Subversion Repositories Kolibri OS

Rev

Rev 4560 | Rev 5354 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2332 Serge 1
/*
2
 * Copyright © 2010 Daniel Vetter
5060 serge 3
 * Copyright © 2011-2014 Intel Corporation
2332 Serge 4
 *
5
 * Permission is hereby granted, free of charge, to any person obtaining a
6
 * copy of this software and associated documentation files (the "Software"),
7
 * to deal in the Software without restriction, including without limitation
8
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9
 * and/or sell copies of the Software, and to permit persons to whom the
10
 * Software is furnished to do so, subject to the following conditions:
11
 *
12
 * The above copyright notice and this permission notice (including the next
13
 * paragraph) shall be included in all copies or substantial portions of the
14
 * Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22
 * IN THE SOFTWARE.
23
 *
24
 */
25
 
3243 Serge 26
 
3480 Serge 27
#define AGP_NORMAL_MEMORY 0
28
 
29
#define AGP_USER_TYPES (1 << 16)
30
#define AGP_USER_MEMORY (AGP_USER_TYPES)
31
#define AGP_USER_CACHED_MEMORY (AGP_USER_TYPES + 1)
32
 
3031 serge 33
#include 
34
#include 
2332 Serge 35
#include "i915_drv.h"
2351 Serge 36
#include "i915_trace.h"
2332 Serge 37
#include "intel_drv.h"
38
 
5060 serge 39
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
40
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
3243 Serge 41
 
5060 serge 42
bool intel_enable_ppgtt(struct drm_device *dev, bool full)
43
{
44
	if (i915.enable_ppgtt == 0)
45
		return false;
3243 Serge 46
 
5060 serge 47
	if (i915.enable_ppgtt == 1 && full)
48
		return false;
3243 Serge 49
 
5060 serge 50
	return true;
51
}
3243 Serge 52
 
5060 serge 53
static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
54
{
55
	if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
56
		return 0;
4104 Serge 57
 
5060 serge 58
	if (enable_ppgtt == 1)
59
		return 1;
4560 Serge 60
 
5060 serge 61
	if (enable_ppgtt == 2 && HAS_PPGTT(dev))
62
		return 2;
4560 Serge 63
 
5060 serge 64
#ifdef CONFIG_INTEL_IOMMU
65
	/* Disable ppgtt on SNB if VT-d is on. */
66
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
67
		DRM_INFO("Disabling PPGTT because VT-d is on\n");
68
		return 0;
69
	}
70
#endif
71
 
72
	/* Early VLV doesn't have this */
73
	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
74
	    dev->pdev->revision < 0xb) {
75
		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
76
		return 0;
77
	}
78
 
79
	return HAS_ALIASING_PPGTT(dev) ? 1 : 0;
80
}
81
 
82
 
83
static void ppgtt_bind_vma(struct i915_vma *vma,
84
			   enum i915_cache_level cache_level,
85
			   u32 flags);
86
static void ppgtt_unbind_vma(struct i915_vma *vma);
87
static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
88
 
4560 Serge 89
static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
90
					     enum i915_cache_level level,
91
					     bool valid)
92
{
5060 serge 93
	gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
4560 Serge 94
	pte |= addr;
5060 serge 95
 
96
	switch (level) {
97
	case I915_CACHE_NONE:
98
		pte |= PPAT_UNCACHED_INDEX;
99
		break;
100
	case I915_CACHE_WT:
101
		pte |= PPAT_DISPLAY_ELLC_INDEX;
102
		break;
103
	default:
4560 Serge 104
		pte |= PPAT_CACHED_INDEX;
5060 serge 105
		break;
106
	}
107
 
4560 Serge 108
	return pte;
109
}
110
 
111
static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
112
					     dma_addr_t addr,
113
					     enum i915_cache_level level)
114
{
115
	gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
116
	pde |= addr;
117
	if (level != I915_CACHE_NONE)
118
		pde |= PPAT_CACHED_PDE_INDEX;
119
	else
120
		pde |= PPAT_UNCACHED_INDEX;
121
	return pde;
122
}
123
 
4104 Serge 124
static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
4280 Serge 125
				     enum i915_cache_level level,
5060 serge 126
				     bool valid, u32 unused)
4104 Serge 127
{
4280 Serge 128
	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
4104 Serge 129
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
130
 
131
	switch (level) {
132
	case I915_CACHE_L3_LLC:
133
	case I915_CACHE_LLC:
134
		pte |= GEN6_PTE_CACHE_LLC;
135
		break;
136
	case I915_CACHE_NONE:
137
		pte |= GEN6_PTE_UNCACHED;
138
		break;
139
	default:
140
		WARN_ON(1);
141
	}
142
 
143
	return pte;
144
}
145
 
146
static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
4280 Serge 147
				     enum i915_cache_level level,
5060 serge 148
				     bool valid, u32 unused)
3243 Serge 149
{
4280 Serge 150
	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
3243 Serge 151
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
152
 
153
	switch (level) {
4104 Serge 154
	case I915_CACHE_L3_LLC:
155
		pte |= GEN7_PTE_CACHE_L3_LLC;
3243 Serge 156
		break;
157
	case I915_CACHE_LLC:
158
		pte |= GEN6_PTE_CACHE_LLC;
159
		break;
160
	case I915_CACHE_NONE:
161
			pte |= GEN6_PTE_UNCACHED;
162
		break;
163
	default:
4104 Serge 164
		WARN_ON(1);
3243 Serge 165
	}
166
 
167
	return pte;
168
}
169
 
4104 Serge 170
static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
4280 Serge 171
				     enum i915_cache_level level,
5060 serge 172
				     bool valid, u32 flags)
3746 Serge 173
{
4280 Serge 174
	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
4104 Serge 175
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
176
 
177
	/* Mark the page as writeable.  Other platforms don't have a
178
	 * setting for read-only/writable, so this matches that behavior.
179
	 */
5060 serge 180
	if (!(flags & PTE_READ_ONLY))
4104 Serge 181
	pte |= BYT_PTE_WRITEABLE;
182
 
183
	if (level != I915_CACHE_NONE)
184
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
185
 
186
	return pte;
187
}
188
 
189
static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
4280 Serge 190
				     enum i915_cache_level level,
5060 serge 191
				     bool valid, u32 unused)
4104 Serge 192
{
4280 Serge 193
	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
4104 Serge 194
	pte |= HSW_PTE_ADDR_ENCODE(addr);
195
 
196
	if (level != I915_CACHE_NONE)
197
		pte |= HSW_WB_LLC_AGE3;
198
 
199
	return pte;
200
}
201
 
202
static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
4280 Serge 203
				      enum i915_cache_level level,
5060 serge 204
				      bool valid, u32 unused)
4104 Serge 205
{
4280 Serge 206
	gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
4104 Serge 207
	pte |= HSW_PTE_ADDR_ENCODE(addr);
208
 
209
	switch (level) {
210
	case I915_CACHE_NONE:
211
		break;
212
	case I915_CACHE_WT:
4560 Serge 213
		pte |= HSW_WT_ELLC_LLC_AGE3;
4104 Serge 214
		break;
215
	default:
4560 Serge 216
		pte |= HSW_WB_ELLC_LLC_AGE3;
4104 Serge 217
		break;
218
	}
219
 
220
	return pte;
221
}
222
 
4560 Serge 223
/* Broadwell Page Directory Pointer Descriptors */
5060 serge 224
static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
225
			   uint64_t val, bool synchronous)
4560 Serge 226
{
5060 serge 227
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
4560 Serge 228
	int ret;
229
 
230
	BUG_ON(entry >= 4);
231
 
5060 serge 232
	if (synchronous) {
233
		I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
234
		I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
235
		return 0;
236
	}
237
 
4560 Serge 238
	ret = intel_ring_begin(ring, 6);
239
	if (ret)
240
		return ret;
241
 
242
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
243
	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
244
	intel_ring_emit(ring, (u32)(val >> 32));
245
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
246
	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
247
	intel_ring_emit(ring, (u32)(val));
248
	intel_ring_advance(ring);
249
 
250
	return 0;
251
}
252
 
5060 serge 253
static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
254
			  struct intel_engine_cs *ring,
255
			  bool synchronous)
4560 Serge 256
{
5060 serge 257
	int i, ret;
4560 Serge 258
 
259
	/* bit of a hack to find the actual last used pd */
260
	int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
261
 
262
	for (i = used_pd - 1; i >= 0; i--) {
263
		dma_addr_t addr = ppgtt->pd_dma_addr[i];
5060 serge 264
		ret = gen8_write_pdp(ring, i, addr, synchronous);
4560 Serge 265
			if (ret)
5060 serge 266
			return ret;
4560 Serge 267
	}
5060 serge 268
 
4560 Serge 269
	return 0;
270
}
271
 
272
static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
5060 serge 273
				   uint64_t start,
274
				   uint64_t length,
4560 Serge 275
				   bool use_scratch)
276
{
277
	struct i915_hw_ppgtt *ppgtt =
278
		container_of(vm, struct i915_hw_ppgtt, base);
279
	gen8_gtt_pte_t *pt_vaddr, scratch_pte;
5060 serge 280
	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
281
	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
282
	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
283
	unsigned num_entries = length >> PAGE_SHIFT;
4560 Serge 284
	unsigned last_pte, i;
285
 
286
    pt_vaddr = (gen8_gtt_pte_t*)AllocKernelSpace(4096);
287
    if(pt_vaddr == NULL)
288
        return;
289
 
290
    scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
291
                      I915_CACHE_LLC, use_scratch);
292
 
293
	while (num_entries) {
5060 serge 294
		struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
4560 Serge 295
 
5060 serge 296
		last_pte = pte + num_entries;
4560 Serge 297
		if (last_pte > GEN8_PTES_PER_PAGE)
298
			last_pte = GEN8_PTES_PER_PAGE;
299
 
5060 serge 300
        MapPage(pt_vaddr,(addr_t)page_table, PG_SW);
4560 Serge 301
 
5060 serge 302
		for (i = pte; i < last_pte; i++) {
4560 Serge 303
			pt_vaddr[i] = scratch_pte;
5060 serge 304
			num_entries--;
305
		}
4560 Serge 306
 
