Subversion Repositories Kolibri OS

Rev

Rev 5354 | Rev 6084 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
4280 Serge 29
#include 
3031 serge 30
#include 
2326 Serge 31
#include "i915_drv.h"
2351 Serge 32
#include "i915_trace.h"
2326 Serge 33
#include "intel_drv.h"
3260 Serge 34
#include 
2330 Serge 35
#include 
2326 Serge 36
//#include 
3746 Serge 37
#include 
2326 Serge 38
#include 
39
 
2344 Serge 40
extern int x86_clflush_size;
2332 Serge 41
 
3263 Serge 42
#define PROT_READ       0x1             /* page can be read */
43
#define PROT_WRITE      0x2             /* page can be written */
44
#define MAP_SHARED      0x01            /* Share changes */
45
 
2344 Serge 46
 
5060 serge 47
u64 nsecs_to_jiffies64(u64 n)
48
{
49
#if (NSEC_PER_SEC % HZ) == 0
50
        /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
51
        return div_u64(n, NSEC_PER_SEC / HZ);
52
#elif (HZ % 512) == 0
53
        /* overflow after 292 years if HZ = 1024 */
54
        return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
55
#else
56
        /*
57
         * Generic case - optimized for cases where HZ is a multiple of 3.
58
         * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
59
         */
60
        return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
61
#endif
62
}
63
 
64
unsigned long nsecs_to_jiffies(u64 n)
65
{
66
    return (unsigned long)nsecs_to_jiffies64(n);
67
}
68
 
69
 
3266 Serge 70
struct drm_i915_gem_object *get_fb_obj();
71
 
3263 Serge 72
unsigned long vm_mmap(struct file *file, unsigned long addr,
73
         unsigned long len, unsigned long prot,
74
         unsigned long flag, unsigned long offset);
75
 
2344 Serge 76
 
2332 Serge 77
#define MAX_ERRNO       4095
78
 
79
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
80
 
81
 
82
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
4104 Serge 83
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
84
						   bool force);
85
static __must_check int
4560 Serge 86
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
87
			       bool readonly);
5060 serge 88
static void
89
i915_gem_object_retire(struct drm_i915_gem_object *obj);
2326 Serge 90
 
3031 serge 91
static void i915_gem_write_fence(struct drm_device *dev, int reg,
92
				 struct drm_i915_gem_object *obj);
93
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
94
					 struct drm_i915_fence_reg *fence,
95
					 bool enable);
2332 Serge 96
 
5354 serge 97
 
4560 Serge 98
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3031 serge 99
 
4104 Serge 100
static bool cpu_cache_is_coherent(struct drm_device *dev,
101
				  enum i915_cache_level level)
102
{
103
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
104
}
105
 
106
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
107
{
108
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
109
		return true;
110
 
111
	return obj->pin_display;
112
}
113
 
3031 serge 114
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
115
{
116
	if (obj->tiling_mode)
117
		i915_gem_release_mmap(obj);
118
 
119
	/* As we do not have an associated fence register, we will force
120
	 * a tiling change if we ever need to acquire one.
121
	 */
122
	obj->fence_dirty = false;
123
	obj->fence_reg = I915_FENCE_REG_NONE;
124
}
125
 
2332 Serge 126
/* some bookkeeping */
127
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
128
				  size_t size)
129
{
4104 Serge 130
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 131
	dev_priv->mm.object_count++;
132
	dev_priv->mm.object_memory += size;
4104 Serge 133
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 134
}
135
 
136
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
137
				     size_t size)
138
{
4104 Serge 139
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 140
	dev_priv->mm.object_count--;
141
	dev_priv->mm.object_memory -= size;
4104 Serge 142
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 143
}
144
 
145
static int
3480 Serge 146
i915_gem_wait_for_error(struct i915_gpu_error *error)
2332 Serge 147
{
148
	int ret;
149
 
3480 Serge 150
#define EXIT_COND (!i915_reset_in_progress(error))
151
	if (EXIT_COND)
2332 Serge 152
		return 0;
3255 Serge 153
#if 0
3031 serge 154
	/*
155
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
156
	 * userspace. If it takes that long something really bad is going on and
157
	 * we should simply try to bail out and fail as gracefully as possible.
158
	 */
3480 Serge 159
	ret = wait_event_interruptible_timeout(error->reset_queue,
160
					       EXIT_COND,
161
					       10*HZ);
3031 serge 162
	if (ret == 0) {
163
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
164
		return -EIO;
165
	} else if (ret < 0) {
2332 Serge 166
		return ret;
3031 serge 167
	}
2332 Serge 168
 
3255 Serge 169
#endif
3480 Serge 170
#undef EXIT_COND
3255 Serge 171
 
2332 Serge 172
	return 0;
173
}
174
 
175
int i915_mutex_lock_interruptible(struct drm_device *dev)
176
{
3480 Serge 177
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 178
	int ret;
179
 
3480 Serge 180
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
2332 Serge 181
	if (ret)
182
		return ret;
183
 
3480 Serge 184
	ret = mutex_lock_interruptible(&dev->struct_mutex);
185
	if (ret)
186
		return ret;
2332 Serge 187
 
188
	WARN_ON(i915_verify_lists(dev));
189
	return 0;
190
}
191
 
192
static inline bool
193
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
194
{
4104 Serge 195
	return i915_gem_obj_bound_any(obj) && !obj->active;
2332 Serge 196
}
197
 
198
int
199
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
200
			    struct drm_file *file)
201
{
202
	struct drm_i915_private *dev_priv = dev->dev_private;
203
	struct drm_i915_gem_get_aperture *args = data;
204
	struct drm_i915_gem_object *obj;
205
	size_t pinned;
206
 
207
	pinned = 0;
208
	mutex_lock(&dev->struct_mutex);
4104 Serge 209
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
5060 serge 210
		if (i915_gem_obj_is_pinned(obj))
4104 Serge 211
			pinned += i915_gem_obj_ggtt_size(obj);
2332 Serge 212
	mutex_unlock(&dev->struct_mutex);
213
 
4104 Serge 214
	args->aper_size = dev_priv->gtt.base.total;
2342 Serge 215
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 216
 
217
	return 0;
218
}
219
 
3480 Serge 220
void *i915_gem_object_alloc(struct drm_device *dev)
221
{
222
	struct drm_i915_private *dev_priv = dev->dev_private;
5367 serge 223
    return kzalloc(sizeof(struct drm_i915_gem_object), 0);
3480 Serge 224
}
225
 
226
void i915_gem_object_free(struct drm_i915_gem_object *obj)
227
{
228
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
229
	kfree(obj);
230
}
231
 
3031 serge 232
static int
233
i915_gem_create(struct drm_file *file,
2332 Serge 234
		struct drm_device *dev,
235
		uint64_t size,
236
		uint32_t *handle_p)
237
{
238
	struct drm_i915_gem_object *obj;
239
	int ret;
240
	u32 handle;
241
 
242
	size = roundup(size, PAGE_SIZE);
2342 Serge 243
	if (size == 0)
244
		return -EINVAL;
2332 Serge 245
 
246
	/* Allocate the new object */
247
	obj = i915_gem_alloc_object(dev, size);
248
	if (obj == NULL)
249
		return -ENOMEM;
250
 
251
	ret = drm_gem_handle_create(file, &obj->base, &handle);
4104 Serge 252
	/* drop reference from allocate - handle holds it now */
253
	drm_gem_object_unreference_unlocked(&obj->base);
254
	if (ret)
2332 Serge 255
		return ret;
256
 
257
	*handle_p = handle;
258
	return 0;
259
}
260
 
261
int
262
i915_gem_dumb_create(struct drm_file *file,
263
		     struct drm_device *dev,
264
		     struct drm_mode_create_dumb *args)
265
{
266
	/* have to work out size/pitch and return them */
4560 Serge 267
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
2332 Serge 268
	args->size = args->pitch * args->height;
269
	return i915_gem_create(file, dev,
270
			       args->size, &args->handle);
271
}
272
 
2326 Serge 273
/**
2332 Serge 274
 * Creates a new mm object and returns a handle to it.
275
 */
276
int
277
i915_gem_create_ioctl(struct drm_device *dev, void *data,
278
		      struct drm_file *file)
279
{
280
	struct drm_i915_gem_create *args = data;
3031 serge 281
 
2332 Serge 282
	return i915_gem_create(file, dev,
283
			       args->size, &args->handle);
284
}
285
 
286
 
3260 Serge 287
#if 0
2332 Serge 288
 
3031 serge 289
static inline int
290
__copy_to_user_swizzled(char __user *cpu_vaddr,
291
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 292
		int length)
293
{
3031 serge 294
	int ret, cpu_offset = 0;
2332 Serge 295
 
3031 serge 296
	while (length > 0) {
297
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
298
		int this_length = min(cacheline_end - gpu_offset, length);
299
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 300
 
3031 serge 301
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
302
				     gpu_vaddr + swizzled_gpu_offset,
303
				     this_length);
304
		if (ret)
305
			return ret + length;
2332 Serge 306
 
3031 serge 307
		cpu_offset += this_length;
308
		gpu_offset += this_length;
309
		length -= this_length;
310
	}
311
 
312
	return 0;
2332 Serge 313
}
314
 
3031 serge 315
static inline int
316
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
317
			  const char __user *cpu_vaddr,
318
			  int length)
2332 Serge 319
{
3031 serge 320
	int ret, cpu_offset = 0;
2332 Serge 321
 
322
	while (length > 0) {
323
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
324
		int this_length = min(cacheline_end - gpu_offset, length);
325
		int swizzled_gpu_offset = gpu_offset ^ 64;
326
 
3031 serge 327
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 328
			       cpu_vaddr + cpu_offset,
329
			       this_length);
3031 serge 330
		if (ret)
331
			return ret + length;
332
 
2332 Serge 333
		cpu_offset += this_length;
334
		gpu_offset += this_length;
335
		length -= this_length;
336
	}
337
 
3031 serge 338
	return 0;
2332 Serge 339
}
340
 
3031 serge 341
/* Per-page copy function for the shmem pread fastpath.
342
 * Flushes invalid cachelines before reading the target if
343
 * needs_clflush is set. */
2332 Serge 344
static int
3031 serge 345
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
346
		 char __user *user_data,
347
		 bool page_do_bit17_swizzling, bool needs_clflush)
348
{
349
		char *vaddr;
350
		int ret;
351
 
352
	if (unlikely(page_do_bit17_swizzling))
353
		return -EINVAL;
354
 
355
		vaddr = kmap_atomic(page);
356
	if (needs_clflush)
357
		drm_clflush_virt_range(vaddr + shmem_page_offset,
358
				       page_length);
359
		ret = __copy_to_user_inatomic(user_data,
360
				      vaddr + shmem_page_offset,
361
					      page_length);
362
		kunmap_atomic(vaddr);
363
 
364
	return ret ? -EFAULT : 0;
365
}
366
 
367
static void
368
shmem_clflush_swizzled_range(char *addr, unsigned long length,
369
			     bool swizzled)
370
{
371
	if (unlikely(swizzled)) {
372
		unsigned long start = (unsigned long) addr;
373
		unsigned long end = (unsigned long) addr + length;
374
 
375
		/* For swizzling simply ensure that we always flush both
376
		 * channels. Lame, but simple and it works. Swizzled
377
		 * pwrite/pread is far from a hotpath - current userspace
378
		 * doesn't use it at all. */
379
		start = round_down(start, 128);
380
		end = round_up(end, 128);
381
 
382
		drm_clflush_virt_range((void *)start, end - start);
383
	} else {
384
		drm_clflush_virt_range(addr, length);
385
	}
386
 
387
}
388
 
389
/* Only difference to the fast-path function is that this can handle bit17
390
 * and uses non-atomic copy and kmap functions. */
391
static int
392
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
393
		 char __user *user_data,
394
		 bool page_do_bit17_swizzling, bool needs_clflush)
395
{
396
	char *vaddr;
397
	int ret;
398
 
399
	vaddr = kmap(page);
400
	if (needs_clflush)
401
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
402
					     page_length,
403
					     page_do_bit17_swizzling);
404
 
405
	if (page_do_bit17_swizzling)
406
		ret = __copy_to_user_swizzled(user_data,
407
					      vaddr, shmem_page_offset,
408
					      page_length);
409
	else
410
		ret = __copy_to_user(user_data,
411
				     vaddr + shmem_page_offset,
412
				     page_length);
413
	kunmap(page);
414
 
415
	return ret ? - EFAULT : 0;
416
}
417
 
418
static int
419
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 420
			  struct drm_i915_gem_object *obj,
421
			  struct drm_i915_gem_pread *args,
422
			  struct drm_file *file)
423
{
3031 serge 424
	char __user *user_data;
2332 Serge 425
	ssize_t remain;
426
	loff_t offset;
3031 serge 427
	int shmem_page_offset, page_length, ret = 0;
428
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
429
	int prefaulted = 0;
430
	int needs_clflush = 0;
3746 Serge 431
	struct sg_page_iter sg_iter;
2332 Serge 432
 
3746 Serge 433
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 434
	remain = args->size;
435
 
3031 serge 436
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
437
 
5060 serge 438
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
3031 serge 439
	if (ret)
440
		return ret;
441
 
2332 Serge 442
	offset = args->offset;
443
 
3746 Serge 444
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
445
			 offset >> PAGE_SHIFT) {
446
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 447
 
3031 serge 448
		if (remain <= 0)
449
			break;
450
 
2332 Serge 451
		/* Operation in this page
452
		 *
3031 serge 453
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 454
		 * page_length = bytes to copy for this page
455
		 */
3031 serge 456
		shmem_page_offset = offset_in_page(offset);
2332 Serge 457
		page_length = remain;
3031 serge 458
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
459
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 460
 
3031 serge 461
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
462
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 463
 
3031 serge 464
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
465
				       user_data, page_do_bit17_swizzling,
466
				       needs_clflush);
467
		if (ret == 0)
468
			goto next_page;
2332 Serge 469
 
3031 serge 470
		mutex_unlock(&dev->struct_mutex);
471
 
5060 serge 472
		if (likely(!i915.prefault_disable) && !prefaulted) {
3031 serge 473
			ret = fault_in_multipages_writeable(user_data, remain);
474
			/* Userspace is tricking us, but we've already clobbered
475
			 * its pages with the prefault and promised to write the
476
			 * data up to the first fault. Hence ignore any errors
477
			 * and just continue. */
478
			(void)ret;
479
			prefaulted = 1;
480
		}
481
 
482
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
483
				       user_data, page_do_bit17_swizzling,
484
				       needs_clflush);
485
 
486
		mutex_lock(&dev->struct_mutex);
487
 
2332 Serge 488
		if (ret)
3031 serge 489
			goto out;
2332 Serge 490
 
5060 serge 491
next_page:
2332 Serge 492
		remain -= page_length;
493
		user_data += page_length;
494
		offset += page_length;
495
	}
496
 
3031 serge 497
out:
498
	i915_gem_object_unpin_pages(obj);
499
 
500
	return ret;
2332 Serge 501
}
502
 
503
/**
3031 serge 504
 * Reads data from the object referenced by handle.
505
 *
506
 * On error, the contents of *data are undefined.
2332 Serge 507
 */
3031 serge 508
int
509
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
510
		     struct drm_file *file)
511
{
512
	struct drm_i915_gem_pread *args = data;
513
	struct drm_i915_gem_object *obj;
514
	int ret = 0;
515
 
516
	if (args->size == 0)
517
		return 0;
518
 
519
	if (!access_ok(VERIFY_WRITE,
3746 Serge 520
		       to_user_ptr(args->data_ptr),
3031 serge 521
		       args->size))
522
		return -EFAULT;
523
 
524
	ret = i915_mutex_lock_interruptible(dev);
525
	if (ret)
526
		return ret;
527
 
528
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
529
	if (&obj->base == NULL) {
530
		ret = -ENOENT;
531
		goto unlock;
532
	}
533
 
534
	/* Bounds check source.  */
535
	if (args->offset > obj->base.size ||
536
	    args->size > obj->base.size - args->offset) {
537
		ret = -EINVAL;
538
		goto out;
539
	}
540
 
541
	/* prime objects have no backing filp to GEM pread/pwrite
542
	 * pages from.
543
	 */
544
	if (!obj->base.filp) {
545
		ret = -EINVAL;
546
		goto out;
547
	}
548
 
549
	trace_i915_gem_object_pread(obj, args->offset, args->size);
550
 
551
	ret = i915_gem_shmem_pread(dev, obj, args, file);
552
 
553
out:
554
	drm_gem_object_unreference(&obj->base);
555
unlock:
556
	mutex_unlock(&dev->struct_mutex);
557
	return ret;
558
}
559
 
560
/* This is the fast write path which cannot handle
561
 * page faults in the source data
562
 */
563
 
564
static inline int
565
fast_user_write(struct io_mapping *mapping,
566
		loff_t page_base, int page_offset,
567
		char __user *user_data,
568
		int length)
569
{
570
	void __iomem *vaddr_atomic;
571
	void *vaddr;
572
	unsigned long unwritten;
573
 
574
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
575
	/* We can use the cpu mem copy function because this is X86. */
576
	vaddr = (void __force*)vaddr_atomic + page_offset;
577
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
578
						      user_data, length);
579
	io_mapping_unmap_atomic(vaddr_atomic);
580
	return unwritten;
581
}
3260 Serge 582
#endif
3031 serge 583
 
3260 Serge 584
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 585
/**
586
 * This is the fast pwrite path, where we copy the data directly from the
587
 * user into the GTT, uncached.
588
 */
2332 Serge 589
static int
3031 serge 590
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
591
			 struct drm_i915_gem_object *obj,
592
			 struct drm_i915_gem_pwrite *args,
593
			 struct drm_file *file)
2332 Serge 594
{
5060 serge 595
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 596
	ssize_t remain;
3031 serge 597
	loff_t offset, page_base;
598
	char __user *user_data;
599
	int page_offset, page_length, ret;
2332 Serge 600
 
5060 serge 601
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
3031 serge 602
	if (ret)
603
		goto out;
604
 
605
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
606
	if (ret)
607
		goto out_unpin;
608
 
609
	ret = i915_gem_object_put_fence(obj);
610
	if (ret)
611
		goto out_unpin;
612
 
4539 Serge 613
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 614
	remain = args->size;
615
 
4104 Serge 616
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
2332 Serge 617
 
3031 serge 618
	while (remain > 0) {
619
		/* Operation in this page
620
		 *
621
		 * page_base = page offset within aperture
622
		 * page_offset = offset within page
623
		 * page_length = bytes to copy for this page
624
		 */
625
		page_base = offset & PAGE_MASK;
626
		page_offset = offset_in_page(offset);
627
		page_length = remain;
628
		if ((page_offset + remain) > PAGE_SIZE)
629
			page_length = PAGE_SIZE - page_offset;
2332 Serge 630
 
4539 Serge 631
        MapPage(dev_priv->gtt.mappable, dev_priv->gtt.mappable_base+page_base, PG_SW);
3031 serge 632
 
5060 serge 633
        memcpy((char*)dev_priv->gtt.mappable+page_offset, user_data, page_length);
3260 Serge 634
 
3031 serge 635
		remain -= page_length;
636
		user_data += page_length;
637
		offset += page_length;
2332 Serge 638
	}
639
 
3031 serge 640
out_unpin:
5060 serge 641
	i915_gem_object_ggtt_unpin(obj);
3031 serge 642
out:
5060 serge 643
    return ret;
3031 serge 644
}
645
 
646
/* Per-page copy function for the shmem pwrite fastpath.
647
 * Flushes invalid cachelines before writing to the target if
648
 * needs_clflush_before is set and flushes out any written cachelines after
649
 * writing if needs_clflush is set. */
650
static int
651
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
652
		  char __user *user_data,
653
		  bool page_do_bit17_swizzling,
654
		  bool needs_clflush_before,
655
		  bool needs_clflush_after)
656
{
657
	char *vaddr;
5354 serge 658
	int ret;
3031 serge 659
 
660
	if (unlikely(page_do_bit17_swizzling))
661
		return -EINVAL;
662
 
5354 serge 663
	vaddr = kmap_atomic(page);
3031 serge 664
	if (needs_clflush_before)
665
		drm_clflush_virt_range(vaddr + shmem_page_offset,
666
				       page_length);
3260 Serge 667
	memcpy(vaddr + shmem_page_offset,
3031 serge 668
						user_data,
669
						page_length);
670
	if (needs_clflush_after)
671
		drm_clflush_virt_range(vaddr + shmem_page_offset,
672
				       page_length);
5354 serge 673
	kunmap_atomic(vaddr);
3031 serge 674
 
