Subversion Repositories Kolibri OS

Rev

Rev 5060 | Rev 5367 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
4280 Serge 29
#include 
3031 serge 30
#include 
2326 Serge 31
#include "i915_drv.h"
2351 Serge 32
#include "i915_trace.h"
2326 Serge 33
#include "intel_drv.h"
3260 Serge 34
#include 
2330 Serge 35
#include 
2326 Serge 36
//#include 
3746 Serge 37
#include 
2326 Serge 38
#include 
39
 
2344 Serge 40
extern int x86_clflush_size;
2332 Serge 41
 
3263 Serge 42
#define PROT_READ       0x1             /* page can be read */
43
#define PROT_WRITE      0x2             /* page can be written */
44
#define MAP_SHARED      0x01            /* Share changes */
45
 
2344 Serge 46
 
5060 serge 47
u64 nsecs_to_jiffies64(u64 n)
48
{
49
#if (NSEC_PER_SEC % HZ) == 0
50
        /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
51
        return div_u64(n, NSEC_PER_SEC / HZ);
52
#elif (HZ % 512) == 0
53
        /* overflow after 292 years if HZ = 1024 */
54
        return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
55
#else
56
        /*
57
         * Generic case - optimized for cases where HZ is a multiple of 3.
58
         * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
59
         */
60
        return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
61
#endif
62
}
63
 
64
unsigned long nsecs_to_jiffies(u64 n)
65
{
66
    return (unsigned long)nsecs_to_jiffies64(n);
67
}
68
 
69
 
3266 Serge 70
struct drm_i915_gem_object *get_fb_obj();
71
 
3263 Serge 72
unsigned long vm_mmap(struct file *file, unsigned long addr,
73
         unsigned long len, unsigned long prot,
74
         unsigned long flag, unsigned long offset);
75
 
2344 Serge 76
 
2332 Serge 77
#define MAX_ERRNO       4095
78
 
79
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
80
 
81
 
82
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
4104 Serge 83
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
84
						   bool force);
85
static __must_check int
4560 Serge 86
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
87
			       bool readonly);
5060 serge 88
static void
89
i915_gem_object_retire(struct drm_i915_gem_object *obj);
2326 Serge 90
 
3031 serge 91
static void i915_gem_write_fence(struct drm_device *dev, int reg,
92
				 struct drm_i915_gem_object *obj);
93
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
94
					 struct drm_i915_fence_reg *fence,
95
					 bool enable);
2332 Serge 96
 
5354 serge 97
 
4560 Serge 98
static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3031 serge 99
 
4104 Serge 100
static bool cpu_cache_is_coherent(struct drm_device *dev,
101
				  enum i915_cache_level level)
102
{
103
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
104
}
105
 
106
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
107
{
108
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
109
		return true;
110
 
111
	return obj->pin_display;
112
}
113
 
3031 serge 114
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
115
{
116
	if (obj->tiling_mode)
117
		i915_gem_release_mmap(obj);
118
 
119
	/* As we do not have an associated fence register, we will force
120
	 * a tiling change if we ever need to acquire one.
121
	 */
122
	obj->fence_dirty = false;
123
	obj->fence_reg = I915_FENCE_REG_NONE;
124
}
125
 
2332 Serge 126
/* some bookkeeping */
127
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
128
				  size_t size)
129
{
4104 Serge 130
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 131
	dev_priv->mm.object_count++;
132
	dev_priv->mm.object_memory += size;
4104 Serge 133
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 134
}
135
 
136
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
137
				     size_t size)
138
{
4104 Serge 139
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 140
	dev_priv->mm.object_count--;
141
	dev_priv->mm.object_memory -= size;
4104 Serge 142
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 143
}
144
 
145
static int
3480 Serge 146
i915_gem_wait_for_error(struct i915_gpu_error *error)
2332 Serge 147
{
148
	int ret;
149
 
3480 Serge 150
#define EXIT_COND (!i915_reset_in_progress(error))
151
	if (EXIT_COND)
2332 Serge 152
		return 0;
3255 Serge 153
#if 0
3031 serge 154
	/*
155
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
156
	 * userspace. If it takes that long something really bad is going on and
157
	 * we should simply try to bail out and fail as gracefully as possible.
158
	 */
3480 Serge 159
	ret = wait_event_interruptible_timeout(error->reset_queue,
160
					       EXIT_COND,
161
					       10*HZ);
3031 serge 162
	if (ret == 0) {
163
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
164
		return -EIO;
165
	} else if (ret < 0) {
2332 Serge 166
		return ret;
3031 serge 167
	}
2332 Serge 168
 
3255 Serge 169
#endif
3480 Serge 170
#undef EXIT_COND
3255 Serge 171
 
2332 Serge 172
	return 0;
173
}
174
 
175
int i915_mutex_lock_interruptible(struct drm_device *dev)
176
{
3480 Serge 177
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 178
	int ret;
179
 
3480 Serge 180
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
2332 Serge 181
	if (ret)
182
		return ret;
183
 
3480 Serge 184
	ret = mutex_lock_interruptible(&dev->struct_mutex);
185
	if (ret)
186
		return ret;
2332 Serge 187
 
188
	WARN_ON(i915_verify_lists(dev));
189
	return 0;
190
}
191
 
192
static inline bool
193
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
194
{
4104 Serge 195
	return i915_gem_obj_bound_any(obj) && !obj->active;
2332 Serge 196
}
197
 
198
int
199
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
200
			    struct drm_file *file)
201
{
202
	struct drm_i915_private *dev_priv = dev->dev_private;
203
	struct drm_i915_gem_get_aperture *args = data;
204
	struct drm_i915_gem_object *obj;
205
	size_t pinned;
206
 
207
	pinned = 0;
208
	mutex_lock(&dev->struct_mutex);
4104 Serge 209
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
5060 serge 210
		if (i915_gem_obj_is_pinned(obj))
4104 Serge 211
			pinned += i915_gem_obj_ggtt_size(obj);
2332 Serge 212
	mutex_unlock(&dev->struct_mutex);
213
 
4104 Serge 214
	args->aper_size = dev_priv->gtt.base.total;
2342 Serge 215
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 216
 
217
	return 0;
218
}
219
 
3480 Serge 220
void *i915_gem_object_alloc(struct drm_device *dev)
221
{
222
	struct drm_i915_private *dev_priv = dev->dev_private;
223
	return kmalloc(sizeof(struct drm_i915_gem_object), 0);
224
}
225
 
226
void i915_gem_object_free(struct drm_i915_gem_object *obj)
227
{
228
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
229
	kfree(obj);
230
}
231
 
3031 serge 232
static int
233
i915_gem_create(struct drm_file *file,
2332 Serge 234
		struct drm_device *dev,
235
		uint64_t size,
236
		uint32_t *handle_p)
237
{
238
	struct drm_i915_gem_object *obj;
239
	int ret;
240
	u32 handle;
241
 
242
	size = roundup(size, PAGE_SIZE);
2342 Serge 243
	if (size == 0)
244
		return -EINVAL;
2332 Serge 245
 
246
	/* Allocate the new object */
247
	obj = i915_gem_alloc_object(dev, size);
248
	if (obj == NULL)
249
		return -ENOMEM;
250
 
251
	ret = drm_gem_handle_create(file, &obj->base, &handle);
4104 Serge 252
	/* drop reference from allocate - handle holds it now */
253
	drm_gem_object_unreference_unlocked(&obj->base);
254
	if (ret)
2332 Serge 255
		return ret;
256
 
257
	*handle_p = handle;
258
	return 0;
259
}
260
 
261
int
262
i915_gem_dumb_create(struct drm_file *file,
263
		     struct drm_device *dev,
264
		     struct drm_mode_create_dumb *args)
265
{
266
	/* have to work out size/pitch and return them */
4560 Serge 267
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
2332 Serge 268
	args->size = args->pitch * args->height;
269
	return i915_gem_create(file, dev,
270
			       args->size, &args->handle);
271
}
272
 
2326 Serge 273
/**
2332 Serge 274
 * Creates a new mm object and returns a handle to it.
275
 */
276
int
277
i915_gem_create_ioctl(struct drm_device *dev, void *data,
278
		      struct drm_file *file)
279
{
280
	struct drm_i915_gem_create *args = data;
3031 serge 281
 
2332 Serge 282
	return i915_gem_create(file, dev,
283
			       args->size, &args->handle);
284
}
285
 
286
 
3260 Serge 287
#if 0
2332 Serge 288
 
3031 serge 289
static inline int
290
__copy_to_user_swizzled(char __user *cpu_vaddr,
291
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 292
		int length)
293
{
3031 serge 294
	int ret, cpu_offset = 0;
2332 Serge 295
 
3031 serge 296
	while (length > 0) {
297
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
298
		int this_length = min(cacheline_end - gpu_offset, length);
299
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 300
 
3031 serge 301
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
302
				     gpu_vaddr + swizzled_gpu_offset,
303
				     this_length);
304
		if (ret)
305
			return ret + length;
2332 Serge 306
 
3031 serge 307
		cpu_offset += this_length;
308
		gpu_offset += this_length;
309
		length -= this_length;
310
	}
311
 
312
	return 0;
2332 Serge 313
}
314
 
3031 serge 315
static inline int
316
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
317
			  const char __user *cpu_vaddr,
318
			  int length)
2332 Serge 319
{
3031 serge 320
	int ret, cpu_offset = 0;
2332 Serge 321
 
322
	while (length > 0) {
323
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
324
		int this_length = min(cacheline_end - gpu_offset, length);
325
		int swizzled_gpu_offset = gpu_offset ^ 64;
326
 
3031 serge 327
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 328
			       cpu_vaddr + cpu_offset,
329
			       this_length);
3031 serge 330
		if (ret)
331
			return ret + length;
332
 
2332 Serge 333
		cpu_offset += this_length;
334
		gpu_offset += this_length;
335
		length -= this_length;
336
	}
337
 
3031 serge 338
	return 0;
2332 Serge 339
}
340
 
3031 serge 341
/* Per-page copy function for the shmem pread fastpath.
342
 * Flushes invalid cachelines before reading the target if
343
 * needs_clflush is set. */
2332 Serge 344
static int
3031 serge 345
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
346
		 char __user *user_data,
347
		 bool page_do_bit17_swizzling, bool needs_clflush)
348
{
349
		char *vaddr;
350
		int ret;
351
 
352
	if (unlikely(page_do_bit17_swizzling))
353
		return -EINVAL;
354
 
355
		vaddr = kmap_atomic(page);
356
	if (needs_clflush)
357
		drm_clflush_virt_range(vaddr + shmem_page_offset,
358
				       page_length);
359
		ret = __copy_to_user_inatomic(user_data,
360
				      vaddr + shmem_page_offset,
361
					      page_length);
362
		kunmap_atomic(vaddr);
363
 
364
	return ret ? -EFAULT : 0;
365
}
366
 
367
static void
368
shmem_clflush_swizzled_range(char *addr, unsigned long length,
369
			     bool swizzled)
370
{
371
	if (unlikely(swizzled)) {
372
		unsigned long start = (unsigned long) addr;
373
		unsigned long end = (unsigned long) addr + length;
374
 
375
		/* For swizzling simply ensure that we always flush both
376
		 * channels. Lame, but simple and it works. Swizzled
377
		 * pwrite/pread is far from a hotpath - current userspace
378
		 * doesn't use it at all. */
379
		start = round_down(start, 128);
380
		end = round_up(end, 128);
381
 
382
		drm_clflush_virt_range((void *)start, end - start);
383
	} else {
384
		drm_clflush_virt_range(addr, length);
385
	}
386
 
387
}
388
 
389
/* Only difference to the fast-path function is that this can handle bit17
390
 * and uses non-atomic copy and kmap functions. */
391
static int
392
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
393
		 char __user *user_data,
394
		 bool page_do_bit17_swizzling, bool needs_clflush)
395
{
396
	char *vaddr;
397
	int ret;
398
 
399
	vaddr = kmap(page);
400
	if (needs_clflush)
401
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
402
					     page_length,
403
					     page_do_bit17_swizzling);
404
 
405
	if (page_do_bit17_swizzling)
406
		ret = __copy_to_user_swizzled(user_data,
407
					      vaddr, shmem_page_offset,
408
					      page_length);
409
	else
410
		ret = __copy_to_user(user_data,
411
				     vaddr + shmem_page_offset,
412
				     page_length);
413
	kunmap(page);
414
 
415
	return ret ? - EFAULT : 0;
416
}
417
 
418
static int
419
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 420
			  struct drm_i915_gem_object *obj,
421
			  struct drm_i915_gem_pread *args,
422
			  struct drm_file *file)
423
{
3031 serge 424
	char __user *user_data;
2332 Serge 425
	ssize_t remain;
426
	loff_t offset;
3031 serge 427
	int shmem_page_offset, page_length, ret = 0;
428
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
429
	int prefaulted = 0;
430
	int needs_clflush = 0;
3746 Serge 431
	struct sg_page_iter sg_iter;
2332 Serge 432
 
3746 Serge 433
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 434
	remain = args->size;
435
 
3031 serge 436
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
437
 
5060 serge 438
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
3031 serge 439
	if (ret)
440
		return ret;
441
 
2332 Serge 442
	offset = args->offset;
443
 
3746 Serge 444
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
445
			 offset >> PAGE_SHIFT) {
446
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 447
 
3031 serge 448
		if (remain <= 0)
449
			break;
450
 
2332 Serge 451
		/* Operation in this page
452
		 *
3031 serge 453
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 454
		 * page_length = bytes to copy for this page
455
		 */
3031 serge 456
		shmem_page_offset = offset_in_page(offset);
2332 Serge 457
		page_length = remain;
3031 serge 458
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
459
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 460
 
3031 serge 461
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
462
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 463
 
3031 serge 464
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
465
				       user_data, page_do_bit17_swizzling,
466
				       needs_clflush);
467
		if (ret == 0)
468
			goto next_page;
2332 Serge 469
 
3031 serge 470
		mutex_unlock(&dev->struct_mutex);
471
 
5060 serge 472
		if (likely(!i915.prefault_disable) && !prefaulted) {
3031 serge 473
			ret = fault_in_multipages_writeable(user_data, remain);
474
			/* Userspace is tricking us, but we've already clobbered
475
			 * its pages with the prefault and promised to write the
476
			 * data up to the first fault. Hence ignore any errors
477
			 * and just continue. */
478
			(void)ret;
479
			prefaulted = 1;
480
		}
481
 
482
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
483
				       user_data, page_do_bit17_swizzling,
484
				       needs_clflush);
485
 
486
		mutex_lock(&dev->struct_mutex);
487
 
2332 Serge 488
		if (ret)
3031 serge 489
			goto out;
2332 Serge 490
 
5060 serge 491
next_page:
2332 Serge 492
		remain -= page_length;
493
		user_data += page_length;
494
		offset += page_length;
495
	}
496
 
3031 serge 497
out:
498
	i915_gem_object_unpin_pages(obj);
499
 
500
	return ret;
2332 Serge 501
}
502
 
503
/**
3031 serge 504
 * Reads data from the object referenced by handle.
505
 *
506
 * On error, the contents of *data are undefined.
2332 Serge 507
 */
3031 serge 508
int
509
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
510
		     struct drm_file *file)
511
{
512
	struct drm_i915_gem_pread *args = data;
513
	struct drm_i915_gem_object *obj;
514
	int ret = 0;
515
 
516
	if (args->size == 0)
517
		return 0;
518
 
519
	if (!access_ok(VERIFY_WRITE,
3746 Serge 520
		       to_user_ptr(args->data_ptr),
3031 serge 521
		       args->size))
522
		return -EFAULT;
523
 
524
	ret = i915_mutex_lock_interruptible(dev);
525
	if (ret)
526
		return ret;
527
 
528
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
529
	if (&obj->base == NULL) {
530
		ret = -ENOENT;
531
		goto unlock;
532
	}
533
 
534
	/* Bounds check source.  */
535
	if (args->offset > obj->base.size ||
536
	    args->size > obj->base.size - args->offset) {
537
		ret = -EINVAL;
538
		goto out;
539
	}
540
 
541
	/* prime objects have no backing filp to GEM pread/pwrite
542
	 * pages from.
543
	 */
544
	if (!obj->base.filp) {
545
		ret = -EINVAL;
546
		goto out;
547
	}
548
 
549
	trace_i915_gem_object_pread(obj, args->offset, args->size);
550
 
551
	ret = i915_gem_shmem_pread(dev, obj, args, file);
552
 
553
out:
554
	drm_gem_object_unreference(&obj->base);
555
unlock:
556
	mutex_unlock(&dev->struct_mutex);
557
	return ret;
558
}
559
 
560
/* This is the fast write path which cannot handle
561
 * page faults in the source data
562
 */
563
 
564
static inline int
565
fast_user_write(struct io_mapping *mapping,
566
		loff_t page_base, int page_offset,
567
		char __user *user_data,
568
		int length)
569
{
570
	void __iomem *vaddr_atomic;
571
	void *vaddr;
572
	unsigned long unwritten;
573
 
574
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
575
	/* We can use the cpu mem copy function because this is X86. */
576
	vaddr = (void __force*)vaddr_atomic + page_offset;
577
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
578
						      user_data, length);
579
	io_mapping_unmap_atomic(vaddr_atomic);
580
	return unwritten;
581
}
3260 Serge 582
#endif
3031 serge 583
 
3260 Serge 584
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 585
/**
586
 * This is the fast pwrite path, where we copy the data directly from the
587
 * user into the GTT, uncached.
588
 */
2332 Serge 589
static int
3031 serge 590
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
591
			 struct drm_i915_gem_object *obj,
592
			 struct drm_i915_gem_pwrite *args,
593
			 struct drm_file *file)
2332 Serge 594
{
5060 serge 595
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 596
	ssize_t remain;
3031 serge 597
	loff_t offset, page_base;
598
	char __user *user_data;
599
	int page_offset, page_length, ret;
2332 Serge 600
 
5060 serge 601
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
3031 serge 602
	if (ret)
603
		goto out;
604
 
605
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
606
	if (ret)
607
		goto out_unpin;
608
 
609
	ret = i915_gem_object_put_fence(obj);
610
	if (ret)
611
		goto out_unpin;
612
 
4539 Serge 613
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 614
	remain = args->size;
615
 
4104 Serge 616
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
2332 Serge 617
 
3031 serge 618
	while (remain > 0) {
619
		/* Operation in this page
620
		 *
621
		 * page_base = page offset within aperture
622
		 * page_offset = offset within page
623
		 * page_length = bytes to copy for this page
624
		 */
625
		page_base = offset & PAGE_MASK;
626
		page_offset = offset_in_page(offset);
627
		page_length = remain;
628
		if ((page_offset + remain) > PAGE_SIZE)
629
			page_length = PAGE_SIZE - page_offset;
2332 Serge 630
 
4539 Serge 631
        MapPage(dev_priv->gtt.mappable, dev_priv->gtt.mappable_base+page_base, PG_SW);
3031 serge 632
 
5060 serge 633
        memcpy((char*)dev_priv->gtt.mappable+page_offset, user_data, page_length);
3260 Serge 634
 
3031 serge 635
		remain -= page_length;
636
		user_data += page_length;
637
		offset += page_length;
2332 Serge 638
	}
639
 
3031 serge 640
out_unpin:
5060 serge 641
	i915_gem_object_ggtt_unpin(obj);
3031 serge 642
out:
5060 serge 643
    return ret;
3031 serge 644
}
645
 
646
/* Per-page copy function for the shmem pwrite fastpath.
647
 * Flushes invalid cachelines before writing to the target if
648
 * needs_clflush_before is set and flushes out any written cachelines after
649
 * writing if needs_clflush is set. */
650
static int
651
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
652
		  char __user *user_data,
653
		  bool page_do_bit17_swizzling,
654
		  bool needs_clflush_before,
655
		  bool needs_clflush_after)
656
{
657
	char *vaddr;
5354 serge 658
	int ret;
3031 serge 659
 
660
	if (unlikely(page_do_bit17_swizzling))
661
		return -EINVAL;
662
 
5354 serge 663
	vaddr = kmap_atomic(page);
3031 serge 664
	if (needs_clflush_before)
665
		drm_clflush_virt_range(vaddr + shmem_page_offset,
666
				       page_length);
3260 Serge 667
	memcpy(vaddr + shmem_page_offset,
3031 serge 668
						user_data,
669
						page_length);
670
	if (needs_clflush_after)
671
		drm_clflush_virt_range(vaddr + shmem_page_offset,
672
				       page_length);
5354 serge 673
	kunmap_atomic(vaddr);
3031 serge 674
 