5060 serge 307
		if (!HAS_LLC(ppgtt->base.dev))
308
			drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
309
 
310
		pte = 0;
311
		if (++pde == GEN8_PDES_PER_PAGE) {
312
			pdpe++;
313
			pde = 0;
314
		}
4560 Serge 315
	}
316
    FreeKernelSpace(pt_vaddr);
317
}
318
 
319
static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
320
				      struct sg_table *pages,
5060 serge 321
				      uint64_t start,
322
				      enum i915_cache_level cache_level, u32 unused)
4560 Serge 323
{
324
	struct i915_hw_ppgtt *ppgtt =
325
		container_of(vm, struct i915_hw_ppgtt, base);
326
	gen8_gtt_pte_t *pt_vaddr;
5060 serge 327
	unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
328
	unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
329
	unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
4560 Serge 330
	struct sg_page_iter sg_iter;
331
 
332
    pt_vaddr = AllocKernelSpace(4096);
333
    if(pt_vaddr == NULL)
334
        return;
335
 
5060 serge 336
    MapPage(pt_vaddr,(addr_t)(ppgtt->gen8_pt_pages[pdpe][pde]), 3);
4560 Serge 337
 
338
	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
5060 serge 339
		if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
340
			break;
4560 Serge 341
 
5060 serge 342
		pt_vaddr[pte] =
4560 Serge 343
			gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
344
					cache_level, true);
5060 serge 345
		if (++pte == GEN8_PTES_PER_PAGE) {
346
			if (!HAS_LLC(ppgtt->base.dev))
347
				drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
348
			if (++pde == GEN8_PDES_PER_PAGE) {
349
				pdpe++;
350
				pde = 0;
351
			}
352
			pte = 0;
353
            MapPage(pt_vaddr,(addr_t)(ppgtt->gen8_pt_pages[pdpe][pde]), 3);
4560 Serge 354
		}
355
	}
356
    FreeKernelSpace(pt_vaddr);
357
}
358
 
5060 serge 359
static void gen8_free_page_tables(struct page **pt_pages)
4560 Serge 360
{
5060 serge 361
	int i;
362
 
363
	if (pt_pages == NULL)
364
		return;
365
 
366
//   for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
367
//       if (pt_pages[i])
368
//           __free_pages(pt_pages[i], 0);
369
}
370
 
371
static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
372
{
373
	int i;
374
 
375
	for (i = 0; i < ppgtt->num_pd_pages; i++) {
376
		gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
377
		kfree(ppgtt->gen8_pt_pages[i]);
378
		kfree(ppgtt->gen8_pt_dma_addr[i]);
379
	}
380
 
381
//	__free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
382
}
383
 
384
static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
385
{
386
	struct pci_dev *hwdev = ppgtt->base.dev->pdev;
4560 Serge 387
	int i, j;
388
 
5060 serge 389
	for (i = 0; i < ppgtt->num_pd_pages; i++) {
390
		/* TODO: In the future we'll support sparse mappings, so this
391
		 * will have to change. */
392
		if (!ppgtt->pd_dma_addr[i])
393
			continue;
4560 Serge 394
 
5060 serge 395
		pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
396
			       PCI_DMA_BIDIRECTIONAL);
4560 Serge 397
 
398
			for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
399
				dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
400
				if (addr)
5060 serge 401
				pci_unmap_page(hwdev, addr, PAGE_SIZE,
4560 Serge 402
						       PCI_DMA_BIDIRECTIONAL);
5060 serge 403
		}
404
	}
405
}
4560 Serge 406
 
5060 serge 407
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
408
{
409
	struct i915_hw_ppgtt *ppgtt =
410
		container_of(vm, struct i915_hw_ppgtt, base);
411
 
412
	list_del(&vm->global_link);
413
	drm_mm_takedown(&vm->mm);
414
 
415
	gen8_ppgtt_unmap_pages(ppgtt);
416
	gen8_ppgtt_free(ppgtt);
417
}
418
 
419
static struct page **__gen8_alloc_page_tables(void)
420
{
421
	struct page **pt_pages;
422
	int i;
423
 
424
	pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
425
	if (!pt_pages)
426
		return ERR_PTR(-ENOMEM);
427
 
428
	for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
429
		pt_pages[i] = alloc_page(GFP_KERNEL);
430
		if (!pt_pages[i])
431
			goto bail;
4560 Serge 432
			}
5060 serge 433
 
434
	return pt_pages;
435
 
436
bail:
437
	gen8_free_page_tables(pt_pages);
438
	kfree(pt_pages);
439
	return ERR_PTR(-ENOMEM);
440
}
441
 
442
static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
443
					   const int max_pdp)
444
{
445
	struct page **pt_pages[GEN8_LEGACY_PDPS];
446
	int i, ret;
447
 
448
	for (i = 0; i < max_pdp; i++) {
449
		pt_pages[i] = __gen8_alloc_page_tables();
450
		if (IS_ERR(pt_pages[i])) {
451
			ret = PTR_ERR(pt_pages[i]);
452
			goto unwind_out;
4560 Serge 453
		}
454
	}
455
 
5060 serge 456
	/* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
457
	 * "atomic" - for cleanup purposes.
458
	 */
459
	for (i = 0; i < max_pdp; i++)
460
		ppgtt->gen8_pt_pages[i] = pt_pages[i];
461
 
462
	return 0;
463
 
464
unwind_out:
465
	while (i--) {
466
		gen8_free_page_tables(pt_pages[i]);
467
		kfree(pt_pages[i]);
468
	}
469
 
470
	return ret;
4560 Serge 471
}
472
 
5060 serge 473
static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
474
{
475
	int i;
476
 
477
	for (i = 0; i < ppgtt->num_pd_pages; i++) {
478
		ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
479
						     sizeof(dma_addr_t),
480
						     GFP_KERNEL);
481
		if (!ppgtt->gen8_pt_dma_addr[i])
482
			return -ENOMEM;
483
		}
484
 
485
	return 0;
486
}
487
 
488
static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
489
						const int max_pdp)
490
{
491
//	ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
492
	if (!ppgtt->pd_pages)
493
		return -ENOMEM;
494
 
495
//   ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
496
	BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
497
 
498
	return 0;
499
}
500
 
501
static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
502
			    const int max_pdp)
503
{
504
	int ret;
505
 
506
	ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
507
	if (ret)
508
		return ret;
509
 
510
	ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
511
	if (ret) {
512
//		__free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
513
		return ret;
514
	}
515
 
516
	ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
517
 
518
	ret = gen8_ppgtt_allocate_dma(ppgtt);
519
	if (ret)
520
		gen8_ppgtt_free(ppgtt);
521
 
522
	return ret;
523
}
524
 
525
static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
526
					     const int pd)
527
{
528
	dma_addr_t pd_addr;
529
	int ret;
530
 
531
	pd_addr = pci_map_page(ppgtt->base.dev->pdev,
532
			       &ppgtt->pd_pages[pd], 0,
533
			       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
534
 
535
//   ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
536
//   if (ret)
537
//       return ret;
538
 
539
	ppgtt->pd_dma_addr[pd] = pd_addr;
540
 
541
	return 0;
542
}
543
 
544
static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
545
					const int pd,
546
					const int pt)
547
{
548
	dma_addr_t pt_addr;
549
	struct page *p;
550
	int ret;
551
 
552
	p = ppgtt->gen8_pt_pages[pd][pt];
553
	pt_addr = pci_map_page(ppgtt->base.dev->pdev,
554
			       p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
555
//   ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
556
//   if (ret)
557
//       return ret;
558
 
559
	ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
560
 
561
	return 0;
562
}
563
 
4560 Serge 564
/**
5060 serge 565
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
566
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
567
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
568
 * space.
4560 Serge 569
 *
5060 serge 570
 * FIXME: split allocation into smaller pieces. For now we only ever do this
571
 * once, but with full PPGTT, the multiple contiguous allocations will be bad.
4560 Serge 572
 * TODO: Do something with the size parameter
5060 serge 573
 */
4560 Serge 574
static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
575
{
576
	const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
5060 serge 577
	const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
578
	int i, j, ret;
579
	gen8_ppgtt_pde_t *pd_vaddr;
4560 Serge 580
 
581
	if (size % (1<<30))
582
		DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
583
 
5060 serge 584
	/* 1. Do all our allocations for page directories and page tables. */
585
	ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
586
	if (ret)
587
		return ret;
4560 Serge 588
 
589
	/*
5060 serge 590
	 * 2. Create DMA mappings for the page directories and page tables.
4560 Serge 591
	 */
592
	for (i = 0; i < max_pdp; i++) {
5060 serge 593
		ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
594
		if (ret)
595
			goto bail;
4560 Serge 596
 
597
		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
5060 serge 598
			ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
599
			if (ret)
600
				goto bail;
4560 Serge 601
		}
602
	}
603
 
5060 serge 604
	/*
605
	 * 3. Map all the page directory entires to point to the page tables
606
	 * we've allocated.
607
	 *
608
	 * For now, the PPGTT helper functions all require that the PDEs are
4560 Serge 609
	 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
5060 serge 610
	 * will never need to touch the PDEs again.
611
	 */
4560 Serge 612
 
613
    pd_vaddr = AllocKernelSpace(4096);
614
 
615
    for (i = 0; i < max_pdp; i++) {
5060 serge 616
        MapPage(pd_vaddr,(addr_t)(&ppgtt->pd_pages[i]), 3);
4560 Serge 617
		for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
618
			dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
619
			pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
620
						      I915_CACHE_LLC);
621
		}
5060 serge 622
		if (!HAS_LLC(ppgtt->base.dev))
623
			drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
4560 Serge 624
	}
625
    FreeKernelSpace(pd_vaddr);
626
 
5060 serge 627
	ppgtt->enable = gen8_ppgtt_enable;
628
	ppgtt->switch_mm = gen8_mm_switch;
629
	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
630
	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
631
	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
632
	ppgtt->base.start = 0;
633
	ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
4560 Serge 634
 
5060 serge 635
	ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
636
 
4560 Serge 637
	DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
638
			 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
639
	DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
5060 serge 640
			 ppgtt->num_pd_entries,
641
			 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
4560 Serge 642
	return 0;
643
 