675
	return ret ? -EFAULT : 0;
676
}
3260 Serge 677
#if 0
3031 serge 678
 
679
/* Only difference to the fast-path function is that this can handle bit17
680
 * and uses non-atomic copy and kmap functions. */
681
static int
682
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
683
		  char __user *user_data,
684
		  bool page_do_bit17_swizzling,
685
		  bool needs_clflush_before,
686
		  bool needs_clflush_after)
687
{
688
	char *vaddr;
689
	int ret;
690
 
691
	vaddr = kmap(page);
692
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
693
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
694
					     page_length,
695
					     page_do_bit17_swizzling);
696
	if (page_do_bit17_swizzling)
697
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
698
						user_data,
699
						page_length);
700
	else
701
		ret = __copy_from_user(vaddr + shmem_page_offset,
702
				       user_data,
703
				       page_length);
704
	if (needs_clflush_after)
705
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706
					     page_length,
707
					     page_do_bit17_swizzling);
708
	kunmap(page);
709
 
710
	return ret ? -EFAULT : 0;
711
}
3260 Serge 712
#endif
3031 serge 713
 
3260 Serge 714
 
3031 serge 715
static int
716
i915_gem_shmem_pwrite(struct drm_device *dev,
717
		      struct drm_i915_gem_object *obj,
718
		      struct drm_i915_gem_pwrite *args,
719
		      struct drm_file *file)
720
{
721
	ssize_t remain;
722
	loff_t offset;
723
	char __user *user_data;
724
	int shmem_page_offset, page_length, ret = 0;
725
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
726
	int hit_slowpath = 0;
727
	int needs_clflush_after = 0;
728
	int needs_clflush_before = 0;
3746 Serge 729
	struct sg_page_iter sg_iter;
3031 serge 730
 
3746 Serge 731
	user_data = to_user_ptr(args->data_ptr);
3031 serge 732
	remain = args->size;
733
 
734
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
735
 
736
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
737
		/* If we're not in the cpu write domain, set ourself into the gtt
738
		 * write domain and manually flush cachelines (if required). This
739
		 * optimizes for the case when the gpu will use the data
740
		 * right away and we therefore have to clflush anyway. */
4104 Serge 741
		needs_clflush_after = cpu_write_needs_clflush(obj);
4560 Serge 742
		ret = i915_gem_object_wait_rendering(obj, false);
3031 serge 743
			if (ret)
744
				return ret;
5060 serge 745
 
746
		i915_gem_object_retire(obj);
3031 serge 747
		}
4104 Serge 748
	/* Same trick applies to invalidate partially written cachelines read
749
	 * before writing. */
750
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
751
		needs_clflush_before =
752
			!cpu_cache_is_coherent(dev, obj->cache_level);
3031 serge 753
 
754
	ret = i915_gem_object_get_pages(obj);
2332 Serge 755
	if (ret)
3031 serge 756
		return ret;
2332 Serge 757
 
3031 serge 758
	i915_gem_object_pin_pages(obj);
2332 Serge 759
 
760
	offset = args->offset;
3031 serge 761
	obj->dirty = 1;
2332 Serge 762
 
3746 Serge 763
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764
			 offset >> PAGE_SHIFT) {
765
		struct page *page = sg_page_iter_page(&sg_iter);
3031 serge 766
		int partial_cacheline_write;
2332 Serge 767
 
3031 serge 768
		if (remain <= 0)
769
			break;
770
 
2332 Serge 771
		/* Operation in this page
772
		 *
773
		 * shmem_page_offset = offset within page in shmem file
774
		 * page_length = bytes to copy for this page
775
		 */
776
		shmem_page_offset = offset_in_page(offset);
777
 
778
		page_length = remain;
779
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
780
			page_length = PAGE_SIZE - shmem_page_offset;
781
 
3031 serge 782
		/* If we don't overwrite a cacheline completely we need to be
783
		 * careful to have up-to-date data by first clflushing. Don't
784
		 * overcomplicate things and flush the entire patch. */
785
		partial_cacheline_write = needs_clflush_before &&
786
			((shmem_page_offset | page_length)
3260 Serge 787
				& (x86_clflush_size - 1));
2332 Serge 788
 
3031 serge 789
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 791
 
3031 serge 792
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793
					user_data, page_do_bit17_swizzling,
794
					partial_cacheline_write,
795
					needs_clflush_after);
796
		if (ret == 0)
797
			goto next_page;
798
 
799
		hit_slowpath = 1;
800
		mutex_unlock(&dev->struct_mutex);
3260 Serge 801
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 802
 
3260 Serge 803
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
804
//					user_data, page_do_bit17_swizzling,
805
//					partial_cacheline_write,
806
//					needs_clflush_after);
807
 
3031 serge 808
		mutex_lock(&dev->struct_mutex);
809
 
810
		if (ret)
811
			goto out;
812
 
5354 serge 813
next_page:
2332 Serge 814
		remain -= page_length;
3031 serge 815
		user_data += page_length;
2332 Serge 816
		offset += page_length;
817
	}
818
 
819
out:
3031 serge 820
	i915_gem_object_unpin_pages(obj);
821
 
822
	if (hit_slowpath) {
3480 Serge 823
		/*
824
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
825
		 * cachelines in-line while writing and the object moved
826
		 * out of the cpu write domain while we've dropped the lock.
827
		 */
828
		if (!needs_clflush_after &&
829
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
4104 Serge 830
			if (i915_gem_clflush_object(obj, obj->pin_display))
3243 Serge 831
			i915_gem_chipset_flush(dev);
3031 serge 832
		}
2332 Serge 833
	}
834
 
3031 serge 835
	if (needs_clflush_after)
3243 Serge 836
		i915_gem_chipset_flush(dev);
3031 serge 837
 
2332 Serge 838
	return ret;
839
}
3031 serge 840
 
841
/**
842
 * Writes data to the object referenced by handle.
843
 *
844
 * On error, the contents of the buffer that were to be modified are undefined.
845
 */
846
int
847
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
848
		      struct drm_file *file)
849
{
850
	struct drm_i915_gem_pwrite *args = data;
851
	struct drm_i915_gem_object *obj;
852
	int ret;
853
 
4104 Serge 854
	if (args->size == 0)
855
		return 0;
856
 
3480 Serge 857
 
3031 serge 858
	ret = i915_mutex_lock_interruptible(dev);
859
	if (ret)
860
		return ret;
861
 
862
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
863
	if (&obj->base == NULL) {
864
		ret = -ENOENT;
865
		goto unlock;
866
	}
867
 
868
	/* Bounds check destination. */
869
	if (args->offset > obj->base.size ||
870
	    args->size > obj->base.size - args->offset) {
871
		ret = -EINVAL;
872
		goto out;
873
	}
874
 
875
	/* prime objects have no backing filp to GEM pread/pwrite
876
	 * pages from.
877
	 */
878
	if (!obj->base.filp) {
879
		ret = -EINVAL;
880
		goto out;
881
	}
882
 
883
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
884
 
885
	ret = -EFAULT;
886
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
887
	 * it would end up going through the fenced access, and we'll get
888
	 * different detiling behavior between reading and writing.
889
	 * pread/pwrite currently are reading and writing from the CPU
890
	 * perspective, requiring manual detiling by the client.
891
	 */
4104 Serge 892
	if (obj->tiling_mode == I915_TILING_NONE &&
893
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
894
	    cpu_write_needs_clflush(obj)) {
3031 serge 895
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
896
		/* Note that the gtt paths might fail with non-page-backed user
897
		 * pointers (e.g. gtt mappings when moving data between
898
		 * textures). Fallback to the shmem path in that case. */
899
	}
900
 
901
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 902
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 903
 
904
out:
905
	drm_gem_object_unreference(&obj->base);
906
unlock:
907
	mutex_unlock(&dev->struct_mutex);
908
	return ret;
909
}
910
 
911
int
3480 Serge 912
i915_gem_check_wedge(struct i915_gpu_error *error,
3031 serge 913
		     bool interruptible)
914
{
3480 Serge 915
	if (i915_reset_in_progress(error)) {
3031 serge 916
		/* Non-interruptible callers can't handle -EAGAIN, hence return
917
		 * -EIO unconditionally for these. */
918
		if (!interruptible)
919
			return -EIO;
2332 Serge 920
 
3480 Serge 921
		/* Recovery complete, but the reset failed ... */
922
		if (i915_terminally_wedged(error))
3031 serge 923
			return -EIO;
2332 Serge 924
 
3031 serge 925
		return -EAGAIN;
926
	}
2332 Serge 927
 
3031 serge 928
	return 0;
929
}
2332 Serge 930
 
3031 serge 931
/*
932
 * Compare seqno against outstanding lazy request. Emit a request if they are
933
 * equal.
934
 */
5060 serge 935
int
936
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
3031 serge 937
{
938
	int ret;
2332 Serge 939
 
3031 serge 940
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 941
 
3031 serge 942
	ret = 0;
4560 Serge 943
	if (seqno == ring->outstanding_lazy_seqno)
4104 Serge 944
		ret = i915_add_request(ring, NULL);
2332 Serge 945
 
3031 serge 946
	return ret;
947
}
2332 Serge 948
 
4560 Serge 949
static void fake_irq(unsigned long data)
950
{
951
//	wake_up_process((struct task_struct *)data);
952
}
953
 
954
static bool missed_irq(struct drm_i915_private *dev_priv,
5060 serge 955
		       struct intel_engine_cs *ring)
4560 Serge 956
{
957
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
958
}
959
 
960
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
961
{
962
	if (file_priv == NULL)
963
		return true;
964
 
965
	return !atomic_xchg(&file_priv->rps_wait_boost, true);
966
}
967
 
3031 serge 968
/**
5354 serge 969
 * __i915_wait_seqno - wait until execution of seqno has finished
3031 serge 970
 * @ring: the ring expected to report seqno
971
 * @seqno: duh!
3480 Serge 972
 * @reset_counter: reset sequence associated with the given seqno
3031 serge 973
 * @interruptible: do an interruptible wait (normally yes)
974
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
975
 *
3480 Serge 976
 * Note: It is of utmost importance that the passed in seqno and reset_counter
977
 * values have been read by the caller in an smp safe manner. Where read-side
978
 * locks are involved, it is sufficient to read the reset_counter before
979
 * unlocking the lock that protects the seqno. For lockless tricks, the
980
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
981
 * inserted.
982
 *
3031 serge 983
 * Returns 0 if the seqno was found within the alloted time. Else returns the
984
 * errno with remaining time filled in timeout argument.
985
 */
5354 serge 986
int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
3480 Serge 987
			unsigned reset_counter,
4560 Serge 988
			bool interruptible,
5060 serge 989
			s64 *timeout,
4560 Serge 990
			struct drm_i915_file_private *file_priv)
3031 serge 991
{
5060 serge 992
	struct drm_device *dev = ring->dev;
993
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 994
	const bool irq_test_in_progress =
995
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
5060 serge 996
	unsigned long timeout_expire;
997
	s64 before, now;
998
 
4560 Serge 999
    wait_queue_t __wait;
3031 serge 1000
	int ret;
2332 Serge 1001
 
5060 serge 1002
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
4104 Serge 1003
 
3031 serge 1004
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1005
		return 0;
2332 Serge 1006
 
5354 serge 1007
	timeout_expire = timeout ?
1008
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
2332 Serge 1009
 
5060 serge 1010
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
4560 Serge 1011
		gen6_rps_boost(dev_priv);
1012
		if (file_priv)
1013
			mod_delayed_work(dev_priv->wq,
1014
					 &file_priv->mm.idle_work,
1015
					 msecs_to_jiffies(100));
3031 serge 1016
	}
2332 Serge 1017
 
4560 Serge 1018
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
3031 serge 1019
		return -ENODEV;
2332 Serge 1020
 
4560 Serge 1021
    INIT_LIST_HEAD(&__wait.task_list);
1022
    __wait.evnt = CreateEvent(NULL, MANUAL_DESTROY);
2332 Serge 1023
 
4560 Serge 1024
	/* Record current time in case interrupted by signal, or wedged */
1025
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1026
 
4560 Serge 1027
	for (;;) {
1028
        unsigned long flags;
1029
 
3480 Serge 1030
		/* We need to check whether any gpu reset happened in between
1031
		 * the caller grabbing the seqno and now ... */
4560 Serge 1032
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1033
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1034
			 * is truely gone. */
1035
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1036
			if (ret == 0)
1037
				ret = -EAGAIN;
1038
			break;
1039
		}
3480 Serge 1040
 
4560 Serge 1041
		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1042
			ret = 0;
1043
			break;
1044
		}
2332 Serge 1045
 
5060 serge 1046
        if (timeout && time_after_eq(jiffies, timeout_expire)) {
4560 Serge 1047
			ret = -ETIME;
1048
			break;
1049
		}
2332 Serge 1050
 
4560 Serge 1051
        spin_lock_irqsave(&ring->irq_queue.lock, flags);
1052
        if (list_empty(&__wait.task_list))
1053
            __add_wait_queue(&ring->irq_queue, &__wait);
1054
        spin_unlock_irqrestore(&ring->irq_queue.lock, flags);
1055
 
1056
        WaitEventTimeout(__wait.evnt, 1);
1057
 
1058
        if (!list_empty(&__wait.task_list)) {
1059
            spin_lock_irqsave(&ring->irq_queue.lock, flags);
1060
            list_del_init(&__wait.task_list);
1061
            spin_unlock_irqrestore(&ring->irq_queue.lock, flags);
1062
        }
1063
    };
1064
    trace_i915_gem_request_wait_end(ring, seqno);
1065
 
1066
    DestroyEvent(__wait.evnt);
1067
 
1068
	if (!irq_test_in_progress)
5060 serge 1069
        ring->irq_put(ring);
2332 Serge 1070
 
5060 serge 1071
//	finish_wait(&ring->irq_queue, &wait);
4560 Serge 1072
	return ret;
3031 serge 1073
}
2332 Serge 1074
 
3031 serge 1075
/**
1076
 * Waits for a sequence number to be signaled, and cleans up the
1077
 * request and object lists appropriately for that event.
1078
 */
1079
int
5060 serge 1080
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
3031 serge 1081
{
1082
	struct drm_device *dev = ring->dev;
1083
	struct drm_i915_private *dev_priv = dev->dev_private;
1084
	bool interruptible = dev_priv->mm.interruptible;
5354 serge 1085
	unsigned reset_counter;
3031 serge 1086
	int ret;
2332 Serge 1087
 
3031 serge 1088
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1089
	BUG_ON(seqno == 0);
2332 Serge 1090
 
3480 Serge 1091
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1092
	if (ret)
1093
		return ret;
2332 Serge 1094
 
3031 serge 1095
	ret = i915_gem_check_olr(ring, seqno);
1096
	if (ret)
1097
		return ret;
2332 Serge 1098
 
5354 serge 1099
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1100
	return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1101
				 NULL, NULL);
3031 serge 1102
}
2332 Serge 1103
 
4104 Serge 1104
static int
5354 serge 1105
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
4104 Serge 1106
{
5060 serge 1107
	if (!obj->active)
1108
		return 0;
4104 Serge 1109
 
1110
	/* Manually manage the write flush as we may have not yet
1111
	 * retired the buffer.
1112
	 *
1113
	 * Note that the last_write_seqno is always the earlier of
1114
	 * the two (read/write) seqno, so if we haved successfully waited,
1115
	 * we know we have passed the last write.
1116
	 */
1117
	obj->last_write_seqno = 0;
1118
 
1119
	return 0;
1120
}
1121
 
3031 serge 1122
/**
1123
 * Ensures that all rendering to the object has completed and the object is
1124
 * safe to unbind from the GTT or access from the CPU.
1125
 */
1126
static __must_check int
1127
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1128
			       bool readonly)
1129
{
5060 serge 1130
	struct intel_engine_cs *ring = obj->ring;
3031 serge 1131
	u32 seqno;
1132
	int ret;
2332 Serge 1133
 
3031 serge 1134
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1135
	if (seqno == 0)
1136
		return 0;
2332 Serge 1137
 
3031 serge 1138
	ret = i915_wait_seqno(ring, seqno);
4104 Serge 1139
    if (ret)
1140
        return ret;
2332 Serge 1141
 
5354 serge 1142
	return i915_gem_object_wait_rendering__tail(obj);
3031 serge 1143
}
2332 Serge 1144
 
3260 Serge 1145
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1146
 * as the object state may change during this call.
1147
 */
1148
static __must_check int
1149
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
5060 serge 1150
					    struct drm_i915_file_private *file_priv,
3260 Serge 1151
					    bool readonly)
1152
{
1153
	struct drm_device *dev = obj->base.dev;
1154
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1155
	struct intel_engine_cs *ring = obj->ring;
3480 Serge 1156
	unsigned reset_counter;
3260 Serge 1157
	u32 seqno;
1158
	int ret;
2332 Serge 1159
 
3260 Serge 1160
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1161
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1162
 
3260 Serge 1163
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1164
	if (seqno == 0)
1165
		return 0;
2332 Serge 1166
 
3480 Serge 1167
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3260 Serge 1168
	if (ret)
1169
		return ret;
2332 Serge 1170
 
3260 Serge 1171
	ret = i915_gem_check_olr(ring, seqno);
1172
	if (ret)
1173
		return ret;
2332 Serge 1174
 
3480 Serge 1175
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3260 Serge 1176
	mutex_unlock(&dev->struct_mutex);
5354 serge 1177
	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1178
				file_priv);
3260 Serge 1179
	mutex_lock(&dev->struct_mutex);
4104 Serge 1180
	if (ret)
1181
		return ret;
2332 Serge 1182
 
5354 serge 1183
	return i915_gem_object_wait_rendering__tail(obj);
3260 Serge 1184
}
2332 Serge 1185
 
3260 Serge 1186
/**
1187
 * Called when user space prepares to use an object with the CPU, either
1188
 * through the mmap ioctl's mapping or a GTT mapping.
1189
 */
1190
int
1191
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1192
			  struct drm_file *file)
1193
{
1194
	struct drm_i915_gem_set_domain *args = data;
1195
	struct drm_i915_gem_object *obj;
1196
	uint32_t read_domains = args->read_domains;
1197
	uint32_t write_domain = args->write_domain;
1198
	int ret;
2332 Serge 1199
 
3260 Serge 1200
	/* Only handle setting domains to types used by the CPU. */
1201
	if (write_domain & I915_GEM_GPU_DOMAINS)
1202
		return -EINVAL;
2332 Serge 1203
 
3260 Serge 1204
	if (read_domains & I915_GEM_GPU_DOMAINS)
1205
		return -EINVAL;
2332 Serge 1206
 
3260 Serge 1207
	/* Having something in the write domain implies it's in the read
1208
	 * domain, and only that read domain.  Enforce that in the request.
1209
	 */
1210
	if (write_domain != 0 && read_domains != write_domain)
1211
		return -EINVAL;
2332 Serge 1212
 
3260 Serge 1213
	ret = i915_mutex_lock_interruptible(dev);
1214
	if (ret)
1215
		return ret;
2332 Serge 1216
 
3260 Serge 1217
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1218
	if (&obj->base == NULL) {
1219
		ret = -ENOENT;
1220
		goto unlock;
1221
	}
2332 Serge 1222
 
3260 Serge 1223
	/* Try to flush the object off the GPU without holding the lock.
1224
	 * We will repeat the flush holding the lock in the normal manner
1225
	 * to catch cases where we are gazumped.
1226
	 */
5060 serge 1227
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1228
							  file->driver_priv,
1229
							  !write_domain);
3260 Serge 1230
	if (ret)
1231
		goto unref;
2332 Serge 1232
 
3260 Serge 1233
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1234
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1235
 
3260 Serge 1236
		/* Silently promote "you're not bound, there was nothing to do"
1237
		 * to success, since the client was just asking us to
1238
		 * make sure everything was done.
1239
		 */
1240
		if (ret == -EINVAL)
1241
			ret = 0;
1242
	} else {
1243
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1244
	}
2332 Serge 1245
 
