:
2005
	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2006
						  &ppgtt->node, GEN6_PD_SIZE,
2007
						  GEN6_PD_ALIGN, 0,
2008
						  0, dev_priv->gtt.base.total,
2009
						  DRM_MM_TOPDOWN);
2010
	if (ret == -ENOSPC && !retried) {
2011
		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2012
					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2013
					       I915_CACHE_NONE,
2014
					       0, dev_priv->gtt.base.total,
2015
					       0);
2016
		if (ret)
6084 serge 2017
			goto err_out;
3031 serge 2018
 
5060 serge 2019
		retried = true;
2020
		goto alloc;
2021
	}
2022
 
6084 serge 2023
	if (ret)
2024
		goto err_out;
2025
 
2026
 
5060 serge 2027
	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2028
		DRM_DEBUG("Forced to use aperture for PDEs\n");
2029
 
6084 serge 2030
	return 0;
2031
 
2032
err_out:
2033
	gen6_free_scratch(vm);
5060 serge 2034
	return ret;
2035
}
2036
 
2037
static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2038
{
6084 serge 2039
	return gen6_ppgtt_allocate_page_directories(ppgtt);
5060 serge 2040
}
3031 serge 2041
 
6084 serge 2042
static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2043
				  uint64_t start, uint64_t length)
5060 serge 2044
{
6084 serge 2045
	struct i915_page_table *unused;
2046
	uint32_t pde, temp;
5060 serge 2047
 
6084 serge 2048
	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2049
		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
3031 serge 2050
}
2051
 
5060 serge 2052
static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
3031 serge 2053
{
5060 serge 2054
	struct drm_device *dev = ppgtt->base.dev;
3031 serge 2055
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 2056
	int ret;
3031 serge 2057
 
5060 serge 2058
	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2059
	if (IS_GEN6(dev)) {
2060
		ppgtt->switch_mm = gen6_mm_switch;
2061
	} else if (IS_HASWELL(dev)) {
2062
		ppgtt->switch_mm = hsw_mm_switch;
2063
	} else if (IS_GEN7(dev)) {
2064
		ppgtt->switch_mm = gen7_mm_switch;
2065
	} else
2066
		BUG();
3031 serge 2067
 
6084 serge 2068
	if (intel_vgpu_active(dev))
2069
		ppgtt->switch_mm = vgpu_mm_switch;
2070
 
5060 serge 2071
	ret = gen6_ppgtt_alloc(ppgtt);
2072
	if (ret)
2073
		return ret;
2074
 
6084 serge 2075
	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
5060 serge 2076
	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2077
	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
6084 serge 2078
	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2079
	ppgtt->base.bind_vma = ppgtt_bind_vma;
5060 serge 2080
	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2081
	ppgtt->base.start = 0;
6084 serge 2082
	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2083
	ppgtt->debug_dump = gen6_dump_ppgtt;
5060 serge 2084
 
6084 serge 2085
	ppgtt->pd.base.ggtt_offset =
2086
		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
5060 serge 2087
 
6084 serge 2088
	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2089
		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
5060 serge 2090
 
6084 serge 2091
	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2092
 
2093
	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2094
 
2095
	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
5060 serge 2096
			 ppgtt->node.size >> 20,
2097
			 ppgtt->node.start / PAGE_SIZE);
2098
 
5354 serge 2099
	DRM_DEBUG("Adding PPGTT at offset %x\n",
6084 serge 2100
		  ppgtt->pd.base.ggtt_offset << 10);
5354 serge 2101
 
5060 serge 2102
	return 0;
2103
}
2104
 
5354 serge 2105
static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
5060 serge 2106
{
4104 Serge 2107
	ppgtt->base.dev = dev;
3031 serge 2108
 
3746 Serge 2109
	if (INTEL_INFO(dev)->gen < 8)
5354 serge 2110
		return gen6_ppgtt_init(ppgtt);
3746 Serge 2111
	else
6084 serge 2112
		return gen8_ppgtt_init(ppgtt);
5354 serge 2113
}
6084 serge 2114
 
2115
static void i915_address_space_init(struct i915_address_space *vm,
2116
				    struct drm_i915_private *dev_priv)
2117
{
2118
	drm_mm_init(&vm->mm, vm->start, vm->total);
2119
	vm->dev = dev_priv->dev;
2120
	INIT_LIST_HEAD(&vm->active_list);
2121
	INIT_LIST_HEAD(&vm->inactive_list);
2122
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2123
}
2124
 
5354 serge 2125
int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2126
{
2127
	struct drm_i915_private *dev_priv = dev->dev_private;
2128
	int ret = 0;
3746 Serge 2129
 
5354 serge 2130
	ret = __hw_ppgtt_init(dev, ppgtt);
2131
	if (ret == 0) {
5060 serge 2132
		kref_init(&ppgtt->ref);
6084 serge 2133
		i915_address_space_init(&ppgtt->base, dev_priv);
5354 serge 2134
	}
2135
 
2136
	return ret;
2137
}
2138
 
2139
int i915_ppgtt_init_hw(struct drm_device *dev)
2140
{
2141
	/* In the case of execlists, PPGTT is enabled by the context descriptor
2142
	 * and the PDPs are contained within the context itself.  We don't
2143
	 * need to do anything here. */
2144
	if (i915.enable_execlists)
2145
		return 0;
2146
 
2147
	if (!USES_PPGTT(dev))
2148
		return 0;
2149
 
2150
	if (IS_GEN6(dev))
2151
		gen6_ppgtt_enable(dev);
2152
	else if (IS_GEN7(dev))
2153
		gen7_ppgtt_enable(dev);
2154
	else if (INTEL_INFO(dev)->gen >= 8)
2155
		gen8_ppgtt_enable(dev);
2156
	else
6084 serge 2157
		MISSING_CASE(INTEL_INFO(dev)->gen);
5354 serge 2158
 
6084 serge 2159
	return 0;
2160
}
3480 Serge 2161
 
6084 serge 2162
int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2163
{
2164
	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2165
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2166
 
2167
	if (i915.enable_execlists)
2168
		return 0;
2169
 
2170
	if (!ppgtt)
2171
		return 0;
2172
 
2173
	return ppgtt->switch_mm(ppgtt, req);
3031 serge 2174
}
6084 serge 2175
 
5354 serge 2176
struct i915_hw_ppgtt *
2177
i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2178
{
2179
	struct i915_hw_ppgtt *ppgtt;
2180
	int ret;
3031 serge 2181
 
5354 serge 2182
	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2183
	if (!ppgtt)
2184
		return ERR_PTR(-ENOMEM);
2185
 
2186
	ret = i915_ppgtt_init(dev, ppgtt);
2187
	if (ret) {
2188
		kfree(ppgtt);
2189
		return ERR_PTR(ret);
2190
	}
2191
 
2192
	ppgtt->file_priv = fpriv;
2193
 
2194
	trace_i915_ppgtt_create(&ppgtt->base);
2195
 
2196
	return ppgtt;
2197
}
2198
 
2199
void  i915_ppgtt_release(struct kref *kref)
2200
{
2201
	struct i915_hw_ppgtt *ppgtt =
2202
		container_of(kref, struct i915_hw_ppgtt, ref);
2203
 
2204
	trace_i915_ppgtt_release(&ppgtt->base);
2205
 
2206
	/* vmas should already be unbound */
2207
	WARN_ON(!list_empty(&ppgtt->base.active_list));
2208
	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2209
 