5060 serge 644
bail:
645
	gen8_ppgtt_unmap_pages(ppgtt);
646
	gen8_ppgtt_free(ppgtt);
4560 Serge 647
	return ret;
648
}
649
 
4104 Serge 650
static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
651
{
652
	struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
3746 Serge 653
	gen6_gtt_pte_t __iomem *pd_addr;
654
	uint32_t pd_entry;
655
	int i;
656
 
4104 Serge 657
	WARN_ON(ppgtt->pd_offset & 0x3f);
3746 Serge 658
	pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
659
		ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
660
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
661
		dma_addr_t pt_addr;
662
 
663
		pt_addr = ppgtt->pt_dma_addr[i];
664
		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
665
		pd_entry |= GEN6_PDE_VALID;
666
 
667
		writel(pd_entry, pd_addr + i);
668
	}
669
	readl(pd_addr);
4104 Serge 670
}
3746 Serge 671
 
5060 serge 672
static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
4104 Serge 673
{
674
	BUG_ON(ppgtt->pd_offset & 0x3f);
675
 
5060 serge 676
	return (ppgtt->pd_offset / 64) << 16;
677
}
4104 Serge 678
 
5060 serge 679
static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
680
			 struct intel_engine_cs *ring,
681
			 bool synchronous)
682
{
683
	struct drm_device *dev = ppgtt->base.dev;
684
	struct drm_i915_private *dev_priv = dev->dev_private;
685
	int ret;
3746 Serge 686
 
5060 serge 687
	/* If we're in reset, we can assume the GPU is sufficiently idle to
688
	 * manually frob these bits. Ideally we could use the ring functions,
689
	 * except our error handling makes it quite difficult (can't use
690
	 * intel_ring_begin, ring->flush, or intel_ring_advance)
691
	 *
692
	 * FIXME: We should try not to special case reset
693
	 */
694
	if (synchronous ||
695
	    i915_reset_in_progress(&dev_priv->gpu_error)) {
696
		WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
697
		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
698
		I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
699
		POSTING_READ(RING_PP_DIR_BASE(ring));
700
		return 0;
701
	}
3746 Serge 702
 
5060 serge 703
	/* NB: TLBs must be flushed and invalidated before a switch */
704
	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
705
	if (ret)
706
		return ret;
3746 Serge 707
 
5060 serge 708
	ret = intel_ring_begin(ring, 6);
709
	if (ret)
710
		return ret;
3746 Serge 711
 
5060 serge 712
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
713
	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
714
	intel_ring_emit(ring, PP_DIR_DCLV_2G);
715
	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
716
	intel_ring_emit(ring, get_pd_offset(ppgtt));
717
	intel_ring_emit(ring, MI_NOOP);
718
	intel_ring_advance(ring);
719
 
720
	return 0;
721
}
722
 
723
static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
724
			  struct intel_engine_cs *ring,
725
			  bool synchronous)
726
{
727
	struct drm_device *dev = ppgtt->base.dev;
728
	struct drm_i915_private *dev_priv = dev->dev_private;
729
	int ret;
730
 
731
	/* If we're in reset, we can assume the GPU is sufficiently idle to
732
	 * manually frob these bits. Ideally we could use the ring functions,
733
	 * except our error handling makes it quite difficult (can't use
734
	 * intel_ring_begin, ring->flush, or intel_ring_advance)
735
	 *
736
	 * FIXME: We should try not to special case reset
737
	 */
738
	if (synchronous ||
739
	    i915_reset_in_progress(&dev_priv->gpu_error)) {
740
		WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
741
		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
742
		I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
743
		POSTING_READ(RING_PP_DIR_BASE(ring));
744
		return 0;
745
	}
746
 
747
	/* NB: TLBs must be flushed and invalidated before a switch */
748
	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
749
	if (ret)
750
		return ret;
751
 
752
	ret = intel_ring_begin(ring, 6);
753
	if (ret)
754
		return ret;
755
 
756
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
757
	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
758
	intel_ring_emit(ring, PP_DIR_DCLV_2G);
759
	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
760
	intel_ring_emit(ring, get_pd_offset(ppgtt));
761
	intel_ring_emit(ring, MI_NOOP);
762
	intel_ring_advance(ring);
763
 
764
	/* XXX: RCS is the only one to auto invalidate the TLBs? */
765
	if (ring->id != RCS) {
766
		ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
767
		if (ret)
768
			return ret;
769
	}
770
 
771
	return 0;
772
}
773
 
774
static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
775
			  struct intel_engine_cs *ring,
776
			  bool synchronous)
777
{
778
	struct drm_device *dev = ppgtt->base.dev;
779
	struct drm_i915_private *dev_priv = dev->dev_private;
780
 
781
	if (!synchronous)
782
		return 0;
783
 
784
	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
785
	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
786
 
787
	POSTING_READ(RING_PP_DIR_DCLV(ring));
788
 
789
	return 0;
790
}
791
 
792
static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
793
{
794
	struct drm_device *dev = ppgtt->base.dev;
795
	struct drm_i915_private *dev_priv = dev->dev_private;
796
	struct intel_engine_cs *ring;
797
	int j, ret;
798
 
799
	for_each_ring(ring, dev_priv, j) {
800
		I915_WRITE(RING_MODE_GEN7(ring),
801
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
802
 
803
		/* We promise to do a switch later with FULL PPGTT. If this is
804
		 * aliasing, this is the one and only switch we'll do */
805
		if (USES_FULL_PPGTT(dev))
806
			continue;
807
 
808
		ret = ppgtt->switch_mm(ppgtt, ring, true);
809
		if (ret)
810
			goto err_out;
811
	}
812
 
813
	return 0;
814
 
815
err_out:
816
	for_each_ring(ring, dev_priv, j)
817
		I915_WRITE(RING_MODE_GEN7(ring),
818
			   _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
819
	return ret;
820
}
821
 
822
static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
823
{
824
	struct drm_device *dev = ppgtt->base.dev;
825
	struct drm_i915_private *dev_priv = dev->dev_private;
826
	struct intel_engine_cs *ring;
3746 Serge 827
		uint32_t ecochk, ecobits;
5060 serge 828
	int i;
3746 Serge 829
 
830
		ecobits = I915_READ(GAC_ECO_BITS);
831
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
832
 
833
		ecochk = I915_READ(GAM_ECOCHK);
834
		if (IS_HASWELL(dev)) {
835
			ecochk |= ECOCHK_PPGTT_WB_HSW;
836
		} else {
837
			ecochk |= ECOCHK_PPGTT_LLC_IVB;
838
			ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
839
		}
840
		I915_WRITE(GAM_ECOCHK, ecochk);
841
 
842
	for_each_ring(ring, dev_priv, i) {
5060 serge 843
		int ret;
844
		/* GFX_MODE is per-ring on gen7+ */
3746 Serge 845
			I915_WRITE(RING_MODE_GEN7(ring),
846
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
847
 
5060 serge 848
		/* We promise to do a switch later with FULL PPGTT. If this is
849
		 * aliasing, this is the one and only switch we'll do */
850
		if (USES_FULL_PPGTT(dev))
851
			continue;
852
 
853
		ret = ppgtt->switch_mm(ppgtt, ring, true);
854
		if (ret)
855
			return ret;
3746 Serge 856
	}
5060 serge 857
 
3746 Serge 858
	return 0;
859
}
860
 
5060 serge 861
static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
862
{
863
	struct drm_device *dev = ppgtt->base.dev;
864
	struct drm_i915_private *dev_priv = dev->dev_private;
865
	struct intel_engine_cs *ring;
866
	uint32_t ecochk, gab_ctl, ecobits;
867
	int i;
868
 
869
	ecobits = I915_READ(GAC_ECO_BITS);
870
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
871
		   ECOBITS_PPGTT_CACHE64B);
872
 
873
	gab_ctl = I915_READ(GAB_CTL);
874
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
875
 
876
	ecochk = I915_READ(GAM_ECOCHK);
877
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
878
 
879
	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
880
 
881
	for_each_ring(ring, dev_priv, i) {
882
		int ret = ppgtt->switch_mm(ppgtt, ring, true);
883
		if (ret)
884
			return ret;
885
	}
886
 
887
	return 0;
888
}
889
 
3031 serge 890
/* PPGTT support for Sandybdrige/Gen6 and later */
4104 Serge 891
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
5060 serge 892
				   uint64_t start,
893
				   uint64_t length,
4280 Serge 894
				   bool use_scratch)
3031 serge 895
{
4104 Serge 896
	struct i915_hw_ppgtt *ppgtt =
897
		container_of(vm, struct i915_hw_ppgtt, base);
3746 Serge 898
	gen6_gtt_pte_t *pt_vaddr, scratch_pte;
5060 serge 899
	unsigned first_entry = start >> PAGE_SHIFT;
900
	unsigned num_entries = length >> PAGE_SHIFT;
3746 Serge 901
	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
3031 serge 902
	unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
903
	unsigned last_pte, i;
904
 
5060 serge 905
	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
3031 serge 906
 
907
    pt_vaddr = AllocKernelSpace(4096);
908
 
3480 Serge 909
    if(pt_vaddr == NULL)
910
        return;
911
 
912
	while (num_entries) {
3031 serge 913
            last_pte = first_pte + num_entries;
914
            if (last_pte > I915_PPGTT_PT_ENTRIES)
915
                last_pte = I915_PPGTT_PT_ENTRIES;
916
 
3746 Serge 917
            MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
3031 serge 918
 
919
            for (i = first_pte; i < last_pte; i++)
920
                pt_vaddr[i] = scratch_pte;
921
 
922
            num_entries -= last_pte - first_pte;
923
            first_pte = 0;
3746 Serge 924
            act_pt++;
3480 Serge 925
    };
926
 