3260 Serge 1246
unref:
1247
	drm_gem_object_unreference(&obj->base);
1248
unlock:
1249
	mutex_unlock(&dev->struct_mutex);
1250
	return ret;
1251
}
2332 Serge 1252
 
4293 Serge 1253
/**
1254
 * Called when user space has done writes to this buffer
1255
 */
1256
int
1257
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1258
			 struct drm_file *file)
1259
{
1260
	struct drm_i915_gem_sw_finish *args = data;
1261
	struct drm_i915_gem_object *obj;
1262
	int ret = 0;
2332 Serge 1263
 
4293 Serge 1264
	ret = i915_mutex_lock_interruptible(dev);
1265
	if (ret)
1266
		return ret;
2332 Serge 1267
 
4293 Serge 1268
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1269
	if (&obj->base == NULL) {
1270
		ret = -ENOENT;
1271
		goto unlock;
1272
	}
2332 Serge 1273
 
4293 Serge 1274
	/* Pinned buffers may be scanout, so flush the cache */
1275
	if (obj->pin_display)
1276
		i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 1277
 
4293 Serge 1278
	drm_gem_object_unreference(&obj->base);
1279
unlock:
1280
	mutex_unlock(&dev->struct_mutex);
1281
	return ret;
1282
}
1283
 
3260 Serge 1284
/**
1285
 * Maps the contents of an object, returning the address it is mapped
1286
 * into.
1287
 *
1288
 * While the mapping holds a reference on the contents of the object, it doesn't
1289
 * imply a ref on the object itself.
5354 serge 1290
 *
1291
 * IMPORTANT:
1292
 *
1293
 * DRM driver writers who look a this function as an example for how to do GEM
1294
 * mmap support, please don't implement mmap support like here. The modern way
1295
 * to implement DRM mmap support is with an mmap offset ioctl (like
1296
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1297
 * That way debug tooling like valgrind will understand what's going on, hiding
1298
 * the mmap call in a driver private ioctl will break that. The i915 driver only
1299
 * does cpu mmaps this way because we didn't know better.
3260 Serge 1300
 */
1301
int
1302
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1303
		    struct drm_file *file)
1304
{
1305
	struct drm_i915_gem_mmap *args = data;
1306
	struct drm_gem_object *obj;
4392 Serge 1307
	unsigned long addr;
2332 Serge 1308
 
3260 Serge 1309
	obj = drm_gem_object_lookup(dev, file, args->handle);
1310
	if (obj == NULL)
1311
		return -ENOENT;
4104 Serge 1312
 
3260 Serge 1313
	/* prime objects have no backing filp to GEM mmap
1314
	 * pages from.
1315
	 */
1316
	if (!obj->filp) {
1317
		drm_gem_object_unreference_unlocked(obj);
1318
		return -EINVAL;
1319
	}
2332 Serge 1320
 
3263 Serge 1321
    addr = vm_mmap(obj->filp, 0, args->size,
1322
              PROT_READ | PROT_WRITE, MAP_SHARED,
1323
              args->offset);
3260 Serge 1324
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1325
    if (IS_ERR((void *)addr))
1326
        return addr;
2332 Serge 1327
 
3260 Serge 1328
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1329
 
3263 Serge 1330
    return 0;
3260 Serge 1331
}
2332 Serge 1332
 
1333
 
1334
 
1335
 
1336
 
1337
 
1338
 
1339
 
3031 serge 1340
 
1341
 
1342
 
1343
 
1344
 
1345
/**
1346
 * i915_gem_release_mmap - remove physical page mappings
1347
 * @obj: obj in question
1348
 *
1349
 * Preserve the reservation of the mmapping with the DRM core code, but
1350
 * relinquish ownership of the pages back to the system.
1351
 *
1352
 * It is vital that we remove the page mapping if we have mapped a tiled
1353
 * object through the GTT and then lose the fence register due to
1354
 * resource pressure. Similarly if the object has been moved out of the
1355
 * aperture, than pages mapped into userspace must be revoked. Removing the
1356
 * mapping will then trigger a page fault on the next user access, allowing
1357
 * fixup by i915_gem_fault().
1358
 */
1359
void
1360
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1361
{
1362
	if (!obj->fault_mappable)
1363
		return;
1364
 
4104 Serge 1365
//	drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
3031 serge 1366
	obj->fault_mappable = false;
1367
}
1368
 
3480 Serge 1369
uint32_t
2332 Serge 1370
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1371
{
1372
	uint32_t gtt_size;
1373
 
1374
	if (INTEL_INFO(dev)->gen >= 4 ||
1375
	    tiling_mode == I915_TILING_NONE)
1376
		return size;
1377
 
1378
	/* Previous chips need a power-of-two fence region when tiling */
1379
	if (INTEL_INFO(dev)->gen == 3)
1380
		gtt_size = 1024*1024;
1381
	else
1382
		gtt_size = 512*1024;
1383
 
1384
	while (gtt_size < size)
1385
		gtt_size <<= 1;
1386
 
1387
	return gtt_size;
1388
}
1389
 
1390
/**
1391
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1392
 * @obj: object to check
1393
 *
1394
 * Return the required GTT alignment for an object, taking into account
1395
 * potential fence register mapping.
1396
 */
3480 Serge 1397
uint32_t
1398
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1399
			   int tiling_mode, bool fenced)
2332 Serge 1400
{
1401
	/*
1402
	 * Minimum alignment is 4k (GTT page size), but might be greater
1403
	 * if a fence register is needed for the object.
1404
	 */
3480 Serge 1405
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2332 Serge 1406
	    tiling_mode == I915_TILING_NONE)
1407
		return 4096;
1408
 
1409
	/*
1410
	 * Previous chips need to be aligned to the size of the smallest
1411
	 * fence register that can contain the object.
1412
	 */
1413
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1414
}
1415
 
1416
 
1417
 
3480 Serge 1418
int
1419
i915_gem_mmap_gtt(struct drm_file *file,
1420
          struct drm_device *dev,
1421
          uint32_t handle,
1422
          uint64_t *offset)
1423
{
1424
    struct drm_i915_private *dev_priv = dev->dev_private;
1425
    struct drm_i915_gem_object *obj;
1426
    unsigned long pfn;
1427
    char *mem, *ptr;
1428
    int ret;
1429
 
1430
    ret = i915_mutex_lock_interruptible(dev);
1431
    if (ret)
1432
        return ret;
1433
 
1434
    obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1435
    if (&obj->base == NULL) {
1436
        ret = -ENOENT;
1437
        goto unlock;
1438
    }
1439
 
1440
    if (obj->base.size > dev_priv->gtt.mappable_end) {
1441
        ret = -E2BIG;
1442
        goto out;
1443
    }
1444
 
1445
    if (obj->madv != I915_MADV_WILLNEED) {
5060 serge 1446
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1447
		ret = -EFAULT;
3480 Serge 1448
        goto out;
1449
    }
1450
    /* Now bind it into the GTT if needed */
5060 serge 1451
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
3480 Serge 1452
    if (ret)
1453
        goto out;
1454
 
1455
    ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1456
    if (ret)
1457
        goto unpin;
1458
 
1459
    ret = i915_gem_object_get_fence(obj);
1460
    if (ret)
1461
        goto unpin;
1462
 
1463
    obj->fault_mappable = true;
1464
 
4104 Serge 1465
    pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
3480 Serge 1466
 
1467
    /* Finally, remap it using the new GTT offset */
1468
 
1469
    mem = UserAlloc(obj->base.size);
1470
    if(unlikely(mem == NULL))
1471
    {
1472
        ret = -ENOMEM;
1473
        goto unpin;
1474
    }
1475
 
1476
    for(ptr = mem; ptr < mem + obj->base.size; ptr+= 4096, pfn+= 4096)
1477
        MapPage(ptr, pfn, PG_SHARED|PG_UW);
1478
 
1479
unpin:
5060 serge 1480
    i915_gem_object_unpin_pages(obj);
3480 Serge 1481
 
1482
 
5367 serge 1483
    *offset = (uint32_t)mem;
3480 Serge 1484
 
1485
out:
1486
    drm_gem_object_unreference(&obj->base);
1487
unlock:
1488
    mutex_unlock(&dev->struct_mutex);
1489
    return ret;
1490
}
1491
 
1492
/**
1493
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1494
 * @dev: DRM device
1495
 * @data: GTT mapping ioctl data
1496
 * @file: GEM object info
1497
 *
1498
 * Simply returns the fake offset to userspace so it can mmap it.
1499
 * The mmap call will end up in drm_gem_mmap(), which will set things
1500
 * up so we can get faults in the handler above.
1501
 *
1502
 * The fault handler will take care of binding the object into the GTT
1503
 * (since it may have been evicted to make room for something), allocating
1504
 * a fence register, and mapping the appropriate aperture address into
1505
 * userspace.
1506
 */
1507
int
1508
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1509
            struct drm_file *file)
1510
{
1511
    struct drm_i915_gem_mmap_gtt *args = data;
1512
 
1513
    return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1514
}
1515
 
5060 serge 1516
static inline int
1517
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1518
{
1519
	return obj->madv == I915_MADV_DONTNEED;
1520
}
1521
 
3031 serge 1522
/* Immediately discard the backing storage */
1523
static void
1524
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1525
{
1526
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1527
 
3263 Serge 1528
	if (obj->base.filp == NULL)
1529
		return;
2332 Serge 1530
 
3031 serge 1531
	/* Our goal here is to return as much of the memory as
1532
	 * is possible back to the system as we are called from OOM.
1533
	 * To do this we must instruct the shmfs to drop all of its
1534
	 * backing pages, *now*.
1535
	 */
5060 serge 1536
//	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
3031 serge 1537
	obj->madv = __I915_MADV_PURGED;
1538
}
2332 Serge 1539
 
5060 serge 1540
/* Try to discard unwanted pages */
1541
static void
1542
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
3031 serge 1543
{
5060 serge 1544
	struct address_space *mapping;
1545
 
1546
	switch (obj->madv) {
1547
	case I915_MADV_DONTNEED:
1548
		i915_gem_object_truncate(obj);
1549
	case __I915_MADV_PURGED:
1550
		return;
1551
	}
1552
 
1553
	if (obj->base.filp == NULL)
1554
		return;
1555
 
3031 serge 1556
}
2332 Serge 1557
 
3031 serge 1558
static void
1559
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1560
{
3746 Serge 1561
	struct sg_page_iter sg_iter;
1562
	int ret;
2332 Serge 1563
 
3031 serge 1564
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1565
 
3031 serge 1566
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1567
	if (ret) {
1568
		/* In the event of a disaster, abandon all caches and
1569
		 * hope for the best.
1570
		 */
1571
		WARN_ON(ret != -EIO);
4104 Serge 1572
		i915_gem_clflush_object(obj, true);
3031 serge 1573
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1574
	}
2332 Serge 1575
 
3031 serge 1576
	if (obj->madv == I915_MADV_DONTNEED)
1577
		obj->dirty = 0;
2332 Serge 1578
 
3746 Serge 1579
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1580
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 1581
 
3290 Serge 1582
        page_cache_release(page);
3243 Serge 1583
	}
4104 Serge 1584
    obj->dirty = 0;
3243 Serge 1585
 
1586
	sg_free_table(obj->pages);
1587
	kfree(obj->pages);
3031 serge 1588
}
2332 Serge 1589
 
3480 Serge 1590
int
3031 serge 1591
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1592
{
1593
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1594
 
3243 Serge 1595
	if (obj->pages == NULL)
3031 serge 1596
		return 0;
2332 Serge 1597
 
3031 serge 1598
	if (obj->pages_pin_count)
1599
		return -EBUSY;
1600
 
4104 Serge 1601
	BUG_ON(i915_gem_obj_bound_any(obj));
1602
 
3243 Serge 1603
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1604
	 * array, hence protect them from being reaped by removing them from gtt
1605
	 * lists early. */
4104 Serge 1606
	list_del(&obj->global_list);
3243 Serge 1607
 
3031 serge 1608
	ops->put_pages(obj);
3243 Serge 1609
	obj->pages = NULL;
3031 serge 1610
 
5060 serge 1611
	i915_gem_object_invalidate(obj);
3031 serge 1612
 
1613
	return 0;
1614
}
1615
 
1616
 
1617
 
1618
 
1619
 
1620
 
1621
 
1622
 
2332 Serge 1623
static int
3031 serge 1624
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1625
{
3260 Serge 1626
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1627
    int page_count, i;
4104 Serge 1628
    struct sg_table *st;
3243 Serge 1629
	struct scatterlist *sg;
3746 Serge 1630
	struct sg_page_iter sg_iter;
3243 Serge 1631
	struct page *page;
3746 Serge 1632
	unsigned long last_pfn = 0;	/* suppress gcc warning */
3243 Serge 1633
	gfp_t gfp;
2332 Serge 1634
 
3243 Serge 1635
	/* Assert that the object is not currently in any GPU domain. As it
1636
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1637
	 * a GPU cache
2332 Serge 1638
	 */
3243 Serge 1639
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1640
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1641
 
1642
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1643
	if (st == NULL)
1644
		return -ENOMEM;
1645
 
2332 Serge 1646
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1647
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1648
		kfree(st);
2332 Serge 1649
		return -ENOMEM;
3243 Serge 1650
	}
2332 Serge 1651
 
3243 Serge 1652
	/* Get the list of pages out of our struct file.  They'll be pinned
1653
	 * at this point until we release them.
1654
	 *
1655
	 * Fail silently without starting the shrinker
1656
	 */
3746 Serge 1657
	sg = st->sgl;
1658
	st->nents = 0;
1659
	for (i = 0; i < page_count; i++) {
4104 Serge 1660
        page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
3260 Serge 1661
		if (IS_ERR(page)) {
1662
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1663
			goto err_pages;
3260 Serge 1664
		}
5354 serge 1665
#ifdef CONFIG_SWIOTLB
1666
		if (swiotlb_nr_tbl()) {
1667
			st->nents++;
1668
			sg_set_page(sg, page, PAGE_SIZE, 0);
1669
			sg = sg_next(sg);
1670
			continue;
1671
		}
1672
#endif
3746 Serge 1673
		if (!i || page_to_pfn(page) != last_pfn + 1) {
1674
			if (i)
1675
				sg = sg_next(sg);
1676
			st->nents++;
3243 Serge 1677
		sg_set_page(sg, page, PAGE_SIZE, 0);
3746 Serge 1678
		} else {
1679
			sg->length += PAGE_SIZE;
1680
		}
1681
		last_pfn = page_to_pfn(page);
3243 Serge 1682
	}
5354 serge 1683
#ifdef CONFIG_SWIOTLB
1684
	if (!swiotlb_nr_tbl())
1685
#endif
3746 Serge 1686
		sg_mark_end(sg);
3243 Serge 1687
	obj->pages = st;
3031 serge 1688
 
5367 serge 1689
 
1690
	if (obj->tiling_mode != I915_TILING_NONE &&
1691
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
1692
		i915_gem_object_pin_pages(obj);
1693
 
2332 Serge 1694
	return 0;
1695
 
1696
err_pages:
3746 Serge 1697
	sg_mark_end(sg);
1698
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1699
		page_cache_release(sg_page_iter_page(&sg_iter));
3243 Serge 1700
	sg_free_table(st);
1701
	kfree(st);
5367 serge 1702
 
3243 Serge 1703
	return PTR_ERR(page);
2332 Serge 1704
}
1705
 
3031 serge 1706
/* Ensure that the associated pages are gathered from the backing storage
1707
 * and pinned into our object. i915_gem_object_get_pages() may be called
1708
 * multiple times before they are released by a single call to
1709
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1710
 * either as a result of memory pressure (reaping pages under the shrinker)
1711
 * or as the object is itself released.
1712
 */
1713
int
1714
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1715
{
3031 serge 1716
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1717
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1718
	int ret;
2332 Serge 1719
 
3243 Serge 1720
	if (obj->pages)
3031 serge 1721
		return 0;
2332 Serge 1722
 
4392 Serge 1723
	if (obj->madv != I915_MADV_WILLNEED) {
5060 serge 1724
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
1725
		return -EFAULT;
4392 Serge 1726
	}
1727
 
3031 serge 1728
	BUG_ON(obj->pages_pin_count);
2332 Serge 1729
 
3031 serge 1730
	ret = ops->get_pages(obj);
1731
	if (ret)
1732
		return ret;
2344 Serge 1733
 
4104 Serge 1734
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3243 Serge 1735
    return 0;
2332 Serge 1736
}
1737
 
5060 serge 1738
static void
2332 Serge 1739
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
5060 serge 1740
			       struct intel_engine_cs *ring)
2332 Serge 1741
{
3243 Serge 1742
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1743
 
1744
	BUG_ON(ring == NULL);
4104 Serge 1745
	if (obj->ring != ring && obj->last_write_seqno) {
1746
		/* Keep the seqno relative to the current ring */
1747
		obj->last_write_seqno = seqno;
1748
	}
2332 Serge 1749
	obj->ring = ring;
1750
 
1751
	/* Add a reference if we're newly entering the active list. */
1752
	if (!obj->active) {
2344 Serge 1753
		drm_gem_object_reference(&obj->base);
2332 Serge 1754
		obj->active = 1;
1755
	}
1756
 
1757
	list_move_tail(&obj->ring_list, &ring->active_list);
1758
 
3031 serge 1759
	obj->last_read_seqno = seqno;
2332 Serge 1760
}
1761
 
4560 Serge 1762
void i915_vma_move_to_active(struct i915_vma *vma,
5060 serge 1763
			     struct intel_engine_cs *ring)
4560 Serge 1764
{
1765
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
1766
	return i915_gem_object_move_to_active(vma->obj, ring);
1767
}
1768
 
2344 Serge 1769
static void
3031 serge 1770
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1771
{
4104 Serge 1772
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
5060 serge 1773
	struct i915_address_space *vm;
1774
	struct i915_vma *vma;
2332 Serge 1775
 
3031 serge 1776
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1777
	BUG_ON(!obj->active);
2332 Serge 1778
 
5060 serge 1779
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1780
		vma = i915_gem_obj_to_vma(obj, vm);
1781
		if (vma && !list_empty(&vma->mm_list))
1782
			list_move_tail(&vma->mm_list, &vm->inactive_list);
1783
	}
2344 Serge 1784
 
5354 serge 1785
	intel_fb_obj_flush(obj, true);
1786
 
3031 serge 1787
	list_del_init(&obj->ring_list);
2352 Serge 1788
	obj->ring = NULL;
2344 Serge 1789
 
3031 serge 1790
	obj->last_read_seqno = 0;
1791
	obj->last_write_seqno = 0;
1792
	obj->base.write_domain = 0;
1793
 
1794
	obj->last_fenced_seqno = 0;
2344 Serge 1795
 
2352 Serge 1796
	obj->active = 0;
1797
	drm_gem_object_unreference(&obj->base);
1798
 
1799
	WARN_ON(i915_verify_lists(dev));
1800
}
1801
 
5060 serge 1802
static void
1803
i915_gem_object_retire(struct drm_i915_gem_object *obj)
1804
{
1805
	struct intel_engine_cs *ring = obj->ring;
1806
 
1807
	if (ring == NULL)
1808
		return;
1809
 
1810
	if (i915_seqno_passed(ring->get_seqno(ring, true),
1811
			      obj->last_read_seqno))
1812
		i915_gem_object_move_to_inactive(obj);
1813
}
1814
 
3243 Serge 1815
static int
3480 Serge 1816
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2344 Serge 1817
{
3243 Serge 1818
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1819
	struct intel_engine_cs *ring;
3243 Serge 1820
	int ret, i, j;
2344 Serge 1821
 
3480 Serge 1822
	/* Carefully retire all requests without writing to the rings */
3243 Serge 1823
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1824
		ret = intel_ring_idle(ring);
3243 Serge 1825
	if (ret)
1826
		return ret;
3480 Serge 1827
	}
1828
	i915_gem_retire_requests(dev);
3243 Serge 1829
 
3480 Serge 1830
	/* Finally reset hw state */
3243 Serge 1831
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1832
		intel_ring_init_seqno(ring, seqno);
1833
 
5060 serge 1834
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
1835
			ring->semaphore.sync_seqno[j] = 0;
3243 Serge 1836
	}
1837
 
1838
	return 0;
2344 Serge 1839
}
1840
 
3480 Serge 1841
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1842
{
1843
	struct drm_i915_private *dev_priv = dev->dev_private;
1844
	int ret;
1845
 