675
	return ret ? -EFAULT : 0;
676
}
3260 Serge 677
#if 0
3031 serge 678
 
679
/* Only difference to the fast-path function is that this can handle bit17
680
 * and uses non-atomic copy and kmap functions. */
681
static int
682
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
683
		  char __user *user_data,
684
		  bool page_do_bit17_swizzling,
685
		  bool needs_clflush_before,
686
		  bool needs_clflush_after)
687
{
688
	char *vaddr;
689
	int ret;
690
 
691
	vaddr = kmap(page);
692
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
693
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
694
					     page_length,
695
					     page_do_bit17_swizzling);
696
	if (page_do_bit17_swizzling)
697
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
698
						user_data,
699
						page_length);
700
	else
701
		ret = __copy_from_user(vaddr + shmem_page_offset,
702
				       user_data,
703
				       page_length);
704
	if (needs_clflush_after)
705
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706
					     page_length,
707
					     page_do_bit17_swizzling);
708
	kunmap(page);
709
 
710
	return ret ? -EFAULT : 0;
711
}
3260 Serge 712
#endif
3031 serge 713
 
3260 Serge 714
 
3031 serge 715
static int
716
i915_gem_shmem_pwrite(struct drm_device *dev,
717
		      struct drm_i915_gem_object *obj,
718
		      struct drm_i915_gem_pwrite *args,
719
		      struct drm_file *file)
720
{
721
	ssize_t remain;
722
	loff_t offset;
723
	char __user *user_data;
724
	int shmem_page_offset, page_length, ret = 0;
725
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
726
	int hit_slowpath = 0;
727
	int needs_clflush_after = 0;
728
	int needs_clflush_before = 0;
3746 Serge 729
	struct sg_page_iter sg_iter;
3031 serge 730
 
3746 Serge 731
	user_data = to_user_ptr(args->data_ptr);
3031 serge 732
	remain = args->size;
733
 
734
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
735
 
736
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
737
		/* If we're not in the cpu write domain, set ourself into the gtt
738
		 * write domain and manually flush cachelines (if required). This
739
		 * optimizes for the case when the gpu will use the data
740
		 * right away and we therefore have to clflush anyway. */
4104 Serge 741
		needs_clflush_after = cpu_write_needs_clflush(obj);
4560 Serge 742
		ret = i915_gem_object_wait_rendering(obj, false);
3031 serge 743
			if (ret)
744
				return ret;
5060 serge 745
 
746
		i915_gem_object_retire(obj);
3031 serge 747
		}
4104 Serge 748
	/* Same trick applies to invalidate partially written cachelines read
749
	 * before writing. */
750
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
751
		needs_clflush_before =
752
			!cpu_cache_is_coherent(dev, obj->cache_level);
3031 serge 753
 
754
	ret = i915_gem_object_get_pages(obj);
2332 Serge 755
	if (ret)
3031 serge 756
		return ret;
2332 Serge 757
 
3031 serge 758
	i915_gem_object_pin_pages(obj);
2332 Serge 759
 
760
	offset = args->offset;
3031 serge 761
	obj->dirty = 1;
2332 Serge 762
 
3746 Serge 763
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764
			 offset >> PAGE_SHIFT) {
765
		struct page *page = sg_page_iter_page(&sg_iter);
3031 serge 766
		int partial_cacheline_write;
2332 Serge 767
 
3031 serge 768
		if (remain <= 0)
769
			break;
770
 
2332 Serge 771
		/* Operation in this page
772
		 *
773
		 * shmem_page_offset = offset within page in shmem file
774
		 * page_length = bytes to copy for this page
775
		 */
776
		shmem_page_offset = offset_in_page(offset);
777
 
778
		page_length = remain;
779
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
780
			page_length = PAGE_SIZE - shmem_page_offset;
781
 
3031 serge 782
		/* If we don't overwrite a cacheline completely we need to be
783
		 * careful to have up-to-date data by first clflushing. Don't
784
		 * overcomplicate things and flush the entire patch. */
785
		partial_cacheline_write = needs_clflush_before &&
786
			((shmem_page_offset | page_length)
3260 Serge 787
				& (x86_clflush_size - 1));
2332 Serge 788
 
3031 serge 789
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 791
 
3031 serge 792
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793
					user_data, page_do_bit17_swizzling,
794
					partial_cacheline_write,
795
					needs_clflush_after);
796
		if (ret == 0)
797
			goto next_page;
798
 
799
		hit_slowpath = 1;
800
		mutex_unlock(&dev->struct_mutex);
3260 Serge 801
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 802
 
3260 Serge 803
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
804
//					user_data, page_do_bit17_swizzling,
805
//					partial_cacheline_write,
806
//					needs_clflush_after);
807
 
3031 serge 808
		mutex_lock(&dev->struct_mutex);
809
 
810
		if (ret)
811
			goto out;
812
 
5354 serge 813
next_page:
2332 Serge 814
		remain -= page_length;
3031 serge 815
		user_data += page_length;
2332 Serge 816
		offset += page_length;
817
	}
818
 
819
out:
3031 serge 820
	i915_gem_object_unpin_pages(obj);
821
 
822
	if (hit_slowpath) {
3480 Serge 823
		/*
824
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
825
		 * cachelines in-line while writing and the object moved
826
		 * out of the cpu write domain while we've dropped the lock.
827
		 */
828
		if (!needs_clflush_after &&
829
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
4104 Serge 830
			if (i915_gem_clflush_object(obj, obj->pin_display))
3243 Serge 831
			i915_gem_chipset_flush(dev);
3031 serge 832
		}
2332 Serge 833
	}
834
 
3031 serge 835
	if (needs_clflush_after)
3243 Serge 836
		i915_gem_chipset_flush(dev);
3031 serge 837
 
2332 Serge 838
	return ret;
839
}
3031 serge 840
 
841
/**
842
 * Writes data to the object referenced by handle.
843
 *
844
 * On error, the contents of the buffer that were to be modified are undefined.
845
 */
846
int
847
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
848
		      struct drm_file *file)
849
{
850
	struct drm_i915_gem_pwrite *args = data;
851
	struct drm_i915_gem_object *obj;
852
	int ret;
853
 
4104 Serge 854
	if (args->size == 0)
855
		return 0;
856
 
3480 Serge 857
 
3031 serge 858
	ret = i915_mutex_lock_interruptible(dev);
859
	if (ret)
860
		return ret;
861
 
862
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
863
	if (&obj->base == NULL) {
864
		ret = -ENOENT;
865
		goto unlock;
866
	}
867
 
868
	/* Bounds check destination. */
869
	if (args->offset > obj->base.size ||
870
	    args->size > obj->base.size - args->offset) {
871
		ret = -EINVAL;
872
		goto out;
873
	}
874
 
875
	/* prime objects have no backing filp to GEM pread/pwrite
876
	 * pages from.
877
	 */
878
	if (!obj->base.filp) {
879
		ret = -EINVAL;
880
		goto out;
881
	}
882
 
883
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
884
 
885
	ret = -EFAULT;
886
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
887
	 * it would end up going through the fenced access, and we'll get
888
	 * different detiling behavior between reading and writing.
889
	 * pread/pwrite currently are reading and writing from the CPU
890
	 * perspective, requiring manual detiling by the client.
891
	 */
4104 Serge 892
	if (obj->tiling_mode == I915_TILING_NONE &&
893
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
894
	    cpu_write_needs_clflush(obj)) {
3031 serge 895
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
896
		/* Note that the gtt paths might fail with non-page-backed user
897
		 * pointers (e.g. gtt mappings when moving data between
898
		 * textures). Fallback to the shmem path in that case. */
899
	}
900
 
901
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 902
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 903
 
904
out:
905
	drm_gem_object_unreference(&obj->base);
906
unlock:
907
	mutex_unlock(&dev->struct_mutex);
908
	return ret;
909
}
910
 
911
int
3480 Serge 912
i915_gem_check_wedge(struct i915_gpu_error *error,
3031 serge 913
		     bool interruptible)
914
{
3480 Serge 915
	if (i915_reset_in_progress(error)) {
3031 serge 916
		/* Non-interruptible callers can't handle -EAGAIN, hence return
917
		 * -EIO unconditionally for these. */
918
		if (!interruptible)
919
			return -EIO;
2332 Serge 920
 
3480 Serge 921
		/* Recovery complete, but the reset failed ... */
922
		if (i915_terminally_wedged(error))
3031 serge 923
			return -EIO;
2332 Serge 924
 
3031 serge 925
		return -EAGAIN;
926
	}
2332 Serge 927
 
3031 serge 928
	return 0;
929
}
2332 Serge 930
 
3031 serge 931
/*
932
 * Compare seqno against outstanding lazy request. Emit a request if they are
933
 * equal.
934
 */
5060 serge 935
int
936
i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
3031 serge 937
{
938
	int ret;
2332 Serge 939
 
3031 serge 940
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 941
 
3031 serge 942
	ret = 0;
4560 Serge 943
	if (seqno == ring->outstanding_lazy_seqno)
4104 Serge 944
		ret = i915_add_request(ring, NULL);
2332 Serge 945
 
3031 serge 946
	return ret;
947
}
2332 Serge 948
 
4560 Serge 949
static void fake_irq(unsigned long data)
950
{
951
//	wake_up_process((struct task_struct *)data);
952
}
953
 
954
static bool missed_irq(struct drm_i915_private *dev_priv,
5060 serge 955
		       struct intel_engine_cs *ring)
4560 Serge 956
{
957
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
958
}
959
 
960
static bool can_wait_boost(struct drm_i915_file_private *file_priv)
961
{
962
	if (file_priv == NULL)
963
		return true;
964
 
965
	return !atomic_xchg(&file_priv->rps_wait_boost, true);
966
}
967
 
3031 serge 968
/**
5354 serge 969
 * __i915_wait_seqno - wait until execution of seqno has finished
3031 serge 970
 * @ring: the ring expected to report seqno
971
 * @seqno: duh!
3480 Serge 972
 * @reset_counter: reset sequence associated with the given seqno
3031 serge 973
 * @interruptible: do an interruptible wait (normally yes)
974
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
975
 *
3480 Serge 976
 * Note: It is of utmost importance that the passed in seqno and reset_counter
977
 * values have been read by the caller in an smp safe manner. Where read-side
978
 * locks are involved, it is sufficient to read the reset_counter before
979
 * unlocking the lock that protects the seqno. For lockless tricks, the
980
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
981
 * inserted.
982
 *
3031 serge 983
 * Returns 0 if the seqno was found within the alloted time. Else returns the
984
 * errno with remaining time filled in timeout argument.
985
 */
5354 serge 986
int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
3480 Serge 987
			unsigned reset_counter,
4560 Serge 988
			bool interruptible,
5060 serge 989
			s64 *timeout,
4560 Serge 990
			struct drm_i915_file_private *file_priv)
3031 serge 991
{
5060 serge 992
	struct drm_device *dev = ring->dev;
993
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 994
	const bool irq_test_in_progress =
995
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
5060 serge 996
	unsigned long timeout_expire;
997
	s64 before, now;
998
 
4560 Serge 999
    wait_queue_t __wait;
3031 serge 1000
	int ret;
2332 Serge 1001
 
5060 serge 1002
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
4104 Serge 1003
 
3031 serge 1004
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1005
		return 0;
2332 Serge 1006
 
5354 serge 1007
	timeout_expire = timeout ?
1008
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
2332 Serge 1009
 
5060 serge 1010
	if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
4560 Serge 1011
		gen6_rps_boost(dev_priv);
1012
		if (file_priv)
1013
			mod_delayed_work(dev_priv->wq,
1014
					 &file_priv->mm.idle_work,
1015
					 msecs_to_jiffies(100));
3031 serge 1016
	}
2332 Serge 1017
 
4560 Serge 1018
	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
3031 serge 1019
		return -ENODEV;
2332 Serge 1020
 
4560 Serge 1021
    INIT_LIST_HEAD(&__wait.task_list);
1022
    __wait.evnt = CreateEvent(NULL, MANUAL_DESTROY);
2332 Serge 1023
 
4560 Serge 1024
	/* Record current time in case interrupted by signal, or wedged */
1025
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1026
 
4560 Serge 1027
	for (;;) {
1028
        unsigned long flags;
1029
 
3480 Serge 1030
		/* We need to check whether any gpu reset happened in between
1031
		 * the caller grabbing the seqno and now ... */
4560 Serge 1032
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1033
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1034
			 * is truely gone. */
1035
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1036
			if (ret == 0)
1037
				ret = -EAGAIN;
1038
			break;
1039
		}
3480 Serge 1040
 
4560 Serge 1041
		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1042
			ret = 0;
1043
			break;
1044
		}
2332 Serge 1045
 
5060 serge 1046
        if (timeout && time_after_eq(jiffies, timeout_expire)) {
4560 Serge 1047
			ret = -ETIME;
1048
			break;
1049
		}
2332 Serge 1050
 
4560 Serge 1051
        spin_lock_irqsave(&ring->irq_queue.lock, flags);
1052
        if (list_empty(&__wait.task_list))
1053
            __add_wait_queue(&ring->irq_queue, &__wait);
1054
        spin_unlock_irqrestore(&ring->irq_queue.lock, flags);
1055
 
1056
        WaitEventTimeout(__wait.evnt, 1);
1057
 
1058
        if (!list_empty(&__wait.task_list)) {
1059
            spin_lock_irqsave(&ring->irq_queue.lock, flags);
1060
            list_del_init(&__wait.task_list);
1061
            spin_unlock_irqrestore(&ring->irq_queue.lock, flags);
1062
        }
1063
    };
1064
    trace_i915_gem_request_wait_end(ring, seqno);
1065
 
1066
    DestroyEvent(__wait.evnt);
1067
 
1068
	if (!irq_test_in_progress)
5060 serge 1069
        ring->irq_put(ring);
2332 Serge 1070
 
5060 serge 1071
//	finish_wait(&ring->irq_queue, &wait);
4560 Serge 1072
	return ret;
3031 serge 1073
}
2332 Serge 1074
 
3031 serge 1075
/**
1076
 * Waits for a sequence number to be signaled, and cleans up the
1077
 * request and object lists appropriately for that event.
1078
 */
1079
int
5060 serge 1080
i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
3031 serge 1081
{
1082
	struct drm_device *dev = ring->dev;
1083
	struct drm_i915_private *dev_priv = dev->dev_private;
1084
	bool interruptible = dev_priv->mm.interruptible;
5354 serge 1085
	unsigned reset_counter;
3031 serge 1086
	int ret;
2332 Serge 1087
 
3031 serge 1088
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1089
	BUG_ON(seqno == 0);
2332 Serge 1090
 
3480 Serge 1091
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1092
	if (ret)
1093
		return ret;
2332 Serge 1094
 
3031 serge 1095
	ret = i915_gem_check_olr(ring, seqno);
1096
	if (ret)
1097
		return ret;
2332 Serge 1098
 
5354 serge 1099
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1100
	return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1101
				 NULL, NULL);
3031 serge 1102
}
2332 Serge 1103
 
4104 Serge 1104
static int
5354 serge 1105
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
4104 Serge 1106
{
5060 serge 1107
	if (!obj->active)
1108
		return 0;
4104 Serge 1109
 
1110
	/* Manually manage the write flush as we may have not yet
1111
	 * retired the buffer.
1112
	 *
1113
	 * Note that the last_write_seqno is always the earlier of
1114
	 * the two (read/write) seqno, so if we haved successfully waited,
1115
	 * we know we have passed the last write.
1116
	 */
1117
	obj->last_write_seqno = 0;
1118
 
1119
	return 0;
1120
}
1121
 
3031 serge 1122
/**
1123
 * Ensures that all rendering to the object has completed and the object is
1124
 * safe to unbind from the GTT or access from the CPU.
1125
 */
1126
static __must_check int
1127
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1128
			       bool readonly)
1129
{
5060 serge 1130
	struct intel_engine_cs *ring = obj->ring;
3031 serge 1131
	u32 seqno;
1132
	int ret;
2332 Serge 1133
 
3031 serge 1134
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1135
	if (seqno == 0)
1136
		return 0;
2332 Serge 1137
 
3031 serge 1138
	ret = i915_wait_seqno(ring, seqno);
4104 Serge 1139
    if (ret)
1140
        return ret;
2332 Serge 1141
 
5354 serge 1142
	return i915_gem_object_wait_rendering__tail(obj);
3031 serge 1143
}
2332 Serge 1144
 
3260 Serge 1145
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1146
 * as the object state may change during this call.
1147
 */
1148
static __must_check int
1149
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
5060 serge 1150
					    struct drm_i915_file_private *file_priv,
3260 Serge 1151
					    bool readonly)
1152
{
1153
	struct drm_device *dev = obj->base.dev;
1154
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1155
	struct intel_engine_cs *ring = obj->ring;
3480 Serge 1156
	unsigned reset_counter;
3260 Serge 1157
	u32 seqno;
1158
	int ret;
2332 Serge 1159
 
3260 Serge 1160
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1161
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1162
 
3260 Serge 1163
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1164
	if (seqno == 0)
1165
		return 0;
2332 Serge 1166
 
3480 Serge 1167
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3260 Serge 1168
	if (ret)
1169
		return ret;
2332 Serge 1170
 
3260 Serge 1171
	ret = i915_gem_check_olr(ring, seqno);
1172
	if (ret)
1173
		return ret;
2332 Serge 1174
 
3480 Serge 1175
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3260 Serge 1176
	mutex_unlock(&dev->struct_mutex);
5354 serge 1177
	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1178
				file_priv);
3260 Serge 1179
	mutex_lock(&dev->struct_mutex);
4104 Serge 1180
	if (ret)
1181
		return ret;
2332 Serge 1182
 
5354 serge 1183
	return i915_gem_object_wait_rendering__tail(obj);
3260 Serge 1184
}
2332 Serge 1185
 
3260 Serge 1186
/**
1187
 * Called when user space prepares to use an object with the CPU, either
1188
 * through the mmap ioctl's mapping or a GTT mapping.
1189
 */
1190
int
1191
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1192
			  struct drm_file *file)
1193
{
1194
	struct drm_i915_gem_set_domain *args = data;
1195
	struct drm_i915_gem_object *obj;
1196
	uint32_t read_domains = args->read_domains;
1197
	uint32_t write_domain = args->write_domain;
1198
	int ret;
2332 Serge 1199
 
3260 Serge 1200
	/* Only handle setting domains to types used by the CPU. */
1201
	if (write_domain & I915_GEM_GPU_DOMAINS)
1202
		return -EINVAL;
2332 Serge 1203
 
3260 Serge 1204
	if (read_domains & I915_GEM_GPU_DOMAINS)
1205
		return -EINVAL;
2332 Serge 1206
 
3260 Serge 1207
	/* Having something in the write domain implies it's in the read
1208
	 * domain, and only that read domain.  Enforce that in the request.
1209
	 */
1210
	if (write_domain != 0 && read_domains != write_domain)
1211
		return -EINVAL;
2332 Serge 1212
 
3260 Serge 1213
	ret = i915_mutex_lock_interruptible(dev);
1214
	if (ret)
1215
		return ret;
2332 Serge 1216
 
3260 Serge 1217
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1218
	if (&obj->base == NULL) {
1219
		ret = -ENOENT;
1220
		goto unlock;
1221
	}
2332 Serge 1222
 
3260 Serge 1223
	/* Try to flush the object off the GPU without holding the lock.
1224
	 * We will repeat the flush holding the lock in the normal manner
1225
	 * to catch cases where we are gazumped.
1226
	 */
5060 serge 1227
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1228
							  file->driver_priv,
1229
							  !write_domain);
3260 Serge 1230
	if (ret)
1231
		goto unref;
2332 Serge 1232
 
3260 Serge 1233
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1234
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1235
 
3260 Serge 1236
		/* Silently promote "you're not bound, there was nothing to do"
1237
		 * to success, since the client was just asking us to
1238
		 * make sure everything was done.
1239
		 */
1240
		if (ret == -EINVAL)
1241
			ret = 0;
1242
	} else {
1243
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1244
	}
2332 Serge 1245
 