2210
	list_del(&ppgtt->base.global_link);
2211
	drm_mm_takedown(&ppgtt->base.mm);
2212
 
2213
	ppgtt->base.cleanup(&ppgtt->base);
2214
	kfree(ppgtt);
2215
}
2216
 
3480 Serge 2217
extern int intel_iommu_gfx_mapped;
2218
/* Certain Gen5 chipsets require require idling the GPU before
2219
 * unmapping anything from the GTT when VT-d is enabled.
2220
 */
6084 serge 2221
static bool needs_idle_maps(struct drm_device *dev)
3480 Serge 2222
{
2223
#ifdef CONFIG_INTEL_IOMMU
2224
	/* Query intel_iommu to see if we need the workaround. Presumably that
2225
	 * was loaded first.
2226
	 */
2227
	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2228
		return true;
2229
#endif
2230
	return false;
2231
}
2232
 
2344 Serge 2233
static bool do_idling(struct drm_i915_private *dev_priv)
2234
{
2235
	bool ret = dev_priv->mm.interruptible;
2236
 
3480 Serge 2237
	if (unlikely(dev_priv->gtt.do_idle_maps)) {
2344 Serge 2238
		dev_priv->mm.interruptible = false;
2239
		if (i915_gpu_idle(dev_priv->dev)) {
2240
			DRM_ERROR("Couldn't idle GPU\n");
2241
			/* Wait a bit, in hopes it avoids the hang */
2242
			udelay(10);
2243
		}
2244
	}
2245
 
2246
	return ret;
2247
}
2248
 
2249
static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2250
{
3480 Serge 2251
	if (unlikely(dev_priv->gtt.do_idle_maps))
2344 Serge 2252
		dev_priv->mm.interruptible = interruptible;
2253
}
2254
 
4280 Serge 2255
void i915_check_and_clear_faults(struct drm_device *dev)
2256
{
2257
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2258
	struct intel_engine_cs *ring;
4280 Serge 2259
	int i;
2260
 
2261
	if (INTEL_INFO(dev)->gen < 6)
2262
		return;
2263
 
2264
	for_each_ring(ring, dev_priv, i) {
2265
		u32 fault_reg;
2266
		fault_reg = I915_READ(RING_FAULT_REG(ring));
2267
		if (fault_reg & RING_FAULT_VALID) {
2268
			DRM_DEBUG_DRIVER("Unexpected fault\n"
5354 serge 2269
					 "\tAddr: 0x%08lx\n"
4280 Serge 2270
					 "\tAddress space: %s\n"
2271
					 "\tSource ID: %d\n"
2272
					 "\tType: %d\n",
2273
					 fault_reg & PAGE_MASK,
2274
					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2275
					 RING_FAULT_SRCID(fault_reg),
2276
					 RING_FAULT_FAULT_TYPE(fault_reg));
2277
			I915_WRITE(RING_FAULT_REG(ring),
2278
				   fault_reg & ~RING_FAULT_VALID);
2279
		}
2280
	}
2281
	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2282
}
2283
 
5354 serge 2284
static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2285
{
2286
	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2287
		intel_gtt_chipset_flush();
2288
	} else {
2289
		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2290
		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2291
	}
2292
}
2293
 
4280 Serge 2294
void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2295
{
2296
	struct drm_i915_private *dev_priv = dev->dev_private;
2297
 
2298
	/* Don't bother messing with faults pre GEN6 as we have little
2299
	 * documentation supporting that it's a good idea.
2300
	 */
2301
	if (INTEL_INFO(dev)->gen < 6)
2302
		return;
2303
 
2304
	i915_check_and_clear_faults(dev);
2305
 
2306
	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
5060 serge 2307
				       dev_priv->gtt.base.start,
2308
				       dev_priv->gtt.base.total,
2309
				       true);
5354 serge 2310
 
2311
	i915_ggtt_flush(dev_priv);
4280 Serge 2312
}
2313
 
3031 serge 2314
int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2332 Serge 2315
{
3480 Serge 2316
	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2317
			obj->pages->sgl, obj->pages->nents,
2318
			PCI_DMA_BIDIRECTIONAL))
2319
		return -ENOSPC;
3243 Serge 2320
 
2332 Serge 2321
	return 0;
2322
}
2323
 
6084 serge 2324
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
4560 Serge 2325
{
2326
#ifdef writeq
2327
	writeq(pte, addr);
2328
#else
2329
	iowrite32((u32)pte, addr);
2330
	iowrite32(pte >> 32, addr + 4);
2331
#endif
2332
}
2333
 
2334
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2335
				     struct sg_table *st,
5060 serge 2336
				     uint64_t start,
2337
				     enum i915_cache_level level, u32 unused)
4560 Serge 2338
{
2339
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
5060 serge 2340
	unsigned first_entry = start >> PAGE_SHIFT;
6084 serge 2341
	gen8_pte_t __iomem *gtt_entries =
2342
		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
4560 Serge 2343
	int i = 0;
2344
	struct sg_page_iter sg_iter;
5060 serge 2345
	dma_addr_t addr = 0; /* shut up gcc */
6937 serge 2346
	int rpm_atomic_seq;
4560 Serge 2347
 
6937 serge 2348
	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2349
 
4560 Serge 2350
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2351
		addr = sg_dma_address(sg_iter.sg) +
2352
			(sg_iter.sg_pgoffset << PAGE_SHIFT);
2353
		gen8_set_pte(>t_entries[i],
2354
			     gen8_pte_encode(addr, level, true));
2355
		i++;
2356
	}
2357
 
2358
	/*
2359
	 * XXX: This serves as a posting read to make sure that the PTE has
2360
	 * actually been updated. There is some concern that even though
2361
	 * registers and PTEs are within the same BAR that they are potentially
2362
	 * of NUMA access patterns. Therefore, even with the way we assume
2363
	 * hardware should work, we must keep this posting read for paranoia.
2364
	 */
2365
	if (i != 0)
2366
		WARN_ON(readq(>t_entries[i-1])
2367
			!= gen8_pte_encode(addr, level, true));
2368
 
2369
	/* This next bit makes the above posting read even more important. We
2370
	 * want to flush the TLBs only after we're certain all the PTE updates
2371
	 * have finished.
2372
	 */
2373
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2374
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
6937 serge 2375
 
2376
	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
4560 Serge 2377
}
2378
 
6937 serge 2379
struct insert_entries {
2380
	struct i915_address_space *vm;
2381
	struct sg_table *st;
2382
	uint64_t start;
2383
	enum i915_cache_level level;
2384
	u32 flags;
2385
};
2386
 
2387
static int gen8_ggtt_insert_entries__cb(void *_arg)
2388
{
2389
	struct insert_entries *arg = _arg;
2390
	gen8_ggtt_insert_entries(arg->vm, arg->st,
2391
				 arg->start, arg->level, arg->flags);
2392
	return 0;
2393
}
2394
 
2395
static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2396
					  struct sg_table *st,
2397
					  uint64_t start,
2398
					  enum i915_cache_level level,
2399
					  u32 flags)
2400
{
2401
	struct insert_entries arg = { vm, st, start, level, flags };
2402
	gen8_ggtt_insert_entries__cb, &arg;
2403
}
2404
 