1846
	if (seqno == 0)
1847
		return -EINVAL;
1848
 
1849
	/* HWS page needs to be set less than what we
1850
	 * will inject to ring
1851
	 */
1852
	ret = i915_gem_init_seqno(dev, seqno - 1);
1853
	if (ret)
1854
		return ret;
1855
 
1856
	/* Carefully set the last_seqno value so that wrap
1857
	 * detection still works
1858
	 */
1859
	dev_priv->next_seqno = seqno;
1860
	dev_priv->last_seqno = seqno - 1;
1861
	if (dev_priv->last_seqno == 0)
1862
		dev_priv->last_seqno--;
1863
 
1864
	return 0;
1865
}
1866
 
3243 Serge 1867
int
1868
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1869
{
3243 Serge 1870
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1871
 
3243 Serge 1872
	/* reserve 0 for non-seqno */
1873
	if (dev_priv->next_seqno == 0) {
3480 Serge 1874
		int ret = i915_gem_init_seqno(dev, 0);
3243 Serge 1875
		if (ret)
1876
			return ret;
1877
 
1878
		dev_priv->next_seqno = 1;
1879
	}
1880
 
3480 Serge 1881
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3243 Serge 1882
	return 0;
2332 Serge 1883
}
1884
 
5060 serge 1885
int __i915_add_request(struct intel_engine_cs *ring,
2352 Serge 1886
		 struct drm_file *file,
4104 Serge 1887
		       struct drm_i915_gem_object *obj,
3031 serge 1888
		 u32 *out_seqno)
2352 Serge 1889
{
5060 serge 1890
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3031 serge 1891
	struct drm_i915_gem_request *request;
5354 serge 1892
	struct intel_ringbuffer *ringbuf;
4104 Serge 1893
	u32 request_ring_position, request_start;
2352 Serge 1894
	int ret;
2332 Serge 1895
 
5354 serge 1896
	request = ring->preallocated_lazy_request;
1897
	if (WARN_ON(request == NULL))
1898
		return -ENOMEM;
1899
 
1900
	if (i915.enable_execlists) {
1901
		struct intel_context *ctx = request->ctx;
1902
		ringbuf = ctx->engine[ring->id].ringbuf;
1903
	} else
1904
		ringbuf = ring->buffer;
1905
 
1906
	request_start = intel_ring_get_tail(ringbuf);
3031 serge 1907
	/*
1908
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1909
	 * after having emitted the batchbuffer command. Hence we need to fix
1910
	 * things up similar to emitting the lazy request. The difference here
1911
	 * is that the flush _must_ happen before the next request, no matter
1912
	 * what.
1913
	 */
5354 serge 1914
	if (i915.enable_execlists) {
1915
		ret = logical_ring_flush_all_caches(ringbuf);
1916
		if (ret)
1917
			return ret;
1918
	} else {
4104 Serge 1919
   ret = intel_ring_flush_all_caches(ring);
1920
   if (ret)
1921
       return ret;
5354 serge 1922
	}
2332 Serge 1923
 
3031 serge 1924
	/* Record the position of the start of the request so that
1925
	 * should we detect the updated seqno part-way through the
4104 Serge 1926
    * GPU processing the request, we never over-estimate the
3031 serge 1927
	 * position of the head.
1928
	 */
5354 serge 1929
	request_ring_position = intel_ring_get_tail(ringbuf);
3031 serge 1930
 
5354 serge 1931
	if (i915.enable_execlists) {
1932
		ret = ring->emit_request(ringbuf);
1933
		if (ret)
1934
			return ret;
1935
	} else {
3243 Serge 1936
	ret = ring->add_request(ring);
4560 Serge 1937
	if (ret)
4104 Serge 1938
		return ret;
5354 serge 1939
	}
2332 Serge 1940
 
3243 Serge 1941
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1942
	request->ring = ring;
4104 Serge 1943
	request->head = request_start;
3031 serge 1944
	request->tail = request_ring_position;
4104 Serge 1945
 
1946
	/* Whilst this request exists, batch_obj will be on the
1947
	 * active_list, and so will hold the active reference. Only when this
1948
	 * request is retired will the the batch_obj be moved onto the
1949
	 * inactive_list and lose its active reference. Hence we do not need
1950
	 * to explicitly hold another reference here.
1951
	 */
4560 Serge 1952
	request->batch_obj = obj;
4104 Serge 1953
 
5354 serge 1954
	if (!i915.enable_execlists) {
4560 Serge 1955
	/* Hold a reference to the current context so that we can inspect
1956
	 * it later in case a hangcheck error event fires.
1957
	 */
1958
	request->ctx = ring->last_context;
4104 Serge 1959
	if (request->ctx)
1960
		i915_gem_context_reference(request->ctx);
5354 serge 1961
	}
4104 Serge 1962
 
5060 serge 1963
	request->emitted_jiffies = jiffies;
2352 Serge 1964
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1965
	request->file_priv = NULL;
2332 Serge 1966
 
3263 Serge 1967
	if (file) {
1968
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1969
 
3263 Serge 1970
		spin_lock(&file_priv->mm.lock);
1971
		request->file_priv = file_priv;
1972
		list_add_tail(&request->client_list,
1973
			      &file_priv->mm.request_list);
1974
		spin_unlock(&file_priv->mm.lock);
1975
	}
1976
 
1977
	trace_i915_gem_request_add(ring, request->seqno);
4560 Serge 1978
	ring->outstanding_lazy_seqno = 0;
1979
	ring->preallocated_lazy_request = NULL;
2332 Serge 1980
 
4104 Serge 1981
//		i915_queue_hangcheck(ring->dev);
1982
 
2360 Serge 1983
           queue_delayed_work(dev_priv->wq,
3482 Serge 1984
					   &dev_priv->mm.retire_work,
1985
					   round_jiffies_up_relative(HZ));
4104 Serge 1986
           intel_mark_busy(dev_priv->dev);
3031 serge 1987
 
1988
	if (out_seqno)
3243 Serge 1989
		*out_seqno = request->seqno;
2352 Serge 1990
	return 0;
1991
}
2332 Serge 1992
 
3263 Serge 1993
static inline void
1994
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1995
{
1996
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1997
 
3263 Serge 1998
	if (!file_priv)
1999
		return;
2332 Serge 2000
 
3263 Serge 2001
	spin_lock(&file_priv->mm.lock);
2002
		list_del(&request->client_list);
2003
		request->file_priv = NULL;
2004
	spin_unlock(&file_priv->mm.lock);
2005
}
2332 Serge 2006
 
5060 serge 2007
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2008
				   const struct intel_context *ctx)
4104 Serge 2009
{
5060 serge 2010
	unsigned long elapsed;
4104 Serge 2011
 
5060 serge 2012
    elapsed = GetTimerTicks()/100 - ctx->hang_stats.guilty_ts;
4104 Serge 2013
 
5060 serge 2014
	if (ctx->hang_stats.banned)
2015
		return true;
4104 Serge 2016
 
5060 serge 2017
	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2018
		if (!i915_gem_context_is_default(ctx)) {
2019
			DRM_DEBUG("context hanging too fast, banning!\n");
4104 Serge 2020
			return true;
5060 serge 2021
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2022
			if (i915_stop_ring_allow_warn(dev_priv))
2023
			DRM_ERROR("gpu hanging too fast, banning!\n");
4104 Serge 2024
			return true;
2025
	}
2026
	}
2027
 
2028
	return false;
2029
}
2030
 
5060 serge 2031
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2032
				  struct intel_context *ctx,
2033
				  const bool guilty)
4560 Serge 2034
{
5060 serge 2035
	struct i915_ctx_hang_stats *hs;
4560 Serge 2036
 
5060 serge 2037
	if (WARN_ON(!ctx))
2038
		return;
4560 Serge 2039
 
5060 serge 2040
	hs = &ctx->hang_stats;
4560 Serge 2041
 
5060 serge 2042
	if (guilty) {
2043
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2044
		hs->batch_active++;
2045
        hs->guilty_ts = GetTimerTicks()/100;
2046
	} else {
2047
		hs->batch_pending++;
4104 Serge 2048
	}
2049
}
2050
 
2051
static void i915_gem_free_request(struct drm_i915_gem_request *request)
2052
{
5354 serge 2053
	struct intel_context *ctx = request->ctx;
2054
 
4104 Serge 2055
	list_del(&request->list);
2056
	i915_gem_request_remove_from_client(request);
2057
 
5354 serge 2058
	if (ctx) {
2059
		if (i915.enable_execlists) {
2060
			struct intel_engine_cs *ring = request->ring;
4104 Serge 2061
 
5354 serge 2062
			if (ctx != ring->default_context)
2063
				intel_lr_context_unpin(ring, ctx);
2064
		}
2065
		i915_gem_context_unreference(ctx);
2066
	}
4104 Serge 2067
	kfree(request);
2068
}
2069
 
5060 serge 2070
struct drm_i915_gem_request *
2071
i915_gem_find_active_request(struct intel_engine_cs *ring)
3031 serge 2072
{
4539 Serge 2073
	struct drm_i915_gem_request *request;
5060 serge 2074
	u32 completed_seqno;
4104 Serge 2075
 
5060 serge 2076
	completed_seqno = ring->get_seqno(ring, false);
2077
 
4539 Serge 2078
	list_for_each_entry(request, &ring->request_list, list) {
2079
		if (i915_seqno_passed(completed_seqno, request->seqno))
2080
			continue;
4104 Serge 2081
 
5060 serge 2082
		return request;
4539 Serge 2083
	}
5060 serge 2084
 
2085
	return NULL;
4539 Serge 2086
}
2087
 
5060 serge 2088
static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2089
				       struct intel_engine_cs *ring)
2090
{
2091
	struct drm_i915_gem_request *request;
2092
	bool ring_hung;
2093
 
2094
	request = i915_gem_find_active_request(ring);
2095
 
2096
	if (request == NULL)
2097
		return;
2098
 
2099
	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2100
 
2101
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2102
 
2103
	list_for_each_entry_continue(request, &ring->request_list, list)
2104
		i915_set_reset_status(dev_priv, request->ctx, false);
2105
}
2106
 
4539 Serge 2107
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
5060 serge 2108
					struct intel_engine_cs *ring)
4539 Serge 2109
{
4560 Serge 2110
	while (!list_empty(&ring->active_list)) {
2111
		struct drm_i915_gem_object *obj;
2112
 
2113
		obj = list_first_entry(&ring->active_list,
2114
				       struct drm_i915_gem_object,
2115
				       ring_list);
2116
 
2117
		i915_gem_object_move_to_inactive(obj);
2118
	}
2119
 
2120
	/*
5354 serge 2121
	 * Clear the execlists queue up before freeing the requests, as those
2122
	 * are the ones that keep the context and ringbuffer backing objects
2123
	 * pinned in place.
2124
	 */
2125
	while (!list_empty(&ring->execlist_queue)) {
2126
		struct intel_ctx_submit_request *submit_req;
2127
 
2128
		submit_req = list_first_entry(&ring->execlist_queue,
2129
				struct intel_ctx_submit_request,
2130
				execlist_link);
2131
		list_del(&submit_req->execlist_link);
2132
		intel_runtime_pm_put(dev_priv);
2133
		i915_gem_context_unreference(submit_req->ctx);
2134
		kfree(submit_req);
2135
	}
2136
 
2137
	/*
4560 Serge 2138
	 * We must free the requests after all the corresponding objects have
2139
	 * been moved off active lists. Which is the same order as the normal
2140
	 * retire_requests function does. This is important if object hold
2141
	 * implicit references on things like e.g. ppgtt address spaces through
2142
	 * the request.
2143
	 */
3031 serge 2144
	while (!list_empty(&ring->request_list)) {
2145
		struct drm_i915_gem_request *request;
2332 Serge 2146
 
3031 serge 2147
		request = list_first_entry(&ring->request_list,
2148
					   struct drm_i915_gem_request,
2149
					   list);
2332 Serge 2150
 
4104 Serge 2151
		i915_gem_free_request(request);
3031 serge 2152
	}
5060 serge 2153
 
2154
	/* These may not have been flush before the reset, do so now */
2155
	kfree(ring->preallocated_lazy_request);
2156
	ring->preallocated_lazy_request = NULL;
2157
	ring->outstanding_lazy_seqno = 0;
3031 serge 2158
}
2332 Serge 2159
 
3746 Serge 2160
void i915_gem_restore_fences(struct drm_device *dev)
3031 serge 2161
{
2162
	struct drm_i915_private *dev_priv = dev->dev_private;
2163
	int i;
2332 Serge 2164
 
3031 serge 2165
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2166
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
4104 Serge 2167
 
2168
		/*
2169
		 * Commit delayed tiling changes if we have an object still
2170
		 * attached to the fence, otherwise just clear the fence.
2171
		 */
2172
		if (reg->obj) {
2173
			i915_gem_object_update_fence(reg->obj, reg,
2174
						     reg->obj->tiling_mode);
2175
		} else {
2176
			i915_gem_write_fence(dev, i, NULL);
2177
		}
3031 serge 2178
	}
2179
}
2360 Serge 2180
 
3031 serge 2181
void i915_gem_reset(struct drm_device *dev)
2182
{
2183
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2184
	struct intel_engine_cs *ring;
3031 serge 2185
	int i;
2360 Serge 2186
 
4539 Serge 2187
	/*
2188
	 * Before we free the objects from the requests, we need to inspect
2189
	 * them for finding the guilty party. As the requests only borrow
2190
	 * their reference to the objects, the inspection must be done first.
2191
	 */
3031 serge 2192
	for_each_ring(ring, dev_priv, i)
4539 Serge 2193
		i915_gem_reset_ring_status(dev_priv, ring);
2360 Serge 2194
 
4539 Serge 2195
	for_each_ring(ring, dev_priv, i)
2196
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2197
 
5060 serge 2198
	i915_gem_context_reset(dev);
4560 Serge 2199
 
3746 Serge 2200
	i915_gem_restore_fences(dev);
3031 serge 2201
}
2360 Serge 2202
 
2352 Serge 2203
/**
2204
 * This function clears the request list as sequence numbers are passed.
2205
 */
3031 serge 2206
void
5060 serge 2207
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2352 Serge 2208
{
2209
	uint32_t seqno;
2332 Serge 2210
 
2352 Serge 2211
	if (list_empty(&ring->request_list))
2212
		return;
2332 Serge 2213
 
2352 Serge 2214
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 2215
 
3031 serge 2216
	seqno = ring->get_seqno(ring, true);
2332 Serge 2217
 
5060 serge 2218
	/* Move any buffers on the active list that are no longer referenced
2219
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2220
	 * before we free the context associated with the requests.
2221
	 */
2222
	while (!list_empty(&ring->active_list)) {
2223
		struct drm_i915_gem_object *obj;
2224
 
2225
		obj = list_first_entry(&ring->active_list,
2226
				      struct drm_i915_gem_object,
2227
				      ring_list);
2228
 
2229
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2230
			break;
2231
 
2232
		i915_gem_object_move_to_inactive(obj);
2233
	}
2234
 
2235
 
2352 Serge 2236
	while (!list_empty(&ring->request_list)) {
2237
		struct drm_i915_gem_request *request;
5354 serge 2238
		struct intel_ringbuffer *ringbuf;
2332 Serge 2239
 
2352 Serge 2240
		request = list_first_entry(&ring->request_list,
2241
					   struct drm_i915_gem_request,
2242
					   list);
2332 Serge 2243
 
2352 Serge 2244
		if (!i915_seqno_passed(seqno, request->seqno))
2245
			break;
2332 Serge 2246
 
2352 Serge 2247
		trace_i915_gem_request_retire(ring, request->seqno);
5354 serge 2248
 
2249
		/* This is one of the few common intersection points
2250
		 * between legacy ringbuffer submission and execlists:
2251
		 * we need to tell them apart in order to find the correct
2252
		 * ringbuffer to which the request belongs to.
2253
		 */
2254
		if (i915.enable_execlists) {
2255
			struct intel_context *ctx = request->ctx;
2256
			ringbuf = ctx->engine[ring->id].ringbuf;
2257
		} else
2258
			ringbuf = ring->buffer;
2259
 
3031 serge 2260
		/* We know the GPU must have read the request to have
2261
		 * sent us the seqno + interrupt, so use the position
2262
		 * of tail of the request to update the last known position
2263
		 * of the GPU head.
2264
		 */
5354 serge 2265
		ringbuf->last_retired_head = request->tail;
2332 Serge 2266
 
4104 Serge 2267
		i915_gem_free_request(request);
2352 Serge 2268
	}
2332 Serge 2269
 
2352 Serge 2270
	if (unlikely(ring->trace_irq_seqno &&
2271
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2272
		ring->irq_put(ring);
2273
		ring->trace_irq_seqno = 0;
2274
	}
2332 Serge 2275
 
2352 Serge 2276
	WARN_ON(i915_verify_lists(ring->dev));
2277
}
2332 Serge 2278
 
4560 Serge 2279
bool
2352 Serge 2280
i915_gem_retire_requests(struct drm_device *dev)
2281
{
5060 serge 2282
	struct drm_i915_private *dev_priv = dev->dev_private;
2283
	struct intel_engine_cs *ring;
4560 Serge 2284
	bool idle = true;
2352 Serge 2285
	int i;
2332 Serge 2286
 
4560 Serge 2287
	for_each_ring(ring, dev_priv, i) {
3031 serge 2288
		i915_gem_retire_requests_ring(ring);
4560 Serge 2289
		idle &= list_empty(&ring->request_list);
5354 serge 2290
		if (i915.enable_execlists) {
2291
			unsigned long flags;
2292
 
2293
			spin_lock_irqsave(&ring->execlist_lock, flags);
2294
			idle &= list_empty(&ring->execlist_queue);
2295
			spin_unlock_irqrestore(&ring->execlist_lock, flags);
2296
 
2297
			intel_execlists_retire_requests(ring);
2298
		}
4560 Serge 2299
	}
2300
 
2301
	if (idle)
2302
		mod_delayed_work(dev_priv->wq,
2303
				   &dev_priv->mm.idle_work,
2304
				   msecs_to_jiffies(100));
2305
 
2306
	return idle;
2352 Serge 2307
}
2308
 
2360 Serge 2309
static void
2310
i915_gem_retire_work_handler(struct work_struct *work)
2311
{
4560 Serge 2312
	struct drm_i915_private *dev_priv =
2313
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2314
	struct drm_device *dev = dev_priv->dev;
2360 Serge 2315
	bool idle;
2352 Serge 2316
 
2360 Serge 2317
	/* Come back later if the device is busy... */
4560 Serge 2318
	idle = false;
2319
	if (mutex_trylock(&dev->struct_mutex)) {
2320
		idle = i915_gem_retire_requests(dev);
2321
		mutex_unlock(&dev->struct_mutex);
2322
	}
2323
	if (!idle)
3482 Serge 2324
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2325
				   round_jiffies_up_relative(HZ));
4560 Serge 2326
}
2352 Serge 2327
 
4560 Serge 2328
static void
2329
i915_gem_idle_work_handler(struct work_struct *work)
2330
{
2331
	struct drm_i915_private *dev_priv =
2332
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2352 Serge 2333
 
4560 Serge 2334
	intel_mark_idle(dev_priv->dev);
2360 Serge 2335
}
2336
 
2344 Serge 2337
/**
3031 serge 2338
 * Ensures that an object will eventually get non-busy by flushing any required
2339
 * write domains, emitting any outstanding lazy request and retiring and
2340
 * completed requests.
2352 Serge 2341
 */
3031 serge 2342
static int
2343
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2344
{
3031 serge 2345
	int ret;
2352 Serge 2346
 
3031 serge 2347
	if (obj->active) {
2348
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2349
		if (ret)
2350
			return ret;
2352 Serge 2351
 
3031 serge 2352
		i915_gem_retire_requests_ring(obj->ring);
2353
	}
2352 Serge 2354
 