3260 Serge 1246
unref:
1247
	drm_gem_object_unreference(&obj->base);
1248
unlock:
1249
	mutex_unlock(&dev->struct_mutex);
1250
	return ret;
1251
}
2332 Serge 1252
 
4293 Serge 1253
/**
1254
 * Called when user space has done writes to this buffer
1255
 */
1256
int
1257
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1258
			 struct drm_file *file)
1259
{
1260
	struct drm_i915_gem_sw_finish *args = data;
1261
	struct drm_i915_gem_object *obj;
1262
	int ret = 0;
2332 Serge 1263
 
4293 Serge 1264
	ret = i915_mutex_lock_interruptible(dev);
1265
	if (ret)
1266
		return ret;
2332 Serge 1267
 
4293 Serge 1268
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1269
	if (&obj->base == NULL) {
1270
		ret = -ENOENT;
1271
		goto unlock;
1272
	}
2332 Serge 1273
 
4293 Serge 1274
	/* Pinned buffers may be scanout, so flush the cache */
1275
	if (obj->pin_display)
1276
		i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 1277
 
4293 Serge 1278
	drm_gem_object_unreference(&obj->base);
1279
unlock:
1280
	mutex_unlock(&dev->struct_mutex);
1281
	return ret;
1282
}
1283
 
3260 Serge 1284
/**
1285
 * Maps the contents of an object, returning the address it is mapped
1286
 * into.
1287
 *
1288
 * While the mapping holds a reference on the contents of the object, it doesn't
1289
 * imply a ref on the object itself.
5354 serge 1290
 *
1291
 * IMPORTANT:
1292
 *
1293
 * DRM driver writers who look a this function as an example for how to do GEM
1294
 * mmap support, please don't implement mmap support like here. The modern way
1295
 * to implement DRM mmap support is with an mmap offset ioctl (like
1296
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1297
 * That way debug tooling like valgrind will understand what's going on, hiding
1298
 * the mmap call in a driver private ioctl will break that. The i915 driver only
1299
 * does cpu mmaps this way because we didn't know better.
3260 Serge 1300
 */
1301
int
1302
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1303
		    struct drm_file *file)
1304
{
1305
	struct drm_i915_gem_mmap *args = data;
1306
	struct drm_gem_object *obj;
4392 Serge 1307
	unsigned long addr;
2332 Serge 1308
 
3260 Serge 1309
	obj = drm_gem_object_lookup(dev, file, args->handle);
1310
	if (obj == NULL)
1311
		return -ENOENT;
4104 Serge 1312
 
3260 Serge 1313
	/* prime objects have no backing filp to GEM mmap
1314
	 * pages from.
1315
	 */
1316
	if (!obj->filp) {
1317
		drm_gem_object_unreference_unlocked(obj);
1318
		return -EINVAL;
1319
	}
2332 Serge 1320
 
3263 Serge 1321
    addr = vm_mmap(obj->filp, 0, args->size,
1322
              PROT_READ | PROT_WRITE, MAP_SHARED,
1323
              args->offset);
3260 Serge 1324
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1325
    if (IS_ERR((void *)addr))
1326
        return addr;
2332 Serge 1327
 
3260 Serge 1328
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1329
 
3263 Serge 1330
    return 0;
3260 Serge 1331
}
2332 Serge 1332
 
1333
 
1334
 
1335
 
1336
 
1337
 
1338
 
1339
 
3031 serge 1340
 
1341
 
1342
 
1343
 
1344
 
1345
/**
1346
 * i915_gem_release_mmap - remove physical page mappings
1347
 * @obj: obj in question
1348
 *
1349
 * Preserve the reservation of the mmapping with the DRM core code, but
1350
 * relinquish ownership of the pages back to the system.
1351
 *
1352
 * It is vital that we remove the page mapping if we have mapped a tiled
1353
 * object through the GTT and then lose the fence register due to
1354
 * resource pressure. Similarly if the object has been moved out of the
1355
 * aperture, than pages mapped into userspace must be revoked. Removing the
1356
 * mapping will then trigger a page fault on the next user access, allowing
1357
 * fixup by i915_gem_fault().
1358
 */
1359
void
1360
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1361
{
1362
	if (!obj->fault_mappable)
1363
		return;
1364
 
4104 Serge 1365
//	drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
3031 serge 1366
	obj->fault_mappable = false;
1367
}
1368
 
3480 Serge 1369
uint32_t
2332 Serge 1370
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1371
{
1372
	uint32_t gtt_size;
1373
 
1374
	if (INTEL_INFO(dev)->gen >= 4 ||
1375
	    tiling_mode == I915_TILING_NONE)
1376
		return size;
1377
 
1378
	/* Previous chips need a power-of-two fence region when tiling */
1379
	if (INTEL_INFO(dev)->gen == 3)
1380
		gtt_size = 1024*1024;
1381
	else
1382
		gtt_size = 512*1024;
1383
 
1384
	while (gtt_size < size)
1385
		gtt_size <<= 1;
1386
 
1387
	return gtt_size;
1388
}
1389
 
1390
/**
1391
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1392
 * @obj: object to check
1393
 *
1394
 * Return the required GTT alignment for an object, taking into account
1395
 * potential fence register mapping.
1396
 */
3480 Serge 1397
uint32_t
1398
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1399
			   int tiling_mode, bool fenced)
2332 Serge 1400
{
1401
	/*
1402
	 * Minimum alignment is 4k (GTT page size), but might be greater
1403
	 * if a fence register is needed for the object.
1404
	 */
3480 Serge 1405
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2332 Serge 1406
	    tiling_mode == I915_TILING_NONE)
1407
		return 4096;
1408
 
1409
	/*
1410
	 * Previous chips need to be aligned to the size of the smallest
1411
	 * fence register that can contain the object.
1412
	 */
1413
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1414
}
1415
 
1416
 
1417
 
3480 Serge 1418
int
1419
i915_gem_mmap_gtt(struct drm_file *file,
1420
          struct drm_device *dev,
1421
          uint32_t handle,
1422
          uint64_t *offset)
1423
{
1424
    struct drm_i915_private *dev_priv = dev->dev_private;
1425
    struct drm_i915_gem_object *obj;
1426
    unsigned long pfn;
1427
    char *mem, *ptr;
1428
    int ret;
1429
 
1430
    ret = i915_mutex_lock_interruptible(dev);
1431
    if (ret)
1432
        return ret;
1433
 
1434
    obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1435
    if (&obj->base == NULL) {
1436
        ret = -ENOENT;
1437
        goto unlock;
1438
    }
1439
 
1440
    if (obj->base.size > dev_priv->gtt.mappable_end) {
1441
        ret = -E2BIG;
1442
        goto out;
1443
    }
1444
 
1445
    if (obj->madv != I915_MADV_WILLNEED) {
5060 serge 1446
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1447
		ret = -EFAULT;
3480 Serge 1448
        goto out;
1449
    }
1450
    /* Now bind it into the GTT if needed */
5060 serge 1451
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
3480 Serge 1452
    if (ret)
1453
        goto out;
1454
 
1455
    ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1456
    if (ret)
1457
        goto unpin;
1458
 
1459
    ret = i915_gem_object_get_fence(obj);
1460
    if (ret)
1461
        goto unpin;
1462
 
1463
    obj->fault_mappable = true;
1464
 
4104 Serge 1465
    pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
3480 Serge 1466
 
1467
    /* Finally, remap it using the new GTT offset */
1468
 
1469
    mem = UserAlloc(obj->base.size);
1470
    if(unlikely(mem == NULL))
1471
    {
1472
        ret = -ENOMEM;
1473
        goto unpin;
1474
    }
1475
 
1476
    for(ptr = mem; ptr < mem + obj->base.size; ptr+= 4096, pfn+= 4096)
1477
        MapPage(ptr, pfn, PG_SHARED|PG_UW);
1478
 
1479
unpin:
5060 serge 1480
    i915_gem_object_unpin_pages(obj);
3480 Serge 1481
 
1482
 
4104 Serge 1483
    *offset = mem;
3480 Serge 1484
 
1485
out:
1486
    drm_gem_object_unreference(&obj->base);
1487
unlock:
1488
    mutex_unlock(&dev->struct_mutex);
1489
    return ret;
1490
}
1491
 
1492
/**
1493
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1494
 * @dev: DRM device
1495
 * @data: GTT mapping ioctl data
1496
 * @file: GEM object info
1497
 *
1498
 * Simply returns the fake offset to userspace so it can mmap it.
1499
 * The mmap call will end up in drm_gem_mmap(), which will set things
1500
 * up so we can get faults in the handler above.
1501
 *
1502
 * The fault handler will take care of binding the object into the GTT
1503
 * (since it may have been evicted to make room for something), allocating
1504
 * a fence register, and mapping the appropriate aperture address into
1505
 * userspace.
1506
 */
1507
int
1508
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1509
            struct drm_file *file)
1510
{
1511
    struct drm_i915_gem_mmap_gtt *args = data;
1512
 
1513
    return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1514
}
1515
 
5060 serge 1516
static inline int
1517
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1518
{
1519
	return obj->madv == I915_MADV_DONTNEED;
1520
}
1521
 
3031 serge 1522
/* Immediately discard the backing storage */
1523
static void
1524
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1525
{
1526
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1527
 
3263 Serge 1528
	if (obj->base.filp == NULL)
1529
		return;
2332 Serge 1530
 
3031 serge 1531
	/* Our goal here is to return as much of the memory as
1532
	 * is possible back to the system as we are called from OOM.
1533
	 * To do this we must instruct the shmfs to drop all of its
1534
	 * backing pages, *now*.
1535
	 */
5060 serge 1536
//	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
3031 serge 1537
	obj->madv = __I915_MADV_PURGED;
1538
}
2332 Serge 1539
 
5060 serge 1540
/* Try to discard unwanted pages */
1541
static void
1542
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
3031 serge 1543
{
5060 serge 1544
	struct address_space *mapping;
1545
 
1546
	switch (obj->madv) {
1547
	case I915_MADV_DONTNEED:
1548
		i915_gem_object_truncate(obj);
1549
	case __I915_MADV_PURGED:
1550
		return;
1551
	}
1552
 
1553
	if (obj->base.filp == NULL)
1554
		return;
1555
 
3031 serge 1556
}
2332 Serge 1557
 
3031 serge 1558
static void
1559
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1560
{
3746 Serge 1561
	struct sg_page_iter sg_iter;
1562
	int ret;
2332 Serge 1563
 
3031 serge 1564
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1565
 
3031 serge 1566
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1567
	if (ret) {
1568
		/* In the event of a disaster, abandon all caches and
1569
		 * hope for the best.
1570
		 */
1571
		WARN_ON(ret != -EIO);
4104 Serge 1572
		i915_gem_clflush_object(obj, true);
3031 serge 1573
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1574
	}
2332 Serge 1575
 
3031 serge 1576
	if (obj->madv == I915_MADV_DONTNEED)
1577
		obj->dirty = 0;
2332 Serge 1578
 
3746 Serge 1579
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1580
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 1581
 
3290 Serge 1582
        page_cache_release(page);
3243 Serge 1583
	}
4104 Serge 1584
    obj->dirty = 0;
3243 Serge 1585
 
1586
	sg_free_table(obj->pages);
1587
	kfree(obj->pages);
3031 serge 1588
}
2332 Serge 1589
 
3480 Serge 1590
int
3031 serge 1591
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1592
{
1593
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1594
 
3243 Serge 1595
	if (obj->pages == NULL)
3031 serge 1596
		return 0;
2332 Serge 1597
 
3031 serge 1598
	if (obj->pages_pin_count)
1599
		return -EBUSY;
1600
 
4104 Serge 1601
	BUG_ON(i915_gem_obj_bound_any(obj));
1602
 
3243 Serge 1603
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1604
	 * array, hence protect them from being reaped by removing them from gtt
1605
	 * lists early. */
4104 Serge 1606
	list_del(&obj->global_list);
3243 Serge 1607
 
3031 serge 1608
	ops->put_pages(obj);
3243 Serge 1609
	obj->pages = NULL;
3031 serge 1610
 
5060 serge 1611
	i915_gem_object_invalidate(obj);
3031 serge 1612
 
1613
	return 0;
1614
}
1615
 
1616
 
1617
 
1618
 
1619
 
1620
 
1621
 
1622
 
2332 Serge 1623
static int
3031 serge 1624
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1625
{
3260 Serge 1626
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1627
    int page_count, i;
4104 Serge 1628
    struct sg_table *st;
3243 Serge 1629
	struct scatterlist *sg;
3746 Serge 1630
	struct sg_page_iter sg_iter;
3243 Serge 1631
	struct page *page;
3746 Serge 1632
	unsigned long last_pfn = 0;	/* suppress gcc warning */
3243 Serge 1633
	gfp_t gfp;
2332 Serge 1634
 
3243 Serge 1635
	/* Assert that the object is not currently in any GPU domain. As it
1636
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1637
	 * a GPU cache
2332 Serge 1638
	 */
3243 Serge 1639
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1640
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1641
 
1642
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1643
	if (st == NULL)
1644
		return -ENOMEM;
1645
 
2332 Serge 1646
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1647
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1648
		kfree(st);
3746 Serge 1649
        FAIL();
2332 Serge 1650
		return -ENOMEM;
3243 Serge 1651
	}
2332 Serge 1652
 
3243 Serge 1653
	/* Get the list of pages out of our struct file.  They'll be pinned
1654
	 * at this point until we release them.
1655
	 *
1656
	 * Fail silently without starting the shrinker
1657
	 */
3746 Serge 1658
	sg = st->sgl;
1659
	st->nents = 0;
1660
	for (i = 0; i < page_count; i++) {
4104 Serge 1661
        page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
3260 Serge 1662
		if (IS_ERR(page)) {
1663
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1664
			goto err_pages;
1665
 
3260 Serge 1666
		}
5354 serge 1667
#ifdef CONFIG_SWIOTLB
1668
		if (swiotlb_nr_tbl()) {
1669
			st->nents++;
1670
			sg_set_page(sg, page, PAGE_SIZE, 0);
1671
			sg = sg_next(sg);
1672
			continue;
1673
		}
1674
#endif
3746 Serge 1675
		if (!i || page_to_pfn(page) != last_pfn + 1) {
1676
			if (i)
1677
				sg = sg_next(sg);
1678
			st->nents++;
3243 Serge 1679
		sg_set_page(sg, page, PAGE_SIZE, 0);
3746 Serge 1680
		} else {
1681
			sg->length += PAGE_SIZE;
1682
		}
1683
		last_pfn = page_to_pfn(page);
3243 Serge 1684
	}
5354 serge 1685
#ifdef CONFIG_SWIOTLB
1686
	if (!swiotlb_nr_tbl())
1687
#endif
3746 Serge 1688
		sg_mark_end(sg);
3243 Serge 1689
	obj->pages = st;
3031 serge 1690
 
2332 Serge 1691
	return 0;
1692
 
1693
err_pages:
3746 Serge 1694
	sg_mark_end(sg);
1695
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1696
		page_cache_release(sg_page_iter_page(&sg_iter));
3243 Serge 1697
	sg_free_table(st);
1698
	kfree(st);
3746 Serge 1699
    FAIL();
3243 Serge 1700
	return PTR_ERR(page);
2332 Serge 1701
}
1702
 
3031 serge 1703
/* Ensure that the associated pages are gathered from the backing storage
1704
 * and pinned into our object. i915_gem_object_get_pages() may be called
1705
 * multiple times before they are released by a single call to
1706
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1707
 * either as a result of memory pressure (reaping pages under the shrinker)
1708
 * or as the object is itself released.
1709
 */
1710
int
1711
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1712
{
3031 serge 1713
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1714
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1715
	int ret;
2332 Serge 1716
 
3243 Serge 1717
	if (obj->pages)
3031 serge 1718
		return 0;
2332 Serge 1719
 
4392 Serge 1720
	if (obj->madv != I915_MADV_WILLNEED) {
5060 serge 1721
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
1722
		return -EFAULT;
4392 Serge 1723
	}
1724
 
3031 serge 1725
	BUG_ON(obj->pages_pin_count);
2332 Serge 1726
 
3031 serge 1727
	ret = ops->get_pages(obj);
1728
	if (ret)
1729
		return ret;
2344 Serge 1730
 
4104 Serge 1731
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3243 Serge 1732
    return 0;
2332 Serge 1733
}
1734
 
5060 serge 1735
static void
2332 Serge 1736
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
5060 serge 1737
			       struct intel_engine_cs *ring)
2332 Serge 1738
{
3243 Serge 1739
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1740
 
1741
	BUG_ON(ring == NULL);
4104 Serge 1742
	if (obj->ring != ring && obj->last_write_seqno) {
1743
		/* Keep the seqno relative to the current ring */
1744
		obj->last_write_seqno = seqno;
1745
	}
2332 Serge 1746
	obj->ring = ring;
1747
 
1748
	/* Add a reference if we're newly entering the active list. */
1749
	if (!obj->active) {
2344 Serge 1750
		drm_gem_object_reference(&obj->base);
2332 Serge 1751
		obj->active = 1;
1752
	}
1753
 
1754
	list_move_tail(&obj->ring_list, &ring->active_list);
1755
 
3031 serge 1756
	obj->last_read_seqno = seqno;
2332 Serge 1757
}
1758
 
4560 Serge 1759
void i915_vma_move_to_active(struct i915_vma *vma,
5060 serge 1760
			     struct intel_engine_cs *ring)
4560 Serge 1761
{
1762
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
1763
	return i915_gem_object_move_to_active(vma->obj, ring);
1764
}
1765
 
2344 Serge 1766
static void
3031 serge 1767
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1768
{
4104 Serge 1769
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
5060 serge 1770
	struct i915_address_space *vm;
1771
	struct i915_vma *vma;
2332 Serge 1772
 
3031 serge 1773
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1774
	BUG_ON(!obj->active);
2332 Serge 1775
 
5060 serge 1776
	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1777
		vma = i915_gem_obj_to_vma(obj, vm);
1778
		if (vma && !list_empty(&vma->mm_list))
1779
			list_move_tail(&vma->mm_list, &vm->inactive_list);
1780
	}
2344 Serge 1781
 
5354 serge 1782
	intel_fb_obj_flush(obj, true);
1783
 
3031 serge 1784
	list_del_init(&obj->ring_list);
2352 Serge 1785
	obj->ring = NULL;
2344 Serge 1786
 
3031 serge 1787
	obj->last_read_seqno = 0;
1788
	obj->last_write_seqno = 0;
1789
	obj->base.write_domain = 0;
1790
 
1791
	obj->last_fenced_seqno = 0;
2344 Serge 1792
 
2352 Serge 1793
	obj->active = 0;
1794
	drm_gem_object_unreference(&obj->base);
1795
 
1796
	WARN_ON(i915_verify_lists(dev));
1797
}
1798
 
5060 serge 1799
static void
1800
i915_gem_object_retire(struct drm_i915_gem_object *obj)
1801
{
1802
	struct intel_engine_cs *ring = obj->ring;
1803
 
1804
	if (ring == NULL)
1805
		return;
1806
 
1807
	if (i915_seqno_passed(ring->get_seqno(ring, true),
1808
			      obj->last_read_seqno))
1809
		i915_gem_object_move_to_inactive(obj);
1810
}
1811
 
3243 Serge 1812
static int
3480 Serge 1813
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2344 Serge 1814
{
3243 Serge 1815
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 1816
	struct intel_engine_cs *ring;
3243 Serge 1817
	int ret, i, j;
2344 Serge 1818
 
3480 Serge 1819
	/* Carefully retire all requests without writing to the rings */
3243 Serge 1820
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1821
		ret = intel_ring_idle(ring);
3243 Serge 1822
	if (ret)
1823
		return ret;
3480 Serge 1824
	}
1825
	i915_gem_retire_requests(dev);
3243 Serge 1826
 
3480 Serge 1827
	/* Finally reset hw state */
3243 Serge 1828
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1829
		intel_ring_init_seqno(ring, seqno);
1830
 
5060 serge 1831
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
1832
			ring->semaphore.sync_seqno[j] = 0;
3243 Serge 1833
	}
1834
 
1835
	return 0;
2344 Serge 1836
}
1837
 
3480 Serge 1838
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1839
{
1840
	struct drm_i915_private *dev_priv = dev->dev_private;
1841
	int ret;
1842
 