3243 Serge 2405
/*
2406
 * Binds an object into the global gtt with the specified cache level. The object
2407
 * will be accessible to the GPU via commands whose operands reference offsets
2408
 * within the global GTT as well as accessible by the GPU through the GMADR
2409
 * mapped BAR (dev_priv->mm.gtt->gtt).
2410
 */
4104 Serge 2411
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
3480 Serge 2412
				     struct sg_table *st,
5060 serge 2413
				     uint64_t start,
2414
				     enum i915_cache_level level, u32 flags)
3243 Serge 2415
{
4104 Serge 2416
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
5060 serge 2417
	unsigned first_entry = start >> PAGE_SHIFT;
6084 serge 2418
	gen6_pte_t __iomem *gtt_entries =
2419
		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
3746 Serge 2420
	int i = 0;
2421
	struct sg_page_iter sg_iter;
5060 serge 2422
	dma_addr_t addr = 0;
6937 serge 2423
	int rpm_atomic_seq;
3243 Serge 2424
 
6937 serge 2425
	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2426
 
3746 Serge 2427
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2428
		addr = sg_page_iter_dma_address(&sg_iter);
5060 serge 2429
		iowrite32(vm->pte_encode(addr, level, true, flags), >t_entries[i]);
6084 serge 2430
		i++;
2431
	}
3243 Serge 2432
 
2433
	/* XXX: This serves as a posting read to make sure that the PTE has
2434
	 * actually been updated. There is some concern that even though
2435
	 * registers and PTEs are within the same BAR that they are potentially
2436
	 * of NUMA access patterns. Therefore, even with the way we assume
2437
	 * hardware should work, we must keep this posting read for paranoia.
2438
	 */
5060 serge 2439
	if (i != 0) {
2440
		unsigned long gtt = readl(>t_entries[i-1]);
2441
		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2442
	}
3243 Serge 2443
 
2444
	/* This next bit makes the above posting read even more important. We
2445
	 * want to flush the TLBs only after we're certain all the PTE updates
2446
	 * have finished.
2447
	 */
2448
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2449
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
6937 serge 2450
 
2451
	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
3243 Serge 2452
}
2453
 
4560 Serge 2454
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
5060 serge 2455
				  uint64_t start,
2456
				  uint64_t length,
4560 Serge 2457
				  bool use_scratch)
2458
{
2459
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
5060 serge 2460
	unsigned first_entry = start >> PAGE_SHIFT;
2461
	unsigned num_entries = length >> PAGE_SHIFT;
6084 serge 2462
	gen8_pte_t scratch_pte, __iomem *gtt_base =
2463
		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
4560 Serge 2464
	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2465
	int i;
6937 serge 2466
	int rpm_atomic_seq;
4560 Serge 2467
 
6937 serge 2468
	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2469
 
4560 Serge 2470
	if (WARN(num_entries > max_entries,
2471
		 "First entry = %d; Num entries = %d (max=%d)\n",
2472
		 first_entry, num_entries, max_entries))
2473
		num_entries = max_entries;
2474
 
6084 serge 2475
	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
4560 Serge 2476
				      I915_CACHE_LLC,
2477
				      use_scratch);
2478
	for (i = 0; i < num_entries; i++)
2479
		gen8_set_pte(>t_base[i], scratch_pte);
2480
	readl(gtt_base);
6937 serge 2481
 
2482
	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
4560 Serge 2483
}
2484
 
4104 Serge 2485
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
5060 serge 2486
				  uint64_t start,
2487
				  uint64_t length,
4280 Serge 2488
				  bool use_scratch)
3480 Serge 2489
{
4104 Serge 2490
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
5060 serge 2491
	unsigned first_entry = start >> PAGE_SHIFT;
2492
	unsigned num_entries = length >> PAGE_SHIFT;
6084 serge 2493
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2494
		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
3480 Serge 2495
	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2496
	int i;
6937 serge 2497
	int rpm_atomic_seq;
3480 Serge 2498
 
6937 serge 2499
	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2500
 
4126 Serge 2501
	if (WARN(num_entries > max_entries,
2502
		 "First entry = %d; Num entries = %d (max=%d)\n",
2503
		 first_entry, num_entries, max_entries))
6084 serge 2504
		num_entries = max_entries;
3480 Serge 2505
 
6084 serge 2506
	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2507
				     I915_CACHE_LLC, use_scratch, 0);
4280 Serge 2508
 
3480 Serge 2509
	for (i = 0; i < num_entries; i++)
2510
		iowrite32(scratch_pte, >t_base[i]);
2511
	readl(gtt_base);
6937 serge 2512
 
2513
	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
3480 Serge 2514
}
2515
 
6084 serge 2516
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2517
				     struct sg_table *pages,
2518
				     uint64_t start,
2519
				     enum i915_cache_level cache_level, u32 unused)
3480 Serge 2520
{
6937 serge 2521
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
3480 Serge 2522
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2523
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
6937 serge 2524
	int rpm_atomic_seq;
3480 Serge 2525
 
6937 serge 2526
	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2527
 
6084 serge 2528
	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2529
 
6937 serge 2530
	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2531
 
3480 Serge 2532
}
2533
 
4104 Serge 2534
static void i915_ggtt_clear_range(struct i915_address_space *vm,
5060 serge 2535
				  uint64_t start,
2536
				  uint64_t length,
4280 Serge 2537
				  bool unused)
3480 Serge 2538
{
6937 serge 2539
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
5060 serge 2540
	unsigned first_entry = start >> PAGE_SHIFT;
2541
	unsigned num_entries = length >> PAGE_SHIFT;
6937 serge 2542
	int rpm_atomic_seq;
2543
 
2544
	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2545
 
3480 Serge 2546
	intel_gtt_clear_range(first_entry, num_entries);
6937 serge 2547
 
2548
	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
3480 Serge 2549
}
2550
 
6084 serge 2551
static int ggtt_bind_vma(struct i915_vma *vma,
2552
			 enum i915_cache_level cache_level,
2553
			 u32 flags)
5060 serge 2554
{
6084 serge 2555
	struct drm_i915_gem_object *obj = vma->obj;
2556
	u32 pte_flags = 0;
2557
	int ret;
3480 Serge 2558
 
6084 serge 2559
	ret = i915_get_ggtt_vma_pages(vma);
2560
	if (ret)
2561
		return ret;
2562
 
2563
	/* Currently applicable only to VLV */
2564
	if (obj->gt_ro)
2565
		pte_flags |= PTE_READ_ONLY;
2566
 
2567
	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2568
				vma->node.start,
2569
				cache_level, pte_flags);
2570
 
2571
	/*
2572
	 * Without aliasing PPGTT there's no difference between
2573
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2574
	 * upgrade to both bound if we bind either to avoid double-binding.
2575
	 */
2576
	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2577
 
2578
	return 0;
5060 serge 2579
}
2580
 
6084 serge 2581
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2582
				 enum i915_cache_level cache_level,
2583
				 u32 flags)
2332 Serge 2584
{
5060 serge 2585
	struct drm_device *dev = vma->vm->dev;
3480 Serge 2586
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2587
	struct drm_i915_gem_object *obj = vma->obj;
6084 serge 2588
	struct sg_table *pages = obj->pages;
2589
	u32 pte_flags = 0;
2590
	int ret;
3480 Serge 2591
 
6084 serge 2592
	ret = i915_get_ggtt_vma_pages(vma);
2593
	if (ret)
2594
		return ret;
2595
	pages = vma->ggtt_view.pages;
2596
 