3031 serge 2355
	return 0;
2356
}
2352 Serge 2357
 
3243 Serge 2358
/**
2359
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2360
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2361
 *
2362
 * Returns 0 if successful, else an error is returned with the remaining time in
2363
 * the timeout parameter.
2364
 *  -ETIME: object is still busy after timeout
2365
 *  -ERESTARTSYS: signal interrupted the wait
2366
 *  -ENONENT: object doesn't exist
2367
 * Also possible, but rare:
2368
 *  -EAGAIN: GPU wedged
2369
 *  -ENOMEM: damn
2370
 *  -ENODEV: Internal IRQ fail
2371
 *  -E?: The add request failed
2372
 *
2373
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2374
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2375
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2376
 * without holding struct_mutex the object may become re-busied before this
2377
 * function completes. A similar but shorter * race condition exists in the busy
2378
 * ioctl
2379
 */
4246 Serge 2380
int
2381
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2382
{
5060 serge 2383
	struct drm_i915_private *dev_priv = dev->dev_private;
4246 Serge 2384
	struct drm_i915_gem_wait *args = data;
2385
	struct drm_i915_gem_object *obj;
5060 serge 2386
	struct intel_engine_cs *ring = NULL;
4246 Serge 2387
	unsigned reset_counter;
2388
	u32 seqno = 0;
2389
	int ret = 0;
2352 Serge 2390
 
5354 serge 2391
	if (args->flags != 0)
2392
		return -EINVAL;
2393
 
4246 Serge 2394
	ret = i915_mutex_lock_interruptible(dev);
2395
	if (ret)
2396
		return ret;
2352 Serge 2397
 
4246 Serge 2398
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2399
	if (&obj->base == NULL) {
2400
		mutex_unlock(&dev->struct_mutex);
2401
		return -ENOENT;
2402
	}
2352 Serge 2403
 
4246 Serge 2404
	/* Need to make sure the object gets inactive eventually. */
2405
	ret = i915_gem_object_flush_active(obj);
2406
	if (ret)
2407
		goto out;
2352 Serge 2408
 
4246 Serge 2409
	if (obj->active) {
2410
		seqno = obj->last_read_seqno;
2411
		ring = obj->ring;
2412
	}
2352 Serge 2413
 
4246 Serge 2414
	if (seqno == 0)
2415
		 goto out;
2352 Serge 2416
 
4246 Serge 2417
	/* Do this after OLR check to make sure we make forward progress polling
5060 serge 2418
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
4246 Serge 2419
	 */
5060 serge 2420
	if (args->timeout_ns <= 0) {
4246 Serge 2421
		ret = -ETIME;
2422
		goto out;
2423
	}
2352 Serge 2424
 
4246 Serge 2425
	drm_gem_object_unreference(&obj->base);
2426
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2427
	mutex_unlock(&dev->struct_mutex);
2352 Serge 2428
 
5354 serge 2429
	return __i915_wait_seqno(ring, seqno, reset_counter, true,
2430
				 &args->timeout_ns, file->driver_priv);
3243 Serge 2431
 
4246 Serge 2432
out:
2433
	drm_gem_object_unreference(&obj->base);
2434
	mutex_unlock(&dev->struct_mutex);
2435
	return ret;
2436
}
3243 Serge 2437
 
2352 Serge 2438
/**
3031 serge 2439
 * i915_gem_object_sync - sync an object to a ring.
2440
 *
2441
 * @obj: object which may be in use on another ring.
2442
 * @to: ring we wish to use the object on. May be NULL.
2443
 *
2444
 * This code is meant to abstract object synchronization with the GPU.
2445
 * Calling with NULL implies synchronizing the object with the CPU
2446
 * rather than a particular GPU ring.
2447
 *
2448
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2449
 */
2450
int
3031 serge 2451
i915_gem_object_sync(struct drm_i915_gem_object *obj,
5060 serge 2452
		     struct intel_engine_cs *to)
2344 Serge 2453
{
5060 serge 2454
	struct intel_engine_cs *from = obj->ring;
3031 serge 2455
	u32 seqno;
2456
	int ret, idx;
2332 Serge 2457
 
3031 serge 2458
	if (from == NULL || to == from)
2459
		return 0;
2332 Serge 2460
 
3031 serge 2461
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2462
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2463
 
3031 serge 2464
	idx = intel_ring_sync_index(from, to);
2465
 
2466
	seqno = obj->last_read_seqno;
5060 serge 2467
	/* Optimization: Avoid semaphore sync when we are sure we already
2468
	 * waited for an object with higher seqno */
2469
	if (seqno <= from->semaphore.sync_seqno[idx])
3031 serge 2470
		return 0;
2471
 
2472
	ret = i915_gem_check_olr(obj->ring, seqno);
2473
	if (ret)
2474
		return ret;
2475
 
4560 Serge 2476
	trace_i915_gem_ring_sync_to(from, to, seqno);
5060 serge 2477
	ret = to->semaphore.sync_to(to, from, seqno);
3031 serge 2478
	if (!ret)
3243 Serge 2479
		/* We use last_read_seqno because sync_to()
2480
		 * might have just caused seqno wrap under
2481
		 * the radar.
2482
		 */
5060 serge 2483
		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2484
 
2485
	return ret;
2344 Serge 2486
}
2332 Serge 2487
 
2344 Serge 2488
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2489
{
2490
	u32 old_write_domain, old_read_domains;
2332 Serge 2491
 
2344 Serge 2492
	/* Force a pagefault for domain tracking on next user access */
2493
//	i915_gem_release_mmap(obj);
2332 Serge 2494
 
2344 Serge 2495
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2496
		return;
2332 Serge 2497
 
3480 Serge 2498
	/* Wait for any direct GTT access to complete */
2499
	mb();
2500
 
2344 Serge 2501
	old_read_domains = obj->base.read_domains;
2502
	old_write_domain = obj->base.write_domain;
2351 Serge 2503
 
2344 Serge 2504
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2505
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2506
 
2351 Serge 2507
	trace_i915_gem_object_change_domain(obj,
2508
					    old_read_domains,
2509
					    old_write_domain);
2344 Serge 2510
}
2332 Serge 2511
 
4104 Serge 2512
int i915_vma_unbind(struct i915_vma *vma)
2344 Serge 2513
{
4104 Serge 2514
	struct drm_i915_gem_object *obj = vma->obj;
5060 serge 2515
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3480 Serge 2516
	int ret;
3263 Serge 2517
    if(obj == get_fb_obj())
5367 serge 2518
    {
2519
        WARN(1,"attempt to unbind fb object\n");
3263 Serge 2520
        return 0;
5367 serge 2521
    };
3263 Serge 2522
 
4104 Serge 2523
	if (list_empty(&vma->vma_link))
2344 Serge 2524
		return 0;
2332 Serge 2525
 
4560 Serge 2526
	if (!drm_mm_node_allocated(&vma->node)) {
2527
		i915_gem_vma_destroy(vma);
2528
		return 0;
2529
	}
2530
 
5060 serge 2531
	if (vma->pin_count)
3031 serge 2532
		return -EBUSY;
2332 Serge 2533
 
3243 Serge 2534
	BUG_ON(obj->pages == NULL);
3031 serge 2535
 
2344 Serge 2536
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2537
	if (ret)
2344 Serge 2538
		return ret;
2539
	/* Continue on if we fail due to EIO, the GPU is hung so we
2540
	 * should be safe and we need to cleanup or else we might
2541
	 * cause memory corruption through use-after-free.
2542
	 */
2332 Serge 2543
 
5354 serge 2544
	/* Throw away the active reference before moving to the unbound list */
2545
	i915_gem_object_retire(obj);
2546
 
5060 serge 2547
	if (i915_is_ggtt(vma->vm)) {
2344 Serge 2548
	i915_gem_object_finish_gtt(obj);
2332 Serge 2549
 
2344 Serge 2550
	/* release the fence reg _after_ flushing */
2551
	ret = i915_gem_object_put_fence(obj);
3031 serge 2552
	if (ret)
2344 Serge 2553
		return ret;
5060 serge 2554
	}
2332 Serge 2555
 
4104 Serge 2556
	trace_i915_vma_unbind(vma);
2332 Serge 2557
 
5060 serge 2558
	vma->unbind_vma(vma);
2332 Serge 2559
 
5060 serge 2560
	list_del_init(&vma->mm_list);
4104 Serge 2561
	if (i915_is_ggtt(vma->vm))
5354 serge 2562
		obj->map_and_fenceable = false;
2332 Serge 2563
 
4104 Serge 2564
	drm_mm_remove_node(&vma->node);
2565
	i915_gem_vma_destroy(vma);
2566
 
2567
	/* Since the unbound list is global, only move to that list if
4560 Serge 2568
	 * no more VMAs exist. */
5060 serge 2569
	if (list_empty(&obj->vma_list)) {
2570
		i915_gem_gtt_finish_object(obj);
4104 Serge 2571
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
5060 serge 2572
	}
4104 Serge 2573
 
4560 Serge 2574
	/* And finally now the object is completely decoupled from this vma,
2575
	 * we can drop its hold on the backing storage and allow it to be
2576
	 * reaped by the shrinker.
2577
	 */
2578
	i915_gem_object_unpin_pages(obj);
2579
 
2344 Serge 2580
	return 0;
2581
}
2332 Serge 2582
 
3031 serge 2583
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2584
{
5060 serge 2585
	struct drm_i915_private *dev_priv = dev->dev_private;
2586
	struct intel_engine_cs *ring;
2344 Serge 2587
	int ret, i;
2332 Serge 2588
 
2344 Serge 2589
	/* Flush everything onto the inactive list. */
3031 serge 2590
	for_each_ring(ring, dev_priv, i) {
5354 serge 2591
		if (!i915.enable_execlists) {
5060 serge 2592
		ret = i915_switch_context(ring, ring->default_context);
2344 Serge 2593
		if (ret)
2594
			return ret;
5354 serge 2595
		}
3031 serge 2596
 
3243 Serge 2597
		ret = intel_ring_idle(ring);
3031 serge 2598
		if (ret)
2599
			return ret;
2344 Serge 2600
	}
2332 Serge 2601
 
2344 Serge 2602
	return 0;
2603
}
2332 Serge 2604
 
3480 Serge 2605
static void i965_write_fence_reg(struct drm_device *dev, int reg,
3031 serge 2606
					struct drm_i915_gem_object *obj)
2607
{
5060 serge 2608
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 2609
	int fence_reg;
2610
	int fence_pitch_shift;
2332 Serge 2611
 
3480 Serge 2612
	if (INTEL_INFO(dev)->gen >= 6) {
2613
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2614
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2615
	} else {
2616
		fence_reg = FENCE_REG_965_0;
2617
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2618
	}
2332 Serge 2619
 
4104 Serge 2620
	fence_reg += reg * 8;
2621
 
2622
	/* To w/a incoherency with non-atomic 64-bit register updates,
2623
	 * we split the 64-bit update into two 32-bit writes. In order
2624
	 * for a partial fence not to be evaluated between writes, we
2625
	 * precede the update with write to turn off the fence register,
2626
	 * and only enable the fence as the last step.
2627
	 *
2628
	 * For extra levels of paranoia, we make sure each step lands
2629
	 * before applying the next step.
2630
	 */
2631
	I915_WRITE(fence_reg, 0);
2632
	POSTING_READ(fence_reg);
2633
 
3031 serge 2634
	if (obj) {
4104 Serge 2635
		u32 size = i915_gem_obj_ggtt_size(obj);
2636
		uint64_t val;
2332 Serge 2637
 
4104 Serge 2638
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3031 serge 2639
				 0xfffff000) << 32;
4104 Serge 2640
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3480 Serge 2641
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 serge 2642
		if (obj->tiling_mode == I915_TILING_Y)
2643
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2644
		val |= I965_FENCE_REG_VALID;
2332 Serge 2645
 
4104 Serge 2646
		I915_WRITE(fence_reg + 4, val >> 32);
2647
		POSTING_READ(fence_reg + 4);
2648
 
2649
		I915_WRITE(fence_reg + 0, val);
5060 serge 2650
		POSTING_READ(fence_reg);
4104 Serge 2651
	} else {
2652
		I915_WRITE(fence_reg + 4, 0);
2653
		POSTING_READ(fence_reg + 4);
2654
	}
3031 serge 2655
}
2332 Serge 2656
 
3031 serge 2657
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2658
				 struct drm_i915_gem_object *obj)
2659
{
5060 serge 2660
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2661
	u32 val;
2332 Serge 2662
 
3031 serge 2663
	if (obj) {
4104 Serge 2664
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2665
		int pitch_val;
2666
		int tile_width;
2332 Serge 2667
 
4104 Serge 2668
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3031 serge 2669
		     (size & -size) != size ||
4104 Serge 2670
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2671
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2672
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2332 Serge 2673
 
3031 serge 2674
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2675
			tile_width = 128;
2676
		else
2677
			tile_width = 512;
2332 Serge 2678
 
3031 serge 2679
		/* Note: pitch better be a power of two tile widths */
2680
		pitch_val = obj->stride / tile_width;
2681
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2682
 
4104 Serge 2683
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2684
		if (obj->tiling_mode == I915_TILING_Y)
2685
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2686
		val |= I915_FENCE_SIZE_BITS(size);
2687
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2688
		val |= I830_FENCE_REG_VALID;
2689
	} else
2690
		val = 0;
2332 Serge 2691
 
3031 serge 2692
	if (reg < 8)
2693
		reg = FENCE_REG_830_0 + reg * 4;
2694
	else
2695
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2696
 
3031 serge 2697
	I915_WRITE(reg, val);
2698
	POSTING_READ(reg);
2699
}
2332 Serge 2700
 
3031 serge 2701
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2702
				struct drm_i915_gem_object *obj)
2703
{
5060 serge 2704
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2705
	uint32_t val;
2344 Serge 2706
 
3031 serge 2707
	if (obj) {
4104 Serge 2708
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2709
		uint32_t pitch_val;
2344 Serge 2710
 
4104 Serge 2711
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3031 serge 2712
		     (size & -size) != size ||
4104 Serge 2713
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2714
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2715
		     i915_gem_obj_ggtt_offset(obj), size);
2344 Serge 2716
 
3031 serge 2717
		pitch_val = obj->stride / 128;
2718
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2719
 
4104 Serge 2720
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2721
		if (obj->tiling_mode == I915_TILING_Y)
2722
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2723
		val |= I830_FENCE_SIZE_BITS(size);
2724
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2725
		val |= I830_FENCE_REG_VALID;
2726
	} else
2727
		val = 0;
2728
 
2729
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2730
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2731
}
2732
 
3480 Serge 2733
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2734
{
2735
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2736
}
2737
 
3031 serge 2738
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2739
				 struct drm_i915_gem_object *obj)
2332 Serge 2740
{
3480 Serge 2741
	struct drm_i915_private *dev_priv = dev->dev_private;
2742
 
2743
	/* Ensure that all CPU reads are completed before installing a fence
2744
	 * and all writes before removing the fence.
2745
	 */
2746
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2747
		mb();
2748
 
4104 Serge 2749
	WARN(obj && (!obj->stride || !obj->tiling_mode),
2750
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2751
	     obj->stride, obj->tiling_mode);
2752
 
3031 serge 2753
	switch (INTEL_INFO(dev)->gen) {
5354 serge 2754
	case 9:
4560 Serge 2755
	case 8:
3031 serge 2756
	case 7:
3480 Serge 2757
	case 6:
3031 serge 2758
	case 5:
2759
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2760
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2761
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3480 Serge 2762
	default: BUG();
3031 serge 2763
	}
3480 Serge 2764
 
2765
	/* And similarly be paranoid that no direct access to this region
2766
	 * is reordered to before the fence is installed.
2767
	 */
2768
	if (i915_gem_object_needs_mb(obj))
2769
		mb();
2344 Serge 2770
}
2771
 
3031 serge 2772
static inline int fence_number(struct drm_i915_private *dev_priv,
2773
			       struct drm_i915_fence_reg *fence)
2344 Serge 2774
{
3031 serge 2775
	return fence - dev_priv->fence_regs;
2776
}
2332 Serge 2777
 
3031 serge 2778
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2779
					 struct drm_i915_fence_reg *fence,
2780
					 bool enable)
2781
{
4104 Serge 2782
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2783
	int reg = fence_number(dev_priv, fence);
2332 Serge 2784
 
4104 Serge 2785
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3031 serge 2786
 
2787
	if (enable) {
4104 Serge 2788
		obj->fence_reg = reg;
3031 serge 2789
		fence->obj = obj;
2790
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2791
	} else {
2792
		obj->fence_reg = I915_FENCE_REG_NONE;
2793
		fence->obj = NULL;
2794
		list_del_init(&fence->lru_list);
2344 Serge 2795
	}
4104 Serge 2796
	obj->fence_dirty = false;
3031 serge 2797
}
2344 Serge 2798
 
3031 serge 2799
static int
3480 Serge 2800
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3031 serge 2801
{
2802
	if (obj->last_fenced_seqno) {
2803
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2804
			if (ret)
2805
				return ret;
2344 Serge 2806
 
2807
		obj->last_fenced_seqno = 0;
2808
	}
2809
 
2332 Serge 2810
	return 0;
2811
}
2812
 
2813
int
2344 Serge 2814
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2815
{
3031 serge 2816
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3746 Serge 2817
	struct drm_i915_fence_reg *fence;
2332 Serge 2818
	int ret;
2819
 
3480 Serge 2820
	ret = i915_gem_object_wait_fence(obj);
5060 serge 2821
    if (ret)
2822
       return ret;
2332 Serge 2823
 
3031 serge 2824
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2825
		return 0;
2332 Serge 2826
 
3746 Serge 2827
	fence = &dev_priv->fence_regs[obj->fence_reg];
2828
 
5060 serge 2829
	if (WARN_ON(fence->pin_count))
2830
		return -EBUSY;
2831
 
3031 serge 2832
	i915_gem_object_fence_lost(obj);
3746 Serge 2833
	i915_gem_object_update_fence(obj, fence, false);
2344 Serge 2834
 
2332 Serge 2835
	return 0;
2836
}
2837
 
3031 serge 2838
static struct drm_i915_fence_reg *
2839
i915_find_fence_reg(struct drm_device *dev)
2840
{
2841
	struct drm_i915_private *dev_priv = dev->dev_private;
2842
	struct drm_i915_fence_reg *reg, *avail;
2843
	int i;
2332 Serge 2844
 
3031 serge 2845
	/* First try to find a free reg */
2846
	avail = NULL;
2847
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2848
		reg = &dev_priv->fence_regs[i];
2849
		if (!reg->obj)
2850
			return reg;
2332 Serge 2851
 
3031 serge 2852
		if (!reg->pin_count)
2853
			avail = reg;
2854
	}
2332 Serge 2855
 
3031 serge 2856
	if (avail == NULL)
4560 Serge 2857
		goto deadlock;
2332 Serge 2858
 
3031 serge 2859
	/* None available, try to steal one or wait for a user to finish */
2860
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2861
		if (reg->pin_count)
2862
			continue;
2332 Serge 2863
 
3031 serge 2864
		return reg;
2865
	}
2332 Serge 2866
 
4560 Serge 2867
deadlock:
2868
	/* Wait for completion of pending flips which consume fences */
2869
//   if (intel_has_pending_fb_unpin(dev))
2870
//       return ERR_PTR(-EAGAIN);
2871
 
2872
	return ERR_PTR(-EDEADLK);
3031 serge 2873
}
2332 Serge 2874
 
3031 serge 2875
/**
2876
 * i915_gem_object_get_fence - set up fencing for an object
2877
 * @obj: object to map through a fence reg
2878
 *
2879
 * When mapping objects through the GTT, userspace wants to be able to write
2880
 * to them without having to worry about swizzling if the object is tiled.
2881
 * This function walks the fence regs looking for a free one for @obj,
2882
 * stealing one if it can't find any.
2883
 *
2884
 * It then sets up the reg based on the object's properties: address, pitch
2885
 * and tiling format.
2886
 *
2887
 * For an untiled surface, this removes any existing fence.
2888
 */
2889
int
2890
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2891
{
2892
	struct drm_device *dev = obj->base.dev;
2893
	struct drm_i915_private *dev_priv = dev->dev_private;
2894
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2895
	struct drm_i915_fence_reg *reg;
2896
	int ret;
2332 Serge 2897
 
3031 serge 2898
	/* Have we updated the tiling parameters upon the object and so
2899
	 * will need to serialise the write to the associated fence register?
2900
	 */
2901
	if (obj->fence_dirty) {
3480 Serge 2902
		ret = i915_gem_object_wait_fence(obj);
3031 serge 2903
		if (ret)
2904
			return ret;
2905
	}
2332 Serge 2906
 