927
    FreeKernelSpace(pt_vaddr);
928
}
929
 
4104 Serge 930
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
3480 Serge 931
				      struct sg_table *pages,
5060 serge 932
				      uint64_t start,
933
				      enum i915_cache_level cache_level, u32 flags)
3480 Serge 934
{
4104 Serge 935
	struct i915_hw_ppgtt *ppgtt =
936
		container_of(vm, struct i915_hw_ppgtt, base);
3746 Serge 937
	gen6_gtt_pte_t *pt_vaddr;
5060 serge 938
	unsigned first_entry = start >> PAGE_SHIFT;
3746 Serge 939
	unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
940
	unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
941
	struct sg_page_iter sg_iter;
3480 Serge 942
 
943
    pt_vaddr = AllocKernelSpace(4096);
944
 
945
    if(pt_vaddr == NULL)
946
        return;
947
 
3746 Serge 948
    MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
949
	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
3480 Serge 950
 
4560 Serge 951
		pt_vaddr[act_pte] =
952
			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
5060 serge 953
				       cache_level, true, flags);
954
 
3746 Serge 955
		if (++act_pte == I915_PPGTT_PT_ENTRIES) {
956
			act_pt++;
957
    		MapPage(pt_vaddr,(addr_t)(ppgtt->pt_pages[act_pt]), 3);
958
			act_pte = 0;
4104 Serge 959
			}
3480 Serge 960
		}
4104 Serge 961
    FreeKernelSpace(pt_vaddr);
3031 serge 962
}
963
 
5060 serge 964
static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
3031 serge 965
{
3480 Serge 966
	int i;
967
 
968
	if (ppgtt->pt_dma_addr) {
969
		for (i = 0; i < ppgtt->num_pd_entries; i++)
4104 Serge 970
			pci_unmap_page(ppgtt->base.dev->pdev,
3480 Serge 971
				       ppgtt->pt_dma_addr[i],
972
				       4096, PCI_DMA_BIDIRECTIONAL);
973
	}
5060 serge 974
}
3480 Serge 975
 
5060 serge 976
static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
977
{
978
	int i;
979
 
3480 Serge 980
	kfree(ppgtt->pt_dma_addr);
981
	for (i = 0; i < ppgtt->num_pd_entries; i++)
982
		__free_page(ppgtt->pt_pages[i]);
983
	kfree(ppgtt->pt_pages);
984
}
985
 
5060 serge 986
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
3480 Serge 987
{
5060 serge 988
	struct i915_hw_ppgtt *ppgtt =
989
		container_of(vm, struct i915_hw_ppgtt, base);
990
 
991
	list_del(&vm->global_link);
992
	drm_mm_takedown(&ppgtt->base.mm);
993
	drm_mm_remove_node(&ppgtt->node);
994
 
995
	gen6_ppgtt_unmap_pages(ppgtt);
996
	gen6_ppgtt_free(ppgtt);
997
}
998
 
999
static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1000
{
4104 Serge 1001
	struct drm_device *dev = ppgtt->base.dev;
3031 serge 1002
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1003
	bool retried = false;
1004
	int ret;
3031 serge 1005
 
5060 serge 1006
	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1007
	 * allocator works in address space sizes, so it's multiplied by page
1008
	 * size. We allocate at the top of the GTT to avoid fragmentation.
1009
	 */
1010
	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1011
alloc:
1012
	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1013
						  &ppgtt->node, GEN6_PD_SIZE,
1014
						  GEN6_PD_ALIGN, 0,
1015
						  0, dev_priv->gtt.base.total,
1016
						  DRM_MM_TOPDOWN);
1017
	if (ret == -ENOSPC && !retried) {
1018
		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1019
					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
1020
					       I915_CACHE_NONE,
1021
					       0, dev_priv->gtt.base.total,
1022
					       0);
1023
		if (ret)
1024
			return ret;
3031 serge 1025
 
5060 serge 1026
		retried = true;
1027
		goto alloc;
1028
	}
1029
 
1030
	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1031
		DRM_DEBUG("Forced to use aperture for PDEs\n");
1032
 
4104 Serge 1033
	ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
5060 serge 1034
	return ret;
1035
}
1036
 
1037
static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1038
{
1039
	int i;
1040
 
4560 Serge 1041
	ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
3031 serge 1042
				  GFP_KERNEL);
5060 serge 1043
 
3031 serge 1044
	if (!ppgtt->pt_pages)
3480 Serge 1045
		return -ENOMEM;
3031 serge 1046
 
1047
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
3243 Serge 1048
		ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
5060 serge 1049
		if (!ppgtt->pt_pages[i]) {
1050
			gen6_ppgtt_free(ppgtt);
1051
			return -ENOMEM;
1052
		}
3031 serge 1053
	}
1054
 
5060 serge 1055
	return 0;
1056
}
3031 serge 1057
 
5060 serge 1058
static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1059
{
1060
	int ret;
3031 serge 1061
 
5060 serge 1062
	ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1063
	if (ret)
1064
		return ret;
3031 serge 1065
 
5060 serge 1066
	ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1067
	if (ret) {
1068
		drm_mm_remove_node(&ppgtt->node);
1069
		return ret;
1070
	}
3031 serge 1071
 
5060 serge 1072
	ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1073
				     GFP_KERNEL);
1074
	if (!ppgtt->pt_dma_addr) {
1075
		drm_mm_remove_node(&ppgtt->node);
1076
		gen6_ppgtt_free(ppgtt);
1077
		return -ENOMEM;
1078
	}
3031 serge 1079
 
1080
	return 0;
5060 serge 1081
}
3031 serge 1082
 
5060 serge 1083
static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1084
{
1085
	struct drm_device *dev = ppgtt->base.dev;
1086
	int i;
1087
 
3031 serge 1088
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
5060 serge 1089
		dma_addr_t pt_addr;
1090
 
1091
		pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1092
				       PCI_DMA_BIDIRECTIONAL);
1093
 
1094
//       if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1095
//           gen6_ppgtt_unmap_pages(ppgtt);
1096
//           return -EIO;
1097
//       }
1098
 
1099
		ppgtt->pt_dma_addr[i] = pt_addr;
3031 serge 1100
	}
1101
 
5060 serge 1102
	return 0;
3031 serge 1103
}
1104
 
5060 serge 1105
static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
3031 serge 1106
{
5060 serge 1107
	struct drm_device *dev = ppgtt->base.dev;
3031 serge 1108
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1109
	int ret;
3031 serge 1110
 
5060 serge 1111
	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1112
	if (IS_GEN6(dev)) {
1113
	ppgtt->enable = gen6_ppgtt_enable;
1114
		ppgtt->switch_mm = gen6_mm_switch;
1115
	} else if (IS_HASWELL(dev)) {
1116
		ppgtt->enable = gen7_ppgtt_enable;
1117
		ppgtt->switch_mm = hsw_mm_switch;
1118
	} else if (IS_GEN7(dev)) {
1119
		ppgtt->enable = gen7_ppgtt_enable;
1120
		ppgtt->switch_mm = gen7_mm_switch;
1121
	} else
1122
		BUG();
3031 serge 1123
 
5060 serge 1124
	ret = gen6_ppgtt_alloc(ppgtt);
1125
	if (ret)
1126
		return ret;
1127
 
1128
	ret = gen6_ppgtt_setup_page_tables(ppgtt);
1129
	if (ret) {
1130
		gen6_ppgtt_free(ppgtt);
1131
		return ret;
1132
	}
1133
 
1134
	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1135
	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1136
	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1137
	ppgtt->base.start = 0;
1138
	ppgtt->base.total =  ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1139
//	ppgtt->debug_dump = gen6_dump_ppgtt;
1140
 
1141
	ppgtt->pd_offset =
1142
		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1143
 
1144
	ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1145
 
1146
	DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1147
			 ppgtt->node.size >> 20,
1148
			 ppgtt->node.start / PAGE_SIZE);
1149
 
1150
	return 0;
1151
}
1152
 
1153
int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1154
{
1155
	struct drm_i915_private *dev_priv = dev->dev_private;
1156
	int ret = 0;
1157
 
4104 Serge 1158
	ppgtt->base.dev = dev;
5060 serge 1159
	ppgtt->base.scratch = dev_priv->gtt.base.scratch;
3031 serge 1160
 
3746 Serge 1161
	if (INTEL_INFO(dev)->gen < 8)
5060 serge 1162
		ret = gen6_ppgtt_init(ppgtt);
4560 Serge 1163
	else if (IS_GEN8(dev))
1164
		ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
3746 Serge 1165
	else
1166
		BUG();
1167
 
5060 serge 1168
	if (!ret) {
1169
		struct drm_i915_private *dev_priv = dev->dev_private;
1170
		kref_init(&ppgtt->ref);
4104 Serge 1171
		drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1172
			    ppgtt->base.total);
5060 serge 1173
		i915_init_vm(dev_priv, &ppgtt->base);
1174
		if (INTEL_INFO(dev)->gen < 8) {
1175
			gen6_write_pdes(ppgtt);
1176
			DRM_DEBUG("Adding PPGTT at offset %x\n",
1177
				  ppgtt->pd_offset << 10);
1178
		}
4104 Serge 1179
	}
3480 Serge 1180
 
1181
	return ret;
3031 serge 1182
}
1183
 
5060 serge 1184
static void
1185
ppgtt_bind_vma(struct i915_vma *vma,
1186
	       enum i915_cache_level cache_level,
1187
	       u32 flags)
3031 serge 1188
{
5060 serge 1189
	/* Currently applicable only to VLV */
1190
	if (vma->obj->gt_ro)
1191
		flags |= PTE_READ_ONLY;
3031 serge 1192
 
5060 serge 1193
	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1194
				cache_level, flags);
3031 serge 1195
}
1196
 
5060 serge 1197
static void ppgtt_unbind_vma(struct i915_vma *vma)
3031 serge 1198
{
5060 serge 1199
	vma->vm->clear_range(vma->vm,
1200
			     vma->node.start,
1201
			     vma->obj->base.size,
4280 Serge 1202
				true);
3031 serge 1203
}
1204
 
3480 Serge 1205
extern int intel_iommu_gfx_mapped;
1206
/* Certain Gen5 chipsets require require idling the GPU before
1207
 * unmapping anything from the GTT when VT-d is enabled.
1208
 */
1209
static inline bool needs_idle_maps(struct drm_device *dev)
1210
{
1211
#ifdef CONFIG_INTEL_IOMMU
1212
	/* Query intel_iommu to see if we need the workaround. Presumably that
1213
	 * was loaded first.
1214
	 */
1215
	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1216
		return true;
1217
#endif
1218
	return false;
1219
}
1220
 