5060 serge 2597
	/* Currently applicable only to VLV */
2598
	if (obj->gt_ro)
6084 serge 2599
		pte_flags |= PTE_READ_ONLY;
2332 Serge 2600
 
6084 serge 2601
 
2602
	if (flags & GLOBAL_BIND) {
2603
		vma->vm->insert_entries(vma->vm, pages,
2604
					vma->node.start,
2605
					cache_level, pte_flags);
5060 serge 2606
	}
2607
 
6084 serge 2608
	if (flags & LOCAL_BIND) {
5060 serge 2609
		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
6084 serge 2610
		appgtt->base.insert_entries(&appgtt->base, pages,
5060 serge 2611
					    vma->node.start,
6084 serge 2612
					    cache_level, pte_flags);
5060 serge 2613
	}
6084 serge 2614
 
2615
	return 0;
2332 Serge 2616
}
2617
 
5060 serge 2618
static void ggtt_unbind_vma(struct i915_vma *vma)
2332 Serge 2619
{
5060 serge 2620
	struct drm_device *dev = vma->vm->dev;
3480 Serge 2621
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2622
	struct drm_i915_gem_object *obj = vma->obj;
6084 serge 2623
	const uint64_t size = min_t(uint64_t,
2624
				    obj->base.size,
2625
				    vma->node.size);
3480 Serge 2626
 
5354 serge 2627
	if (vma->bound & GLOBAL_BIND) {
5060 serge 2628
		vma->vm->clear_range(vma->vm,
2629
				     vma->node.start,
6084 serge 2630
				     size,
2631
				     true);
5060 serge 2632
	}
3031 serge 2633
 
6084 serge 2634
	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
5060 serge 2635
		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
6084 serge 2636
 
5060 serge 2637
		appgtt->base.clear_range(&appgtt->base,
2638
					 vma->node.start,
6084 serge 2639
					 size,
5060 serge 2640
					 true);
2641
	}
3031 serge 2642
}
2643
 
2644
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2645
{
2344 Serge 2646
	struct drm_device *dev = obj->base.dev;
2647
	struct drm_i915_private *dev_priv = dev->dev_private;
2648
	bool interruptible;
2649
 
2650
	interruptible = do_idling(dev_priv);
2651
 
6084 serge 2652
	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2653
		     PCI_DMA_BIDIRECTIONAL);
2332 Serge 2654
 
3031 serge 2655
	undo_idling(dev_priv, interruptible);
2656
}
2657
 
2658
static void i915_gtt_color_adjust(struct drm_mm_node *node,
2659
				  unsigned long color,
6084 serge 2660
				  u64 *start,
2661
				  u64 *end)
3031 serge 2662
{
2663
	if (node->color != color)
2664
		*start += 4096;
2665
 
2666
	if (!list_empty(&node->node_list)) {
2667
		node = list_entry(node->node_list.next,
2668
				  struct drm_mm_node,
2669
				  node_list);
2670
		if (node->allocated && node->color != color)
2671
			*end -= 4096;
2332 Serge 2672
	}
3031 serge 2673
}
4560 Serge 2674
 
5354 serge 2675
static int i915_gem_setup_global_gtt(struct drm_device *dev,
6084 serge 2676
				     u64 start,
2677
				     u64 mappable_end,
2678
				     u64 end)
3031 serge 2679
{
3480 Serge 2680
	/* Let GEM Manage all of the aperture.
2681
	 *
2682
	 * However, leave one page at the end still bound to the scratch page.
2683
	 * There are a number of places where the hardware apparently prefetches
2684
	 * past the end of the object, and we've seen multiple hangs with the
2685
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2686
	 * aperture.  One page should be enough to keep any prefetching inside
2687
	 * of the aperture.
2688
	 */
4104 Serge 2689
	struct drm_i915_private *dev_priv = dev->dev_private;
2690
	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
3480 Serge 2691
	struct drm_mm_node *entry;
2692
	struct drm_i915_gem_object *obj;
2693
	unsigned long hole_start, hole_end;
5354 serge 2694
	int ret;
3031 serge 2695
 
3480 Serge 2696
	BUG_ON(mappable_end > end);
2697
 
6084 serge 2698
	ggtt_vm->start = start;
2699
 
2700
	/* Subtract the guard page before address space initialization to
2701
	 * shrink the range used by drm_mm */
2702
	ggtt_vm->total = end - start - PAGE_SIZE;
2703
	i915_address_space_init(ggtt_vm, dev_priv);
2704
	ggtt_vm->total += PAGE_SIZE;
2705
 
2706
	if (intel_vgpu_active(dev)) {
2707
		ret = intel_vgt_balloon(dev);
2708
		if (ret)
2709
			return ret;
2710
	}
2711
 
3031 serge 2712
	if (!HAS_LLC(dev))
6084 serge 2713
		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
3031 serge 2714
 
3480 Serge 2715
	/* Mark any preallocated objects as occupied */
4104 Serge 2716
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2717
		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
5354 serge 2718
 
6084 serge 2719
		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
4104 Serge 2720
			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
3031 serge 2721
 
4104 Serge 2722
		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2723
		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
5354 serge 2724
		if (ret) {
2725
			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2726
			return ret;
2727
		}
2728
		vma->bound |= GLOBAL_BIND;
6084 serge 2729
		__i915_vma_set_map_and_fenceable(vma);
2730
		list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
3480 Serge 2731
	}
2732
 
2733
	/* Clear any non-preallocated blocks */
4104 Serge 2734
	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
3480 Serge 2735
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2736
			      hole_start, hole_end);
5060 serge 2737
		ggtt_vm->clear_range(ggtt_vm, hole_start,
2738
				     hole_end - hole_start, true);
3480 Serge 2739
	}
2740
 
2741
	/* And finally clear the reserved guard page */
5060 serge 2742
	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
5354 serge 2743
 
2744
	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2745
		struct i915_hw_ppgtt *ppgtt;
2746
 
2747
		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2748
		if (!ppgtt)
2749
			return -ENOMEM;
2750
 
2751
		ret = __hw_ppgtt_init(dev, ppgtt);
6084 serge 2752
		if (ret) {
2753
			ppgtt->base.cleanup(&ppgtt->base);
2754
			kfree(ppgtt);
5354 serge 2755
			return ret;
6084 serge 2756
		}
5354 serge 2757
 
6084 serge 2758
		if (ppgtt->base.allocate_va_range)
2759
			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2760
							    ppgtt->base.total);
2761
		if (ret) {
2762
			ppgtt->base.cleanup(&ppgtt->base);
2763
			kfree(ppgtt);
2764
			return ret;
2765
		}
2766
 
2767
		ppgtt->base.clear_range(&ppgtt->base,
2768
					ppgtt->base.start,
2769
					ppgtt->base.total,
2770
					true);
2771
 
5354 serge 2772
		dev_priv->mm.aliasing_ppgtt = ppgtt;
6084 serge 2773
		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2774
		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
5354 serge 2775
	}
2776
 
2777
	return 0;
2332 Serge 2778
}
3243 Serge 2779
 
3480 Serge 2780
void i915_gem_init_global_gtt(struct drm_device *dev)
2781
{
2782
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 2783
	u64 gtt_size, mappable_size;
3480 Serge 2784
 