3031 serge 2907
	/* Just update our place in the LRU if our fence is getting reused. */
2908
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2909
		reg = &dev_priv->fence_regs[obj->fence_reg];
2910
		if (!obj->fence_dirty) {
2911
			list_move_tail(®->lru_list,
2912
				       &dev_priv->mm.fence_list);
2913
			return 0;
2914
		}
2915
	} else if (enable) {
5354 serge 2916
		if (WARN_ON(!obj->map_and_fenceable))
2917
			return -EINVAL;
2918
 
3031 serge 2919
		reg = i915_find_fence_reg(dev);
4560 Serge 2920
		if (IS_ERR(reg))
2921
			return PTR_ERR(reg);
2332 Serge 2922
 
3031 serge 2923
		if (reg->obj) {
2924
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2925
 
3480 Serge 2926
			ret = i915_gem_object_wait_fence(old);
3031 serge 2927
			if (ret)
2928
				return ret;
2332 Serge 2929
 
3031 serge 2930
			i915_gem_object_fence_lost(old);
2931
		}
2932
	} else
2933
		return 0;
2332 Serge 2934
 
3031 serge 2935
	i915_gem_object_update_fence(obj, reg, enable);
2332 Serge 2936
 
3031 serge 2937
	return 0;
2938
}
2332 Serge 2939
 
5354 serge 2940
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3031 serge 2941
				     unsigned long cache_level)
2942
{
5354 serge 2943
	struct drm_mm_node *gtt_space = &vma->node;
3031 serge 2944
	struct drm_mm_node *other;
2332 Serge 2945
 
5354 serge 2946
	/*
2947
	 * On some machines we have to be careful when putting differing types
2948
	 * of snoopable memory together to avoid the prefetcher crossing memory
2949
	 * domains and dying. During vm initialisation, we decide whether or not
2950
	 * these constraints apply and set the drm_mm.color_adjust
2951
	 * appropriately.
3031 serge 2952
	 */
5354 serge 2953
	if (vma->vm->mm.color_adjust == NULL)
3031 serge 2954
		return true;
2332 Serge 2955
 
4104 Serge 2956
	if (!drm_mm_node_allocated(gtt_space))
3031 serge 2957
		return true;
2332 Serge 2958
 
3031 serge 2959
	if (list_empty(>t_space->node_list))
2960
		return true;
2332 Serge 2961
 
3031 serge 2962
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2963
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2964
		return false;
2344 Serge 2965
 
3031 serge 2966
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2967
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2968
		return false;
2344 Serge 2969
 
3031 serge 2970
	return true;
2971
}
2344 Serge 2972
 
2332 Serge 2973
/**
2974
 * Finds free space in the GTT aperture and binds the object there.
2975
 */
5060 serge 2976
static struct i915_vma *
4104 Serge 2977
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
2978
			   struct i915_address_space *vm,
2332 Serge 2979
			    unsigned alignment,
5060 serge 2980
			   uint64_t flags)
2332 Serge 2981
{
2982
	struct drm_device *dev = obj->base.dev;
5060 serge 2983
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 2984
	u32 size, fence_size, fence_alignment, unfenced_alignment;
5060 serge 2985
	unsigned long start =
2986
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
2987
	unsigned long end =
2988
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
4104 Serge 2989
	struct i915_vma *vma;
2332 Serge 2990
	int ret;
2326 Serge 2991
 
2332 Serge 2992
	fence_size = i915_gem_get_gtt_size(dev,
2993
					   obj->base.size,
2994
					   obj->tiling_mode);
2995
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2996
						     obj->base.size,
3480 Serge 2997
						     obj->tiling_mode, true);
2332 Serge 2998
	unfenced_alignment =
3480 Serge 2999
		i915_gem_get_gtt_alignment(dev,
2332 Serge 3000
						    obj->base.size,
3480 Serge 3001
						    obj->tiling_mode, false);
2332 Serge 3002
 
3003
	if (alignment == 0)
5060 serge 3004
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
2332 Serge 3005
						unfenced_alignment;
5060 serge 3006
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3007
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3008
		return ERR_PTR(-EINVAL);
2332 Serge 3009
	}
3010
 
5060 serge 3011
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
2332 Serge 3012
 
3013
	/* If the object is bigger than the entire aperture, reject it early
3014
	 * before evicting everything in a vain attempt to find space.
3015
	 */
5060 serge 3016
	if (obj->base.size > end) {
3017
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
4104 Serge 3018
			  obj->base.size,
5060 serge 3019
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3020
			  end);
3021
		return ERR_PTR(-E2BIG);
2332 Serge 3022
	}
3023
 
3031 serge 3024
	ret = i915_gem_object_get_pages(obj);
3025
	if (ret)
5060 serge 3026
		return ERR_PTR(ret);
3031 serge 3027
 
3243 Serge 3028
	i915_gem_object_pin_pages(obj);
3029
 
4104 Serge 3030
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
5060 serge 3031
	if (IS_ERR(vma))
4104 Serge 3032
		goto err_unpin;
3243 Serge 3033
 
4104 Serge 3034
search_free:
3035
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3036
						  size, alignment,
5060 serge 3037
						  obj->cache_level,
3038
						  start, end,
3039
						  DRM_MM_SEARCH_DEFAULT,
3040
						  DRM_MM_CREATE_DEFAULT);
3243 Serge 3041
	if (ret) {
2332 Serge 3042
 
4104 Serge 3043
		goto err_free_vma;
2332 Serge 3044
	}
5354 serge 3045
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
4104 Serge 3046
		ret = -EINVAL;
3047
		goto err_remove_node;
3031 serge 3048
	}
2332 Serge 3049
 
3031 serge 3050
	ret = i915_gem_gtt_prepare_object(obj);
4104 Serge 3051
	if (ret)
3052
		goto err_remove_node;
2332 Serge 3053
 
4104 Serge 3054
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3055
	list_add_tail(&vma->mm_list, &vm->inactive_list);
2332 Serge 3056
 
5060 serge 3057
	trace_i915_vma_bind(vma, flags);
3058
	vma->bind_vma(vma, obj->cache_level,
5354 serge 3059
		      flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
5060 serge 3060
 
3061
	return vma;
4104 Serge 3062
 
3063
err_remove_node:
3064
	drm_mm_remove_node(&vma->node);
3065
err_free_vma:
3066
	i915_gem_vma_destroy(vma);
5060 serge 3067
	vma = ERR_PTR(ret);
4104 Serge 3068
err_unpin:
3069
	i915_gem_object_unpin_pages(obj);
5060 serge 3070
	return vma;
2332 Serge 3071
}
3072
 
4104 Serge 3073
bool
3074
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3075
			bool force)
2332 Serge 3076
{
3077
	/* If we don't have a page list set up, then we're not pinned
3078
	 * to GPU, and we can ignore the cache flush because it'll happen
3079
	 * again at bind time.
3080
	 */
3243 Serge 3081
	if (obj->pages == NULL)
4104 Serge 3082
		return false;
2332 Serge 3083
 
3480 Serge 3084
	/*
3085
	 * Stolen memory is always coherent with the GPU as it is explicitly
3086
	 * marked as wc by the system, or the system is cache-coherent.
3087
	 */
5354 serge 3088
	if (obj->stolen || obj->phys_handle)
4104 Serge 3089
		return false;
3480 Serge 3090
 
2332 Serge 3091
	/* If the GPU is snooping the contents of the CPU cache,
3092
	 * we do not need to manually clear the CPU cache lines.  However,
3093
	 * the caches are only snooped when the render cache is
3094
	 * flushed/invalidated.  As we always have to emit invalidations
3095
	 * and flushes when moving into and out of the RENDER domain, correct
3096
	 * snooping behaviour occurs naturally as the result of our domain
3097
	 * tracking.
3098
	 */
4104 Serge 3099
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3100
		return false;
2332 Serge 3101
 
4293 Serge 3102
	trace_i915_gem_object_clflush(obj);
3103
	drm_clflush_sg(obj->pages);
2344 Serge 3104
 
4104 Serge 3105
	return true;
2332 Serge 3106
}
3107
 
2344 Serge 3108
/** Flushes the GTT write domain for the object if it's dirty. */
3109
static void
3110
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3111
{
3112
	uint32_t old_write_domain;
2332 Serge 3113
 
2344 Serge 3114
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3115
		return;
2332 Serge 3116
 
2344 Serge 3117
	/* No actual flushing is required for the GTT write domain.  Writes
3118
	 * to it immediately go to main memory as far as we know, so there's
3119
	 * no chipset flush.  It also doesn't land in render cache.
3120
	 *
3121
	 * However, we do have to enforce the order so that all writes through
3122
	 * the GTT land before any writes to the device, such as updates to
3123
	 * the GATT itself.
3124
	 */
3125
	wmb();
2332 Serge 3126
 
2344 Serge 3127
	old_write_domain = obj->base.write_domain;
3128
	obj->base.write_domain = 0;
2332 Serge 3129
 
5354 serge 3130
	intel_fb_obj_flush(obj, false);
3131
 
2351 Serge 3132
	trace_i915_gem_object_change_domain(obj,
3133
					    obj->base.read_domains,
3134
					    old_write_domain);
2344 Serge 3135
}
2332 Serge 3136
 
3137
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 3138
static void
4104 Serge 3139
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3140
				       bool force)
2332 Serge 3141
{
3142
	uint32_t old_write_domain;
3143
 
3144
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3145
		return;
3146
 
4104 Serge 3147
	if (i915_gem_clflush_object(obj, force))
3243 Serge 3148
	i915_gem_chipset_flush(obj->base.dev);
4104 Serge 3149
 
2332 Serge 3150
	old_write_domain = obj->base.write_domain;
3151
	obj->base.write_domain = 0;
3152
 
5354 serge 3153
	intel_fb_obj_flush(obj, false);
3154
 
2351 Serge 3155
	trace_i915_gem_object_change_domain(obj,
3156
					    obj->base.read_domains,
3157
					    old_write_domain);
2332 Serge 3158
}
3159
 
3160
/**
3161
 * Moves a single object to the GTT read, and possibly write domain.
3162
 *
3163
 * This function returns when the move is complete, including waiting on
3164
 * flushes to occur.
3165
 */
3166
int
3167
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3168
{
5060 serge 3169
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
5354 serge 3170
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
2332 Serge 3171
	uint32_t old_write_domain, old_read_domains;
3172
	int ret;
3173
 
3174
	/* Not valid to be called on unbound objects. */
5354 serge 3175
	if (vma == NULL)
2332 Serge 3176
		return -EINVAL;
3177
 
3178
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3179
		return 0;
3180
 
3031 serge 3181
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 3182
		if (ret)
3183
			return ret;
3184
 
5060 serge 3185
	i915_gem_object_retire(obj);
4104 Serge 3186
	i915_gem_object_flush_cpu_write_domain(obj, false);
2332 Serge 3187
 
3480 Serge 3188
	/* Serialise direct access to this object with the barriers for
3189
	 * coherent writes from the GPU, by effectively invalidating the
3190
	 * GTT domain upon first access.
3191
	 */
3192
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3193
		mb();
3194
 
2332 Serge 3195
	old_write_domain = obj->base.write_domain;
3196
	old_read_domains = obj->base.read_domains;
3197
 
3198
	/* It should now be out of any other write domains, and we can update
3199
	 * the domain values for our changes.
3200
	 */
3201
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3202
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3203
	if (write) {
3204
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3205
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3206
		obj->dirty = 1;
3207
	}
3208
 
5354 serge 3209
	if (write)
3210
		intel_fb_obj_invalidate(obj, NULL);
3211
 
2351 Serge 3212
	trace_i915_gem_object_change_domain(obj,
3213
					    old_read_domains,
3214
					    old_write_domain);
3215
 
3031 serge 3216
	/* And bump the LRU for this access */
5354 serge 3217
	if (i915_gem_object_is_inactive(obj))
4104 Serge 3218
			list_move_tail(&vma->mm_list,
3219
				       &dev_priv->gtt.base.inactive_list);
3031 serge 3220
 
2332 Serge 3221
	return 0;
3222
}
3223
 
2335 Serge 3224
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3225
				    enum i915_cache_level cache_level)
3226
{
3031 serge 3227
	struct drm_device *dev = obj->base.dev;
5060 serge 3228
	struct i915_vma *vma, *next;
2335 Serge 3229
	int ret;
2332 Serge 3230
 
2335 Serge 3231
	if (obj->cache_level == cache_level)
3232
		return 0;
2332 Serge 3233
 
5060 serge 3234
	if (i915_gem_obj_is_pinned(obj)) {
2335 Serge 3235
		DRM_DEBUG("can not change the cache level of pinned objects\n");
3236
		return -EBUSY;
3237
	}
2332 Serge 3238
 
5060 serge 3239
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
5354 serge 3240
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4104 Serge 3241
			ret = i915_vma_unbind(vma);
3031 serge 3242
		if (ret)
3243
			return ret;
4104 Serge 3244
		}
3031 serge 3245
	}
3246
 
4104 Serge 3247
	if (i915_gem_obj_bound_any(obj)) {
2335 Serge 3248
		ret = i915_gem_object_finish_gpu(obj);
3249
		if (ret)
3250
			return ret;
2332 Serge 3251
 
2335 Serge 3252
		i915_gem_object_finish_gtt(obj);
2332 Serge 3253
 
2335 Serge 3254
		/* Before SandyBridge, you could not use tiling or fence
3255
		 * registers with snooped memory, so relinquish any fences
3256
		 * currently pointing to our region in the aperture.
3257
		 */
3031 serge 3258
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 3259
			ret = i915_gem_object_put_fence(obj);
3260
			if (ret)
3261
				return ret;
5060 serge 3262
            }
2332 Serge 3263
 
5060 serge 3264
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3265
			if (drm_mm_node_allocated(&vma->node))
3266
				vma->bind_vma(vma, cache_level,
5354 serge 3267
						vma->bound & GLOBAL_BIND);
2335 Serge 3268
	}
2332 Serge 3269
 
4104 Serge 3270
	list_for_each_entry(vma, &obj->vma_list, vma_link)
3271
		vma->node.color = cache_level;
3272
	obj->cache_level = cache_level;
3273
 
3274
	if (cpu_write_needs_clflush(obj)) {
2335 Serge 3275
		u32 old_read_domains, old_write_domain;
2332 Serge 3276
 
2335 Serge 3277
		/* If we're coming from LLC cached, then we haven't
3278
		 * actually been tracking whether the data is in the
3279
		 * CPU cache or not, since we only allow one bit set
3280
		 * in obj->write_domain and have been skipping the clflushes.
3281
		 * Just set it to the CPU cache for now.
3282
		 */
5060 serge 3283
		i915_gem_object_retire(obj);
2335 Serge 3284
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2332 Serge 3285
 
2335 Serge 3286
		old_read_domains = obj->base.read_domains;
3287
		old_write_domain = obj->base.write_domain;
2332 Serge 3288
 
2335 Serge 3289
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3290
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 3291
 
2351 Serge 3292
		trace_i915_gem_object_change_domain(obj,
3293
						    old_read_domains,
3294
						    old_write_domain);
2344 Serge 3295
    }
2332 Serge 3296
 
2335 Serge 3297
	return 0;
3298
}
2332 Serge 3299
 
3260 Serge 3300
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3301
			       struct drm_file *file)
3302
{
3303
	struct drm_i915_gem_caching *args = data;
3304
	struct drm_i915_gem_object *obj;
3305
	int ret;
3306
 
3307
	ret = i915_mutex_lock_interruptible(dev);
3308
	if (ret)
3309
		return ret;
3310
 
3311
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3312
	if (&obj->base == NULL) {
3313
		ret = -ENOENT;
3314
		goto unlock;
3315
	}
3316
 
4104 Serge 3317
	switch (obj->cache_level) {
3318
	case I915_CACHE_LLC:
3319
	case I915_CACHE_L3_LLC:
3320
		args->caching = I915_CACHING_CACHED;
3321
		break;
3260 Serge 3322
 
4104 Serge 3323
	case I915_CACHE_WT:
3324
		args->caching = I915_CACHING_DISPLAY;
3325
		break;
3326
 
3327
	default:
3328
		args->caching = I915_CACHING_NONE;
3329
		break;
3330
	}
3331
 
3260 Serge 3332
	drm_gem_object_unreference(&obj->base);
3333
unlock:
3334
	mutex_unlock(&dev->struct_mutex);
3335
	return ret;
3336
}
3337
 
3338
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3339
			       struct drm_file *file)
3340
{
3341
	struct drm_i915_gem_caching *args = data;
3342
	struct drm_i915_gem_object *obj;
3343
	enum i915_cache_level level;
3344
	int ret;
3345
 
3346
	switch (args->caching) {
3347
	case I915_CACHING_NONE:
3348
		level = I915_CACHE_NONE;
3349
		break;
3350
	case I915_CACHING_CACHED:
3351
		level = I915_CACHE_LLC;
3352
		break;
4104 Serge 3353
	case I915_CACHING_DISPLAY:
3354
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3355
		break;
3260 Serge 3356
	default:
3357
		return -EINVAL;
3358
	}
3359
 
3360
	ret = i915_mutex_lock_interruptible(dev);
3361
	if (ret)
3362
		return ret;
3363
 
3364
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3365
	if (&obj->base == NULL) {
3366
		ret = -ENOENT;
3367
		goto unlock;
3368
	}
3369
 
3370
	ret = i915_gem_object_set_cache_level(obj, level);
3371
 
3372
	drm_gem_object_unreference(&obj->base);
3373
unlock:
3374
	mutex_unlock(&dev->struct_mutex);
3375
	return ret;
3376
}
3377
 
4104 Serge 3378
static bool is_pin_display(struct drm_i915_gem_object *obj)
3379
{
5060 serge 3380
	struct i915_vma *vma;
3381
 
3382
	vma = i915_gem_obj_to_ggtt(obj);
3383
	if (!vma)
3384
		return false;
3385
 
4104 Serge 3386
	/* There are 3 sources that pin objects:
3387
	 *   1. The display engine (scanouts, sprites, cursors);
3388
	 *   2. Reservations for execbuffer;
3389
	 *   3. The user.
3390
	 *
3391
	 * We can ignore reservations as we hold the struct_mutex and
3392
	 * are only called outside of the reservation path.  The user
3393
	 * can only increment pin_count once, and so if after
3394
	 * subtracting the potential reference by the user, any pin_count
3395
	 * remains, it must be due to another use by the display engine.
3396
	 */
5060 serge 3397
	return vma->pin_count - !!obj->user_pin_count;
4104 Serge 3398
}
3399
 
2335 Serge 3400
/*
3401
 * Prepare buffer for display plane (scanout, cursors, etc).
3402
 * Can be called from an uninterruptible phase (modesetting) and allows
3403
 * any flushes to be pipelined (for pageflips).
3404
 */
3405
int
3406
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3407
				     u32 alignment,
5060 serge 3408
				     struct intel_engine_cs *pipelined)
2335 Serge 3409
{
3410
	u32 old_read_domains, old_write_domain;
5060 serge 3411
	bool was_pin_display;
2335 Serge 3412
	int ret;
2332 Serge 3413
 
3031 serge 3414
	if (pipelined != obj->ring) {
3415
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3416
	if (ret)
3417
		return ret;
3418
	}
2332 Serge 3419
 
4104 Serge 3420
	/* Mark the pin_display early so that we account for the
3421
	 * display coherency whilst setting up the cache domains.
3422
	 */
5060 serge 3423
	was_pin_display = obj->pin_display;
4104 Serge 3424
	obj->pin_display = true;
3425
 
2335 Serge 3426
	/* The display engine is not coherent with the LLC cache on gen6.  As
3427
	 * a result, we make sure that the pinning that is about to occur is
3428
	 * done with uncached PTEs. This is lowest common denominator for all
3429
	 * chipsets.
3430
	 *
3431
	 * However for gen6+, we could do better by using the GFDT bit instead
3432
	 * of uncaching, which would allow us to flush all the LLC-cached data
3433
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3434
	 */
4104 Serge 3435
	ret = i915_gem_object_set_cache_level(obj,
3436
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
2360 Serge 3437
	if (ret)
4104 Serge 3438
		goto err_unpin_display;
2332 Serge 3439
 
2335 Serge 3440
	/* As the user may map the buffer once pinned in the display plane
3441
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3442
	 * always use map_and_fenceable for all scanout buffers.
3443
	 */
5060 serge 3444
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2335 Serge 3445
	if (ret)
4104 Serge 3446
		goto err_unpin_display;
2332 Serge 3447
 