2344 Serge 1221
static bool do_idling(struct drm_i915_private *dev_priv)
1222
{
1223
	bool ret = dev_priv->mm.interruptible;
1224
 
3480 Serge 1225
	if (unlikely(dev_priv->gtt.do_idle_maps)) {
2344 Serge 1226
		dev_priv->mm.interruptible = false;
1227
		if (i915_gpu_idle(dev_priv->dev)) {
1228
			DRM_ERROR("Couldn't idle GPU\n");
1229
			/* Wait a bit, in hopes it avoids the hang */
1230
			udelay(10);
1231
		}
1232
	}
1233
 
1234
	return ret;
1235
}
1236
 
1237
static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1238
{
3480 Serge 1239
	if (unlikely(dev_priv->gtt.do_idle_maps))
2344 Serge 1240
		dev_priv->mm.interruptible = interruptible;
1241
}
1242
 
4280 Serge 1243
void i915_check_and_clear_faults(struct drm_device *dev)
1244
{
1245
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1246
	struct intel_engine_cs *ring;
4280 Serge 1247
	int i;
1248
 
1249
	if (INTEL_INFO(dev)->gen < 6)
1250
		return;
1251
 
1252
	for_each_ring(ring, dev_priv, i) {
1253
		u32 fault_reg;
1254
		fault_reg = I915_READ(RING_FAULT_REG(ring));
1255
		if (fault_reg & RING_FAULT_VALID) {
1256
			DRM_DEBUG_DRIVER("Unexpected fault\n"
1257
					 "\tAddr: 0x%08lx\\n"
1258
					 "\tAddress space: %s\n"
1259
					 "\tSource ID: %d\n"
1260
					 "\tType: %d\n",
1261
					 fault_reg & PAGE_MASK,
1262
					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1263
					 RING_FAULT_SRCID(fault_reg),
1264
					 RING_FAULT_FAULT_TYPE(fault_reg));
1265
			I915_WRITE(RING_FAULT_REG(ring),
1266
				   fault_reg & ~RING_FAULT_VALID);
1267
		}
1268
	}
1269
	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1270
}
1271
 
1272
void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1273
{
1274
	struct drm_i915_private *dev_priv = dev->dev_private;
1275
 
1276
	/* Don't bother messing with faults pre GEN6 as we have little
1277
	 * documentation supporting that it's a good idea.
1278
	 */
1279
	if (INTEL_INFO(dev)->gen < 6)
1280
		return;
1281
 
1282
	i915_check_and_clear_faults(dev);
1283
 
1284
	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
5060 serge 1285
				       dev_priv->gtt.base.start,
1286
				       dev_priv->gtt.base.total,
1287
				       true);
4280 Serge 1288
}
1289
 
2332 Serge 1290
void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1291
{
1292
	struct drm_i915_private *dev_priv = dev->dev_private;
1293
	struct drm_i915_gem_object *obj;
5060 serge 1294
	struct i915_address_space *vm;
2332 Serge 1295
 
4280 Serge 1296
	i915_check_and_clear_faults(dev);
1297
 
2332 Serge 1298
	/* First fill our portion of the GTT with scratch pages */
4104 Serge 1299
	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
5060 serge 1300
				       dev_priv->gtt.base.start,
1301
				       dev_priv->gtt.base.total,
4280 Serge 1302
				       true);
2332 Serge 1303
 
4104 Serge 1304
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5060 serge 1305
		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1306
							   &dev_priv->gtt.base);
1307
		if (!vma)
1308
			continue;
1309
 
4104 Serge 1310
		i915_gem_clflush_object(obj, obj->pin_display);
5060 serge 1311
		/* The bind_vma code tries to be smart about tracking mappings.
1312
		 * Unfortunately above, we've just wiped out the mappings
1313
		 * without telling our object about it. So we need to fake it.
1314
		 */
1315
		obj->has_global_gtt_mapping = 0;
1316
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
2332 Serge 1317
	}
1318
 
5060 serge 1319
 
1320
	if (INTEL_INFO(dev)->gen >= 8) {
1321
		if (IS_CHERRYVIEW(dev))
1322
			chv_setup_private_ppat(dev_priv);
1323
		else
1324
			bdw_setup_private_ppat(dev_priv);
1325
 
1326
		return;
1327
	}
1328
 
1329
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1330
		/* TODO: Perhaps it shouldn't be gen6 specific */
1331
		if (i915_is_ggtt(vm)) {
1332
			if (dev_priv->mm.aliasing_ppgtt)
1333
				gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1334
			continue;
1335
		}
1336
 
1337
		gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1338
	}
1339
 
3243 Serge 1340
	i915_gem_chipset_flush(dev);
2332 Serge 1341
}
1342
 
3031 serge 1343
int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2332 Serge 1344
{
3243 Serge 1345
	if (obj->has_dma_mapping)
1346
		return 0;
1347
 
3480 Serge 1348
	if (!dma_map_sg(&obj->base.dev->pdev->dev,
1349
			obj->pages->sgl, obj->pages->nents,
1350
			PCI_DMA_BIDIRECTIONAL))
1351
		return -ENOSPC;
3243 Serge 1352
 
2332 Serge 1353
	return 0;
1354
}
1355
 
4560 Serge 1356
static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1357
{
1358
#ifdef writeq
1359
	writeq(pte, addr);
1360
#else
1361
	iowrite32((u32)pte, addr);
1362
	iowrite32(pte >> 32, addr + 4);
1363
#endif
1364
}
1365
 
1366
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1367
				     struct sg_table *st,
5060 serge 1368
				     uint64_t start,
1369
				     enum i915_cache_level level, u32 unused)
4560 Serge 1370
{
1371
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
5060 serge 1372
	unsigned first_entry = start >> PAGE_SHIFT;
4560 Serge 1373
	gen8_gtt_pte_t __iomem *gtt_entries =
1374
		(gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1375
	int i = 0;
1376
	struct sg_page_iter sg_iter;
5060 serge 1377
	dma_addr_t addr = 0; /* shut up gcc */
4560 Serge 1378
 
1379
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1380
		addr = sg_dma_address(sg_iter.sg) +
1381
			(sg_iter.sg_pgoffset << PAGE_SHIFT);
1382
		gen8_set_pte(>t_entries[i],
1383
			     gen8_pte_encode(addr, level, true));
1384
		i++;
1385
	}
1386
 
1387
	/*
1388
	 * XXX: This serves as a posting read to make sure that the PTE has
1389
	 * actually been updated. There is some concern that even though
1390
	 * registers and PTEs are within the same BAR that they are potentially
1391
	 * of NUMA access patterns. Therefore, even with the way we assume
1392
	 * hardware should work, we must keep this posting read for paranoia.
1393
	 */
1394
	if (i != 0)
1395
		WARN_ON(readq(>t_entries[i-1])
1396
			!= gen8_pte_encode(addr, level, true));
1397
 
1398
	/* This next bit makes the above posting read even more important. We
1399
	 * want to flush the TLBs only after we're certain all the PTE updates
1400
	 * have finished.
1401
	 */
1402
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1403
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1404
}
1405
 
3243 Serge 1406
/*
1407
 * Binds an object into the global gtt with the specified cache level. The object
1408
 * will be accessible to the GPU via commands whose operands reference offsets
1409
 * within the global GTT as well as accessible by the GPU through the GMADR
1410
 * mapped BAR (dev_priv->mm.gtt->gtt).
1411
 */
4104 Serge 1412
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
3480 Serge 1413
				     struct sg_table *st,
5060 serge 1414
				     uint64_t start,
1415
				     enum i915_cache_level level, u32 flags)
3243 Serge 1416
{
4104 Serge 1417
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
5060 serge 1418
	unsigned first_entry = start >> PAGE_SHIFT;
3746 Serge 1419
	gen6_gtt_pte_t __iomem *gtt_entries =
1420
		(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1421
	int i = 0;
1422
	struct sg_page_iter sg_iter;
5060 serge 1423
	dma_addr_t addr = 0;
3243 Serge 1424
 
3746 Serge 1425
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1426
		addr = sg_page_iter_dma_address(&sg_iter);
5060 serge 1427
		iowrite32(vm->pte_encode(addr, level, true, flags), >t_entries[i]);
3243 Serge 1428
			i++;
1429
		}
1430
 
1431
	/* XXX: This serves as a posting read to make sure that the PTE has
1432
	 * actually been updated. There is some concern that even though
1433
	 * registers and PTEs are within the same BAR that they are potentially
1434
	 * of NUMA access patterns. Therefore, even with the way we assume
1435
	 * hardware should work, we must keep this posting read for paranoia.
1436
	 */
5060 serge 1437
	if (i != 0) {
1438
		unsigned long gtt = readl(>t_entries[i-1]);
1439
		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1440
	}
3243 Serge 1441
 
1442
	/* This next bit makes the above posting read even more important. We
1443
	 * want to flush the TLBs only after we're certain all the PTE updates
1444
	 * have finished.
1445
	 */
1446
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1447
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
1448
}
1449
 
4560 Serge 1450
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
5060 serge 1451
				  uint64_t start,
1452
				  uint64_t length,
4560 Serge 1453
				  bool use_scratch)
1454
{
1455
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
5060 serge 1456
	unsigned first_entry = start >> PAGE_SHIFT;
1457
	unsigned num_entries = length >> PAGE_SHIFT;
4560 Serge 1458
	gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1459
		(gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1460
	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1461
	int i;
1462
 
1463
	if (WARN(num_entries > max_entries,
1464
		 "First entry = %d; Num entries = %d (max=%d)\n",
1465
		 first_entry, num_entries, max_entries))
1466
		num_entries = max_entries;
1467
 
1468
	scratch_pte = gen8_pte_encode(vm->scratch.addr,
1469
				      I915_CACHE_LLC,
1470
				      use_scratch);
1471
	for (i = 0; i < num_entries; i++)
1472
		gen8_set_pte(>t_base[i], scratch_pte);
1473
	readl(gtt_base);
1474
}
1475
 