1843
	if (seqno == 0)
1844
		return -EINVAL;
1845
 
1846
	/* HWS page needs to be set less than what we
1847
	 * will inject to ring
1848
	 */
1849
	ret = i915_gem_init_seqno(dev, seqno - 1);
1850
	if (ret)
1851
		return ret;
1852
 
1853
	/* Carefully set the last_seqno value so that wrap
1854
	 * detection still works
1855
	 */
1856
	dev_priv->next_seqno = seqno;
1857
	dev_priv->last_seqno = seqno - 1;
1858
	if (dev_priv->last_seqno == 0)
1859
		dev_priv->last_seqno--;
1860
 
1861
	return 0;
1862
}
1863
 
3243 Serge 1864
int
1865
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1866
{
3243 Serge 1867
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1868
 
3243 Serge 1869
	/* reserve 0 for non-seqno */
1870
	if (dev_priv->next_seqno == 0) {
3480 Serge 1871
		int ret = i915_gem_init_seqno(dev, 0);
3243 Serge 1872
		if (ret)
1873
			return ret;
1874
 
1875
		dev_priv->next_seqno = 1;
1876
	}
1877
 
3480 Serge 1878
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3243 Serge 1879
	return 0;
2332 Serge 1880
}
1881
 
5060 serge 1882
int __i915_add_request(struct intel_engine_cs *ring,
2352 Serge 1883
		 struct drm_file *file,
4104 Serge 1884
		       struct drm_i915_gem_object *obj,
3031 serge 1885
		 u32 *out_seqno)
2352 Serge 1886
{
5060 serge 1887
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
3031 serge 1888
	struct drm_i915_gem_request *request;
5354 serge 1889
	struct intel_ringbuffer *ringbuf;
4104 Serge 1890
	u32 request_ring_position, request_start;
2352 Serge 1891
	int ret;
2332 Serge 1892
 
5354 serge 1893
	request = ring->preallocated_lazy_request;
1894
	if (WARN_ON(request == NULL))
1895
		return -ENOMEM;
1896
 
1897
	if (i915.enable_execlists) {
1898
		struct intel_context *ctx = request->ctx;
1899
		ringbuf = ctx->engine[ring->id].ringbuf;
1900
	} else
1901
		ringbuf = ring->buffer;
1902
 
1903
	request_start = intel_ring_get_tail(ringbuf);
3031 serge 1904
	/*
1905
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1906
	 * after having emitted the batchbuffer command. Hence we need to fix
1907
	 * things up similar to emitting the lazy request. The difference here
1908
	 * is that the flush _must_ happen before the next request, no matter
1909
	 * what.
1910
	 */
5354 serge 1911
	if (i915.enable_execlists) {
1912
		ret = logical_ring_flush_all_caches(ringbuf);
1913
		if (ret)
1914
			return ret;
1915
	} else {
4104 Serge 1916
   ret = intel_ring_flush_all_caches(ring);
1917
   if (ret)
1918
       return ret;
5354 serge 1919
	}
2332 Serge 1920
 
3031 serge 1921
	/* Record the position of the start of the request so that
1922
	 * should we detect the updated seqno part-way through the
4104 Serge 1923
    * GPU processing the request, we never over-estimate the
3031 serge 1924
	 * position of the head.
1925
	 */
5354 serge 1926
	request_ring_position = intel_ring_get_tail(ringbuf);
3031 serge 1927
 
5354 serge 1928
	if (i915.enable_execlists) {
1929
		ret = ring->emit_request(ringbuf);
1930
		if (ret)
1931
			return ret;
1932
	} else {
3243 Serge 1933
	ret = ring->add_request(ring);
4560 Serge 1934
	if (ret)
4104 Serge 1935
		return ret;
5354 serge 1936
	}
2332 Serge 1937
 
3243 Serge 1938
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1939
	request->ring = ring;
4104 Serge 1940
	request->head = request_start;
3031 serge 1941
	request->tail = request_ring_position;
4104 Serge 1942
 
1943
	/* Whilst this request exists, batch_obj will be on the
1944
	 * active_list, and so will hold the active reference. Only when this
1945
	 * request is retired will the the batch_obj be moved onto the
1946
	 * inactive_list and lose its active reference. Hence we do not need
1947
	 * to explicitly hold another reference here.
1948
	 */
4560 Serge 1949
	request->batch_obj = obj;
4104 Serge 1950
 
5354 serge 1951
	if (!i915.enable_execlists) {
4560 Serge 1952
	/* Hold a reference to the current context so that we can inspect
1953
	 * it later in case a hangcheck error event fires.
1954
	 */
1955
	request->ctx = ring->last_context;
4104 Serge 1956
	if (request->ctx)
1957
		i915_gem_context_reference(request->ctx);
5354 serge 1958
	}
4104 Serge 1959
 
5060 serge 1960
	request->emitted_jiffies = jiffies;
2352 Serge 1961
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1962
	request->file_priv = NULL;
2332 Serge 1963
 
3263 Serge 1964
	if (file) {
1965
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1966
 
3263 Serge 1967
		spin_lock(&file_priv->mm.lock);
1968
		request->file_priv = file_priv;
1969
		list_add_tail(&request->client_list,
1970
			      &file_priv->mm.request_list);
1971
		spin_unlock(&file_priv->mm.lock);
1972
	}
1973
 
1974
	trace_i915_gem_request_add(ring, request->seqno);
4560 Serge 1975
	ring->outstanding_lazy_seqno = 0;
1976
	ring->preallocated_lazy_request = NULL;
2332 Serge 1977
 
4104 Serge 1978
//		i915_queue_hangcheck(ring->dev);
1979
 
2360 Serge 1980
           queue_delayed_work(dev_priv->wq,
3482 Serge 1981
					   &dev_priv->mm.retire_work,
1982
					   round_jiffies_up_relative(HZ));
4104 Serge 1983
           intel_mark_busy(dev_priv->dev);
3031 serge 1984
 
1985
	if (out_seqno)
3243 Serge 1986
		*out_seqno = request->seqno;
2352 Serge 1987
	return 0;
1988
}
2332 Serge 1989
 
3263 Serge 1990
static inline void
1991
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1992
{
1993
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1994
 
3263 Serge 1995
	if (!file_priv)
1996
		return;
2332 Serge 1997
 
3263 Serge 1998
	spin_lock(&file_priv->mm.lock);
1999
		list_del(&request->client_list);
2000
		request->file_priv = NULL;
2001
	spin_unlock(&file_priv->mm.lock);
2002
}
2332 Serge 2003
 
5060 serge 2004
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2005
				   const struct intel_context *ctx)
4104 Serge 2006
{
5060 serge 2007
	unsigned long elapsed;
4104 Serge 2008
 
5060 serge 2009
    elapsed = GetTimerTicks()/100 - ctx->hang_stats.guilty_ts;
4104 Serge 2010
 
5060 serge 2011
	if (ctx->hang_stats.banned)
2012
		return true;
4104 Serge 2013
 
5060 serge 2014
	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2015
		if (!i915_gem_context_is_default(ctx)) {
2016
			DRM_DEBUG("context hanging too fast, banning!\n");
4104 Serge 2017
			return true;
5060 serge 2018
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2019
			if (i915_stop_ring_allow_warn(dev_priv))
2020
			DRM_ERROR("gpu hanging too fast, banning!\n");
4104 Serge 2021
			return true;
2022
	}
2023
	}
2024
 
2025
	return false;
2026
}
2027
 
5060 serge 2028
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2029
				  struct intel_context *ctx,
2030
				  const bool guilty)
4560 Serge 2031
{
5060 serge 2032
	struct i915_ctx_hang_stats *hs;
4560 Serge 2033
 
5060 serge 2034
	if (WARN_ON(!ctx))
2035
		return;
4560 Serge 2036
 
5060 serge 2037
	hs = &ctx->hang_stats;
4560 Serge 2038
 
5060 serge 2039
	if (guilty) {
2040
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2041
		hs->batch_active++;
2042
        hs->guilty_ts = GetTimerTicks()/100;
2043
	} else {
2044
		hs->batch_pending++;
4104 Serge 2045
	}
2046
}
2047
 
2048
static void i915_gem_free_request(struct drm_i915_gem_request *request)
2049
{
5354 serge 2050
	struct intel_context *ctx = request->ctx;
2051
 
4104 Serge 2052
	list_del(&request->list);
2053
	i915_gem_request_remove_from_client(request);
2054
 
5354 serge 2055
	if (ctx) {
2056
		if (i915.enable_execlists) {
2057
			struct intel_engine_cs *ring = request->ring;
4104 Serge 2058
 
5354 serge 2059
			if (ctx != ring->default_context)
2060
				intel_lr_context_unpin(ring, ctx);
2061
		}
2062
		i915_gem_context_unreference(ctx);
2063
	}
4104 Serge 2064
	kfree(request);
2065
}
2066
 
5060 serge 2067
struct drm_i915_gem_request *
2068
i915_gem_find_active_request(struct intel_engine_cs *ring)
3031 serge 2069
{
4539 Serge 2070
	struct drm_i915_gem_request *request;
5060 serge 2071
	u32 completed_seqno;
4104 Serge 2072
 
5060 serge 2073
	completed_seqno = ring->get_seqno(ring, false);
2074
 
4539 Serge 2075
	list_for_each_entry(request, &ring->request_list, list) {
2076
		if (i915_seqno_passed(completed_seqno, request->seqno))
2077
			continue;
4104 Serge 2078
 
5060 serge 2079
		return request;
4539 Serge 2080
	}
5060 serge 2081
 
2082
	return NULL;
4539 Serge 2083
}
2084
 
5060 serge 2085
static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2086
				       struct intel_engine_cs *ring)
2087
{
2088
	struct drm_i915_gem_request *request;
2089
	bool ring_hung;
2090
 
2091
	request = i915_gem_find_active_request(ring);
2092
 
2093
	if (request == NULL)
2094
		return;
2095
 
2096
	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2097
 
2098
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2099
 
2100
	list_for_each_entry_continue(request, &ring->request_list, list)
2101
		i915_set_reset_status(dev_priv, request->ctx, false);
2102
}
2103
 
4539 Serge 2104
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
5060 serge 2105
					struct intel_engine_cs *ring)
4539 Serge 2106
{
4560 Serge 2107
	while (!list_empty(&ring->active_list)) {
2108
		struct drm_i915_gem_object *obj;
2109
 
2110
		obj = list_first_entry(&ring->active_list,
2111
				       struct drm_i915_gem_object,
2112
				       ring_list);
2113
 
2114
		i915_gem_object_move_to_inactive(obj);
2115
	}
2116
 
2117
	/*
5354 serge 2118
	 * Clear the execlists queue up before freeing the requests, as those
2119
	 * are the ones that keep the context and ringbuffer backing objects
2120
	 * pinned in place.
2121
	 */
2122
	while (!list_empty(&ring->execlist_queue)) {
2123
		struct intel_ctx_submit_request *submit_req;
2124
 
2125
		submit_req = list_first_entry(&ring->execlist_queue,
2126
				struct intel_ctx_submit_request,
2127
				execlist_link);
2128
		list_del(&submit_req->execlist_link);
2129
		intel_runtime_pm_put(dev_priv);
2130
		i915_gem_context_unreference(submit_req->ctx);
2131
		kfree(submit_req);
2132
	}
2133
 
2134
	/*
4560 Serge 2135
	 * We must free the requests after all the corresponding objects have
2136
	 * been moved off active lists. Which is the same order as the normal
2137
	 * retire_requests function does. This is important if object hold
2138
	 * implicit references on things like e.g. ppgtt address spaces through
2139
	 * the request.
2140
	 */
3031 serge 2141
	while (!list_empty(&ring->request_list)) {
2142
		struct drm_i915_gem_request *request;
2332 Serge 2143
 
3031 serge 2144
		request = list_first_entry(&ring->request_list,
2145
					   struct drm_i915_gem_request,
2146
					   list);
2332 Serge 2147
 
4104 Serge 2148
		i915_gem_free_request(request);
3031 serge 2149
	}
5060 serge 2150
 
2151
	/* These may not have been flush before the reset, do so now */
2152
	kfree(ring->preallocated_lazy_request);
2153
	ring->preallocated_lazy_request = NULL;
2154
	ring->outstanding_lazy_seqno = 0;
3031 serge 2155
}
2332 Serge 2156
 
3746 Serge 2157
void i915_gem_restore_fences(struct drm_device *dev)
3031 serge 2158
{
2159
	struct drm_i915_private *dev_priv = dev->dev_private;
2160
	int i;
2332 Serge 2161
 
3031 serge 2162
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2163
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
4104 Serge 2164
 
2165
		/*
2166
		 * Commit delayed tiling changes if we have an object still
2167
		 * attached to the fence, otherwise just clear the fence.
2168
		 */
2169
		if (reg->obj) {
2170
			i915_gem_object_update_fence(reg->obj, reg,
2171
						     reg->obj->tiling_mode);
2172
		} else {
2173
			i915_gem_write_fence(dev, i, NULL);
2174
		}
3031 serge 2175
	}
2176
}
2360 Serge 2177
 
3031 serge 2178
void i915_gem_reset(struct drm_device *dev)
2179
{
2180
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 2181
	struct intel_engine_cs *ring;
3031 serge 2182
	int i;
2360 Serge 2183
 
4539 Serge 2184
	/*
2185
	 * Before we free the objects from the requests, we need to inspect
2186
	 * them for finding the guilty party. As the requests only borrow
2187
	 * their reference to the objects, the inspection must be done first.
2188
	 */
3031 serge 2189
	for_each_ring(ring, dev_priv, i)
4539 Serge 2190
		i915_gem_reset_ring_status(dev_priv, ring);
2360 Serge 2191
 
4539 Serge 2192
	for_each_ring(ring, dev_priv, i)
2193
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2194
 
5060 serge 2195
	i915_gem_context_reset(dev);
4560 Serge 2196
 
3746 Serge 2197
	i915_gem_restore_fences(dev);
3031 serge 2198
}
2360 Serge 2199
 
2352 Serge 2200
/**
2201
 * This function clears the request list as sequence numbers are passed.
2202
 */
3031 serge 2203
void
5060 serge 2204
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2352 Serge 2205
{
2206
	uint32_t seqno;
2332 Serge 2207
 
2352 Serge 2208
	if (list_empty(&ring->request_list))
2209
		return;
2332 Serge 2210
 
2352 Serge 2211
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 2212
 
3031 serge 2213
	seqno = ring->get_seqno(ring, true);
2332 Serge 2214
 
5060 serge 2215
	/* Move any buffers on the active list that are no longer referenced
2216
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2217
	 * before we free the context associated with the requests.
2218
	 */
2219
	while (!list_empty(&ring->active_list)) {
2220
		struct drm_i915_gem_object *obj;
2221
 
2222
		obj = list_first_entry(&ring->active_list,
2223
				      struct drm_i915_gem_object,
2224
				      ring_list);
2225
 
2226
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2227
			break;
2228
 
2229
		i915_gem_object_move_to_inactive(obj);
2230
	}
2231
 
2232
 
2352 Serge 2233
	while (!list_empty(&ring->request_list)) {
2234
		struct drm_i915_gem_request *request;
5354 serge 2235
		struct intel_ringbuffer *ringbuf;
2332 Serge 2236
 
2352 Serge 2237
		request = list_first_entry(&ring->request_list,
2238
					   struct drm_i915_gem_request,
2239
					   list);
2332 Serge 2240
 
2352 Serge 2241
		if (!i915_seqno_passed(seqno, request->seqno))
2242
			break;
2332 Serge 2243
 
2352 Serge 2244
		trace_i915_gem_request_retire(ring, request->seqno);
5354 serge 2245
 
2246
		/* This is one of the few common intersection points
2247
		 * between legacy ringbuffer submission and execlists:
2248
		 * we need to tell them apart in order to find the correct
2249
		 * ringbuffer to which the request belongs to.
2250
		 */
2251
		if (i915.enable_execlists) {
2252
			struct intel_context *ctx = request->ctx;
2253
			ringbuf = ctx->engine[ring->id].ringbuf;
2254
		} else
2255
			ringbuf = ring->buffer;
2256
 
3031 serge 2257
		/* We know the GPU must have read the request to have
2258
		 * sent us the seqno + interrupt, so use the position
2259
		 * of tail of the request to update the last known position
2260
		 * of the GPU head.
2261
		 */
5354 serge 2262
		ringbuf->last_retired_head = request->tail;
2332 Serge 2263
 
4104 Serge 2264
		i915_gem_free_request(request);
2352 Serge 2265
	}
2332 Serge 2266
 
2352 Serge 2267
	if (unlikely(ring->trace_irq_seqno &&
2268
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2269
		ring->irq_put(ring);
2270
		ring->trace_irq_seqno = 0;
2271
	}
2332 Serge 2272
 
2352 Serge 2273
	WARN_ON(i915_verify_lists(ring->dev));
2274
}
2332 Serge 2275
 
4560 Serge 2276
bool
2352 Serge 2277
i915_gem_retire_requests(struct drm_device *dev)
2278
{
5060 serge 2279
	struct drm_i915_private *dev_priv = dev->dev_private;
2280
	struct intel_engine_cs *ring;
4560 Serge 2281
	bool idle = true;
2352 Serge 2282
	int i;
2332 Serge 2283
 
4560 Serge 2284
	for_each_ring(ring, dev_priv, i) {
3031 serge 2285
		i915_gem_retire_requests_ring(ring);
4560 Serge 2286
		idle &= list_empty(&ring->request_list);
5354 serge 2287
		if (i915.enable_execlists) {
2288
			unsigned long flags;
2289
 
2290
			spin_lock_irqsave(&ring->execlist_lock, flags);
2291
			idle &= list_empty(&ring->execlist_queue);
2292
			spin_unlock_irqrestore(&ring->execlist_lock, flags);
2293
 
2294
			intel_execlists_retire_requests(ring);
2295
		}
4560 Serge 2296
	}
2297
 
2298
	if (idle)
2299
		mod_delayed_work(dev_priv->wq,
2300
				   &dev_priv->mm.idle_work,
2301
				   msecs_to_jiffies(100));
2302
 
2303
	return idle;
2352 Serge 2304
}
2305
 
2360 Serge 2306
static void
2307
i915_gem_retire_work_handler(struct work_struct *work)
2308
{
4560 Serge 2309
	struct drm_i915_private *dev_priv =
2310
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2311
	struct drm_device *dev = dev_priv->dev;
2360 Serge 2312
	bool idle;
2352 Serge 2313
 
2360 Serge 2314
	/* Come back later if the device is busy... */
4560 Serge 2315
	idle = false;
2316
	if (mutex_trylock(&dev->struct_mutex)) {
2317
		idle = i915_gem_retire_requests(dev);
2318
		mutex_unlock(&dev->struct_mutex);
2319
	}
2320
	if (!idle)
3482 Serge 2321
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2322
				   round_jiffies_up_relative(HZ));
4560 Serge 2323
}
2352 Serge 2324
 
4560 Serge 2325
static void
2326
i915_gem_idle_work_handler(struct work_struct *work)
2327
{
2328
	struct drm_i915_private *dev_priv =
2329
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2352 Serge 2330
 
4560 Serge 2331
	intel_mark_idle(dev_priv->dev);
2360 Serge 2332
}
2333
 
2344 Serge 2334
/**
3031 serge 2335
 * Ensures that an object will eventually get non-busy by flushing any required
2336
 * write domains, emitting any outstanding lazy request and retiring and
2337
 * completed requests.
2352 Serge 2338
 */
3031 serge 2339
static int
2340
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2341
{
3031 serge 2342
	int ret;
2352 Serge 2343
 
3031 serge 2344
	if (obj->active) {
2345
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2346
		if (ret)
2347
			return ret;
2352 Serge 2348
 
3031 serge 2349
		i915_gem_retire_requests_ring(obj->ring);
2350
	}
2352 Serge 2351
 