4104 Serge 2785
	gtt_size = dev_priv->gtt.base.total;
3480 Serge 2786
	mappable_size = dev_priv->gtt.mappable_end;
2787
 
4280 Serge 2788
	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
3480 Serge 2789
}
2790
 
5354 serge 2791
void i915_global_gtt_cleanup(struct drm_device *dev)
2792
{
2793
	struct drm_i915_private *dev_priv = dev->dev_private;
2794
	struct i915_address_space *vm = &dev_priv->gtt.base;
2795
 
2796
	if (dev_priv->mm.aliasing_ppgtt) {
2797
		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2798
 
2799
		ppgtt->base.cleanup(&ppgtt->base);
2800
	}
2801
 
2802
	if (drm_mm_initialized(&vm->mm)) {
6084 serge 2803
		if (intel_vgpu_active(dev))
2804
			intel_vgt_deballoon();
2805
 
5354 serge 2806
		drm_mm_takedown(&vm->mm);
2807
		list_del(&vm->global_link);
2808
	}
2809
 
2810
	vm->cleanup(vm);
2811
}
2812
 
6084 serge 2813
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
3243 Serge 2814
{
2815
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2816
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2817
	return snb_gmch_ctl << 20;
2818
}
2819
 
6084 serge 2820
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
4560 Serge 2821
{
2822
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2823
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2824
	if (bdw_gmch_ctl)
2825
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2826
 
5060 serge 2827
#ifdef CONFIG_X86_32
2828
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2829
	if (bdw_gmch_ctl > 4)
2830
		bdw_gmch_ctl = 4;
2831
#endif
2832
 
4560 Serge 2833
	return bdw_gmch_ctl << 20;
2834
}
2835
 
6084 serge 2836
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
5060 serge 2837
{
2838
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2839
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2840
 
2841
	if (gmch_ctrl)
2842
		return 1 << (20 + gmch_ctrl);
2843
 
2844
	return 0;
2845
}
2846
 
6084 serge 2847
static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
3243 Serge 2848
{
2849
	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2850
	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2851
	return snb_gmch_ctl << 25; /* 32 MB units */
2852
}
2853
 
6084 serge 2854
static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
4560 Serge 2855
{
2856
	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2857
	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2858
	return bdw_gmch_ctl << 25; /* 32 MB units */
2859
}
2860
 
5060 serge 2861
static size_t chv_get_stolen_size(u16 gmch_ctrl)
2862
{
2863
	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2864
	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2865
 
2866
	/*
2867
	 * 0x0  to 0x10: 32MB increments starting at 0MB
2868
	 * 0x11 to 0x16: 4MB increments starting at 8MB
2869
	 * 0x17 to 0x1d: 4MB increments start at 36MB
2870
	 */
2871
	if (gmch_ctrl < 0x11)
2872
		return gmch_ctrl << 25;
2873
	else if (gmch_ctrl < 0x17)
2874
		return (gmch_ctrl - 0x11 + 2) << 22;
2875
	else
2876
		return (gmch_ctrl - 0x17 + 9) << 22;
2877
}
2878
 
5354 serge 2879
static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2880
{
2881
	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2882
	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2883
 
2884
	if (gen9_gmch_ctl < 0xf0)
2885
		return gen9_gmch_ctl << 25; /* 32 MB units */
2886
	else
2887
		/* 4MB increments starting at 0xf0 for 4MB */
2888
		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2889
}
2890
 
4560 Serge 2891
static int ggtt_probe_common(struct drm_device *dev,
2892
			     size_t gtt_size)
2893
{
2894
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 2895
	struct i915_page_scratch *scratch_page;
4560 Serge 2896
	phys_addr_t gtt_phys_addr;
2897
 
2898
	/* For Modern GENs the PTEs and register space are split in the BAR */
2899
	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2900
		(pci_resource_len(dev->pdev, 0) / 2);
2901
 
6084 serge 2902
	/*
2903
	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2904
	 * dropped. For WC mappings in general we have 64 byte burst writes
2905
	 * when the WC buffer is flushed, so we can't use it, but have to
2906
	 * resort to an uncached mapping. The WC issue is easily caught by the
2907
	 * readback check when writing GTT PTE entries.
2908
	 */
2909
	if (IS_BROXTON(dev))
2910
		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2911
	else
2912
		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
4560 Serge 2913
	if (!dev_priv->gtt.gsm) {
2914
		DRM_ERROR("Failed to map the gtt page table\n");
2915
		return -ENOMEM;
2916
	}
2917
 
6084 serge 2918
	scratch_page = alloc_scratch_page(dev);
2919
	if (IS_ERR(scratch_page)) {
4560 Serge 2920
		DRM_ERROR("Scratch setup failed\n");
2921
		/* iounmap will also get called at remove, but meh */
2922
		iounmap(dev_priv->gtt.gsm);
6084 serge 2923
		return PTR_ERR(scratch_page);
4560 Serge 2924
	}
2925
 
6084 serge 2926
	dev_priv->gtt.base.scratch_page = scratch_page;
2927
 
2928
	return 0;
4560 Serge 2929
}
2930
 
2931
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2932
 * bits. When using advanced contexts each context stores its own PAT, but
2933
 * writing this data shouldn't be harmful even in those cases. */
5060 serge 2934
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
4560 Serge 2935
{
2936
	uint64_t pat;
2937
 
2938
	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2939
	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2940
	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2941
	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2942
	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2943
	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2944
	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2945
	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2946
 
5354 serge 2947
	if (!USES_PPGTT(dev_priv->dev))
2948
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2949
		 * so RTL will always use the value corresponding to
2950
		 * pat_sel = 000".
2951
		 * So let's disable cache for GGTT to avoid screen corruptions.
2952
		 * MOCS still can be used though.
2953
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2954
		 * before this patch, i.e. the same uncached + snooping access
2955
		 * like on gen6/7 seems to be in effect.
2956
		 * - So this just fixes blitter/render access. Again it looks
2957
		 * like it's not just uncached access, but uncached + snooping.
2958
		 * So we can still hold onto all our assumptions wrt cpu
2959
		 * clflushing on LLC machines.
2960
		 */
2961
		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2962
 
4560 Serge 2963
	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2964
	 * write would work. */
6084 serge 2965
	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2966
	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
4560 Serge 2967
}
2968
 
5060 serge 2969
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2970
{
2971
	uint64_t pat;
2972
 
2973
	/*
2974
	 * Map WB on BDW to snooped on CHV.
2975
	 *
2976
	 * Only the snoop bit has meaning for CHV, the rest is
2977
	 * ignored.
2978
	 *
5354 serge 2979
	 * The hardware will never snoop for certain types of accesses:
2980
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2981
	 * - PPGTT page tables
2982
	 * - some other special cycles
2983
	 *
2984
	 * As with BDW, we also need to consider the following for GT accesses:
2985
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2986
	 * so RTL will always use the value corresponding to
2987
	 * pat_sel = 000".
2988
	 * Which means we must set the snoop bit in PAT entry 0
2989
	 * in order to keep the global status page working.
5060 serge 2990
	 */
2991
	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2992
	      GEN8_PPAT(1, 0) |
2993
	      GEN8_PPAT(2, 0) |
2994
	      GEN8_PPAT(3, 0) |
2995
	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2996
	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2997
	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2998
	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2999
 
6084 serge 3000
	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3001
	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
5060 serge 3002
}
3003
 