4104 Serge 3448
	i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 3449
 
2335 Serge 3450
	old_write_domain = obj->base.write_domain;
3451
	old_read_domains = obj->base.read_domains;
2332 Serge 3452
 
2335 Serge 3453
	/* It should now be out of any other write domains, and we can update
3454
	 * the domain values for our changes.
3455
	 */
3031 serge 3456
	obj->base.write_domain = 0;
2335 Serge 3457
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3458
 
2351 Serge 3459
	trace_i915_gem_object_change_domain(obj,
3460
					    old_read_domains,
3461
					    old_write_domain);
2332 Serge 3462
 
2335 Serge 3463
	return 0;
4104 Serge 3464
 
3465
err_unpin_display:
5060 serge 3466
	WARN_ON(was_pin_display != is_pin_display(obj));
3467
	obj->pin_display = was_pin_display;
4104 Serge 3468
	return ret;
2335 Serge 3469
}
2332 Serge 3470
 
4104 Serge 3471
void
3472
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3473
{
5060 serge 3474
	i915_gem_object_ggtt_unpin(obj);
4104 Serge 3475
	obj->pin_display = is_pin_display(obj);
3476
}
3477
 
2344 Serge 3478
int
3479
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3480
{
3481
	int ret;
2332 Serge 3482
 
2344 Serge 3483
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3484
		return 0;
2332 Serge 3485
 
3031 serge 3486
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3487
    if (ret)
3488
        return ret;
2332 Serge 3489
 
2344 Serge 3490
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3491
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3492
	return 0;
2344 Serge 3493
}
2332 Serge 3494
 
2344 Serge 3495
/**
3496
 * Moves a single object to the CPU read, and possibly write domain.
3497
 *
3498
 * This function returns when the move is complete, including waiting on
3499
 * flushes to occur.
3500
 */
3031 serge 3501
int
2344 Serge 3502
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3503
{
3504
	uint32_t old_write_domain, old_read_domains;
3505
	int ret;
2332 Serge 3506
 
2344 Serge 3507
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3508
		return 0;
2332 Serge 3509
 
3031 serge 3510
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3511
	if (ret)
3512
		return ret;
2332 Serge 3513
 
5060 serge 3514
	i915_gem_object_retire(obj);
2344 Serge 3515
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3516
 
2344 Serge 3517
	old_write_domain = obj->base.write_domain;
3518
	old_read_domains = obj->base.read_domains;
2332 Serge 3519
 
2344 Serge 3520
	/* Flush the CPU cache if it's still invalid. */
3521
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4104 Serge 3522
		i915_gem_clflush_object(obj, false);
2332 Serge 3523
 
2344 Serge 3524
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3525
	}
2332 Serge 3526
 
2344 Serge 3527
	/* It should now be out of any other write domains, and we can update
3528
	 * the domain values for our changes.
3529
	 */
3530
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3531
 
2344 Serge 3532
	/* If we're writing through the CPU, then the GPU read domains will
3533
	 * need to be invalidated at next use.
3534
	 */
3535
	if (write) {
3536
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3537
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3538
	}
2332 Serge 3539
 
5354 serge 3540
	if (write)
3541
		intel_fb_obj_invalidate(obj, NULL);
3542
 
2351 Serge 3543
	trace_i915_gem_object_change_domain(obj,
3544
					    old_read_domains,
3545
					    old_write_domain);
2332 Serge 3546
 
2344 Serge 3547
	return 0;
3548
}
2332 Serge 3549
 
3031 serge 3550
/* Throttle our rendering by waiting until the ring has completed our requests
3551
 * emitted over 20 msec ago.
2344 Serge 3552
 *
3031 serge 3553
 * Note that if we were to use the current jiffies each time around the loop,
3554
 * we wouldn't escape the function with any frames outstanding if the time to
3555
 * render a frame was over 20ms.
3556
 *
3557
 * This should get us reasonable parallelism between CPU and GPU but also
3558
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3559
 */
3031 serge 3560
static int
3561
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3562
{
3031 serge 3563
	struct drm_i915_private *dev_priv = dev->dev_private;
3564
	struct drm_i915_file_private *file_priv = file->driver_priv;
5060 serge 3565
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3031 serge 3566
	struct drm_i915_gem_request *request;
5060 serge 3567
	struct intel_engine_cs *ring = NULL;
3480 Serge 3568
	unsigned reset_counter;
3031 serge 3569
	u32 seqno = 0;
3570
	int ret;
2332 Serge 3571
 
3480 Serge 3572
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3573
	if (ret)
3574
		return ret;
2332 Serge 3575
 
3480 Serge 3576
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3577
	if (ret)
3578
		return ret;
3579
 
3031 serge 3580
	spin_lock(&file_priv->mm.lock);
3581
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3582
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3583
			break;
2332 Serge 3584
 
3031 serge 3585
		ring = request->ring;
3586
		seqno = request->seqno;
3587
	}
3480 Serge 3588
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 3589
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3590
 
3031 serge 3591
	if (seqno == 0)
3592
		return 0;
2332 Serge 3593
 
5354 serge 3594
	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3031 serge 3595
	if (ret == 0)
3596
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3597
 
3031 serge 3598
	return ret;
2352 Serge 3599
}
2332 Serge 3600
 
5060 serge 3601
static bool
3602
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3603
{
3604
	struct drm_i915_gem_object *obj = vma->obj;
3605
 
3606
	if (alignment &&
3607
	    vma->node.start & (alignment - 1))
3608
		return true;
3609
 
3610
	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3611
		return true;
3612
 
3613
	if (flags & PIN_OFFSET_BIAS &&
3614
	    vma->node.start < (flags & PIN_OFFSET_MASK))
3615
		return true;
3616
 
3617
	return false;
3618
}
3619
 
2332 Serge 3620
int
3621
i915_gem_object_pin(struct drm_i915_gem_object *obj,
4104 Serge 3622
		    struct i915_address_space *vm,
2332 Serge 3623
		    uint32_t alignment,
5060 serge 3624
		    uint64_t flags)
2332 Serge 3625
{
5060 serge 3626
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4104 Serge 3627
	struct i915_vma *vma;
5354 serge 3628
	unsigned bound;
2332 Serge 3629
	int ret;
3630
 
5060 serge 3631
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3632
		return -ENODEV;
2332 Serge 3633
 
5060 serge 3634
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3635
		return -EINVAL;
4104 Serge 3636
 
5354 serge 3637
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
3638
		return -EINVAL;
3639
 
4104 Serge 3640
	vma = i915_gem_obj_to_vma(obj, vm);
5060 serge 3641
	if (vma) {
3642
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3643
			return -EBUSY;
4104 Serge 3644
 
5060 serge 3645
		if (i915_vma_misplaced(vma, alignment, flags)) {
3646
			WARN(vma->pin_count,
2332 Serge 3647
			     "bo is already pinned with incorrect alignment:"
4104 Serge 3648
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
2332 Serge 3649
			     " obj->map_and_fenceable=%d\n",
4104 Serge 3650
			     i915_gem_obj_offset(obj, vm), alignment,
5060 serge 3651
			     !!(flags & PIN_MAPPABLE),
2332 Serge 3652
			     obj->map_and_fenceable);
4104 Serge 3653
			ret = i915_vma_unbind(vma);
2332 Serge 3654
			if (ret)
3655
				return ret;
5060 serge 3656
 
3657
			vma = NULL;
2332 Serge 3658
		}
3659
	}
3660
 
5354 serge 3661
	bound = vma ? vma->bound : 0;
5060 serge 3662
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3663
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3664
		if (IS_ERR(vma))
3665
			return PTR_ERR(vma);
2332 Serge 3666
	}
3667
 
5354 serge 3668
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
5060 serge 3669
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3031 serge 3670
 
5354 serge 3671
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
3672
		bool mappable, fenceable;
3673
		u32 fence_size, fence_alignment;
3674
 
3675
		fence_size = i915_gem_get_gtt_size(obj->base.dev,
3676
						   obj->base.size,
3677
						   obj->tiling_mode);
3678
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
3679
							     obj->base.size,
3680
							     obj->tiling_mode,
3681
							     true);
3682
 
3683
		fenceable = (vma->node.size == fence_size &&
3684
			     (vma->node.start & (fence_alignment - 1)) == 0);
3685
 
3686
		mappable = (vma->node.start + obj->base.size <=
3687
			    dev_priv->gtt.mappable_end);
3688
 
3689
		obj->map_and_fenceable = mappable && fenceable;
3690
	}
3691
 
3692
	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3693
 
5060 serge 3694
	vma->pin_count++;
3695
	if (flags & PIN_MAPPABLE)
3696
		obj->pin_mappable |= true;
2332 Serge 3697
 
3698
	return 0;
3699
}
3700
 
2344 Serge 3701
void
5060 serge 3702
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
2344 Serge 3703
{
5060 serge 3704
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
2332 Serge 3705
 
5060 serge 3706
	BUG_ON(!vma);
3707
	BUG_ON(vma->pin_count == 0);
3708
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3709
 
3710
	if (--vma->pin_count == 0)
2344 Serge 3711
		obj->pin_mappable = false;
3712
}
2332 Serge 3713
 
5060 serge 3714
bool
3715
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
3716
{
3717
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3718
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3719
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
3720
 
3721
		WARN_ON(!ggtt_vma ||
3722
			dev_priv->fence_regs[obj->fence_reg].pin_count >
3723
			ggtt_vma->pin_count);
3724
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
3725
		return true;
3726
	} else
3727
		return false;
3728
}
3729
 
3730
void
3731
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
3732
{
3733
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3734
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3735
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
3736
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
3737
	}
3738
}
3739
 
3031 serge 3740
int
3741
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3742
		   struct drm_file *file)
3743
{
3744
	struct drm_i915_gem_pin *args = data;
3745
	struct drm_i915_gem_object *obj;
3746
	int ret;
2332 Serge 3747
 
5354 serge 3748
	if (drm_core_check_feature(dev, DRIVER_MODESET))
5060 serge 3749
		return -ENODEV;
3750
 
3031 serge 3751
	ret = i915_mutex_lock_interruptible(dev);
3752
	if (ret)
3753
		return ret;
2332 Serge 3754
 
3031 serge 3755
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3756
	if (&obj->base == NULL) {
3757
		ret = -ENOENT;
3758
		goto unlock;
3759
	}
2332 Serge 3760
 
3031 serge 3761
	if (obj->madv != I915_MADV_WILLNEED) {
5060 serge 3762
		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
3763
		ret = -EFAULT;
3031 serge 3764
		goto out;
3765
	}
2332 Serge 3766
 
3031 serge 3767
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
5060 serge 3768
		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
3031 serge 3769
			  args->handle);
3770
		ret = -EINVAL;
3771
		goto out;
3772
	}
2332 Serge 3773
 
4560 Serge 3774
	if (obj->user_pin_count == ULONG_MAX) {
3775
		ret = -EBUSY;
3776
		goto out;
3777
	}
3778
 
3243 Serge 3779
	if (obj->user_pin_count == 0) {
5060 serge 3780
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
3031 serge 3781
		if (ret)
3782
			goto out;
3783
	}
2332 Serge 3784
 
3243 Serge 3785
	obj->user_pin_count++;
3786
	obj->pin_filp = file;
3787
 
4104 Serge 3788
	args->offset = i915_gem_obj_ggtt_offset(obj);
3031 serge 3789
out:
3790
	drm_gem_object_unreference(&obj->base);
3791
unlock:
3792
	mutex_unlock(&dev->struct_mutex);
3793
	return ret;
3794
}
2332 Serge 3795
 
3031 serge 3796
int
3797
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3798
		     struct drm_file *file)
3799
{
3800
	struct drm_i915_gem_pin *args = data;
3801
	struct drm_i915_gem_object *obj;
3802
	int ret;
2332 Serge 3803
 
5354 serge 3804
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3805
		return -ENODEV;
3806
 
3031 serge 3807
	ret = i915_mutex_lock_interruptible(dev);
3808
	if (ret)
3809
		return ret;
2332 Serge 3810
 
3031 serge 3811
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3812
	if (&obj->base == NULL) {
3813
		ret = -ENOENT;
3814
		goto unlock;
3815
	}
2332 Serge 3816
 
3031 serge 3817
	if (obj->pin_filp != file) {
5060 serge 3818
		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3031 serge 3819
			  args->handle);
3820
		ret = -EINVAL;
3821
		goto out;
3822
	}
3823
	obj->user_pin_count--;
3824
	if (obj->user_pin_count == 0) {
3825
		obj->pin_filp = NULL;
5060 serge 3826
		i915_gem_object_ggtt_unpin(obj);
3031 serge 3827
	}
2332 Serge 3828
 
3031 serge 3829
out:
3830
	drm_gem_object_unreference(&obj->base);
3831
unlock:
3832
	mutex_unlock(&dev->struct_mutex);
3833
	return ret;
3834
}
2332 Serge 3835
 
3031 serge 3836
int
3837
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3838
		    struct drm_file *file)
3839
{
3840
	struct drm_i915_gem_busy *args = data;
3841
	struct drm_i915_gem_object *obj;
3842
	int ret;
2332 Serge 3843
 
3031 serge 3844
	ret = i915_mutex_lock_interruptible(dev);
3845
	if (ret)
3846
		return ret;
2332 Serge 3847
 
5060 serge 3848
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3031 serge 3849
	if (&obj->base == NULL) {
3850
		ret = -ENOENT;
3851
		goto unlock;
3852
	}
2332 Serge 3853
 
3031 serge 3854
	/* Count all active objects as busy, even if they are currently not used
3855
	 * by the gpu. Users of this interface expect objects to eventually
3856
	 * become non-busy without any further actions, therefore emit any
3857
	 * necessary flushes here.
3858
	 */
3859
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3860
 
3031 serge 3861
	args->busy = obj->active;
3862
	if (obj->ring) {
3863
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3864
		args->busy |= intel_ring_flag(obj->ring) << 16;
3865
	}
2332 Serge 3866
 
3031 serge 3867
	drm_gem_object_unreference(&obj->base);
3868
unlock:
3869
	mutex_unlock(&dev->struct_mutex);
3870
	return ret;
3871
}
2332 Serge 3872
 
3031 serge 3873
int
3874
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3875
			struct drm_file *file_priv)
3876
{
3877
	return i915_gem_ring_throttle(dev, file_priv);
3878
}
2332 Serge 3879
 
3263 Serge 3880
#if 0
3881
 
3031 serge 3882
int
3883
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3884
		       struct drm_file *file_priv)
3885
{
5354 serge 3886
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3887
	struct drm_i915_gem_madvise *args = data;
3888
	struct drm_i915_gem_object *obj;
3889
	int ret;
2332 Serge 3890
 
3031 serge 3891
	switch (args->madv) {
3892
	case I915_MADV_DONTNEED:
3893
	case I915_MADV_WILLNEED:
3894
	    break;
3895
	default:
3896
	    return -EINVAL;
3897
	}
2332 Serge 3898
 
3031 serge 3899
	ret = i915_mutex_lock_interruptible(dev);
3900
	if (ret)
3901
		return ret;
2332 Serge 3902
 
3031 serge 3903
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3904
	if (&obj->base == NULL) {
3905
		ret = -ENOENT;
3906
		goto unlock;
3907
	}
2332 Serge 3908
 
5060 serge 3909
	if (i915_gem_obj_is_pinned(obj)) {
3031 serge 3910
		ret = -EINVAL;
3911
		goto out;
3912
	}
2332 Serge 3913
 
5354 serge 3914
	if (obj->pages &&
3915
	    obj->tiling_mode != I915_TILING_NONE &&
3916
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3917
		if (obj->madv == I915_MADV_WILLNEED)
3918
			i915_gem_object_unpin_pages(obj);
3919
		if (args->madv == I915_MADV_WILLNEED)
3920
			i915_gem_object_pin_pages(obj);
3921
	}
3922
 
3031 serge 3923
	if (obj->madv != __I915_MADV_PURGED)
3924
		obj->madv = args->madv;
2332 Serge 3925
 
3031 serge 3926
	/* if the object is no longer attached, discard its backing storage */
3927
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3928
		i915_gem_object_truncate(obj);
2332 Serge 3929
 
3031 serge 3930
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3931
 
3031 serge 3932
out:
3933
	drm_gem_object_unreference(&obj->base);
3934
unlock:
3935
	mutex_unlock(&dev->struct_mutex);
3936
	return ret;
3937
}
3938
#endif
2332 Serge 3939
 
3031 serge 3940
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3941
			  const struct drm_i915_gem_object_ops *ops)
3942
{
4104 Serge 3943
	INIT_LIST_HEAD(&obj->global_list);
3031 serge 3944
	INIT_LIST_HEAD(&obj->ring_list);
4104 Serge 3945
	INIT_LIST_HEAD(&obj->obj_exec_link);
3946
	INIT_LIST_HEAD(&obj->vma_list);
2332 Serge 3947
 
3031 serge 3948
	obj->ops = ops;
3949
 
3950
	obj->fence_reg = I915_FENCE_REG_NONE;
3951
	obj->madv = I915_MADV_WILLNEED;
3952
 
3953
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3954
}
3955
 
3956
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3957
	.get_pages = i915_gem_object_get_pages_gtt,
3958
	.put_pages = i915_gem_object_put_pages_gtt,
3959
};
3960
 
2332 Serge 3961
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3962
						  size_t size)
3963
{
3964
	struct drm_i915_gem_object *obj;
3031 serge 3965
	struct address_space *mapping;
3480 Serge 3966
	gfp_t mask;
2340 Serge 3967
 
3746 Serge 3968
	obj = i915_gem_object_alloc(dev);
2332 Serge 3969
	if (obj == NULL)
3970
		return NULL;
3971
 
3972
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4104 Serge 3973
		i915_gem_object_free(obj);
2332 Serge 3974
		return NULL;
3975
	}
3976
 
3977
 
3031 serge 3978
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3979
 
3980
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3981
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3982
 
3031 serge 3983
	if (HAS_LLC(dev)) {
3984
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3985
		 * cache) for about a 10% performance improvement
3986
		 * compared to uncached.  Graphics requests other than
3987
		 * display scanout are coherent with the CPU in
3988
		 * accessing this cache.  This means in this mode we
3989
		 * don't need to clflush on the CPU side, and on the
3990
		 * GPU side we only need to flush internal caches to
3991
		 * get data visible to the CPU.
3992
		 *
3993
		 * However, we maintain the display planes as UC, and so
3994
		 * need to rebind when first used as such.
3995
		 */
3996
		obj->cache_level = I915_CACHE_LLC;
3997
	} else
3998
		obj->cache_level = I915_CACHE_NONE;
3999
 
4560 Serge 4000
	trace_i915_gem_object_create(obj);
4001
 
2332 Serge 4002
	return obj;
4003
}
4004
 
3031 serge 4005
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 4006
{
3031 serge 4007
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 4008
	struct drm_device *dev = obj->base.dev;
5060 serge 4009
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 4010
	struct i915_vma *vma, *next;
2332 Serge 4011
 
4560 Serge 4012
	intel_runtime_pm_get(dev_priv);
4013
 
3031 serge 4014
	trace_i915_gem_object_destroy(obj);
4015
 
5060 serge 4016
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4017
		int ret;
3031 serge 4018
 
5060 serge 4019
		vma->pin_count = 0;
4020
		ret = i915_vma_unbind(vma);
4104 Serge 4021
		if (WARN_ON(ret == -ERESTARTSYS)) {
3031 serge 4022
		bool was_interruptible;
4023
 
4024
		was_interruptible = dev_priv->mm.interruptible;
4025
		dev_priv->mm.interruptible = false;
4026
 
4104 Serge 4027
			WARN_ON(i915_vma_unbind(vma));
3031 serge 4028
 
4029
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 4030
	}
4104 Serge 4031
	}
2332 Serge 4032
 
4104 Serge 4033
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4034
	 * before progressing. */
4035
	if (obj->stolen)
4036
		i915_gem_object_unpin_pages(obj);
4037
 
5060 serge 4038
	WARN_ON(obj->frontbuffer_bits);
4039
 
5354 serge 4040
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4041
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4042
	    obj->tiling_mode != I915_TILING_NONE)
4043
		i915_gem_object_unpin_pages(obj);
4044
 