3031 serge 2352
	return 0;
2353
}
2352 Serge 2354
 
3243 Serge 2355
/**
2356
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2357
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2358
 *
2359
 * Returns 0 if successful, else an error is returned with the remaining time in
2360
 * the timeout parameter.
2361
 *  -ETIME: object is still busy after timeout
2362
 *  -ERESTARTSYS: signal interrupted the wait
2363
 *  -ENONENT: object doesn't exist
2364
 * Also possible, but rare:
2365
 *  -EAGAIN: GPU wedged
2366
 *  -ENOMEM: damn
2367
 *  -ENODEV: Internal IRQ fail
2368
 *  -E?: The add request failed
2369
 *
2370
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2371
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2372
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2373
 * without holding struct_mutex the object may become re-busied before this
2374
 * function completes. A similar but shorter * race condition exists in the busy
2375
 * ioctl
2376
 */
4246 Serge 2377
int
2378
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2379
{
5060 serge 2380
	struct drm_i915_private *dev_priv = dev->dev_private;
4246 Serge 2381
	struct drm_i915_gem_wait *args = data;
2382
	struct drm_i915_gem_object *obj;
5060 serge 2383
	struct intel_engine_cs *ring = NULL;
4246 Serge 2384
	unsigned reset_counter;
2385
	u32 seqno = 0;
2386
	int ret = 0;
2352 Serge 2387
 
5354 serge 2388
	if (args->flags != 0)
2389
		return -EINVAL;
2390
 
4246 Serge 2391
	ret = i915_mutex_lock_interruptible(dev);
2392
	if (ret)
2393
		return ret;
2352 Serge 2394
 
4246 Serge 2395
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2396
	if (&obj->base == NULL) {
2397
		mutex_unlock(&dev->struct_mutex);
2398
		return -ENOENT;
2399
	}
2352 Serge 2400
 
4246 Serge 2401
	/* Need to make sure the object gets inactive eventually. */
2402
	ret = i915_gem_object_flush_active(obj);
2403
	if (ret)
2404
		goto out;
2352 Serge 2405
 
4246 Serge 2406
	if (obj->active) {
2407
		seqno = obj->last_read_seqno;
2408
		ring = obj->ring;
2409
	}
2352 Serge 2410
 
4246 Serge 2411
	if (seqno == 0)
2412
		 goto out;
2352 Serge 2413
 
4246 Serge 2414
	/* Do this after OLR check to make sure we make forward progress polling
5060 serge 2415
	 * on this IOCTL with a timeout <=0 (like busy ioctl)
4246 Serge 2416
	 */
5060 serge 2417
	if (args->timeout_ns <= 0) {
4246 Serge 2418
		ret = -ETIME;
2419
		goto out;
2420
	}
2352 Serge 2421
 
4246 Serge 2422
	drm_gem_object_unreference(&obj->base);
2423
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2424
	mutex_unlock(&dev->struct_mutex);
2352 Serge 2425
 
5354 serge 2426
	return __i915_wait_seqno(ring, seqno, reset_counter, true,
2427
				 &args->timeout_ns, file->driver_priv);
3243 Serge 2428
 
4246 Serge 2429
out:
2430
	drm_gem_object_unreference(&obj->base);
2431
	mutex_unlock(&dev->struct_mutex);
2432
	return ret;
2433
}
3243 Serge 2434
 
2352 Serge 2435
/**
3031 serge 2436
 * i915_gem_object_sync - sync an object to a ring.
2437
 *
2438
 * @obj: object which may be in use on another ring.
2439
 * @to: ring we wish to use the object on. May be NULL.
2440
 *
2441
 * This code is meant to abstract object synchronization with the GPU.
2442
 * Calling with NULL implies synchronizing the object with the CPU
2443
 * rather than a particular GPU ring.
2444
 *
2445
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2446
 */
2447
int
3031 serge 2448
i915_gem_object_sync(struct drm_i915_gem_object *obj,
5060 serge 2449
		     struct intel_engine_cs *to)
2344 Serge 2450
{
5060 serge 2451
	struct intel_engine_cs *from = obj->ring;
3031 serge 2452
	u32 seqno;
2453
	int ret, idx;
2332 Serge 2454
 
3031 serge 2455
	if (from == NULL || to == from)
2456
		return 0;
2332 Serge 2457
 
3031 serge 2458
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2459
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2460
 
3031 serge 2461
	idx = intel_ring_sync_index(from, to);
2462
 
2463
	seqno = obj->last_read_seqno;
5060 serge 2464
	/* Optimization: Avoid semaphore sync when we are sure we already
2465
	 * waited for an object with higher seqno */
2466
	if (seqno <= from->semaphore.sync_seqno[idx])
3031 serge 2467
		return 0;
2468
 
2469
	ret = i915_gem_check_olr(obj->ring, seqno);
2470
	if (ret)
2471
		return ret;
2472
 
4560 Serge 2473
	trace_i915_gem_ring_sync_to(from, to, seqno);
5060 serge 2474
	ret = to->semaphore.sync_to(to, from, seqno);
3031 serge 2475
	if (!ret)
3243 Serge 2476
		/* We use last_read_seqno because sync_to()
2477
		 * might have just caused seqno wrap under
2478
		 * the radar.
2479
		 */
5060 serge 2480
		from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2481
 
2482
	return ret;
2344 Serge 2483
}
2332 Serge 2484
 
2344 Serge 2485
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2486
{
2487
	u32 old_write_domain, old_read_domains;
2332 Serge 2488
 
2344 Serge 2489
	/* Force a pagefault for domain tracking on next user access */
2490
//	i915_gem_release_mmap(obj);
2332 Serge 2491
 
2344 Serge 2492
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2493
		return;
2332 Serge 2494
 
3480 Serge 2495
	/* Wait for any direct GTT access to complete */
2496
	mb();
2497
 
2344 Serge 2498
	old_read_domains = obj->base.read_domains;
2499
	old_write_domain = obj->base.write_domain;
2351 Serge 2500
 
2344 Serge 2501
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2502
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2503
 
2351 Serge 2504
	trace_i915_gem_object_change_domain(obj,
2505
					    old_read_domains,
2506
					    old_write_domain);
2344 Serge 2507
}
2332 Serge 2508
 
4104 Serge 2509
int i915_vma_unbind(struct i915_vma *vma)
2344 Serge 2510
{
4104 Serge 2511
	struct drm_i915_gem_object *obj = vma->obj;
5060 serge 2512
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3480 Serge 2513
	int ret;
2332 Serge 2514
 
3263 Serge 2515
    if(obj == get_fb_obj())
2516
        return 0;
2517
 
4104 Serge 2518
	if (list_empty(&vma->vma_link))
2344 Serge 2519
		return 0;
2332 Serge 2520
 
4560 Serge 2521
	if (!drm_mm_node_allocated(&vma->node)) {
2522
		i915_gem_vma_destroy(vma);
2523
		return 0;
2524
	}
2525
 
5060 serge 2526
	if (vma->pin_count)
3031 serge 2527
		return -EBUSY;
2332 Serge 2528
 
3243 Serge 2529
	BUG_ON(obj->pages == NULL);
3031 serge 2530
 
2344 Serge 2531
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2532
	if (ret)
2344 Serge 2533
		return ret;
2534
	/* Continue on if we fail due to EIO, the GPU is hung so we
2535
	 * should be safe and we need to cleanup or else we might
2536
	 * cause memory corruption through use-after-free.
2537
	 */
2332 Serge 2538
 
5354 serge 2539
	/* Throw away the active reference before moving to the unbound list */
2540
	i915_gem_object_retire(obj);
2541
 
5060 serge 2542
	if (i915_is_ggtt(vma->vm)) {
2344 Serge 2543
	i915_gem_object_finish_gtt(obj);
2332 Serge 2544
 
2344 Serge 2545
	/* release the fence reg _after_ flushing */
2546
	ret = i915_gem_object_put_fence(obj);
3031 serge 2547
	if (ret)
2344 Serge 2548
		return ret;
5060 serge 2549
	}
2332 Serge 2550
 
4104 Serge 2551
	trace_i915_vma_unbind(vma);
2332 Serge 2552
 
5060 serge 2553
	vma->unbind_vma(vma);
2332 Serge 2554
 
5060 serge 2555
	list_del_init(&vma->mm_list);
4104 Serge 2556
	if (i915_is_ggtt(vma->vm))
5354 serge 2557
		obj->map_and_fenceable = false;
2332 Serge 2558
 
4104 Serge 2559
	drm_mm_remove_node(&vma->node);
2560
	i915_gem_vma_destroy(vma);
2561
 
2562
	/* Since the unbound list is global, only move to that list if
4560 Serge 2563
	 * no more VMAs exist. */
5060 serge 2564
	if (list_empty(&obj->vma_list)) {
2565
		i915_gem_gtt_finish_object(obj);
4104 Serge 2566
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
5060 serge 2567
	}
4104 Serge 2568
 
4560 Serge 2569
	/* And finally now the object is completely decoupled from this vma,
2570
	 * we can drop its hold on the backing storage and allow it to be
2571
	 * reaped by the shrinker.
2572
	 */
2573
	i915_gem_object_unpin_pages(obj);
2574
 
2344 Serge 2575
	return 0;
2576
}
2332 Serge 2577
 
3031 serge 2578
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2579
{
5060 serge 2580
	struct drm_i915_private *dev_priv = dev->dev_private;
2581
	struct intel_engine_cs *ring;
2344 Serge 2582
	int ret, i;
2332 Serge 2583
 
2344 Serge 2584
	/* Flush everything onto the inactive list. */
3031 serge 2585
	for_each_ring(ring, dev_priv, i) {
5354 serge 2586
		if (!i915.enable_execlists) {
5060 serge 2587
		ret = i915_switch_context(ring, ring->default_context);
2344 Serge 2588
		if (ret)
2589
			return ret;
5354 serge 2590
		}
3031 serge 2591
 
3243 Serge 2592
		ret = intel_ring_idle(ring);
3031 serge 2593
		if (ret)
2594
			return ret;
2344 Serge 2595
	}
2332 Serge 2596
 
2344 Serge 2597
	return 0;
2598
}
2332 Serge 2599
 
3480 Serge 2600
static void i965_write_fence_reg(struct drm_device *dev, int reg,
3031 serge 2601
					struct drm_i915_gem_object *obj)
2602
{
5060 serge 2603
	struct drm_i915_private *dev_priv = dev->dev_private;
3480 Serge 2604
	int fence_reg;
2605
	int fence_pitch_shift;
2332 Serge 2606
 
3480 Serge 2607
	if (INTEL_INFO(dev)->gen >= 6) {
2608
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2609
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2610
	} else {
2611
		fence_reg = FENCE_REG_965_0;
2612
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2613
	}
2332 Serge 2614
 
4104 Serge 2615
	fence_reg += reg * 8;
2616
 
2617
	/* To w/a incoherency with non-atomic 64-bit register updates,
2618
	 * we split the 64-bit update into two 32-bit writes. In order
2619
	 * for a partial fence not to be evaluated between writes, we
2620
	 * precede the update with write to turn off the fence register,
2621
	 * and only enable the fence as the last step.
2622
	 *
2623
	 * For extra levels of paranoia, we make sure each step lands
2624
	 * before applying the next step.
2625
	 */
2626
	I915_WRITE(fence_reg, 0);
2627
	POSTING_READ(fence_reg);
2628
 
3031 serge 2629
	if (obj) {
4104 Serge 2630
		u32 size = i915_gem_obj_ggtt_size(obj);
2631
		uint64_t val;
2332 Serge 2632
 
4104 Serge 2633
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3031 serge 2634
				 0xfffff000) << 32;
4104 Serge 2635
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3480 Serge 2636
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 serge 2637
		if (obj->tiling_mode == I915_TILING_Y)
2638
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2639
		val |= I965_FENCE_REG_VALID;
2332 Serge 2640
 
4104 Serge 2641
		I915_WRITE(fence_reg + 4, val >> 32);
2642
		POSTING_READ(fence_reg + 4);
2643
 
2644
		I915_WRITE(fence_reg + 0, val);
5060 serge 2645
		POSTING_READ(fence_reg);
4104 Serge 2646
	} else {
2647
		I915_WRITE(fence_reg + 4, 0);
2648
		POSTING_READ(fence_reg + 4);
2649
	}
3031 serge 2650
}
2332 Serge 2651
 
3031 serge 2652
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2653
				 struct drm_i915_gem_object *obj)
2654
{
5060 serge 2655
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2656
	u32 val;
2332 Serge 2657
 
3031 serge 2658
	if (obj) {
4104 Serge 2659
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2660
		int pitch_val;
2661
		int tile_width;
2332 Serge 2662
 
4104 Serge 2663
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3031 serge 2664
		     (size & -size) != size ||
4104 Serge 2665
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2666
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2667
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2332 Serge 2668
 
3031 serge 2669
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2670
			tile_width = 128;
2671
		else
2672
			tile_width = 512;
2332 Serge 2673
 
3031 serge 2674
		/* Note: pitch better be a power of two tile widths */
2675
		pitch_val = obj->stride / tile_width;
2676
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2677
 
4104 Serge 2678
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2679
		if (obj->tiling_mode == I915_TILING_Y)
2680
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2681
		val |= I915_FENCE_SIZE_BITS(size);
2682
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2683
		val |= I830_FENCE_REG_VALID;
2684
	} else
2685
		val = 0;
2332 Serge 2686
 
3031 serge 2687
	if (reg < 8)
2688
		reg = FENCE_REG_830_0 + reg * 4;
2689
	else
2690
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2691
 
3031 serge 2692
	I915_WRITE(reg, val);
2693
	POSTING_READ(reg);
2694
}
2332 Serge 2695
 
3031 serge 2696
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2697
				struct drm_i915_gem_object *obj)
2698
{
5060 serge 2699
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 2700
	uint32_t val;
2344 Serge 2701
 
3031 serge 2702
	if (obj) {
4104 Serge 2703
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2704
		uint32_t pitch_val;
2344 Serge 2705
 
4104 Serge 2706
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3031 serge 2707
		     (size & -size) != size ||
4104 Serge 2708
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2709
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2710
		     i915_gem_obj_ggtt_offset(obj), size);
2344 Serge 2711
 
3031 serge 2712
		pitch_val = obj->stride / 128;
2713
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2714
 
4104 Serge 2715
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2716
		if (obj->tiling_mode == I915_TILING_Y)
2717
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2718
		val |= I830_FENCE_SIZE_BITS(size);
2719
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2720
		val |= I830_FENCE_REG_VALID;
2721
	} else
2722
		val = 0;
2723
 
2724
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2725
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2726
}
2727
 
3480 Serge 2728
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2729
{
2730
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2731
}
2732
 
3031 serge 2733
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2734
				 struct drm_i915_gem_object *obj)
2332 Serge 2735
{
3480 Serge 2736
	struct drm_i915_private *dev_priv = dev->dev_private;
2737
 
2738
	/* Ensure that all CPU reads are completed before installing a fence
2739
	 * and all writes before removing the fence.
2740
	 */
2741
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2742
		mb();
2743
 
4104 Serge 2744
	WARN(obj && (!obj->stride || !obj->tiling_mode),
2745
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2746
	     obj->stride, obj->tiling_mode);
2747
 
3031 serge 2748
	switch (INTEL_INFO(dev)->gen) {
5354 serge 2749
	case 9:
4560 Serge 2750
	case 8:
3031 serge 2751
	case 7:
3480 Serge 2752
	case 6:
3031 serge 2753
	case 5:
2754
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2755
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2756
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3480 Serge 2757
	default: BUG();
3031 serge 2758
	}
3480 Serge 2759
 
2760
	/* And similarly be paranoid that no direct access to this region
2761
	 * is reordered to before the fence is installed.
2762
	 */
2763
	if (i915_gem_object_needs_mb(obj))
2764
		mb();
2344 Serge 2765
}
2766
 
3031 serge 2767
static inline int fence_number(struct drm_i915_private *dev_priv,
2768
			       struct drm_i915_fence_reg *fence)
2344 Serge 2769
{
3031 serge 2770
	return fence - dev_priv->fence_regs;
2771
}
2332 Serge 2772
 
3031 serge 2773
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2774
					 struct drm_i915_fence_reg *fence,
2775
					 bool enable)
2776
{
4104 Serge 2777
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2778
	int reg = fence_number(dev_priv, fence);
2332 Serge 2779
 
4104 Serge 2780
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3031 serge 2781
 
2782
	if (enable) {
4104 Serge 2783
		obj->fence_reg = reg;
3031 serge 2784
		fence->obj = obj;
2785
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2786
	} else {
2787
		obj->fence_reg = I915_FENCE_REG_NONE;
2788
		fence->obj = NULL;
2789
		list_del_init(&fence->lru_list);
2344 Serge 2790
	}
4104 Serge 2791
	obj->fence_dirty = false;
3031 serge 2792
}
2344 Serge 2793
 
3031 serge 2794
static int
3480 Serge 2795
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3031 serge 2796
{
2797
	if (obj->last_fenced_seqno) {
2798
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2799
			if (ret)
2800
				return ret;
2344 Serge 2801
 
2802
		obj->last_fenced_seqno = 0;
2803
	}
2804
 
2332 Serge 2805
	return 0;
2806
}
2807
 
2808
int
2344 Serge 2809
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2810
{
3031 serge 2811
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3746 Serge 2812
	struct drm_i915_fence_reg *fence;
2332 Serge 2813
	int ret;
2814
 
3480 Serge 2815
	ret = i915_gem_object_wait_fence(obj);
5060 serge 2816
    if (ret)
2817
       return ret;
2332 Serge 2818
 
3031 serge 2819
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2820
		return 0;
2332 Serge 2821
 
3746 Serge 2822
	fence = &dev_priv->fence_regs[obj->fence_reg];
2823
 
5060 serge 2824
	if (WARN_ON(fence->pin_count))
2825
		return -EBUSY;
2826
 
3031 serge 2827
	i915_gem_object_fence_lost(obj);
3746 Serge 2828
	i915_gem_object_update_fence(obj, fence, false);
2344 Serge 2829
 
2332 Serge 2830
	return 0;
2831
}
2832
 
3031 serge 2833
static struct drm_i915_fence_reg *
2834
i915_find_fence_reg(struct drm_device *dev)
2835
{
2836
	struct drm_i915_private *dev_priv = dev->dev_private;
2837
	struct drm_i915_fence_reg *reg, *avail;
2838
	int i;
2332 Serge 2839
 
3031 serge 2840
	/* First try to find a free reg */
2841
	avail = NULL;
2842
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2843
		reg = &dev_priv->fence_regs[i];
2844
		if (!reg->obj)
2845
			return reg;
2332 Serge 2846
 
3031 serge 2847
		if (!reg->pin_count)
2848
			avail = reg;
2849
	}
2332 Serge 2850
 
3031 serge 2851
	if (avail == NULL)
4560 Serge 2852
		goto deadlock;
2332 Serge 2853
 
3031 serge 2854
	/* None available, try to steal one or wait for a user to finish */
2855
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2856
		if (reg->pin_count)
2857
			continue;
2332 Serge 2858
 
3031 serge 2859
		return reg;
2860
	}
2332 Serge 2861
 
4560 Serge 2862
deadlock:
2863
	/* Wait for completion of pending flips which consume fences */
2864
//   if (intel_has_pending_fb_unpin(dev))
2865
//       return ERR_PTR(-EAGAIN);
2866
 
2867
	return ERR_PTR(-EDEADLK);
3031 serge 2868
}
2332 Serge 2869
 
3031 serge 2870
/**
2871
 * i915_gem_object_get_fence - set up fencing for an object
2872
 * @obj: object to map through a fence reg
2873
 *
2874
 * When mapping objects through the GTT, userspace wants to be able to write
2875
 * to them without having to worry about swizzling if the object is tiled.
2876
 * This function walks the fence regs looking for a free one for @obj,
2877
 * stealing one if it can't find any.
2878
 *
2879
 * It then sets up the reg based on the object's properties: address, pitch
2880
 * and tiling format.
2881
 *
2882
 * For an untiled surface, this removes any existing fence.
2883
 */
2884
int
2885
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2886
{
2887
	struct drm_device *dev = obj->base.dev;
2888
	struct drm_i915_private *dev_priv = dev->dev_private;
2889
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2890
	struct drm_i915_fence_reg *reg;
2891
	int ret;
2332 Serge 2892
 
3031 serge 2893
	/* Have we updated the tiling parameters upon the object and so
2894
	 * will need to serialise the write to the associated fence register?
2895
	 */
2896
	if (obj->fence_dirty) {
3480 Serge 2897
		ret = i915_gem_object_wait_fence(obj);
3031 serge 2898
		if (ret)
2899
			return ret;
2900
	}
2332 Serge 2901
 
3031 serge 2902
	/* Just update our place in the LRU if our fence is getting reused. */
2903
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2904
		reg = &dev_priv->fence_regs[obj->fence_reg];
2905
		if (!obj->fence_dirty) {
2906
			list_move_tail(®->lru_list,
2907
				       &dev_priv->mm.fence_list);
2908
			return 0;
2909
		}
2910
	} else if (enable) {
5354 serge 2911
		if (WARN_ON(!obj->map_and_fenceable))
2912
			return -EINVAL;
2913
 