4560 Serge 3004
static int gen8_gmch_probe(struct drm_device *dev,
6084 serge 3005
			   u64 *gtt_total,
4560 Serge 3006
			   size_t *stolen,
3007
			   phys_addr_t *mappable_base,
6084 serge 3008
			   u64 *mappable_end)
4560 Serge 3009
{
3010
	struct drm_i915_private *dev_priv = dev->dev_private;
6084 serge 3011
	u64 gtt_size;
4560 Serge 3012
	u16 snb_gmch_ctl;
3013
	int ret;
3014
 
3015
	/* TODO: We're not aware of mappable constraints on gen8 yet */
3016
	*mappable_base = pci_resource_start(dev->pdev, 2);
3017
	*mappable_end = pci_resource_len(dev->pdev, 2);
3018
 
3019
	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3020
		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3021
 
3022
	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3023
 
5354 serge 3024
	if (INTEL_INFO(dev)->gen >= 9) {
3025
		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
3026
		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3027
	} else if (IS_CHERRYVIEW(dev)) {
5060 serge 3028
		*stolen = chv_get_stolen_size(snb_gmch_ctl);
3029
		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
3030
	} else {
6084 serge 3031
		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
5060 serge 3032
		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3033
	}
4560 Serge 3034
 
6084 serge 3035
	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
4560 Serge 3036
 
6084 serge 3037
	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
5060 serge 3038
		chv_setup_private_ppat(dev_priv);
3039
	else
3040
		bdw_setup_private_ppat(dev_priv);
4560 Serge 3041
 
3042
	ret = ggtt_probe_common(dev, gtt_size);
3043
 
3044
	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
3045
	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
6084 serge 3046
	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3047
	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
4560 Serge 3048
 
6937 serge 3049
	if (IS_CHERRYVIEW(dev_priv))
3050
		dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries__BKL;
3051
 
4560 Serge 3052
	return ret;
3053
}
3054
 
3480 Serge 3055
static int gen6_gmch_probe(struct drm_device *dev,
6084 serge 3056
			   u64 *gtt_total,
3480 Serge 3057
			   size_t *stolen,
3058
			   phys_addr_t *mappable_base,
6084 serge 3059
			   u64 *mappable_end)
3243 Serge 3060
{
3061
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 3062
	unsigned int gtt_size;
3243 Serge 3063
	u16 snb_gmch_ctl;
3064
	int ret;
3065
 
3480 Serge 3066
	*mappable_base = pci_resource_start(dev->pdev, 2);
3067
	*mappable_end = pci_resource_len(dev->pdev, 2);
3068
 
3069
	/* 64/512MB is the current min/max we actually know of, but this is just
3070
	 * a coarse sanity check.
3243 Serge 3071
	 */
3480 Serge 3072
	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
6084 serge 3073
		DRM_ERROR("Unknown GMADR size (%llx)\n",
3480 Serge 3074
			  dev_priv->gtt.mappable_end);
3075
		return -ENXIO;
6084 serge 3076
	}
3243 Serge 3077
 
3480 Serge 3078
	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3079
		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3080
	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3243 Serge 3081
 
4104 Serge 3082
	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
4560 Serge 3083
 
3084
	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
6084 serge 3085
	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3243 Serge 3086
 
4560 Serge 3087
	ret = ggtt_probe_common(dev, gtt_size);
3243 Serge 3088
 
4104 Serge 3089
	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3090
	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
6084 serge 3091
	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3092
	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3480 Serge 3093
 
3094
	return ret;
3095
}
3096
 
4104 Serge 3097
static void gen6_gmch_remove(struct i915_address_space *vm)
3480 Serge 3098
{
4104 Serge 3099
 
3100
	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
5060 serge 3101
 
4104 Serge 3102
	iounmap(gtt->gsm);
6084 serge 3103
	free_scratch_page(vm->dev, vm->scratch_page);
3480 Serge 3104
}
3105
 
3106
static int i915_gmch_probe(struct drm_device *dev,
6084 serge 3107
			   u64 *gtt_total,
3480 Serge 3108
			   size_t *stolen,
3109
			   phys_addr_t *mappable_base,
6084 serge 3110
			   u64 *mappable_end)
3480 Serge 3111
{
3112
	struct drm_i915_private *dev_priv = dev->dev_private;
3113
	int ret;
3114
 
3115
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3116
	if (!ret) {
3117
		DRM_ERROR("failed to set up gmch\n");
3118
		return -EIO;
3243 Serge 3119
	}
3120
 
3480 Serge 3121
	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3243 Serge 3122
 
3480 Serge 3123
	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
6084 serge 3124
	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
4104 Serge 3125
	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
6084 serge 3126
	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3127
	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3480 Serge 3128
 
4560 Serge 3129
	if (unlikely(dev_priv->gtt.do_idle_maps))
3130
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3131
 
3243 Serge 3132
	return 0;
3480 Serge 3133
}
3243 Serge 3134
 
4104 Serge 3135
static void i915_gmch_remove(struct i915_address_space *vm)
3480 Serge 3136
{
4560 Serge 3137
//	intel_gmch_remove();
3480 Serge 3138
}
3139
 
3140
int i915_gem_gtt_init(struct drm_device *dev)
3141
{
3142
	struct drm_i915_private *dev_priv = dev->dev_private;
3143
	struct i915_gtt *gtt = &dev_priv->gtt;
3144
	int ret;
3145
 
3146
	if (INTEL_INFO(dev)->gen <= 5) {
4104 Serge 3147
		gtt->gtt_probe = i915_gmch_probe;
3148
		gtt->base.cleanup = i915_gmch_remove;
4560 Serge 3149
	} else if (INTEL_INFO(dev)->gen < 8) {
4104 Serge 3150
		gtt->gtt_probe = gen6_gmch_probe;
3151
		gtt->base.cleanup = gen6_gmch_remove;
3152
		if (IS_HASWELL(dev) && dev_priv->ellc_size)
3153
			gtt->base.pte_encode = iris_pte_encode;
3154
		else if (IS_HASWELL(dev))
3155
			gtt->base.pte_encode = hsw_pte_encode;
3156
		else if (IS_VALLEYVIEW(dev))
3157
			gtt->base.pte_encode = byt_pte_encode;
3158
		else if (INTEL_INFO(dev)->gen >= 7)
3159
			gtt->base.pte_encode = ivb_pte_encode;
3160
		else
3161
			gtt->base.pte_encode = snb_pte_encode;
4560 Serge 3162
	} else {
3163
		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3164
		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3480 Serge 3165
	}
3166
 
6084 serge 3167
	gtt->base.dev = dev;
3168
 
4104 Serge 3169
	ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size,
3170
			     >t->mappable_base, >t->mappable_end);
3480 Serge 3171
	if (ret)
4104 Serge 3172
		return ret;
3480 Serge 3173
 
3174
	/* GMADR is the PCI mmio aperture into the global GTT. */
6084 serge 3175
	DRM_INFO("Memory usable by graphics device = %lluM\n",
4104 Serge 3176
		 gtt->base.total >> 20);
6084 serge 3177
	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
4104 Serge 3178
	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
5060 serge 3179
#ifdef CONFIG_INTEL_IOMMU
3180
	if (intel_iommu_gfx_mapped)
3181
		DRM_INFO("VT-d active for gfx access\n");
3182
#endif
3183
	/*
3184
	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3185
	 * user's requested state against the hardware/driver capabilities.  We
3186
	 * do this now so that we can print out any log messages once rather
3187
	 * than every time we check intel_enable_ppgtt().
3188
	 */
3189
	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3190
	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3480 Serge 3191
 