4104 Serge 4045
	if (WARN_ON(obj->pages_pin_count))
3031 serge 4046
	obj->pages_pin_count = 0;
4047
	i915_gem_object_put_pages(obj);
4048
//   i915_gem_object_free_mmap_offset(obj);
2332 Serge 4049
 
3243 Serge 4050
	BUG_ON(obj->pages);
2332 Serge 4051
 
3031 serge 4052
 
3290 Serge 4053
    if(obj->base.filp != NULL)
4054
    {
3298 Serge 4055
//        printf("filp %p\n", obj->base.filp);
3290 Serge 4056
        shmem_file_delete(obj->base.filp);
4057
    }
4058
 
2344 Serge 4059
	drm_gem_object_release(&obj->base);
4060
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 4061
 
2344 Serge 4062
	kfree(obj->bit_17);
4104 Serge 4063
	i915_gem_object_free(obj);
4560 Serge 4064
 
4065
	intel_runtime_pm_put(dev_priv);
2344 Serge 4066
}
2332 Serge 4067
 
4560 Serge 4068
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4104 Serge 4069
				     struct i915_address_space *vm)
4070
{
4560 Serge 4071
	struct i915_vma *vma;
4072
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4073
		if (vma->vm == vm)
4074
			return vma;
4075
 
4076
	return NULL;
4077
}
4078
 
4104 Serge 4079
void i915_gem_vma_destroy(struct i915_vma *vma)
4080
{
5354 serge 4081
	struct i915_address_space *vm = NULL;
4104 Serge 4082
	WARN_ON(vma->node.allocated);
4560 Serge 4083
 
4084
	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4085
	if (!list_empty(&vma->exec_list))
4086
		return;
4087
 
5354 serge 4088
	vm = vma->vm;
4089
 
4090
	if (!i915_is_ggtt(vm))
4091
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4092
 
4104 Serge 4093
	list_del(&vma->vma_link);
4560 Serge 4094
 
4104 Serge 4095
	kfree(vma);
4096
}
4097
 
3031 serge 4098
#if 0
4099
int
4560 Serge 4100
i915_gem_suspend(struct drm_device *dev)
2344 Serge 4101
{
5060 serge 4102
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4103
	int ret = 0;
2332 Serge 4104
 
4560 Serge 4105
	mutex_lock(&dev->struct_mutex);
3031 serge 4106
	ret = i915_gpu_idle(dev);
4560 Serge 4107
	if (ret)
4108
		goto err;
4109
 
3031 serge 4110
	i915_gem_retire_requests(dev);
4111
 
3480 Serge 4112
	/* Under UMS, be paranoid and evict. */
4113
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4114
		i915_gem_evict_everything(dev);
4115
 
5060 serge 4116
	i915_gem_stop_ringbuffers(dev);
4560 Serge 4117
	mutex_unlock(&dev->struct_mutex);
4118
 
4119
	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3263 Serge 4120
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
5060 serge 4121
	flush_delayed_work(&dev_priv->mm.idle_work);
3031 serge 4122
 
4123
	return 0;
4560 Serge 4124
 
4125
err:
4126
	mutex_unlock(&dev->struct_mutex);
4127
	return ret;
2344 Serge 4128
}
3031 serge 4129
#endif
2332 Serge 4130
 
5060 serge 4131
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
3031 serge 4132
{
4560 Serge 4133
	struct drm_device *dev = ring->dev;
5060 serge 4134
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4135
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4136
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4137
	int i, ret;
2332 Serge 4138
 
4560 Serge 4139
	if (!HAS_L3_DPF(dev) || !remap_info)
4140
		return 0;
2332 Serge 4141
 
4560 Serge 4142
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4143
	if (ret)
4144
		return ret;
2332 Serge 4145
 
4560 Serge 4146
	/*
4147
	 * Note: We do not worry about the concurrent register cacheline hang
4148
	 * here because no other code should access these registers other than
4149
	 * at initialization time.
4150
	 */
3031 serge 4151
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4560 Serge 4152
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4153
		intel_ring_emit(ring, reg_base + i);
4154
		intel_ring_emit(ring, remap_info[i/4]);
3031 serge 4155
	}
2332 Serge 4156
 
4560 Serge 4157
	intel_ring_advance(ring);
2332 Serge 4158
 
4560 Serge 4159
	return ret;
3031 serge 4160
}
2332 Serge 4161
 
3031 serge 4162
void i915_gem_init_swizzling(struct drm_device *dev)
4163
{
5060 serge 4164
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 4165
 
3031 serge 4166
	if (INTEL_INFO(dev)->gen < 5 ||
4167
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4168
		return;
2332 Serge 4169
 
3031 serge 4170
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4171
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 4172
 
3031 serge 4173
	if (IS_GEN5(dev))
4174
		return;
2344 Serge 4175
 
3031 serge 4176
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4177
	if (IS_GEN6(dev))
4178
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3480 Serge 4179
	else if (IS_GEN7(dev))
4180
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4560 Serge 4181
	else if (IS_GEN8(dev))
4182
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
3031 serge 4183
	else
3480 Serge 4184
		BUG();
3031 serge 4185
}
4186
 
4187
static bool
4188
intel_enable_blt(struct drm_device *dev)
4189
{
4190
	if (!HAS_BLT(dev))
4191
		return false;
4192
 
4193
	/* The blitter was dysfunctional on early prototypes */
4194
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4195
		DRM_INFO("BLT not supported on this pre-production hardware;"
4196
			 " graphics performance will be degraded.\n");
4197
		return false;
4198
	}
4199
 
4200
	return true;
4201
}
4202
 
5354 serge 4203
static void init_unused_ring(struct drm_device *dev, u32 base)
2332 Serge 4204
{
3480 Serge 4205
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4206
 
4207
	I915_WRITE(RING_CTL(base), 0);
4208
	I915_WRITE(RING_HEAD(base), 0);
4209
	I915_WRITE(RING_TAIL(base), 0);
4210
	I915_WRITE(RING_START(base), 0);
4211
}
4212
 
4213
static void init_unused_rings(struct drm_device *dev)
4214
{
4215
	if (IS_I830(dev)) {
4216
		init_unused_ring(dev, PRB1_BASE);
4217
		init_unused_ring(dev, SRB0_BASE);
4218
		init_unused_ring(dev, SRB1_BASE);
4219
		init_unused_ring(dev, SRB2_BASE);
4220
		init_unused_ring(dev, SRB3_BASE);
4221
	} else if (IS_GEN2(dev)) {
4222
		init_unused_ring(dev, SRB0_BASE);
4223
		init_unused_ring(dev, SRB1_BASE);
4224
	} else if (IS_GEN3(dev)) {
4225
		init_unused_ring(dev, PRB1_BASE);
4226
		init_unused_ring(dev, PRB2_BASE);
4227
	}
4228
}
4229
 
4230
int i915_gem_init_rings(struct drm_device *dev)
4231
{
4232
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 4233
	int ret;
2351 Serge 4234
 
5354 serge 4235
	/*
4236
	 * At least 830 can leave some of the unused rings
4237
	 * "active" (ie. head != tail) after resume which
4238
	 * will prevent c3 entry. Makes sure all unused rings
4239
	 * are totally idle.
4240
	 */
4241
	init_unused_rings(dev);
4242
 
2332 Serge 4243
	ret = intel_init_render_ring_buffer(dev);
4244
	if (ret)
4245
		return ret;
4246
 
4247
    if (HAS_BSD(dev)) {
4248
		ret = intel_init_bsd_ring_buffer(dev);
4249
		if (ret)
4250
			goto cleanup_render_ring;
4251
	}
4252
 
3031 serge 4253
	if (intel_enable_blt(dev)) {
2332 Serge 4254
		ret = intel_init_blt_ring_buffer(dev);
4255
		if (ret)
4256
			goto cleanup_bsd_ring;
4257
	}
4258
 
4104 Serge 4259
	if (HAS_VEBOX(dev)) {
4260
		ret = intel_init_vebox_ring_buffer(dev);
4261
		if (ret)
4262
			goto cleanup_blt_ring;
4263
	}
4264
 
5060 serge 4265
	if (HAS_BSD2(dev)) {
4266
		ret = intel_init_bsd2_ring_buffer(dev);
4267
		if (ret)
4268
			goto cleanup_vebox_ring;
4269
	}
4104 Serge 4270
 
3480 Serge 4271
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4272
	if (ret)
5060 serge 4273
		goto cleanup_bsd2_ring;
2351 Serge 4274
 
2332 Serge 4275
	return 0;
4276
 
5060 serge 4277
cleanup_bsd2_ring:
4278
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4104 Serge 4279
cleanup_vebox_ring:
4280
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
3480 Serge 4281
cleanup_blt_ring:
4282
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
2332 Serge 4283
cleanup_bsd_ring:
4284
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4285
cleanup_render_ring:
4286
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3480 Serge 4287
 
2332 Serge 4288
	return ret;
4289
}
4290
 
3480 Serge 4291
int
4292
i915_gem_init_hw(struct drm_device *dev)
3031 serge 4293
{
5060 serge 4294
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4295
	int ret, i;
3031 serge 4296
 
3480 Serge 4297
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4298
		return -EIO;
3031 serge 4299
 
4104 Serge 4300
	if (dev_priv->ellc_size)
4301
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
3480 Serge 4302
 
4560 Serge 4303
	if (IS_HASWELL(dev))
4304
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4305
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4306
 
3746 Serge 4307
	if (HAS_PCH_NOP(dev)) {
5060 serge 4308
		if (IS_IVYBRIDGE(dev)) {
3746 Serge 4309
		u32 temp = I915_READ(GEN7_MSG_CTL);
4310
		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4311
		I915_WRITE(GEN7_MSG_CTL, temp);
5060 serge 4312
		} else if (INTEL_INFO(dev)->gen >= 7) {
4313
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4314
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4315
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4316
		}
3746 Serge 4317
	}
4318
 
3480 Serge 4319
	i915_gem_init_swizzling(dev);
4320
 
5354 serge 4321
	ret = dev_priv->gt.init_rings(dev);
3480 Serge 4322
	if (ret)
4323
		return ret;
4324
 
4560 Serge 4325
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4326
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4327
 
3480 Serge 4328
	/*
5060 serge 4329
	 * XXX: Contexts should only be initialized once. Doing a switch to the
4330
	 * default context switch however is something we'd like to do after
4331
	 * reset or thaw (the latter may not actually be necessary for HW, but
4332
	 * goes with our code better). Context switching requires rings (for
4333
	 * the do_switch), but before enabling PPGTT. So don't move this.
3480 Serge 4334
	 */
5060 serge 4335
	ret = i915_gem_context_enable(dev_priv);
4336
	if (ret && ret != -EIO) {
4337
		DRM_ERROR("Context enable failed %d\n", ret);
4560 Serge 4338
		i915_gem_cleanup_ringbuffer(dev);
5354 serge 4339
 
4340
		return ret;
4560 Serge 4341
	}
4342
 
5354 serge 4343
	ret = i915_ppgtt_init_hw(dev);
4344
	if (ret && ret != -EIO) {
4345
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4346
		i915_gem_cleanup_ringbuffer(dev);
4347
	}
4348
 
5060 serge 4349
	return ret;
3031 serge 4350
}
4351
 
4352
int i915_gem_init(struct drm_device *dev)
4353
{
4354
	struct drm_i915_private *dev_priv = dev->dev_private;
4355
	int ret;
4356
 
5354 serge 4357
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4358
			i915.enable_execlists);
4359
 
3031 serge 4360
	mutex_lock(&dev->struct_mutex);
3746 Serge 4361
 
4362
	if (IS_VALLEYVIEW(dev)) {
4363
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5060 serge 4364
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4365
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4366
			      VLV_GTLC_ALLOWWAKEACK), 10))
3746 Serge 4367
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4368
	}
4369
 
5354 serge 4370
	if (!i915.enable_execlists) {
4371
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4372
		dev_priv->gt.init_rings = i915_gem_init_rings;
4373
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4374
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4375
	} else {
4376
		dev_priv->gt.do_execbuf = intel_execlists_submission;
4377
		dev_priv->gt.init_rings = intel_logical_rings_init;
4378
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4379
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4380
	}
4381
 
4382
//   ret = i915_gem_init_userptr(dev);
4383
//   if (ret) {
4384
//       mutex_unlock(&dev->struct_mutex);
4385
//       return ret;
4386
//   }
4387
 
5060 serge 4388
    i915_gem_init_global_gtt(dev);
3746 Serge 4389
 
5060 serge 4390
	ret = i915_gem_context_init(dev);
3031 serge 4391
	if (ret) {
5060 serge 4392
		mutex_unlock(&dev->struct_mutex);
3031 serge 4393
		return ret;
4394
	}
4395
 
5060 serge 4396
	ret = i915_gem_init_hw(dev);
4397
	if (ret == -EIO) {
4398
		/* Allow ring initialisation to fail by marking the GPU as
4399
		 * wedged. But we only want to do this where the GPU is angry,
4400
		 * for all other failure, such as an allocation failure, bail.
4401
		 */
4402
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4403
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4404
		ret = 0;
4405
	}
4406
	mutex_unlock(&dev->struct_mutex);
3746 Serge 4407
 
5060 serge 4408
		return ret;
3031 serge 4409
}
4410
 
2332 Serge 4411
void
4412
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4413
{
5060 serge 4414
	struct drm_i915_private *dev_priv = dev->dev_private;
4415
	struct intel_engine_cs *ring;
2332 Serge 4416
	int i;
4417
 
3031 serge 4418
	for_each_ring(ring, dev_priv, i)
5354 serge 4419
		dev_priv->gt.cleanup_ring(ring);
2332 Serge 4420
}
4421
 
4422
static void
5060 serge 4423
init_ring_lists(struct intel_engine_cs *ring)
2326 Serge 4424
{
4425
    INIT_LIST_HEAD(&ring->active_list);
4426
    INIT_LIST_HEAD(&ring->request_list);
4427
}
4428
 
5060 serge 4429
void i915_init_vm(struct drm_i915_private *dev_priv,
4104 Serge 4430
			 struct i915_address_space *vm)
4431
{
5060 serge 4432
	if (!i915_is_ggtt(vm))
4433
		drm_mm_init(&vm->mm, vm->start, vm->total);
4104 Serge 4434
	vm->dev = dev_priv->dev;
4435
	INIT_LIST_HEAD(&vm->active_list);
4436
	INIT_LIST_HEAD(&vm->inactive_list);
4437
	INIT_LIST_HEAD(&vm->global_link);
5060 serge 4438
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
4104 Serge 4439
}
4440
 
2326 Serge 4441
void
4442
i915_gem_load(struct drm_device *dev)
4443
{
5060 serge 4444
	struct drm_i915_private *dev_priv = dev->dev_private;
2326 Serge 4445
    int i;
4446
 
4104 Serge 4447
	INIT_LIST_HEAD(&dev_priv->vm_list);
4448
	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4449
 
4560 Serge 4450
	INIT_LIST_HEAD(&dev_priv->context_list);
3031 serge 4451
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4452
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 4453
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4454
    for (i = 0; i < I915_NUM_RINGS; i++)
4455
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 4456
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 4457
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 4458
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4459
			  i915_gem_retire_work_handler);
4560 Serge 4460
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4461
			  i915_gem_idle_work_handler);
3480 Serge 4462
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
2326 Serge 4463
 
4464
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5354 serge 4465
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
3031 serge 4466
		I915_WRITE(MI_ARB_STATE,
4467
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 4468
    }
4469
 
4470
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4471
 
5354 serge 4472
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4473
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4474
		dev_priv->fence_reg_start = 3;
4475
 
3746 Serge 4476
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4477
		dev_priv->num_fence_regs = 32;
4478
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2326 Serge 4479
        dev_priv->num_fence_regs = 16;
4480
    else
4481
        dev_priv->num_fence_regs = 8;
4482
 
4483
    /* Initialize fence registers to zero */
3746 Serge 4484
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4485
	i915_gem_restore_fences(dev);
2326 Serge 4486
 
4487
    i915_gem_detect_bit_6_swizzle(dev);
4488
 
4489
    dev_priv->mm.interruptible = true;
4490
 
5060 serge 4491
	mutex_init(&dev_priv->fb_tracking.lock);
2326 Serge 4492
}
4493
 
5060 serge 4494
int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4104 Serge 4495
{
5060 serge 4496
	struct drm_i915_file_private *file_priv;
4104 Serge 4497
	int ret;
2326 Serge 4498
 
5060 serge 4499
	DRM_DEBUG_DRIVER("\n");
4104 Serge 4500
 
5060 serge 4501
	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4502
	if (!file_priv)
4104 Serge 4503
		return -ENOMEM;
4504
 
5060 serge 4505
	file->driver_priv = file_priv;
4506
	file_priv->dev_priv = dev->dev_private;
4507
	file_priv->file = file;
4104 Serge 4508
 
5060 serge 4509
	spin_lock_init(&file_priv->mm.lock);
4510
	INIT_LIST_HEAD(&file_priv->mm.request_list);
4511
//	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4512
//			  i915_gem_file_idle_work_handler);
4104 Serge 4513
 
5060 serge 4514
	ret = i915_gem_context_open(dev, file);
4515
	if (ret)
4516
		kfree(file_priv);
4104 Serge 4517
 
4518
	return ret;
4519
}
4520
 
5354 serge 4521
/**
4522
 * i915_gem_track_fb - update frontbuffer tracking
4523
 * old: current GEM buffer for the frontbuffer slots
4524
 * new: new GEM buffer for the frontbuffer slots
4525
 * frontbuffer_bits: bitmask of frontbuffer slots
4526
 *
4527
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4528
 * from @old and setting them in @new. Both @old and @new can be NULL.
4529
 */
5060 serge 4530
void i915_gem_track_fb(struct drm_i915_gem_object *old,
4531
		       struct drm_i915_gem_object *new,
4532
		       unsigned frontbuffer_bits)
4104 Serge 4533
{
5060 serge 4534
	if (old) {
4535
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4536
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4537
		old->frontbuffer_bits &= ~frontbuffer_bits;
4104 Serge 4538
	}
4539
 
5060 serge 4540
	if (new) {
4541
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4542
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4543
		new->frontbuffer_bits |= frontbuffer_bits;
4104 Serge 4544
	}
4545
}
4546
 
4547
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4548
{
4549
	if (!mutex_is_locked(mutex))
4550
		return false;
4551
 
4552
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4553
	return mutex->owner == task;
4554
#else
4555
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4556
	return false;
4557
#endif
4558
}
4559
 
4560
/* All the new VM stuff */
4561
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4562
				  struct i915_address_space *vm)
4563
{
4564
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4565
	struct i915_vma *vma;
4566
 
5354 serge 4567
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4104 Serge 4568
 
4569
	list_for_each_entry(vma, &o->vma_list, vma_link) {
4570
		if (vma->vm == vm)
4571
			return vma->node.start;
4572
 
4573
	}
5060 serge 4574
	WARN(1, "%s vma for this object not found.\n",
4575
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4576
	return -1;
4104 Serge 4577
}
4578
 
4579
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4580
			struct i915_address_space *vm)
4581
{
4582
	struct i915_vma *vma;
4583
 
4584
	list_for_each_entry(vma, &o->vma_list, vma_link)
4585
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4586
			return true;
4587
 
4588
	return false;
4589
}
4590
 
4591
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4592
{
4560 Serge 4593
	struct i915_vma *vma;
4104 Serge 4594
 
4560 Serge 4595
	list_for_each_entry(vma, &o->vma_list, vma_link)
4596
		if (drm_mm_node_allocated(&vma->node))
4104 Serge 4597
			return true;
4598
 
4599
	return false;
4600
}
4601
 
4602
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4603
				struct i915_address_space *vm)
4604
{
4605
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4606
	struct i915_vma *vma;
4607
 
5354 serge 4608
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4104 Serge 4609
 
4610
	BUG_ON(list_empty(&o->vma_list));
4611
 
4612
	list_for_each_entry(vma, &o->vma_list, vma_link)
4613
		if (vma->vm == vm)
4614
			return vma->node.size;
4615
 
4616
	return 0;
4617
}
4560 Serge 4618
 
4619
 
5060 serge 4620
 
4560 Serge 4621
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
4104 Serge 4622
{
4623
	struct i915_vma *vma;
4624
 
4560 Serge 4625
	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5354 serge 4626
	if (vma->vm != i915_obj_to_ggtt(obj))
4560 Serge 4627
		return NULL;
4104 Serge 4628
 
4629
	return vma;
4630
}