4104 Serge 1476
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
5060 serge 1477
				  uint64_t start,
1478
				  uint64_t length,
4280 Serge 1479
				  bool use_scratch)
3480 Serge 1480
{
4104 Serge 1481
	struct drm_i915_private *dev_priv = vm->dev->dev_private;
5060 serge 1482
	unsigned first_entry = start >> PAGE_SHIFT;
1483
	unsigned num_entries = length >> PAGE_SHIFT;
3746 Serge 1484
	gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1485
		(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
3480 Serge 1486
	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1487
	int i;
1488
 
4126 Serge 1489
	if (WARN(num_entries > max_entries,
1490
		 "First entry = %d; Num entries = %d (max=%d)\n",
1491
		 first_entry, num_entries, max_entries))
4104 Serge 1492
        num_entries = max_entries;
3480 Serge 1493
 
5060 serge 1494
	scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
4280 Serge 1495
 
3480 Serge 1496
	for (i = 0; i < num_entries; i++)
1497
		iowrite32(scratch_pte, >t_base[i]);
1498
	readl(gtt_base);
1499
}
1500
 
5060 serge 1501
 
1502
static void i915_ggtt_bind_vma(struct i915_vma *vma,
1503
			       enum i915_cache_level cache_level,
1504
			       u32 unused)
3480 Serge 1505
{
5060 serge 1506
	const unsigned long entry = vma->node.start >> PAGE_SHIFT;
3480 Serge 1507
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1508
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1509
 
5060 serge 1510
	BUG_ON(!i915_is_ggtt(vma->vm));
1511
	intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1512
	vma->obj->has_global_gtt_mapping = 1;
3480 Serge 1513
}
1514
 
4104 Serge 1515
static void i915_ggtt_clear_range(struct i915_address_space *vm,
5060 serge 1516
				  uint64_t start,
1517
				  uint64_t length,
4280 Serge 1518
				  bool unused)
3480 Serge 1519
{
5060 serge 1520
	unsigned first_entry = start >> PAGE_SHIFT;
1521
	unsigned num_entries = length >> PAGE_SHIFT;
3480 Serge 1522
	intel_gtt_clear_range(first_entry, num_entries);
1523
}
1524
 
5060 serge 1525
static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1526
{
1527
	const unsigned int first = vma->node.start >> PAGE_SHIFT;
1528
	const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
3480 Serge 1529
 
5060 serge 1530
	BUG_ON(!i915_is_ggtt(vma->vm));
1531
	vma->obj->has_global_gtt_mapping = 0;
1532
	intel_gtt_clear_range(first, size);
1533
}
1534
 
1535
static void ggtt_bind_vma(struct i915_vma *vma,
1536
			  enum i915_cache_level cache_level,
1537
			  u32 flags)
2332 Serge 1538
{
5060 serge 1539
	struct drm_device *dev = vma->vm->dev;
3480 Serge 1540
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1541
	struct drm_i915_gem_object *obj = vma->obj;
3480 Serge 1542
 
5060 serge 1543
	/* Currently applicable only to VLV */
1544
	if (obj->gt_ro)
1545
		flags |= PTE_READ_ONLY;
2332 Serge 1546
 
5060 serge 1547
	/* If there is no aliasing PPGTT, or the caller needs a global mapping,
1548
	 * or we have a global mapping already but the cacheability flags have
1549
	 * changed, set the global PTEs.
1550
	 *
1551
	 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1552
	 * instead if none of the above hold true.
1553
	 *
1554
	 * NB: A global mapping should only be needed for special regions like
1555
	 * "gtt mappable", SNB errata, or if specified via special execbuf
1556
	 * flags. At all other times, the GPU will use the aliasing PPGTT.
1557
	 */
1558
	if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1559
		if (!obj->has_global_gtt_mapping ||
1560
		    (cache_level != obj->cache_level)) {
1561
			vma->vm->insert_entries(vma->vm, obj->pages,
1562
						vma->node.start,
1563
						cache_level, flags);
1564
			obj->has_global_gtt_mapping = 1;
1565
		}
1566
	}
1567
 
1568
	if (dev_priv->mm.aliasing_ppgtt &&
1569
	    (!obj->has_aliasing_ppgtt_mapping ||
1570
	     (cache_level != obj->cache_level))) {
1571
		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1572
		appgtt->base.insert_entries(&appgtt->base,
1573
					    vma->obj->pages,
1574
					    vma->node.start,
1575
					    cache_level, flags);
1576
		vma->obj->has_aliasing_ppgtt_mapping = 1;
1577
	}
2332 Serge 1578
}
1579
 
5060 serge 1580
static void ggtt_unbind_vma(struct i915_vma *vma)
2332 Serge 1581
{
5060 serge 1582
	struct drm_device *dev = vma->vm->dev;
3480 Serge 1583
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1584
	struct drm_i915_gem_object *obj = vma->obj;
3480 Serge 1585
 
5060 serge 1586
	if (obj->has_global_gtt_mapping) {
1587
		vma->vm->clear_range(vma->vm,
1588
				     vma->node.start,
1589
				     obj->base.size,
4280 Serge 1590
				       true);
5060 serge 1591
		obj->has_global_gtt_mapping = 0;
1592
	}
3031 serge 1593
 
5060 serge 1594
	if (obj->has_aliasing_ppgtt_mapping) {
1595
		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1596
		appgtt->base.clear_range(&appgtt->base,
1597
					 vma->node.start,
1598
					 obj->base.size,
1599
					 true);
1600
		obj->has_aliasing_ppgtt_mapping = 0;
1601
	}
3031 serge 1602
}
1603
 
1604
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1605
{
2344 Serge 1606
	struct drm_device *dev = obj->base.dev;
1607
	struct drm_i915_private *dev_priv = dev->dev_private;
1608
	bool interruptible;
1609
 
1610
	interruptible = do_idling(dev_priv);
1611
 
3480 Serge 1612
	if (!obj->has_dma_mapping)
1613
		dma_unmap_sg(&dev->pdev->dev,
1614
			     obj->pages->sgl, obj->pages->nents,
1615
			     PCI_DMA_BIDIRECTIONAL);
2332 Serge 1616
 
3031 serge 1617
	undo_idling(dev_priv, interruptible);
1618
}
1619
 
1620
static void i915_gtt_color_adjust(struct drm_mm_node *node,
1621
				  unsigned long color,
1622
				  unsigned long *start,
1623
				  unsigned long *end)
1624
{
1625
	if (node->color != color)
1626
		*start += 4096;
1627
 
1628
	if (!list_empty(&node->node_list)) {
1629
		node = list_entry(node->node_list.next,
1630
				  struct drm_mm_node,
1631
				  node_list);
1632
		if (node->allocated && node->color != color)
1633
			*end -= 4096;
2332 Serge 1634
	}
3031 serge 1635
}
4560 Serge 1636
 
3480 Serge 1637
void i915_gem_setup_global_gtt(struct drm_device *dev,
3031 serge 1638
			      unsigned long start,
1639
			      unsigned long mappable_end,
1640
			      unsigned long end)
1641
{
3480 Serge 1642
	/* Let GEM Manage all of the aperture.
1643
	 *
1644
	 * However, leave one page at the end still bound to the scratch page.
1645
	 * There are a number of places where the hardware apparently prefetches
1646
	 * past the end of the object, and we've seen multiple hangs with the
1647
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1648
	 * aperture.  One page should be enough to keep any prefetching inside
1649
	 * of the aperture.
1650
	 */
4104 Serge 1651
	struct drm_i915_private *dev_priv = dev->dev_private;
1652
	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
3480 Serge 1653
	struct drm_mm_node *entry;
1654
	struct drm_i915_gem_object *obj;
1655
	unsigned long hole_start, hole_end;
3031 serge 1656
 
3480 Serge 1657
	BUG_ON(mappable_end > end);
1658
 
1659
	/* Subtract the guard page ... */
4104 Serge 1660
	drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
3031 serge 1661
	if (!HAS_LLC(dev))
4104 Serge 1662
		dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
3031 serge 1663
 
3480 Serge 1664
	/* Mark any preallocated objects as occupied */
4104 Serge 1665
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1666
		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1667
		int ret;
1668
		DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1669
			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
3031 serge 1670
 
4104 Serge 1671
		WARN_ON(i915_gem_obj_ggtt_bound(obj));
1672
		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1673
		if (ret)
1674
			DRM_DEBUG_KMS("Reservation failed\n");
3480 Serge 1675
		obj->has_global_gtt_mapping = 1;
1676
	}
1677
 
4104 Serge 1678
	dev_priv->gtt.base.start = start;
1679
	dev_priv->gtt.base.total = end - start;
3480 Serge 1680
 
1681
	/* Clear any non-preallocated blocks */
4104 Serge 1682
	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
3480 Serge 1683
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1684
			      hole_start, hole_end);
5060 serge 1685
		ggtt_vm->clear_range(ggtt_vm, hole_start,
1686
				     hole_end - hole_start, true);
3480 Serge 1687
	}
1688
 
1689
	/* And finally clear the reserved guard page */
5060 serge 1690
	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2332 Serge 1691
}
3243 Serge 1692
 
3480 Serge 1693
void i915_gem_init_global_gtt(struct drm_device *dev)
1694
{
1695
	struct drm_i915_private *dev_priv = dev->dev_private;
1696
	unsigned long gtt_size, mappable_size;
1697
 
4104 Serge 1698
	gtt_size = dev_priv->gtt.base.total;
3480 Serge 1699
	mappable_size = dev_priv->gtt.mappable_end;
1700
 
4280 Serge 1701
	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
3480 Serge 1702
}
1703
 
3243 Serge 1704
static int setup_scratch_page(struct drm_device *dev)
1705
{
1706
	struct drm_i915_private *dev_priv = dev->dev_private;
1707
	struct page *page;
1708
	dma_addr_t dma_addr;
1709
 
1710
	page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1711
	if (page == NULL)
1712
		return -ENOMEM;
4104 Serge 1713
    get_page(page);
3480 Serge 1714
	set_pages_uc(page, 1);
3243 Serge 1715
 