3031 serge 2914
		reg = i915_find_fence_reg(dev);
4560 Serge 2915
		if (IS_ERR(reg))
2916
			return PTR_ERR(reg);
2332 Serge 2917
 
3031 serge 2918
		if (reg->obj) {
2919
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2920
 
3480 Serge 2921
			ret = i915_gem_object_wait_fence(old);
3031 serge 2922
			if (ret)
2923
				return ret;
2332 Serge 2924
 
3031 serge 2925
			i915_gem_object_fence_lost(old);
2926
		}
2927
	} else
2928
		return 0;
2332 Serge 2929
 
3031 serge 2930
	i915_gem_object_update_fence(obj, reg, enable);
2332 Serge 2931
 
3031 serge 2932
	return 0;
2933
}
2332 Serge 2934
 
5354 serge 2935
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3031 serge 2936
				     unsigned long cache_level)
2937
{
5354 serge 2938
	struct drm_mm_node *gtt_space = &vma->node;
3031 serge 2939
	struct drm_mm_node *other;
2332 Serge 2940
 
5354 serge 2941
	/*
2942
	 * On some machines we have to be careful when putting differing types
2943
	 * of snoopable memory together to avoid the prefetcher crossing memory
2944
	 * domains and dying. During vm initialisation, we decide whether or not
2945
	 * these constraints apply and set the drm_mm.color_adjust
2946
	 * appropriately.
3031 serge 2947
	 */
5354 serge 2948
	if (vma->vm->mm.color_adjust == NULL)
3031 serge 2949
		return true;
2332 Serge 2950
 
4104 Serge 2951
	if (!drm_mm_node_allocated(gtt_space))
3031 serge 2952
		return true;
2332 Serge 2953
 
3031 serge 2954
	if (list_empty(>t_space->node_list))
2955
		return true;
2332 Serge 2956
 
3031 serge 2957
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2958
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2959
		return false;
2344 Serge 2960
 
3031 serge 2961
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2962
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2963
		return false;
2344 Serge 2964
 
3031 serge 2965
	return true;
2966
}
2344 Serge 2967
 
2332 Serge 2968
/**
2969
 * Finds free space in the GTT aperture and binds the object there.
2970
 */
5060 serge 2971
static struct i915_vma *
4104 Serge 2972
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
2973
			   struct i915_address_space *vm,
2332 Serge 2974
			    unsigned alignment,
5060 serge 2975
			   uint64_t flags)
2332 Serge 2976
{
2977
	struct drm_device *dev = obj->base.dev;
5060 serge 2978
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 2979
	u32 size, fence_size, fence_alignment, unfenced_alignment;
5060 serge 2980
	unsigned long start =
2981
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
2982
	unsigned long end =
2983
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
4104 Serge 2984
	struct i915_vma *vma;
2332 Serge 2985
	int ret;
2326 Serge 2986
 
2332 Serge 2987
	fence_size = i915_gem_get_gtt_size(dev,
2988
					   obj->base.size,
2989
					   obj->tiling_mode);
2990
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2991
						     obj->base.size,
3480 Serge 2992
						     obj->tiling_mode, true);
2332 Serge 2993
	unfenced_alignment =
3480 Serge 2994
		i915_gem_get_gtt_alignment(dev,
2332 Serge 2995
						    obj->base.size,
3480 Serge 2996
						    obj->tiling_mode, false);
2332 Serge 2997
 
2998
	if (alignment == 0)
5060 serge 2999
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
2332 Serge 3000
						unfenced_alignment;
5060 serge 3001
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3002
		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3003
		return ERR_PTR(-EINVAL);
2332 Serge 3004
	}
3005
 
5060 serge 3006
	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
2332 Serge 3007
 
3008
	/* If the object is bigger than the entire aperture, reject it early
3009
	 * before evicting everything in a vain attempt to find space.
3010
	 */
5060 serge 3011
	if (obj->base.size > end) {
3012
		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
4104 Serge 3013
			  obj->base.size,
5060 serge 3014
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3015
			  end);
3016
		return ERR_PTR(-E2BIG);
2332 Serge 3017
	}
3018
 
3031 serge 3019
	ret = i915_gem_object_get_pages(obj);
3020
	if (ret)
5060 serge 3021
		return ERR_PTR(ret);
3031 serge 3022
 
3243 Serge 3023
	i915_gem_object_pin_pages(obj);
3024
 
4104 Serge 3025
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
5060 serge 3026
	if (IS_ERR(vma))
4104 Serge 3027
		goto err_unpin;
3243 Serge 3028
 
4104 Serge 3029
search_free:
3030
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3031
						  size, alignment,
5060 serge 3032
						  obj->cache_level,
3033
						  start, end,
3034
						  DRM_MM_SEARCH_DEFAULT,
3035
						  DRM_MM_CREATE_DEFAULT);
3243 Serge 3036
	if (ret) {
2332 Serge 3037
 
4104 Serge 3038
		goto err_free_vma;
2332 Serge 3039
	}
5354 serge 3040
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
4104 Serge 3041
		ret = -EINVAL;
3042
		goto err_remove_node;
3031 serge 3043
	}
2332 Serge 3044
 
3031 serge 3045
	ret = i915_gem_gtt_prepare_object(obj);
4104 Serge 3046
	if (ret)
3047
		goto err_remove_node;
2332 Serge 3048
 
4104 Serge 3049
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3050
	list_add_tail(&vma->mm_list, &vm->inactive_list);
2332 Serge 3051
 
5060 serge 3052
	trace_i915_vma_bind(vma, flags);
3053
	vma->bind_vma(vma, obj->cache_level,
5354 serge 3054
		      flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
5060 serge 3055
 
3056
	return vma;
4104 Serge 3057
 
3058
err_remove_node:
3059
	drm_mm_remove_node(&vma->node);
3060
err_free_vma:
3061
	i915_gem_vma_destroy(vma);
5060 serge 3062
	vma = ERR_PTR(ret);
4104 Serge 3063
err_unpin:
3064
	i915_gem_object_unpin_pages(obj);
5060 serge 3065
	return vma;
2332 Serge 3066
}
3067
 
4104 Serge 3068
bool
3069
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3070
			bool force)
2332 Serge 3071
{
3072
	/* If we don't have a page list set up, then we're not pinned
3073
	 * to GPU, and we can ignore the cache flush because it'll happen
3074
	 * again at bind time.
3075
	 */
3243 Serge 3076
	if (obj->pages == NULL)
4104 Serge 3077
		return false;
2332 Serge 3078
 
3480 Serge 3079
	/*
3080
	 * Stolen memory is always coherent with the GPU as it is explicitly
3081
	 * marked as wc by the system, or the system is cache-coherent.
3082
	 */
5354 serge 3083
	if (obj->stolen || obj->phys_handle)
4104 Serge 3084
		return false;
3480 Serge 3085
 
2332 Serge 3086
	/* If the GPU is snooping the contents of the CPU cache,
3087
	 * we do not need to manually clear the CPU cache lines.  However,
3088
	 * the caches are only snooped when the render cache is
3089
	 * flushed/invalidated.  As we always have to emit invalidations
3090
	 * and flushes when moving into and out of the RENDER domain, correct
3091
	 * snooping behaviour occurs naturally as the result of our domain
3092
	 * tracking.
3093
	 */
4104 Serge 3094
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3095
		return false;
2332 Serge 3096
 
4293 Serge 3097
	trace_i915_gem_object_clflush(obj);
3098
	drm_clflush_sg(obj->pages);
2344 Serge 3099
 
4104 Serge 3100
	return true;
2332 Serge 3101
}
3102
 
2344 Serge 3103
/** Flushes the GTT write domain for the object if it's dirty. */
3104
static void
3105
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3106
{
3107
	uint32_t old_write_domain;
2332 Serge 3108
 
2344 Serge 3109
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3110
		return;
2332 Serge 3111
 
2344 Serge 3112
	/* No actual flushing is required for the GTT write domain.  Writes
3113
	 * to it immediately go to main memory as far as we know, so there's
3114
	 * no chipset flush.  It also doesn't land in render cache.
3115
	 *
3116
	 * However, we do have to enforce the order so that all writes through
3117
	 * the GTT land before any writes to the device, such as updates to
3118
	 * the GATT itself.
3119
	 */
3120
	wmb();
2332 Serge 3121
 
2344 Serge 3122
	old_write_domain = obj->base.write_domain;
3123
	obj->base.write_domain = 0;
2332 Serge 3124
 
5354 serge 3125
	intel_fb_obj_flush(obj, false);
3126
 
2351 Serge 3127
	trace_i915_gem_object_change_domain(obj,
3128
					    obj->base.read_domains,
3129
					    old_write_domain);
2344 Serge 3130
}
2332 Serge 3131
 
3132
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 3133
static void
4104 Serge 3134
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3135
				       bool force)
2332 Serge 3136
{
3137
	uint32_t old_write_domain;
3138
 
3139
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3140
		return;
3141
 
4104 Serge 3142
	if (i915_gem_clflush_object(obj, force))
3243 Serge 3143
	i915_gem_chipset_flush(obj->base.dev);
4104 Serge 3144
 
2332 Serge 3145
	old_write_domain = obj->base.write_domain;
3146
	obj->base.write_domain = 0;
3147
 
5354 serge 3148
	intel_fb_obj_flush(obj, false);
3149
 
2351 Serge 3150
	trace_i915_gem_object_change_domain(obj,
3151
					    obj->base.read_domains,
3152
					    old_write_domain);
2332 Serge 3153
}
3154
 
3155
/**
3156
 * Moves a single object to the GTT read, and possibly write domain.
3157
 *
3158
 * This function returns when the move is complete, including waiting on
3159
 * flushes to occur.
3160
 */
3161
int
3162
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3163
{
5060 serge 3164
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
5354 serge 3165
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
2332 Serge 3166
	uint32_t old_write_domain, old_read_domains;
3167
	int ret;
3168
 
3169
	/* Not valid to be called on unbound objects. */
5354 serge 3170
	if (vma == NULL)
2332 Serge 3171
		return -EINVAL;
3172
 
3173
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3174
		return 0;
3175
 
3031 serge 3176
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 3177
		if (ret)
3178
			return ret;
3179
 
5060 serge 3180
	i915_gem_object_retire(obj);
4104 Serge 3181
	i915_gem_object_flush_cpu_write_domain(obj, false);
2332 Serge 3182
 
3480 Serge 3183
	/* Serialise direct access to this object with the barriers for
3184
	 * coherent writes from the GPU, by effectively invalidating the
3185
	 * GTT domain upon first access.
3186
	 */
3187
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3188
		mb();
3189
 
2332 Serge 3190
	old_write_domain = obj->base.write_domain;
3191
	old_read_domains = obj->base.read_domains;
3192
 
3193
	/* It should now be out of any other write domains, and we can update
3194
	 * the domain values for our changes.
3195
	 */
3196
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3197
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3198
	if (write) {
3199
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3200
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3201
		obj->dirty = 1;
3202
	}
3203
 
5354 serge 3204
	if (write)
3205
		intel_fb_obj_invalidate(obj, NULL);
3206
 
2351 Serge 3207
	trace_i915_gem_object_change_domain(obj,
3208
					    old_read_domains,
3209
					    old_write_domain);
3210
 
3031 serge 3211
	/* And bump the LRU for this access */
5354 serge 3212
	if (i915_gem_object_is_inactive(obj))
4104 Serge 3213
			list_move_tail(&vma->mm_list,
3214
				       &dev_priv->gtt.base.inactive_list);
3031 serge 3215
 
2332 Serge 3216
	return 0;
3217
}
3218
 
2335 Serge 3219
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3220
				    enum i915_cache_level cache_level)
3221
{
3031 serge 3222
	struct drm_device *dev = obj->base.dev;
5060 serge 3223
	struct i915_vma *vma, *next;
2335 Serge 3224
	int ret;
2332 Serge 3225
 
2335 Serge 3226
	if (obj->cache_level == cache_level)
3227
		return 0;
2332 Serge 3228
 
5060 serge 3229
	if (i915_gem_obj_is_pinned(obj)) {
2335 Serge 3230
		DRM_DEBUG("can not change the cache level of pinned objects\n");
3231
		return -EBUSY;
3232
	}
2332 Serge 3233
 
5060 serge 3234
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
5354 serge 3235
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4104 Serge 3236
			ret = i915_vma_unbind(vma);
3031 serge 3237
		if (ret)
3238
			return ret;
4104 Serge 3239
		}
3031 serge 3240
	}
3241
 
4104 Serge 3242
	if (i915_gem_obj_bound_any(obj)) {
2335 Serge 3243
		ret = i915_gem_object_finish_gpu(obj);
3244
		if (ret)
3245
			return ret;
2332 Serge 3246
 
2335 Serge 3247
		i915_gem_object_finish_gtt(obj);
2332 Serge 3248
 
2335 Serge 3249
		/* Before SandyBridge, you could not use tiling or fence
3250
		 * registers with snooped memory, so relinquish any fences
3251
		 * currently pointing to our region in the aperture.
3252
		 */
3031 serge 3253
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 3254
			ret = i915_gem_object_put_fence(obj);
3255
			if (ret)
3256
				return ret;
5060 serge 3257
            }
2332 Serge 3258
 
5060 serge 3259
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3260
			if (drm_mm_node_allocated(&vma->node))
3261
				vma->bind_vma(vma, cache_level,
5354 serge 3262
						vma->bound & GLOBAL_BIND);
2335 Serge 3263
	}
2332 Serge 3264
 
4104 Serge 3265
	list_for_each_entry(vma, &obj->vma_list, vma_link)
3266
		vma->node.color = cache_level;
3267
	obj->cache_level = cache_level;
3268
 
3269
	if (cpu_write_needs_clflush(obj)) {
2335 Serge 3270
		u32 old_read_domains, old_write_domain;
2332 Serge 3271
 
2335 Serge 3272
		/* If we're coming from LLC cached, then we haven't
3273
		 * actually been tracking whether the data is in the
3274
		 * CPU cache or not, since we only allow one bit set
3275
		 * in obj->write_domain and have been skipping the clflushes.
3276
		 * Just set it to the CPU cache for now.
3277
		 */
5060 serge 3278
		i915_gem_object_retire(obj);
2335 Serge 3279
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2332 Serge 3280
 
2335 Serge 3281
		old_read_domains = obj->base.read_domains;
3282
		old_write_domain = obj->base.write_domain;
2332 Serge 3283
 
2335 Serge 3284
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3285
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 3286
 
2351 Serge 3287
		trace_i915_gem_object_change_domain(obj,
3288
						    old_read_domains,
3289
						    old_write_domain);
2344 Serge 3290
    }
2332 Serge 3291
 
2335 Serge 3292
	return 0;
3293
}
2332 Serge 3294
 
3260 Serge 3295
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3296
			       struct drm_file *file)
3297
{
3298
	struct drm_i915_gem_caching *args = data;
3299
	struct drm_i915_gem_object *obj;
3300
	int ret;
3301
 
3302
	ret = i915_mutex_lock_interruptible(dev);
3303
	if (ret)
3304
		return ret;
3305
 
3306
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3307
	if (&obj->base == NULL) {
3308
		ret = -ENOENT;
3309
		goto unlock;
3310
	}
3311
 
4104 Serge 3312
	switch (obj->cache_level) {
3313
	case I915_CACHE_LLC:
3314
	case I915_CACHE_L3_LLC:
3315
		args->caching = I915_CACHING_CACHED;
3316
		break;
3260 Serge 3317
 
4104 Serge 3318
	case I915_CACHE_WT:
3319
		args->caching = I915_CACHING_DISPLAY;
3320
		break;
3321
 
3322
	default:
3323
		args->caching = I915_CACHING_NONE;
3324
		break;
3325
	}
3326
 
3260 Serge 3327
	drm_gem_object_unreference(&obj->base);
3328
unlock:
3329
	mutex_unlock(&dev->struct_mutex);
3330
	return ret;
3331
}
3332
 
3333
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3334
			       struct drm_file *file)
3335
{
3336
	struct drm_i915_gem_caching *args = data;
3337
	struct drm_i915_gem_object *obj;
3338
	enum i915_cache_level level;
3339
	int ret;
3340
 
3341
	switch (args->caching) {
3342
	case I915_CACHING_NONE:
3343
		level = I915_CACHE_NONE;
3344
		break;
3345
	case I915_CACHING_CACHED:
3346
		level = I915_CACHE_LLC;
3347
		break;
4104 Serge 3348
	case I915_CACHING_DISPLAY:
3349
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3350
		break;
3260 Serge 3351
	default:
3352
		return -EINVAL;
3353
	}
3354
 
3355
	ret = i915_mutex_lock_interruptible(dev);
3356
	if (ret)
3357
		return ret;
3358
 
3359
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3360
	if (&obj->base == NULL) {
3361
		ret = -ENOENT;
3362
		goto unlock;
3363
	}
3364
 
3365
	ret = i915_gem_object_set_cache_level(obj, level);
3366
 
3367
	drm_gem_object_unreference(&obj->base);
3368
unlock:
3369
	mutex_unlock(&dev->struct_mutex);
3370
	return ret;
3371
}
3372
 
4104 Serge 3373
static bool is_pin_display(struct drm_i915_gem_object *obj)
3374
{
5060 serge 3375
	struct i915_vma *vma;
3376
 
3377
	vma = i915_gem_obj_to_ggtt(obj);
3378
	if (!vma)
3379
		return false;
3380
 
4104 Serge 3381
	/* There are 3 sources that pin objects:
3382
	 *   1. The display engine (scanouts, sprites, cursors);
3383
	 *   2. Reservations for execbuffer;
3384
	 *   3. The user.
3385
	 *
3386
	 * We can ignore reservations as we hold the struct_mutex and
3387
	 * are only called outside of the reservation path.  The user
3388
	 * can only increment pin_count once, and so if after
3389
	 * subtracting the potential reference by the user, any pin_count
3390
	 * remains, it must be due to another use by the display engine.
3391
	 */
5060 serge 3392
	return vma->pin_count - !!obj->user_pin_count;
4104 Serge 3393
}
3394
 
2335 Serge 3395
/*
3396
 * Prepare buffer for display plane (scanout, cursors, etc).
3397
 * Can be called from an uninterruptible phase (modesetting) and allows
3398
 * any flushes to be pipelined (for pageflips).
3399
 */
3400
int
3401
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3402
				     u32 alignment,
5060 serge 3403
				     struct intel_engine_cs *pipelined)
2335 Serge 3404
{
3405
	u32 old_read_domains, old_write_domain;
5060 serge 3406
	bool was_pin_display;
2335 Serge 3407
	int ret;
2332 Serge 3408
 
3031 serge 3409
	if (pipelined != obj->ring) {
3410
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3411
	if (ret)
3412
		return ret;
3413
	}
2332 Serge 3414
 
4104 Serge 3415
	/* Mark the pin_display early so that we account for the
3416
	 * display coherency whilst setting up the cache domains.
3417
	 */
5060 serge 3418
	was_pin_display = obj->pin_display;
4104 Serge 3419
	obj->pin_display = true;
3420
 
2335 Serge 3421
	/* The display engine is not coherent with the LLC cache on gen6.  As
3422
	 * a result, we make sure that the pinning that is about to occur is
3423
	 * done with uncached PTEs. This is lowest common denominator for all
3424
	 * chipsets.
3425
	 *
3426
	 * However for gen6+, we could do better by using the GFDT bit instead
3427
	 * of uncaching, which would allow us to flush all the LLC-cached data
3428
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3429
	 */
4104 Serge 3430
	ret = i915_gem_object_set_cache_level(obj,
3431
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
2360 Serge 3432
	if (ret)
4104 Serge 3433
		goto err_unpin_display;
2332 Serge 3434
 
2335 Serge 3435
	/* As the user may map the buffer once pinned in the display plane
3436
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3437
	 * always use map_and_fenceable for all scanout buffers.
3438
	 */
5060 serge 3439
	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2335 Serge 3440
	if (ret)
4104 Serge 3441
		goto err_unpin_display;
2332 Serge 3442
 
4104 Serge 3443
	i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 3444
 
2335 Serge 3445
	old_write_domain = obj->base.write_domain;
3446
	old_read_domains = obj->base.read_domains;
2332 Serge 3447
 