3192
	return 0;
3243 Serge 3193
}
3194
 
6084 serge 3195
void i915_gem_restore_gtt_mappings(struct drm_device *dev)
5060 serge 3196
{
6084 serge 3197
	struct drm_i915_private *dev_priv = dev->dev_private;
3198
	struct drm_i915_gem_object *obj;
3199
	struct i915_address_space *vm;
3200
	struct i915_vma *vma;
3201
	bool flush;
3202
 
3203
	i915_check_and_clear_faults(dev);
3204
 
3205
	/* First fill our portion of the GTT with scratch pages */
3206
	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3207
				       dev_priv->gtt.base.start,
3208
				       dev_priv->gtt.base.total,
3209
				       true);
3210
 
3211
	/* Cache flush objects bound into GGTT and rebind them. */
3212
	vm = &dev_priv->gtt.base;
3213
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3214
		flush = false;
3215
		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3216
			if (vma->vm != vm)
3217
				continue;
3218
 
3219
			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3220
					      PIN_UPDATE));
3221
 
3222
			flush = true;
3223
		}
3224
 
3225
		if (flush)
3226
			i915_gem_clflush_object(obj, obj->pin_display);
3227
	}
3228
 
3229
	if (INTEL_INFO(dev)->gen >= 8) {
3230
		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3231
			chv_setup_private_ppat(dev_priv);
3232
		else
3233
			bdw_setup_private_ppat(dev_priv);
3234
 
3235
		return;
3236
	}
3237
 
3238
	if (USES_PPGTT(dev)) {
3239
		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3240
			/* TODO: Perhaps it shouldn't be gen6 specific */
3241
 
3242
			struct i915_hw_ppgtt *ppgtt =
3243
					container_of(vm, struct i915_hw_ppgtt,
3244
						     base);
3245
 
3246
			if (i915_is_ggtt(vm))
3247
				ppgtt = dev_priv->mm.aliasing_ppgtt;
3248
 
3249
			gen6_write_page_range(dev_priv, &ppgtt->pd,
3250
					      0, ppgtt->base.total);
3251
		}
3252
	}
3253
 
3254
	i915_ggtt_flush(dev_priv);
3255
}
3256
 
3257
static struct i915_vma *
3258
__i915_gem_vma_create(struct drm_i915_gem_object *obj,
3259
		      struct i915_address_space *vm,
3260
		      const struct i915_ggtt_view *ggtt_view)
3261
{
3262
	struct i915_vma *vma;
3263
 
3264
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3265
		return ERR_PTR(-EINVAL);
3266
 
3267
//	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3268
	vma = kzalloc(sizeof(*vma), GFP_KERNEL);
5060 serge 3269
	if (vma == NULL)
3270
		return ERR_PTR(-ENOMEM);
3271
 
3272
	INIT_LIST_HEAD(&vma->vma_link);
3273
	INIT_LIST_HEAD(&vma->mm_list);
3274
	INIT_LIST_HEAD(&vma->exec_list);
3275
	vma->vm = vm;
3276
	vma->obj = obj;
3277
 
6084 serge 3278
	if (i915_is_ggtt(vm))
3279
		vma->ggtt_view = *ggtt_view;
5060 serge 3280
 
6084 serge 3281
	list_add_tail(&vma->vma_link, &obj->vma_list);
3282
	if (!i915_is_ggtt(vm))
5354 serge 3283
		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
5060 serge 3284
 
3285
	return vma;
3286
}
3287
 
3288
struct i915_vma *
3289
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3290
				  struct i915_address_space *vm)
3291
{
3292
	struct i915_vma *vma;
3293
 
3294
	vma = i915_gem_obj_to_vma(obj, vm);
3295
	if (!vma)
6084 serge 3296
		vma = __i915_gem_vma_create(obj, vm,
3297
					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
5060 serge 3298
 
3299
	return vma;
3300
}
3301
 
6084 serge 3302
struct i915_vma *
3303
i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3304
				       const struct i915_ggtt_view *view)
3243 Serge 3305
{
6084 serge 3306
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3307
	struct i915_vma *vma;
3243 Serge 3308
 
6084 serge 3309
	if (WARN_ON(!view))
3310
		return ERR_PTR(-EINVAL);
3243 Serge 3311
 
6084 serge 3312
	vma = i915_gem_obj_to_ggtt_view(obj, view);
3243 Serge 3313
 
6084 serge 3314
	if (IS_ERR(vma))
3315
		return vma;
3243 Serge 3316
 
6084 serge 3317
	if (!vma)
3318
		vma = __i915_gem_vma_create(obj, ggtt, view);
3243 Serge 3319
 
6084 serge 3320
	return vma;
3243 Serge 3321
 
6084 serge 3322
}
3243 Serge 3323
 
6084 serge 3324
static struct scatterlist *
3325
rotate_pages(dma_addr_t *in, unsigned int offset,
3326
	     unsigned int width, unsigned int height,
3327
	     struct sg_table *st, struct scatterlist *sg)
3328
{
3329
	unsigned int column, row;
3330
	unsigned int src_idx;
3243 Serge 3331
 
6084 serge 3332
	if (!sg) {
3333
		st->nents = 0;
3334
		sg = st->sgl;
3335
	}
3243 Serge 3336
 
6084 serge 3337
	for (column = 0; column < width; column++) {
3338
		src_idx = width * (height - 1) + column;
3339
		for (row = 0; row < height; row++) {
3340
			st->nents++;
3341
			/* We don't need the pages, but need to initialize
3342
			 * the entries so the sg list can be happily traversed.
3343
			 * The only thing we need are DMA addresses.
3344
			 */
3345
			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3346
			sg_dma_address(sg) = in[offset + src_idx];
3347
			sg_dma_len(sg) = PAGE_SIZE;
3348
			sg = sg_next(sg);
3349
			src_idx -= width;
3350
		}
3351
	}
3352
 
3353
	return sg;
3243 Serge 3354
}
3355
 
6084 serge 3356
static struct sg_table *
3357
intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3358
			  struct drm_i915_gem_object *obj)
3243 Serge 3359
{
6937 serge 3360
	struct intel_rotation_info *rot_info = &ggtt_view->params.rotation_info;
6084 serge 3361
	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3362
	unsigned int size_pages_uv;
3363
	struct sg_page_iter sg_iter;
3364
	unsigned long i;
3365
	dma_addr_t *page_addr_list;
3366
	struct sg_table *st;
3367
	unsigned int uv_start_page;
3368
	struct scatterlist *sg;
3369
	int ret = -ENOMEM;
3243 Serge 3370
 
6084 serge 3371
	/* Allocate a temporary list of source pages for random access. */
3372
	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3373
				       sizeof(dma_addr_t));
3374
	if (!page_addr_list)
3375
		return ERR_PTR(ret);
3243 Serge 3376
 
6084 serge 3377
	/* Account for UV plane with NV12. */
3378
	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3379
		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3380
	else
3381
		size_pages_uv = 0;
3243 Serge 3382
 
6084 serge 3383
	/* Allocate target SG list. */
3384
	st = kmalloc(sizeof(*st), GFP_KERNEL);
3385
	if (!st)
3386
		goto err_st_alloc;
3243 Serge 3387
 
6084 serge 3388
	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3389
	if (ret)
3390
		goto err_sg_alloc;
3243 Serge 3391
 