1716
#ifdef CONFIG_INTEL_IOMMU
1717
	dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1718
				PCI_DMA_BIDIRECTIONAL);
1719
	if (pci_dma_mapping_error(dev->pdev, dma_addr))
1720
		return -EINVAL;
1721
#else
1722
	dma_addr = page_to_phys(page);
1723
#endif
4104 Serge 1724
	dev_priv->gtt.base.scratch.page = page;
1725
	dev_priv->gtt.base.scratch.addr = dma_addr;
3243 Serge 1726
 
1727
	return 0;
1728
}
1729
 
3480 Serge 1730
static void teardown_scratch_page(struct drm_device *dev)
1731
{
1732
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 1733
	struct page *page = dev_priv->gtt.base.scratch.page;
1734
 
1735
	set_pages_wb(page, 1);
1736
	pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
3480 Serge 1737
		       PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
4104 Serge 1738
	put_page(page);
1739
	__free_page(page);
3480 Serge 1740
}
3243 Serge 1741
 
1742
static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1743
{
1744
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1745
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1746
	return snb_gmch_ctl << 20;
1747
}
1748
 
4560 Serge 1749
static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1750
{
1751
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1752
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1753
	if (bdw_gmch_ctl)
1754
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1755
 
5060 serge 1756
#ifdef CONFIG_X86_32
1757
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
1758
	if (bdw_gmch_ctl > 4)
1759
		bdw_gmch_ctl = 4;
1760
#endif
1761
 
4560 Serge 1762
	return bdw_gmch_ctl << 20;
1763
}
1764
 
5060 serge 1765
static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1766
{
1767
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1768
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1769
 
1770
	if (gmch_ctrl)
1771
		return 1 << (20 + gmch_ctrl);
1772
 
1773
	return 0;
1774
}
1775
 
3480 Serge 1776
static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
3243 Serge 1777
{
1778
	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1779
	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1780
	return snb_gmch_ctl << 25; /* 32 MB units */
1781
}
1782
 
4560 Serge 1783
static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1784
{
1785
	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1786
	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1787
	return bdw_gmch_ctl << 25; /* 32 MB units */
1788
}
1789
 
5060 serge 1790
static size_t chv_get_stolen_size(u16 gmch_ctrl)
1791
{
1792
	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
1793
	gmch_ctrl &= SNB_GMCH_GMS_MASK;
1794
 
1795
	/*
1796
	 * 0x0  to 0x10: 32MB increments starting at 0MB
1797
	 * 0x11 to 0x16: 4MB increments starting at 8MB
1798
	 * 0x17 to 0x1d: 4MB increments start at 36MB
1799
	 */
1800
	if (gmch_ctrl < 0x11)
1801
		return gmch_ctrl << 25;
1802
	else if (gmch_ctrl < 0x17)
1803
		return (gmch_ctrl - 0x11 + 2) << 22;
1804
	else
1805
		return (gmch_ctrl - 0x17 + 9) << 22;
1806
}
1807
 
4560 Serge 1808
static int ggtt_probe_common(struct drm_device *dev,
1809
			     size_t gtt_size)
1810
{
1811
	struct drm_i915_private *dev_priv = dev->dev_private;
1812
	phys_addr_t gtt_phys_addr;
1813
	int ret;
1814
 
1815
	/* For Modern GENs the PTEs and register space are split in the BAR */
1816
	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1817
		(pci_resource_len(dev->pdev, 0) / 2);
1818
 
1819
	dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1820
	if (!dev_priv->gtt.gsm) {
1821
		DRM_ERROR("Failed to map the gtt page table\n");
1822
		return -ENOMEM;
1823
	}
1824
 
1825
	ret = setup_scratch_page(dev);
1826
	if (ret) {
1827
		DRM_ERROR("Scratch setup failed\n");
1828
		/* iounmap will also get called at remove, but meh */
1829
		iounmap(dev_priv->gtt.gsm);
1830
	}
1831
 
1832
	return ret;
1833
}
1834
 
1835
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1836
 * bits. When using advanced contexts each context stores its own PAT, but
1837
 * writing this data shouldn't be harmful even in those cases. */
5060 serge 1838
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
4560 Serge 1839
{
1840
	uint64_t pat;
1841
 
1842
	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1843
	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1844
	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1845
	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1846
	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1847
	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1848
	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1849
	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1850
 
1851
	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1852
	 * write would work. */
1853
	I915_WRITE(GEN8_PRIVATE_PAT, pat);
1854
	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1855
}
1856
 
5060 serge 1857
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
1858
{
1859
	uint64_t pat;
1860
 
1861
	/*
1862
	 * Map WB on BDW to snooped on CHV.
1863
	 *
1864
	 * Only the snoop bit has meaning for CHV, the rest is
1865
	 * ignored.
1866
	 *
1867
	 * Note that the harware enforces snooping for all page
1868
	 * table accesses. The snoop bit is actually ignored for
1869
	 * PDEs.
1870
	 */
1871
	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1872
	      GEN8_PPAT(1, 0) |
1873
	      GEN8_PPAT(2, 0) |
1874
	      GEN8_PPAT(3, 0) |
1875
	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1876
	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1877
	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1878
	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
1879
 
1880
	I915_WRITE(GEN8_PRIVATE_PAT, pat);
1881
	I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1882
}
1883
 
4560 Serge 1884
static int gen8_gmch_probe(struct drm_device *dev,
1885
			   size_t *gtt_total,
1886
			   size_t *stolen,
1887
			   phys_addr_t *mappable_base,
1888
			   unsigned long *mappable_end)
1889
{
1890
	struct drm_i915_private *dev_priv = dev->dev_private;
1891
	unsigned int gtt_size;
1892
	u16 snb_gmch_ctl;
1893
	int ret;
1894
 
1895
	/* TODO: We're not aware of mappable constraints on gen8 yet */
1896
	*mappable_base = pci_resource_start(dev->pdev, 2);
1897
	*mappable_end = pci_resource_len(dev->pdev, 2);
1898
 
1899
	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1900
		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1901
 
1902
	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1903
 
5060 serge 1904
	if (IS_CHERRYVIEW(dev)) {
1905
		*stolen = chv_get_stolen_size(snb_gmch_ctl);
1906
		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
1907
	} else {
4560 Serge 1908
	*stolen = gen8_get_stolen_size(snb_gmch_ctl);
5060 serge 1909
		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1910
	}
4560 Serge 1911
 
1912
	*gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1913
 
5060 serge 1914
	if (IS_CHERRYVIEW(dev))
1915
		chv_setup_private_ppat(dev_priv);
1916
	else
1917
		bdw_setup_private_ppat(dev_priv);
4560 Serge 1918
 
1919
	ret = ggtt_probe_common(dev, gtt_size);
1920
 
1921
	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1922
	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1923
 
1924
	return ret;
1925
}
1926
 
3480 Serge 1927
static int gen6_gmch_probe(struct drm_device *dev,
1928
			   size_t *gtt_total,
1929
			   size_t *stolen,
1930
			   phys_addr_t *mappable_base,
1931
			   unsigned long *mappable_end)
3243 Serge 1932
{
1933
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 1934
	unsigned int gtt_size;
3243 Serge 1935
	u16 snb_gmch_ctl;
1936
	int ret;
1937
 
3480 Serge 1938
	*mappable_base = pci_resource_start(dev->pdev, 2);
1939
	*mappable_end = pci_resource_len(dev->pdev, 2);
1940
 
1941
	/* 64/512MB is the current min/max we actually know of, but this is just
1942
	 * a coarse sanity check.
3243 Serge 1943
	 */
3480 Serge 1944
	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1945
		DRM_ERROR("Unknown GMADR size (%lx)\n",
1946
			  dev_priv->gtt.mappable_end);
1947
		return -ENXIO;
3243 Serge 1948
		}
1949
 
3480 Serge 1950
	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1951
		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1952
	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3243 Serge 1953
 
4104 Serge 1954
	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
4560 Serge 1955
 
1956
	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3746 Serge 1957
	*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
3243 Serge 1958
 
4560 Serge 1959
	ret = ggtt_probe_common(dev, gtt_size);
3243 Serge 1960
 
4104 Serge 1961
	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1962
	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3480 Serge 1963
 
1964
	return ret;
1965
}
1966
 
4104 Serge 1967
static void gen6_gmch_remove(struct i915_address_space *vm)
3480 Serge 1968
{
4104 Serge 1969
 
1970
	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
5060 serge 1971
 
1972
	if (drm_mm_initialized(&vm->mm)) {
1973
		drm_mm_takedown(&vm->mm);
1974
		list_del(&vm->global_link);
1975
	}
4104 Serge 1976
	iounmap(gtt->gsm);
1977
	teardown_scratch_page(vm->dev);
3480 Serge 1978
}
1979
 
1980
static int i915_gmch_probe(struct drm_device *dev,
1981
			   size_t *gtt_total,
1982
			   size_t *stolen,
1983
			   phys_addr_t *mappable_base,
1984
			   unsigned long *mappable_end)
1985
{
1986
	struct drm_i915_private *dev_priv = dev->dev_private;
1987
	int ret;
1988
 
1989
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1990
	if (!ret) {
1991
		DRM_ERROR("failed to set up gmch\n");
1992
		return -EIO;
3243 Serge 1993
	}
1994
 
3480 Serge 1995
	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3243 Serge 1996
 
3480 Serge 1997
	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
4104 Serge 1998
	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3480 Serge 1999
 
4560 Serge 2000
	if (unlikely(dev_priv->gtt.do_idle_maps))
2001
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2002
 
3243 Serge 2003
	return 0;
3480 Serge 2004
}
3243 Serge 2005
 
4104 Serge 2006
static void i915_gmch_remove(struct i915_address_space *vm)
3480 Serge 2007
{
4560 Serge 2008
//	intel_gmch_remove();
3480 Serge 2009
}
2010
 
2011
int i915_gem_gtt_init(struct drm_device *dev)
2012
{
2013
	struct drm_i915_private *dev_priv = dev->dev_private;
2014
	struct i915_gtt *gtt = &dev_priv->gtt;
2015
	int ret;
2016
 