2335 Serge 3448
	/* It should now be out of any other write domains, and we can update
3449
	 * the domain values for our changes.
3450
	 */
3031 serge 3451
	obj->base.write_domain = 0;
2335 Serge 3452
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3453
 
2351 Serge 3454
	trace_i915_gem_object_change_domain(obj,
3455
					    old_read_domains,
3456
					    old_write_domain);
2332 Serge 3457
 
2335 Serge 3458
	return 0;
4104 Serge 3459
 
3460
err_unpin_display:
5060 serge 3461
	WARN_ON(was_pin_display != is_pin_display(obj));
3462
	obj->pin_display = was_pin_display;
4104 Serge 3463
	return ret;
2335 Serge 3464
}
2332 Serge 3465
 
4104 Serge 3466
void
3467
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3468
{
5060 serge 3469
	i915_gem_object_ggtt_unpin(obj);
4104 Serge 3470
	obj->pin_display = is_pin_display(obj);
3471
}
3472
 
2344 Serge 3473
int
3474
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3475
{
3476
	int ret;
2332 Serge 3477
 
2344 Serge 3478
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3479
		return 0;
2332 Serge 3480
 
3031 serge 3481
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3482
    if (ret)
3483
        return ret;
2332 Serge 3484
 
2344 Serge 3485
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3486
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3487
	return 0;
2344 Serge 3488
}
2332 Serge 3489
 
2344 Serge 3490
/**
3491
 * Moves a single object to the CPU read, and possibly write domain.
3492
 *
3493
 * This function returns when the move is complete, including waiting on
3494
 * flushes to occur.
3495
 */
3031 serge 3496
int
2344 Serge 3497
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3498
{
3499
	uint32_t old_write_domain, old_read_domains;
3500
	int ret;
2332 Serge 3501
 
2344 Serge 3502
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3503
		return 0;
2332 Serge 3504
 
3031 serge 3505
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3506
	if (ret)
3507
		return ret;
2332 Serge 3508
 
5060 serge 3509
	i915_gem_object_retire(obj);
2344 Serge 3510
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3511
 
2344 Serge 3512
	old_write_domain = obj->base.write_domain;
3513
	old_read_domains = obj->base.read_domains;
2332 Serge 3514
 
2344 Serge 3515
	/* Flush the CPU cache if it's still invalid. */
3516
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4104 Serge 3517
		i915_gem_clflush_object(obj, false);
2332 Serge 3518
 
2344 Serge 3519
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3520
	}
2332 Serge 3521
 
2344 Serge 3522
	/* It should now be out of any other write domains, and we can update
3523
	 * the domain values for our changes.
3524
	 */
3525
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3526
 
2344 Serge 3527
	/* If we're writing through the CPU, then the GPU read domains will
3528
	 * need to be invalidated at next use.
3529
	 */
3530
	if (write) {
3531
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3532
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3533
	}
2332 Serge 3534
 
5354 serge 3535
	if (write)
3536
		intel_fb_obj_invalidate(obj, NULL);
3537
 
2351 Serge 3538
	trace_i915_gem_object_change_domain(obj,
3539
					    old_read_domains,
3540
					    old_write_domain);
2332 Serge 3541
 
2344 Serge 3542
	return 0;
3543
}
2332 Serge 3544
 
3031 serge 3545
/* Throttle our rendering by waiting until the ring has completed our requests
3546
 * emitted over 20 msec ago.
2344 Serge 3547
 *
3031 serge 3548
 * Note that if we were to use the current jiffies each time around the loop,
3549
 * we wouldn't escape the function with any frames outstanding if the time to
3550
 * render a frame was over 20ms.
3551
 *
3552
 * This should get us reasonable parallelism between CPU and GPU but also
3553
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3554
 */
3031 serge 3555
static int
3556
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3557
{
3031 serge 3558
	struct drm_i915_private *dev_priv = dev->dev_private;
3559
	struct drm_i915_file_private *file_priv = file->driver_priv;
5060 serge 3560
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3031 serge 3561
	struct drm_i915_gem_request *request;
5060 serge 3562
	struct intel_engine_cs *ring = NULL;
3480 Serge 3563
	unsigned reset_counter;
3031 serge 3564
	u32 seqno = 0;
3565
	int ret;
2332 Serge 3566
 
3480 Serge 3567
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3568
	if (ret)
3569
		return ret;
2332 Serge 3570
 
3480 Serge 3571
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3572
	if (ret)
3573
		return ret;
3574
 
3031 serge 3575
	spin_lock(&file_priv->mm.lock);
3576
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3577
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3578
			break;
2332 Serge 3579
 
3031 serge 3580
		ring = request->ring;
3581
		seqno = request->seqno;
3582
	}
3480 Serge 3583
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 3584
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3585
 
3031 serge 3586
	if (seqno == 0)
3587
		return 0;
2332 Serge 3588
 
5354 serge 3589
	ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3031 serge 3590
	if (ret == 0)
3591
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3592
 
3031 serge 3593
	return ret;
2352 Serge 3594
}
2332 Serge 3595
 
5060 serge 3596
static bool
3597
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3598
{
3599
	struct drm_i915_gem_object *obj = vma->obj;
3600
 
3601
	if (alignment &&
3602
	    vma->node.start & (alignment - 1))
3603
		return true;
3604
 
3605
	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3606
		return true;
3607
 
3608
	if (flags & PIN_OFFSET_BIAS &&
3609
	    vma->node.start < (flags & PIN_OFFSET_MASK))
3610
		return true;
3611
 
3612
	return false;
3613
}
3614
 
2332 Serge 3615
int
3616
i915_gem_object_pin(struct drm_i915_gem_object *obj,
4104 Serge 3617
		    struct i915_address_space *vm,
2332 Serge 3618
		    uint32_t alignment,
5060 serge 3619
		    uint64_t flags)
2332 Serge 3620
{
5060 serge 3621
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4104 Serge 3622
	struct i915_vma *vma;
5354 serge 3623
	unsigned bound;
2332 Serge 3624
	int ret;
3625
 
5060 serge 3626
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3627
		return -ENODEV;
2332 Serge 3628
 
5060 serge 3629
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3630
		return -EINVAL;
4104 Serge 3631
 
5354 serge 3632
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
3633
		return -EINVAL;
3634
 
4104 Serge 3635
	vma = i915_gem_obj_to_vma(obj, vm);
5060 serge 3636
	if (vma) {
3637
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3638
			return -EBUSY;
4104 Serge 3639
 
5060 serge 3640
		if (i915_vma_misplaced(vma, alignment, flags)) {
3641
			WARN(vma->pin_count,
2332 Serge 3642
			     "bo is already pinned with incorrect alignment:"
4104 Serge 3643
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
2332 Serge 3644
			     " obj->map_and_fenceable=%d\n",
4104 Serge 3645
			     i915_gem_obj_offset(obj, vm), alignment,
5060 serge 3646
			     !!(flags & PIN_MAPPABLE),
2332 Serge 3647
			     obj->map_and_fenceable);
4104 Serge 3648
			ret = i915_vma_unbind(vma);
2332 Serge 3649
			if (ret)
3650
				return ret;
5060 serge 3651
 
3652
			vma = NULL;
2332 Serge 3653
		}
3654
	}
3655
 
5354 serge 3656
	bound = vma ? vma->bound : 0;
5060 serge 3657
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3658
		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3659
		if (IS_ERR(vma))
3660
			return PTR_ERR(vma);
2332 Serge 3661
	}
3662
 
5354 serge 3663
	if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
5060 serge 3664
		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3031 serge 3665
 
5354 serge 3666
	if ((bound ^ vma->bound) & GLOBAL_BIND) {
3667
		bool mappable, fenceable;
3668
		u32 fence_size, fence_alignment;
3669
 
3670
		fence_size = i915_gem_get_gtt_size(obj->base.dev,
3671
						   obj->base.size,
3672
						   obj->tiling_mode);
3673
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
3674
							     obj->base.size,
3675
							     obj->tiling_mode,
3676
							     true);
3677
 
3678
		fenceable = (vma->node.size == fence_size &&
3679
			     (vma->node.start & (fence_alignment - 1)) == 0);
3680
 
3681
		mappable = (vma->node.start + obj->base.size <=
3682
			    dev_priv->gtt.mappable_end);
3683
 
3684
		obj->map_and_fenceable = mappable && fenceable;
3685
	}
3686
 
3687
	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3688
 
5060 serge 3689
	vma->pin_count++;
3690
	if (flags & PIN_MAPPABLE)
3691
		obj->pin_mappable |= true;
2332 Serge 3692
 
3693
	return 0;
3694
}
3695
 
2344 Serge 3696
void
5060 serge 3697
i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
2344 Serge 3698
{
5060 serge 3699
	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
2332 Serge 3700
 
5060 serge 3701
	BUG_ON(!vma);
3702
	BUG_ON(vma->pin_count == 0);
3703
	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3704
 
3705
	if (--vma->pin_count == 0)
2344 Serge 3706
		obj->pin_mappable = false;
3707
}
2332 Serge 3708
 
5060 serge 3709
bool
3710
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
3711
{
3712
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3713
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3714
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
3715
 
3716
		WARN_ON(!ggtt_vma ||
3717
			dev_priv->fence_regs[obj->fence_reg].pin_count >
3718
			ggtt_vma->pin_count);
3719
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
3720
		return true;
3721
	} else
3722
		return false;
3723
}
3724
 
3725
void
3726
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
3727
{
3728
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3729
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3730
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
3731
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
3732
	}
3733
}
3734
 
3031 serge 3735
int
3736
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3737
		   struct drm_file *file)
3738
{
3739
	struct drm_i915_gem_pin *args = data;
3740
	struct drm_i915_gem_object *obj;
3741
	int ret;
2332 Serge 3742
 
5354 serge 3743
	if (drm_core_check_feature(dev, DRIVER_MODESET))
5060 serge 3744
		return -ENODEV;
3745
 
3031 serge 3746
	ret = i915_mutex_lock_interruptible(dev);
3747
	if (ret)
3748
		return ret;
2332 Serge 3749
 
3031 serge 3750
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3751
	if (&obj->base == NULL) {
3752
		ret = -ENOENT;
3753
		goto unlock;
3754
	}
2332 Serge 3755
 
3031 serge 3756
	if (obj->madv != I915_MADV_WILLNEED) {
5060 serge 3757
		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
3758
		ret = -EFAULT;
3031 serge 3759
		goto out;
3760
	}
2332 Serge 3761
 
3031 serge 3762
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
5060 serge 3763
		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
3031 serge 3764
			  args->handle);
3765
		ret = -EINVAL;
3766
		goto out;
3767
	}
2332 Serge 3768
 
4560 Serge 3769
	if (obj->user_pin_count == ULONG_MAX) {
3770
		ret = -EBUSY;
3771
		goto out;
3772
	}
3773
 
3243 Serge 3774
	if (obj->user_pin_count == 0) {
5060 serge 3775
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
3031 serge 3776
		if (ret)
3777
			goto out;
3778
	}
2332 Serge 3779
 
3243 Serge 3780
	obj->user_pin_count++;
3781
	obj->pin_filp = file;
3782
 
4104 Serge 3783
	args->offset = i915_gem_obj_ggtt_offset(obj);
3031 serge 3784
out:
3785
	drm_gem_object_unreference(&obj->base);
3786
unlock:
3787
	mutex_unlock(&dev->struct_mutex);
3788
	return ret;
3789
}
2332 Serge 3790
 
3031 serge 3791
int
3792
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3793
		     struct drm_file *file)
3794
{
3795
	struct drm_i915_gem_pin *args = data;
3796
	struct drm_i915_gem_object *obj;
3797
	int ret;
2332 Serge 3798
 
5354 serge 3799
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3800
		return -ENODEV;
3801
 
3031 serge 3802
	ret = i915_mutex_lock_interruptible(dev);
3803
	if (ret)
3804
		return ret;
2332 Serge 3805
 
3031 serge 3806
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3807
	if (&obj->base == NULL) {
3808
		ret = -ENOENT;
3809
		goto unlock;
3810
	}
2332 Serge 3811
 
3031 serge 3812
	if (obj->pin_filp != file) {
5060 serge 3813
		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3031 serge 3814
			  args->handle);
3815
		ret = -EINVAL;
3816
		goto out;
3817
	}
3818
	obj->user_pin_count--;
3819
	if (obj->user_pin_count == 0) {
3820
		obj->pin_filp = NULL;
5060 serge 3821
		i915_gem_object_ggtt_unpin(obj);
3031 serge 3822
	}
2332 Serge 3823
 
3031 serge 3824
out:
3825
	drm_gem_object_unreference(&obj->base);
3826
unlock:
3827
	mutex_unlock(&dev->struct_mutex);
3828
	return ret;
3829
}
2332 Serge 3830
 
3031 serge 3831
int
3832
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3833
		    struct drm_file *file)
3834
{
3835
	struct drm_i915_gem_busy *args = data;
3836
	struct drm_i915_gem_object *obj;
3837
	int ret;
2332 Serge 3838
 
3031 serge 3839
	ret = i915_mutex_lock_interruptible(dev);
3840
	if (ret)
3841
		return ret;
2332 Serge 3842
 
5060 serge 3843
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3031 serge 3844
	if (&obj->base == NULL) {
3845
		ret = -ENOENT;
3846
		goto unlock;
3847
	}
2332 Serge 3848
 
3031 serge 3849
	/* Count all active objects as busy, even if they are currently not used
3850
	 * by the gpu. Users of this interface expect objects to eventually
3851
	 * become non-busy without any further actions, therefore emit any
3852
	 * necessary flushes here.
3853
	 */
3854
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3855
 
3031 serge 3856
	args->busy = obj->active;
3857
	if (obj->ring) {
3858
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3859
		args->busy |= intel_ring_flag(obj->ring) << 16;
3860
	}
2332 Serge 3861
 
3031 serge 3862
	drm_gem_object_unreference(&obj->base);
3863
unlock:
3864
	mutex_unlock(&dev->struct_mutex);
3865
	return ret;
3866
}
2332 Serge 3867
 
3031 serge 3868
int
3869
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3870
			struct drm_file *file_priv)
3871
{
3872
	return i915_gem_ring_throttle(dev, file_priv);
3873
}
2332 Serge 3874
 
3263 Serge 3875
#if 0
3876
 
3031 serge 3877
int
3878
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3879
		       struct drm_file *file_priv)
3880
{
5354 serge 3881
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 3882
	struct drm_i915_gem_madvise *args = data;
3883
	struct drm_i915_gem_object *obj;
3884
	int ret;
2332 Serge 3885
 
3031 serge 3886
	switch (args->madv) {
3887
	case I915_MADV_DONTNEED:
3888
	case I915_MADV_WILLNEED:
3889
	    break;
3890
	default:
3891
	    return -EINVAL;
3892
	}
2332 Serge 3893
 
3031 serge 3894
	ret = i915_mutex_lock_interruptible(dev);
3895
	if (ret)
3896
		return ret;
2332 Serge 3897
 
3031 serge 3898
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3899
	if (&obj->base == NULL) {
3900
		ret = -ENOENT;
3901
		goto unlock;
3902
	}
2332 Serge 3903
 
5060 serge 3904
	if (i915_gem_obj_is_pinned(obj)) {
3031 serge 3905
		ret = -EINVAL;
3906
		goto out;
3907
	}
2332 Serge 3908
 
5354 serge 3909
	if (obj->pages &&
3910
	    obj->tiling_mode != I915_TILING_NONE &&
3911
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3912
		if (obj->madv == I915_MADV_WILLNEED)
3913
			i915_gem_object_unpin_pages(obj);
3914
		if (args->madv == I915_MADV_WILLNEED)
3915
			i915_gem_object_pin_pages(obj);
3916
	}
3917
 
3031 serge 3918
	if (obj->madv != __I915_MADV_PURGED)
3919
		obj->madv = args->madv;
2332 Serge 3920
 
3031 serge 3921
	/* if the object is no longer attached, discard its backing storage */
3922
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3923
		i915_gem_object_truncate(obj);
2332 Serge 3924
 
3031 serge 3925
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3926
 
3031 serge 3927
out:
3928
	drm_gem_object_unreference(&obj->base);
3929
unlock:
3930
	mutex_unlock(&dev->struct_mutex);
3931
	return ret;
3932
}
3933
#endif
2332 Serge 3934
 
3031 serge 3935
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3936
			  const struct drm_i915_gem_object_ops *ops)
3937
{
4104 Serge 3938
	INIT_LIST_HEAD(&obj->global_list);
3031 serge 3939
	INIT_LIST_HEAD(&obj->ring_list);
4104 Serge 3940
	INIT_LIST_HEAD(&obj->obj_exec_link);
3941
	INIT_LIST_HEAD(&obj->vma_list);
2332 Serge 3942
 
3031 serge 3943
	obj->ops = ops;
3944
 
3945
	obj->fence_reg = I915_FENCE_REG_NONE;
3946
	obj->madv = I915_MADV_WILLNEED;
3947
 
3948
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3949
}
3950
 
3951
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3952
	.get_pages = i915_gem_object_get_pages_gtt,
3953
	.put_pages = i915_gem_object_put_pages_gtt,
3954
};
3955
 
2332 Serge 3956
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3957
						  size_t size)
3958
{
3959
	struct drm_i915_gem_object *obj;
3031 serge 3960
	struct address_space *mapping;
3480 Serge 3961
	gfp_t mask;
2340 Serge 3962
 
3746 Serge 3963
	obj = i915_gem_object_alloc(dev);
2332 Serge 3964
	if (obj == NULL)
3965
		return NULL;
3966
 
3967
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4104 Serge 3968
		i915_gem_object_free(obj);
2332 Serge 3969
		return NULL;
3970
	}
3971
 
3972
 
3031 serge 3973
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3974
 
3975
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3976
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3977
 
3031 serge 3978
	if (HAS_LLC(dev)) {
3979
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3980
		 * cache) for about a 10% performance improvement
3981
		 * compared to uncached.  Graphics requests other than
3982
		 * display scanout are coherent with the CPU in
3983
		 * accessing this cache.  This means in this mode we
3984
		 * don't need to clflush on the CPU side, and on the
3985
		 * GPU side we only need to flush internal caches to
3986
		 * get data visible to the CPU.
3987
		 *
3988
		 * However, we maintain the display planes as UC, and so
3989
		 * need to rebind when first used as such.
3990
		 */
3991
		obj->cache_level = I915_CACHE_LLC;
3992
	} else
3993
		obj->cache_level = I915_CACHE_NONE;
3994
 
4560 Serge 3995
	trace_i915_gem_object_create(obj);
3996
 
2332 Serge 3997
	return obj;
3998
}
3999
 
3031 serge 4000
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 4001
{
3031 serge 4002
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 4003
	struct drm_device *dev = obj->base.dev;
5060 serge 4004
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 4005
	struct i915_vma *vma, *next;
2332 Serge 4006
 
4560 Serge 4007
	intel_runtime_pm_get(dev_priv);
4008
 
3031 serge 4009
	trace_i915_gem_object_destroy(obj);
4010
 
5060 serge 4011
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4012
		int ret;
3031 serge 4013
 
5060 serge 4014
		vma->pin_count = 0;
4015
		ret = i915_vma_unbind(vma);
4104 Serge 4016
		if (WARN_ON(ret == -ERESTARTSYS)) {
3031 serge 4017
		bool was_interruptible;
4018
 
4019
		was_interruptible = dev_priv->mm.interruptible;
4020
		dev_priv->mm.interruptible = false;
4021
 
4104 Serge 4022
			WARN_ON(i915_vma_unbind(vma));
3031 serge 4023
 
4024
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 4025
	}
4104 Serge 4026
	}
2332 Serge 4027
 
4104 Serge 4028
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4029
	 * before progressing. */
4030
	if (obj->stolen)
4031
		i915_gem_object_unpin_pages(obj);
4032
 
5060 serge 4033
	WARN_ON(obj->frontbuffer_bits);
4034
 
5354 serge 4035
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4036
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4037
	    obj->tiling_mode != I915_TILING_NONE)
4038
		i915_gem_object_unpin_pages(obj);
4039
 
4104 Serge 4040
	if (WARN_ON(obj->pages_pin_count))
3031 serge 4041
	obj->pages_pin_count = 0;
4042
	i915_gem_object_put_pages(obj);
4043
//   i915_gem_object_free_mmap_offset(obj);
2332 Serge 4044
 