6084 serge 3392
	/* Populate source page list from the object. */
3393
	i = 0;
3394
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3395
		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3396
		i++;
3397
	}
3243 Serge 3398
 
6084 serge 3399
	/* Rotate the pages. */
3400
	sg = rotate_pages(page_addr_list, 0,
3401
		     rot_info->width_pages, rot_info->height_pages,
3402
		     st, NULL);
3243 Serge 3403
 
6084 serge 3404
	/* Append the UV plane if NV12. */
3405
	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3406
		uv_start_page = size_pages;
3243 Serge 3407
 
6084 serge 3408
		/* Check for tile-row un-alignment. */
3409
		if (offset_in_page(rot_info->uv_offset))
3410
			uv_start_page--;
3243 Serge 3411
 
6084 serge 3412
		rot_info->uv_start_page = uv_start_page;
3243 Serge 3413
 
6084 serge 3414
		rotate_pages(page_addr_list, uv_start_page,
3415
			     rot_info->width_pages_uv,
3416
			     rot_info->height_pages_uv,
3417
			     st, sg);
3418
	}
3243 Serge 3419
 
6084 serge 3420
	DRM_DEBUG_KMS(
3421
		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3422
		      obj->base.size, rot_info->pitch, rot_info->height,
3423
		      rot_info->pixel_format, rot_info->width_pages,
3424
		      rot_info->height_pages, size_pages + size_pages_uv,
3425
		      size_pages);
3243 Serge 3426
 
6084 serge 3427
	drm_free_large(page_addr_list);
3243 Serge 3428
 
6084 serge 3429
	return st;
3243 Serge 3430
 
6084 serge 3431
err_sg_alloc:
3432
	kfree(st);
3433
err_st_alloc:
3434
	drm_free_large(page_addr_list);
3435
 
3436
	DRM_DEBUG_KMS(
3437
		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3438
		      obj->base.size, ret, rot_info->pitch, rot_info->height,
3439
		      rot_info->pixel_format, rot_info->width_pages,
3440
		      rot_info->height_pages, size_pages + size_pages_uv,
3441
		      size_pages);
3442
	return ERR_PTR(ret);
3243 Serge 3443
}
3444
 
6084 serge 3445
static struct sg_table *
3446
intel_partial_pages(const struct i915_ggtt_view *view,
3447
		    struct drm_i915_gem_object *obj)
3243 Serge 3448
{
6084 serge 3449
	struct sg_table *st;
3450
	struct scatterlist *sg;
3451
	struct sg_page_iter obj_sg_iter;
3452
	int ret = -ENOMEM;
3243 Serge 3453
 
6084 serge 3454
	st = kmalloc(sizeof(*st), GFP_KERNEL);
3455
	if (!st)
3456
		goto err_st_alloc;
3746 Serge 3457
 
6084 serge 3458
	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3459
	if (ret)
3460
		goto err_sg_alloc;
3746 Serge 3461
 
6084 serge 3462
	sg = st->sgl;
3463
	st->nents = 0;
3464
	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3465
		view->params.partial.offset)
3466
	{
3467
		if (st->nents >= view->params.partial.size)
3468
			break;
3469
 
3470
		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3471
		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3472
		sg_dma_len(sg) = PAGE_SIZE;
3473
 
3474
		sg = sg_next(sg);
3475
		st->nents++;
3476
	}
3477
 
3478
	return st;
3479
 
3480
err_sg_alloc:
3481
	kfree(st);
3482
err_st_alloc:
3483
	return ERR_PTR(ret);
3746 Serge 3484
}
3485
 
6084 serge 3486
static int
3487
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3746 Serge 3488
{
6084 serge 3489
	int ret = 0;
3490
 
3491
	if (vma->ggtt_view.pages)
3492
		return 0;
3493
 
3494
	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3495
		vma->ggtt_view.pages = vma->obj->pages;
3496
	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3497
		vma->ggtt_view.pages =
3498
			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3499
	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3500
		vma->ggtt_view.pages =
3501
			intel_partial_pages(&vma->ggtt_view, vma->obj);
3502
	else
3503
		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3504
			  vma->ggtt_view.type);
3505
 
3506
	if (!vma->ggtt_view.pages) {
3507
		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3508
			  vma->ggtt_view.type);
3509
		ret = -EINVAL;
3510
	} else if (IS_ERR(vma->ggtt_view.pages)) {
3511
		ret = PTR_ERR(vma->ggtt_view.pages);
3512
		vma->ggtt_view.pages = NULL;
3513
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3514
			  vma->ggtt_view.type, ret);
3515
	}
3516
 
3517
	return ret;
3746 Serge 3518
}
3519
 
6084 serge 3520
/**
3521
 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3522
 * @vma: VMA to map
3523
 * @cache_level: mapping cache level
3524
 * @flags: flags like global or local mapping
3525
 *
3526
 * DMA addresses are taken from the scatter-gather table of this object (or of
3527
 * this VMA in case of non-default GGTT views) and PTE entries set up.
3528
 * Note that DMA addresses are also the only part of the SG table we care about.
3529
 */
3530
int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3531
		  u32 flags)
3746 Serge 3532
{
6084 serge 3533
	int ret;
3534
	u32 bind_flags;
3746 Serge 3535
 
6084 serge 3536
	if (WARN_ON(flags == 0))
3537
		return -EINVAL;
3746 Serge 3538
 
6084 serge 3539
	bind_flags = 0;
3540
	if (flags & PIN_GLOBAL)
3541
		bind_flags |= GLOBAL_BIND;
3542
	if (flags & PIN_USER)
3543
		bind_flags |= LOCAL_BIND;
3746 Serge 3544
 
6084 serge 3545
	if (flags & PIN_UPDATE)
3546
		bind_flags |= vma->bound;
3547
	else
3548
		bind_flags &= ~vma->bound;
3549
 
3550
	if (bind_flags == 0)
3551
		return 0;
3552
 
3553
	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3554
		trace_i915_va_alloc(vma->vm,
3555
				    vma->node.start,
3556
				    vma->node.size,
3557
				    VM_TO_TRACE_NAME(vma->vm));
3558
 
3559
		/* XXX: i915_vma_pin() will fix this +- hack */
3560
		vma->pin_count++;
3561
		ret = vma->vm->allocate_va_range(vma->vm,
3562
						 vma->node.start,
3563
						 vma->node.size);
3564
		vma->pin_count--;
3565
		if (ret)
3566
			return ret;
3567
	}
3568
 
3569
	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3570
	if (ret)
3571
		return ret;
3572
 
3573
	vma->bound |= bind_flags;
3574
 
3575
	return 0;
3746 Serge 3576
}
3577
 
6084 serge 3578
/**
3579
 * i915_ggtt_view_size - Get the size of a GGTT view.
3580
 * @obj: Object the view is of.
3581
 * @view: The view in question.
3582
 *
3583
 * @return The size of the GGTT view in bytes.
3584
 */
3585
size_t
3586
i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3587
		    const struct i915_ggtt_view *view)
3588
{
3589
	if (view->type == I915_GGTT_VIEW_NORMAL) {
3590
		return obj->base.size;
3591
	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
6937 serge 3592
		return view->params.rotation_info.size;
6084 serge 3593
	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3594
		return view->params.partial.size << PAGE_SHIFT;
3595
	} else {
3596
		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3597
		return obj->base.size;
3598
	}
3599
}