2017
	if (INTEL_INFO(dev)->gen <= 5) {
4104 Serge 2018
		gtt->gtt_probe = i915_gmch_probe;
2019
		gtt->base.cleanup = i915_gmch_remove;
4560 Serge 2020
	} else if (INTEL_INFO(dev)->gen < 8) {
4104 Serge 2021
		gtt->gtt_probe = gen6_gmch_probe;
2022
		gtt->base.cleanup = gen6_gmch_remove;
2023
		if (IS_HASWELL(dev) && dev_priv->ellc_size)
2024
			gtt->base.pte_encode = iris_pte_encode;
2025
		else if (IS_HASWELL(dev))
2026
			gtt->base.pte_encode = hsw_pte_encode;
2027
		else if (IS_VALLEYVIEW(dev))
2028
			gtt->base.pte_encode = byt_pte_encode;
2029
		else if (INTEL_INFO(dev)->gen >= 7)
2030
			gtt->base.pte_encode = ivb_pte_encode;
2031
		else
2032
			gtt->base.pte_encode = snb_pte_encode;
4560 Serge 2033
	} else {
2034
		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2035
		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3480 Serge 2036
	}
2037
 
4104 Serge 2038
	ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size,
2039
			     >t->mappable_base, >t->mappable_end);
3480 Serge 2040
	if (ret)
4104 Serge 2041
		return ret;
3480 Serge 2042
 
4104 Serge 2043
	gtt->base.dev = dev;
2044
 
3480 Serge 2045
	/* GMADR is the PCI mmio aperture into the global GTT. */
2046
	DRM_INFO("Memory usable by graphics device = %zdM\n",
4104 Serge 2047
		 gtt->base.total >> 20);
2048
	DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2049
	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
5060 serge 2050
#ifdef CONFIG_INTEL_IOMMU
2051
	if (intel_iommu_gfx_mapped)
2052
		DRM_INFO("VT-d active for gfx access\n");
2053
#endif
2054
	/*
2055
	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2056
	 * user's requested state against the hardware/driver capabilities.  We
2057
	 * do this now so that we can print out any log messages once rather
2058
	 * than every time we check intel_enable_ppgtt().
2059
	 */
2060
	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2061
	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3480 Serge 2062
 
2063
	return 0;
3243 Serge 2064
}
2065
 
5060 serge 2066
static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2067
					      struct i915_address_space *vm)
2068
{
2069
	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2070
	if (vma == NULL)
2071
		return ERR_PTR(-ENOMEM);
2072
 
2073
	INIT_LIST_HEAD(&vma->vma_link);
2074
	INIT_LIST_HEAD(&vma->mm_list);
2075
	INIT_LIST_HEAD(&vma->exec_list);
2076
	vma->vm = vm;
2077
	vma->obj = obj;
2078
 
2079
	switch (INTEL_INFO(vm->dev)->gen) {
2080
	case 8:
2081
	case 7:
2082
	case 6:
2083
		if (i915_is_ggtt(vm)) {
2084
			vma->unbind_vma = ggtt_unbind_vma;
2085
			vma->bind_vma = ggtt_bind_vma;
2086
		} else {
2087
			vma->unbind_vma = ppgtt_unbind_vma;
2088
			vma->bind_vma = ppgtt_bind_vma;
2089
		}
2090
		break;
2091
	case 5:
2092
	case 4:
2093
	case 3:
2094
	case 2:
2095
		BUG_ON(!i915_is_ggtt(vm));
2096
		vma->unbind_vma = i915_ggtt_unbind_vma;
2097
		vma->bind_vma = i915_ggtt_bind_vma;
2098
		break;
2099
	default:
2100
		BUG();
2101
	}
2102
 
2103
	/* Keep GGTT vmas first to make debug easier */
2104
	if (i915_is_ggtt(vm))
2105
		list_add(&vma->vma_link, &obj->vma_list);
2106
	else
2107
		list_add_tail(&vma->vma_link, &obj->vma_list);
2108
 
2109
	return vma;
2110
}
2111
 
2112
struct i915_vma *
2113
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2114
				  struct i915_address_space *vm)
2115
{
2116
	struct i915_vma *vma;
2117
 
2118
	vma = i915_gem_obj_to_vma(obj, vm);
2119
	if (!vma)
2120
		vma = __i915_gem_vma_create(obj, vm);
2121
 
2122
	return vma;
2123
}
2124
 
3243 Serge 2125
struct scatterlist *sg_next(struct scatterlist *sg)
2126
{
2127
    if (sg_is_last(sg))
2128
        return NULL;
2129
 
2130
    sg++;
2131
    if (unlikely(sg_is_chain(sg)))
2132
            sg = sg_chain_ptr(sg);
2133
 
2134
    return sg;
2135
}
2136
 
2137
 
2138
void __sg_free_table(struct sg_table *table, unsigned int max_ents,
5060 serge 2139
             bool skip_first_chunk, sg_free_fn *free_fn)
3243 Serge 2140
{
2141
    struct scatterlist *sgl, *next;
2142
 
2143
    if (unlikely(!table->sgl))
5060 serge 2144
        return;
3243 Serge 2145
 
2146
    sgl = table->sgl;
2147
    while (table->orig_nents) {
2148
        unsigned int alloc_size = table->orig_nents;
2149
        unsigned int sg_size;
2150
 
2151
        /*
2152
         * If we have more than max_ents segments left,
2153
         * then assign 'next' to the sg table after the current one.
2154
         * sg_size is then one less than alloc size, since the last
2155
         * element is the chain pointer.
2156
         */
2157
        if (alloc_size > max_ents) {
5060 serge 2158
            next = sg_chain_ptr(&sgl[max_ents - 1]);
2159
            alloc_size = max_ents;
2160
            sg_size = alloc_size - 1;
3243 Serge 2161
        } else {
5060 serge 2162
            sg_size = alloc_size;
2163
            next = NULL;
3243 Serge 2164
        }
2165
 
2166
        table->orig_nents -= sg_size;
5060 serge 2167
        if (!skip_first_chunk) {
2168
            kfree(sgl);
2169
            skip_first_chunk = false;
2170
        }
3243 Serge 2171
        sgl = next;
2172
    }
2173
 
2174
    table->sgl = NULL;
2175
}
2176
void sg_free_table(struct sg_table *table)
2177
{
5060 serge 2178
    __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, NULL);
3243 Serge 2179
}
2180
 
2181
int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
2182
{
2183
    struct scatterlist *sg, *prv;
2184
    unsigned int left;
2185
    unsigned int max_ents = SG_MAX_SINGLE_ALLOC;
2186
 
2187
#ifndef ARCH_HAS_SG_CHAIN
2188
    BUG_ON(nents > max_ents);
2189
#endif
2190
 
2191
    memset(table, 0, sizeof(*table));
2192
 
2193
    left = nents;
2194
    prv = NULL;
2195
    do {
2196
        unsigned int sg_size, alloc_size = left;
2197
 
2198
        if (alloc_size > max_ents) {
2199
                alloc_size = max_ents;
2200
                sg_size = alloc_size - 1;
2201
        } else
2202
                sg_size = alloc_size;
2203
 
2204
        left -= sg_size;
2205
 
2206
        sg = kmalloc(alloc_size * sizeof(struct scatterlist), gfp_mask);
2207
        if (unlikely(!sg)) {
2208
                /*
2209
                 * Adjust entry count to reflect that the last
2210
                 * entry of the previous table won't be used for
2211
                 * linkage.  Without this, sg_kfree() may get
2212
                 * confused.
2213
                 */
2214
                if (prv)
2215
                        table->nents = ++table->orig_nents;
2216
 
2217
                goto err;
2218
        }
2219
 
2220
        sg_init_table(sg, alloc_size);
2221
        table->nents = table->orig_nents += sg_size;
2222
 
2223
        /*
2224
         * If this is the first mapping, assign the sg table header.
2225
         * If this is not the first mapping, chain previous part.
2226
         */
2227
        if (prv)
2228
                sg_chain(prv, max_ents, sg);
2229
        else
2230
                table->sgl = sg;
2231
 
2232
        /*
2233
         * If no more entries after this one, mark the end
2234
         */
2235
        if (!left)
2236
                sg_mark_end(&sg[sg_size - 1]);
2237
 
2238
        prv = sg;
2239
    } while (left);
2240
 
2241
    return 0;
2242
 
2243
err:
5060 serge 2244
    __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, NULL);
3243 Serge 2245
 
2246
    return -ENOMEM;
2247
}
2248
 
2249
 
2250
void sg_init_table(struct scatterlist *sgl, unsigned int nents)
2251
{
2252
    memset(sgl, 0, sizeof(*sgl) * nents);
2253
#ifdef CONFIG_DEBUG_SG
2254
    {
2255
            unsigned int i;
2256
            for (i = 0; i < nents; i++)
2257
                    sgl[i].sg_magic = SG_MAGIC;
2258
    }
2259
#endif
2260
    sg_mark_end(&sgl[nents - 1]);
2261
}
2262
 
3746 Serge 2263
 
2264
void __sg_page_iter_start(struct sg_page_iter *piter,
2265
              struct scatterlist *sglist, unsigned int nents,
2266
              unsigned long pgoffset)
2267
{
2268
    piter->__pg_advance = 0;
2269
    piter->__nents = nents;
2270
 
2271
    piter->sg = sglist;
2272
    piter->sg_pgoffset = pgoffset;
2273
}
2274
 
2275
static int sg_page_count(struct scatterlist *sg)
2276
{
2277
    return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
2278
}
2279
 
2280
bool __sg_page_iter_next(struct sg_page_iter *piter)
2281
{
2282
    if (!piter->__nents || !piter->sg)
2283
        return false;
2284
 
2285
    piter->sg_pgoffset += piter->__pg_advance;
2286
    piter->__pg_advance = 1;
2287
 
2288
    while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
2289
        piter->sg_pgoffset -= sg_page_count(piter->sg);
2290
        piter->sg = sg_next(piter->sg);
2291
        if (!--piter->__nents || !piter->sg)
2292
            return false;
2293
    }
2294
 
2295
    return true;
2296
}
2297
EXPORT_SYMBOL(__sg_page_iter_next);
2298
 
2299