3243 Serge 4045
	BUG_ON(obj->pages);
2332 Serge 4046
 
3031 serge 4047
 
3290 Serge 4048
    if(obj->base.filp != NULL)
4049
    {
3298 Serge 4050
//        printf("filp %p\n", obj->base.filp);
3290 Serge 4051
        shmem_file_delete(obj->base.filp);
4052
    }
4053
 
2344 Serge 4054
	drm_gem_object_release(&obj->base);
4055
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 4056
 
2344 Serge 4057
	kfree(obj->bit_17);
4104 Serge 4058
	i915_gem_object_free(obj);
4560 Serge 4059
 
4060
	intel_runtime_pm_put(dev_priv);
2344 Serge 4061
}
2332 Serge 4062
 
4560 Serge 4063
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4104 Serge 4064
				     struct i915_address_space *vm)
4065
{
4560 Serge 4066
	struct i915_vma *vma;
4067
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4068
		if (vma->vm == vm)
4069
			return vma;
4070
 
4071
	return NULL;
4072
}
4073
 
4104 Serge 4074
void i915_gem_vma_destroy(struct i915_vma *vma)
4075
{
5354 serge 4076
	struct i915_address_space *vm = NULL;
4104 Serge 4077
	WARN_ON(vma->node.allocated);
4560 Serge 4078
 
4079
	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4080
	if (!list_empty(&vma->exec_list))
4081
		return;
4082
 
5354 serge 4083
	vm = vma->vm;
4084
 
4085
	if (!i915_is_ggtt(vm))
4086
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4087
 
4104 Serge 4088
	list_del(&vma->vma_link);
4560 Serge 4089
 
4104 Serge 4090
	kfree(vma);
4091
}
4092
 
3031 serge 4093
#if 0
4094
int
4560 Serge 4095
i915_gem_suspend(struct drm_device *dev)
2344 Serge 4096
{
5060 serge 4097
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4098
	int ret = 0;
2332 Serge 4099
 
4560 Serge 4100
	mutex_lock(&dev->struct_mutex);
3031 serge 4101
	ret = i915_gpu_idle(dev);
4560 Serge 4102
	if (ret)
4103
		goto err;
4104
 
3031 serge 4105
	i915_gem_retire_requests(dev);
4106
 
3480 Serge 4107
	/* Under UMS, be paranoid and evict. */
4108
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4109
		i915_gem_evict_everything(dev);
4110
 
5060 serge 4111
	i915_gem_stop_ringbuffers(dev);
4560 Serge 4112
	mutex_unlock(&dev->struct_mutex);
4113
 
4114
	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3263 Serge 4115
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
5060 serge 4116
	flush_delayed_work(&dev_priv->mm.idle_work);
3031 serge 4117
 
4118
	return 0;
4560 Serge 4119
 
4120
err:
4121
	mutex_unlock(&dev->struct_mutex);
4122
	return ret;
2344 Serge 4123
}
3031 serge 4124
#endif
2332 Serge 4125
 
5060 serge 4126
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
3031 serge 4127
{
4560 Serge 4128
	struct drm_device *dev = ring->dev;
5060 serge 4129
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4130
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4131
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4132
	int i, ret;
2332 Serge 4133
 
4560 Serge 4134
	if (!HAS_L3_DPF(dev) || !remap_info)
4135
		return 0;
2332 Serge 4136
 
4560 Serge 4137
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4138
	if (ret)
4139
		return ret;
2332 Serge 4140
 
4560 Serge 4141
	/*
4142
	 * Note: We do not worry about the concurrent register cacheline hang
4143
	 * here because no other code should access these registers other than
4144
	 * at initialization time.
4145
	 */
3031 serge 4146
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4560 Serge 4147
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4148
		intel_ring_emit(ring, reg_base + i);
4149
		intel_ring_emit(ring, remap_info[i/4]);
3031 serge 4150
	}
2332 Serge 4151
 
4560 Serge 4152
	intel_ring_advance(ring);
2332 Serge 4153
 
4560 Serge 4154
	return ret;
3031 serge 4155
}
2332 Serge 4156
 
3031 serge 4157
void i915_gem_init_swizzling(struct drm_device *dev)
4158
{
5060 serge 4159
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 4160
 
3031 serge 4161
	if (INTEL_INFO(dev)->gen < 5 ||
4162
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4163
		return;
2332 Serge 4164
 
3031 serge 4165
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4166
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 4167
 
3031 serge 4168
	if (IS_GEN5(dev))
4169
		return;
2344 Serge 4170
 
3031 serge 4171
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4172
	if (IS_GEN6(dev))
4173
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3480 Serge 4174
	else if (IS_GEN7(dev))
4175
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4560 Serge 4176
	else if (IS_GEN8(dev))
4177
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
3031 serge 4178
	else
3480 Serge 4179
		BUG();
3031 serge 4180
}
4181
 
4182
static bool
4183
intel_enable_blt(struct drm_device *dev)
4184
{
4185
	if (!HAS_BLT(dev))
4186
		return false;
4187
 
4188
	/* The blitter was dysfunctional on early prototypes */
4189
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4190
		DRM_INFO("BLT not supported on this pre-production hardware;"
4191
			 " graphics performance will be degraded.\n");
4192
		return false;
4193
	}
4194
 
4195
	return true;
4196
}
4197
 
5354 serge 4198
static void init_unused_ring(struct drm_device *dev, u32 base)
2332 Serge 4199
{
3480 Serge 4200
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 4201
 
4202
	I915_WRITE(RING_CTL(base), 0);
4203
	I915_WRITE(RING_HEAD(base), 0);
4204
	I915_WRITE(RING_TAIL(base), 0);
4205
	I915_WRITE(RING_START(base), 0);
4206
}
4207
 
4208
static void init_unused_rings(struct drm_device *dev)
4209
{
4210
	if (IS_I830(dev)) {
4211
		init_unused_ring(dev, PRB1_BASE);
4212
		init_unused_ring(dev, SRB0_BASE);
4213
		init_unused_ring(dev, SRB1_BASE);
4214
		init_unused_ring(dev, SRB2_BASE);
4215
		init_unused_ring(dev, SRB3_BASE);
4216
	} else if (IS_GEN2(dev)) {
4217
		init_unused_ring(dev, SRB0_BASE);
4218
		init_unused_ring(dev, SRB1_BASE);
4219
	} else if (IS_GEN3(dev)) {
4220
		init_unused_ring(dev, PRB1_BASE);
4221
		init_unused_ring(dev, PRB2_BASE);
4222
	}
4223
}
4224
 
4225
int i915_gem_init_rings(struct drm_device *dev)
4226
{
4227
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 4228
	int ret;
2351 Serge 4229
 
5354 serge 4230
	/*
4231
	 * At least 830 can leave some of the unused rings
4232
	 * "active" (ie. head != tail) after resume which
4233
	 * will prevent c3 entry. Makes sure all unused rings
4234
	 * are totally idle.
4235
	 */
4236
	init_unused_rings(dev);
4237
 
2332 Serge 4238
	ret = intel_init_render_ring_buffer(dev);
4239
	if (ret)
4240
		return ret;
4241
 
4242
    if (HAS_BSD(dev)) {
4243
		ret = intel_init_bsd_ring_buffer(dev);
4244
		if (ret)
4245
			goto cleanup_render_ring;
4246
	}
4247
 
3031 serge 4248
	if (intel_enable_blt(dev)) {
2332 Serge 4249
		ret = intel_init_blt_ring_buffer(dev);
4250
		if (ret)
4251
			goto cleanup_bsd_ring;
4252
	}
4253
 
4104 Serge 4254
	if (HAS_VEBOX(dev)) {
4255
		ret = intel_init_vebox_ring_buffer(dev);
4256
		if (ret)
4257
			goto cleanup_blt_ring;
4258
	}
4259
 
5060 serge 4260
	if (HAS_BSD2(dev)) {
4261
		ret = intel_init_bsd2_ring_buffer(dev);
4262
		if (ret)
4263
			goto cleanup_vebox_ring;
4264
	}
4104 Serge 4265
 
3480 Serge 4266
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4267
	if (ret)
5060 serge 4268
		goto cleanup_bsd2_ring;
2351 Serge 4269
 
2332 Serge 4270
	return 0;
4271
 
5060 serge 4272
cleanup_bsd2_ring:
4273
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4104 Serge 4274
cleanup_vebox_ring:
4275
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
3480 Serge 4276
cleanup_blt_ring:
4277
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
2332 Serge 4278
cleanup_bsd_ring:
4279
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4280
cleanup_render_ring:
4281
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3480 Serge 4282
 
2332 Serge 4283
	return ret;
4284
}
4285
 
3480 Serge 4286
int
4287
i915_gem_init_hw(struct drm_device *dev)
3031 serge 4288
{
5060 serge 4289
	struct drm_i915_private *dev_priv = dev->dev_private;
4560 Serge 4290
	int ret, i;
3031 serge 4291
 
3480 Serge 4292
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4293
		return -EIO;
3031 serge 4294
 
4104 Serge 4295
	if (dev_priv->ellc_size)
4296
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
3480 Serge 4297
 
4560 Serge 4298
	if (IS_HASWELL(dev))
4299
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4300
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4301
 
3746 Serge 4302
	if (HAS_PCH_NOP(dev)) {
5060 serge 4303
		if (IS_IVYBRIDGE(dev)) {
3746 Serge 4304
		u32 temp = I915_READ(GEN7_MSG_CTL);
4305
		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4306
		I915_WRITE(GEN7_MSG_CTL, temp);
5060 serge 4307
		} else if (INTEL_INFO(dev)->gen >= 7) {
4308
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4309
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4310
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4311
		}
3746 Serge 4312
	}
4313
 
3480 Serge 4314
	i915_gem_init_swizzling(dev);
4315
 
5354 serge 4316
	ret = dev_priv->gt.init_rings(dev);
3480 Serge 4317
	if (ret)
4318
		return ret;
4319
 
4560 Serge 4320
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4321
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4322
 
3480 Serge 4323
	/*
5060 serge 4324
	 * XXX: Contexts should only be initialized once. Doing a switch to the
4325
	 * default context switch however is something we'd like to do after
4326
	 * reset or thaw (the latter may not actually be necessary for HW, but
4327
	 * goes with our code better). Context switching requires rings (for
4328
	 * the do_switch), but before enabling PPGTT. So don't move this.
3480 Serge 4329
	 */
5060 serge 4330
	ret = i915_gem_context_enable(dev_priv);
4331
	if (ret && ret != -EIO) {
4332
		DRM_ERROR("Context enable failed %d\n", ret);
4560 Serge 4333
		i915_gem_cleanup_ringbuffer(dev);
5354 serge 4334
 
4335
		return ret;
4560 Serge 4336
	}
4337
 
5354 serge 4338
	ret = i915_ppgtt_init_hw(dev);
4339
	if (ret && ret != -EIO) {
4340
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4341
		i915_gem_cleanup_ringbuffer(dev);
4342
	}
4343
 
5060 serge 4344
	return ret;
3031 serge 4345
}
4346
 
4347
int i915_gem_init(struct drm_device *dev)
4348
{
4349
	struct drm_i915_private *dev_priv = dev->dev_private;
4350
	int ret;
4351
 
5354 serge 4352
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4353
			i915.enable_execlists);
4354
 
3031 serge 4355
	mutex_lock(&dev->struct_mutex);
3746 Serge 4356
 
4357
	if (IS_VALLEYVIEW(dev)) {
4358
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
5060 serge 4359
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4360
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4361
			      VLV_GTLC_ALLOWWAKEACK), 10))
3746 Serge 4362
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4363
	}
4364
 
5354 serge 4365
	if (!i915.enable_execlists) {
4366
		dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4367
		dev_priv->gt.init_rings = i915_gem_init_rings;
4368
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4369
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4370
	} else {
4371
		dev_priv->gt.do_execbuf = intel_execlists_submission;
4372
		dev_priv->gt.init_rings = intel_logical_rings_init;
4373
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4374
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4375
	}
4376
 
4377
//   ret = i915_gem_init_userptr(dev);
4378
//   if (ret) {
4379
//       mutex_unlock(&dev->struct_mutex);
4380
//       return ret;
4381
//   }
4382
 
5060 serge 4383
    i915_gem_init_global_gtt(dev);
3746 Serge 4384
 
5060 serge 4385
	ret = i915_gem_context_init(dev);
3031 serge 4386
	if (ret) {
5060 serge 4387
		mutex_unlock(&dev->struct_mutex);
3031 serge 4388
		return ret;
4389
	}
4390
 
5060 serge 4391
	ret = i915_gem_init_hw(dev);
4392
	if (ret == -EIO) {
4393
		/* Allow ring initialisation to fail by marking the GPU as
4394
		 * wedged. But we only want to do this where the GPU is angry,
4395
		 * for all other failure, such as an allocation failure, bail.
4396
		 */
4397
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4398
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4399
		ret = 0;
4400
	}
4401
	mutex_unlock(&dev->struct_mutex);
3746 Serge 4402
 
5060 serge 4403
		return ret;
3031 serge 4404
}
4405
 
2332 Serge 4406
void
4407
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4408
{
5060 serge 4409
	struct drm_i915_private *dev_priv = dev->dev_private;
4410
	struct intel_engine_cs *ring;
2332 Serge 4411
	int i;
4412
 
3031 serge 4413
	for_each_ring(ring, dev_priv, i)
5354 serge 4414
		dev_priv->gt.cleanup_ring(ring);
2332 Serge 4415
}
4416
 
4417
static void
5060 serge 4418
init_ring_lists(struct intel_engine_cs *ring)
2326 Serge 4419
{
4420
    INIT_LIST_HEAD(&ring->active_list);
4421
    INIT_LIST_HEAD(&ring->request_list);
4422
}
4423
 
5060 serge 4424
void i915_init_vm(struct drm_i915_private *dev_priv,
4104 Serge 4425
			 struct i915_address_space *vm)
4426
{
5060 serge 4427
	if (!i915_is_ggtt(vm))
4428
		drm_mm_init(&vm->mm, vm->start, vm->total);
4104 Serge 4429
	vm->dev = dev_priv->dev;
4430
	INIT_LIST_HEAD(&vm->active_list);
4431
	INIT_LIST_HEAD(&vm->inactive_list);
4432
	INIT_LIST_HEAD(&vm->global_link);
5060 serge 4433
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
4104 Serge 4434
}
4435
 
2326 Serge 4436
void
4437
i915_gem_load(struct drm_device *dev)
4438
{
5060 serge 4439
	struct drm_i915_private *dev_priv = dev->dev_private;
2326 Serge 4440
    int i;
4441
 
4104 Serge 4442
	INIT_LIST_HEAD(&dev_priv->vm_list);
4443
	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4444
 
4560 Serge 4445
	INIT_LIST_HEAD(&dev_priv->context_list);
3031 serge 4446
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4447
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 4448
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4449
    for (i = 0; i < I915_NUM_RINGS; i++)
4450
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 4451
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 4452
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 4453
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4454
			  i915_gem_retire_work_handler);
4560 Serge 4455
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4456
			  i915_gem_idle_work_handler);
3480 Serge 4457
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
2326 Serge 4458
 
4459
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5354 serge 4460
	if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
3031 serge 4461
		I915_WRITE(MI_ARB_STATE,
4462
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 4463
    }
4464
 
4465
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4466
 
5354 serge 4467
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4468
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4469
		dev_priv->fence_reg_start = 3;
4470
 
3746 Serge 4471
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4472
		dev_priv->num_fence_regs = 32;
4473
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2326 Serge 4474
        dev_priv->num_fence_regs = 16;
4475
    else
4476
        dev_priv->num_fence_regs = 8;
4477
 
4478
    /* Initialize fence registers to zero */
3746 Serge 4479
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4480
	i915_gem_restore_fences(dev);
2326 Serge 4481
 
4482
    i915_gem_detect_bit_6_swizzle(dev);
4483
 
4484
    dev_priv->mm.interruptible = true;
4485
 
5060 serge 4486
	mutex_init(&dev_priv->fb_tracking.lock);
2326 Serge 4487
}
4488
 
5060 serge 4489
int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4104 Serge 4490
{
5060 serge 4491
	struct drm_i915_file_private *file_priv;
4104 Serge 4492
	int ret;
2326 Serge 4493
 
5060 serge 4494
	DRM_DEBUG_DRIVER("\n");
4104 Serge 4495
 
5060 serge 4496
	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4497
	if (!file_priv)
4104 Serge 4498
		return -ENOMEM;
4499
 
5060 serge 4500
	file->driver_priv = file_priv;
4501
	file_priv->dev_priv = dev->dev_private;
4502
	file_priv->file = file;
4104 Serge 4503
 
5060 serge 4504
	spin_lock_init(&file_priv->mm.lock);
4505
	INIT_LIST_HEAD(&file_priv->mm.request_list);
4506
//	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4507
//			  i915_gem_file_idle_work_handler);
4104 Serge 4508
 
5060 serge 4509
	ret = i915_gem_context_open(dev, file);
4510
	if (ret)
4511
		kfree(file_priv);
4104 Serge 4512
 
4513
	return ret;
4514
}
4515
 
5354 serge 4516
/**
4517
 * i915_gem_track_fb - update frontbuffer tracking
4518
 * old: current GEM buffer for the frontbuffer slots
4519
 * new: new GEM buffer for the frontbuffer slots
4520
 * frontbuffer_bits: bitmask of frontbuffer slots
4521
 *
4522
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4523
 * from @old and setting them in @new. Both @old and @new can be NULL.
4524
 */
5060 serge 4525
void i915_gem_track_fb(struct drm_i915_gem_object *old,
4526
		       struct drm_i915_gem_object *new,
4527
		       unsigned frontbuffer_bits)
4104 Serge 4528
{
5060 serge 4529
	if (old) {
4530
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4531
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4532
		old->frontbuffer_bits &= ~frontbuffer_bits;
4104 Serge 4533
	}
4534
 
5060 serge 4535
	if (new) {
4536
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4537
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4538
		new->frontbuffer_bits |= frontbuffer_bits;
4104 Serge 4539
	}
4540
}
4541
 
4542
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4543
{
4544
	if (!mutex_is_locked(mutex))
4545
		return false;
4546
 
4547
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4548
	return mutex->owner == task;
4549
#else
4550
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4551
	return false;
4552
#endif
4553
}
4554
 
4555
/* All the new VM stuff */
4556
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4557
				  struct i915_address_space *vm)
4558
{
4559
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4560
	struct i915_vma *vma;
4561
 
5354 serge 4562
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4104 Serge 4563
 
4564
	list_for_each_entry(vma, &o->vma_list, vma_link) {
4565
		if (vma->vm == vm)
4566
			return vma->node.start;
4567
 
4568
	}
5060 serge 4569
	WARN(1, "%s vma for this object not found.\n",
4570
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
4571
	return -1;
4104 Serge 4572
}
4573
 
4574
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4575
			struct i915_address_space *vm)
4576
{
4577
	struct i915_vma *vma;
4578
 
4579
	list_for_each_entry(vma, &o->vma_list, vma_link)
4580
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4581
			return true;
4582
 
4583
	return false;
4584
}
4585
 
4586
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4587
{
4560 Serge 4588
	struct i915_vma *vma;
4104 Serge 4589
 
4560 Serge 4590
	list_for_each_entry(vma, &o->vma_list, vma_link)
4591
		if (drm_mm_node_allocated(&vma->node))
4104 Serge 4592
			return true;
4593
 
4594
	return false;
4595
}
4596
 
4597
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4598
				struct i915_address_space *vm)
4599
{
4600
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4601
	struct i915_vma *vma;
4602
 
5354 serge 4603
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4104 Serge 4604
 
4605
	BUG_ON(list_empty(&o->vma_list));
4606
 
4607
	list_for_each_entry(vma, &o->vma_list, vma_link)
4608
		if (vma->vm == vm)
4609
			return vma->node.size;
4610
 
4611
	return 0;
4612
}
4560 Serge 4613
 
4614
 
5060 serge 4615
 
4560 Serge 4616
struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
4104 Serge 4617
{
4618
	struct i915_vma *vma;
4619
 
4560 Serge 4620
	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5354 serge 4621
	if (vma->vm != i915_obj_to_ggtt(obj))
4560 Serge 4622
		return NULL;
4104 Serge 4623
 
4624
	return vma;
4625
}