Subversion Repositories Kolibri OS

Rev

Rev 4389 | Rev 4539 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
4280 Serge 29
#include 
3031 serge 30
#include 
2326 Serge 31
#include "i915_drv.h"
2351 Serge 32
#include "i915_trace.h"
2326 Serge 33
#include "intel_drv.h"
3260 Serge 34
#include 
2330 Serge 35
#include 
2326 Serge 36
//#include 
3746 Serge 37
#include 
2326 Serge 38
#include 
39
 
2344 Serge 40
extern int x86_clflush_size;
2332 Serge 41
 
3263 Serge 42
#define PROT_READ       0x1             /* page can be read */
43
#define PROT_WRITE      0x2             /* page can be written */
44
#define MAP_SHARED      0x01            /* Share changes */
45
 
2344 Serge 46
 
3266 Serge 47
struct drm_i915_gem_object *get_fb_obj();
48
 
3263 Serge 49
unsigned long vm_mmap(struct file *file, unsigned long addr,
50
         unsigned long len, unsigned long prot,
51
         unsigned long flag, unsigned long offset);
52
 
2344 Serge 53
static inline void clflush(volatile void *__p)
54
{
55
    asm volatile("clflush %0" : "+m" (*(volatile char*)__p));
56
}
57
 
2332 Serge 58
#define MAX_ERRNO       4095
59
 
60
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
61
 
62
 
2326 Serge 63
 
2332 Serge 64
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
4104 Serge 65
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
66
						   bool force);
67
static __must_check int
68
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
69
			   struct i915_address_space *vm,
2332 Serge 70
						    unsigned alignment,
3031 serge 71
						    bool map_and_fenceable,
72
						    bool nonblocking);
2332 Serge 73
static int i915_gem_phys_pwrite(struct drm_device *dev,
74
				struct drm_i915_gem_object *obj,
75
				struct drm_i915_gem_pwrite *args,
76
				struct drm_file *file);
2326 Serge 77
 
3031 serge 78
static void i915_gem_write_fence(struct drm_device *dev, int reg,
79
				 struct drm_i915_gem_object *obj);
80
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
81
					 struct drm_i915_fence_reg *fence,
82
					 bool enable);
2332 Serge 83
 
3031 serge 84
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
4104 Serge 85
static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3031 serge 86
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
87
 
4104 Serge 88
static bool cpu_cache_is_coherent(struct drm_device *dev,
89
				  enum i915_cache_level level)
90
{
91
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
92
}
93
 
94
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
95
{
96
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
97
		return true;
98
 
99
	return obj->pin_display;
100
}
101
 
3031 serge 102
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
103
{
104
	if (obj->tiling_mode)
105
		i915_gem_release_mmap(obj);
106
 
107
	/* As we do not have an associated fence register, we will force
108
	 * a tiling change if we ever need to acquire one.
109
	 */
110
	obj->fence_dirty = false;
111
	obj->fence_reg = I915_FENCE_REG_NONE;
112
}
113
 
2332 Serge 114
/* some bookkeeping */
115
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
116
				  size_t size)
117
{
4104 Serge 118
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 119
	dev_priv->mm.object_count++;
120
	dev_priv->mm.object_memory += size;
4104 Serge 121
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 122
}
123
 
124
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
125
				     size_t size)
126
{
4104 Serge 127
	spin_lock(&dev_priv->mm.object_stat_lock);
2332 Serge 128
	dev_priv->mm.object_count--;
129
	dev_priv->mm.object_memory -= size;
4104 Serge 130
	spin_unlock(&dev_priv->mm.object_stat_lock);
2332 Serge 131
}
132
 
133
static int
3480 Serge 134
i915_gem_wait_for_error(struct i915_gpu_error *error)
2332 Serge 135
{
136
	int ret;
137
 
3480 Serge 138
#define EXIT_COND (!i915_reset_in_progress(error))
139
	if (EXIT_COND)
2332 Serge 140
		return 0;
3255 Serge 141
#if 0
3031 serge 142
	/*
143
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
144
	 * userspace. If it takes that long something really bad is going on and
145
	 * we should simply try to bail out and fail as gracefully as possible.
146
	 */
3480 Serge 147
	ret = wait_event_interruptible_timeout(error->reset_queue,
148
					       EXIT_COND,
149
					       10*HZ);
3031 serge 150
	if (ret == 0) {
151
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
152
		return -EIO;
153
	} else if (ret < 0) {
2332 Serge 154
		return ret;
3031 serge 155
	}
2332 Serge 156
 
3255 Serge 157
#endif
3480 Serge 158
#undef EXIT_COND
3255 Serge 159
 
2332 Serge 160
	return 0;
161
}
162
 
163
int i915_mutex_lock_interruptible(struct drm_device *dev)
164
{
3480 Serge 165
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 166
	int ret;
167
 
3480 Serge 168
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
2332 Serge 169
	if (ret)
170
		return ret;
171
 
3480 Serge 172
	ret = mutex_lock_interruptible(&dev->struct_mutex);
173
	if (ret)
174
		return ret;
2332 Serge 175
 
176
	WARN_ON(i915_verify_lists(dev));
177
	return 0;
178
}
179
 
180
static inline bool
181
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
182
{
4104 Serge 183
	return i915_gem_obj_bound_any(obj) && !obj->active;
2332 Serge 184
}
185
 
186
 
187
#if 0
188
 
189
int
190
i915_gem_init_ioctl(struct drm_device *dev, void *data,
191
		    struct drm_file *file)
192
{
3480 Serge 193
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 194
	struct drm_i915_gem_init *args = data;
195
 
3031 serge 196
	if (drm_core_check_feature(dev, DRIVER_MODESET))
197
		return -ENODEV;
198
 
2332 Serge 199
	if (args->gtt_start >= args->gtt_end ||
200
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
201
		return -EINVAL;
202
 
3031 serge 203
	/* GEM with user mode setting was never supported on ilk and later. */
204
	if (INTEL_INFO(dev)->gen >= 5)
205
		return -ENODEV;
206
 
2332 Serge 207
	mutex_lock(&dev->struct_mutex);
3480 Serge 208
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
209
				  args->gtt_end);
210
	dev_priv->gtt.mappable_end = args->gtt_end;
2332 Serge 211
	mutex_unlock(&dev->struct_mutex);
212
 
213
	return 0;
214
}
2351 Serge 215
#endif
2332 Serge 216
 
217
int
218
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
219
			    struct drm_file *file)
220
{
221
	struct drm_i915_private *dev_priv = dev->dev_private;
222
	struct drm_i915_gem_get_aperture *args = data;
223
	struct drm_i915_gem_object *obj;
224
	size_t pinned;
225
 
226
	pinned = 0;
227
	mutex_lock(&dev->struct_mutex);
4104 Serge 228
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
3031 serge 229
		if (obj->pin_count)
4104 Serge 230
			pinned += i915_gem_obj_ggtt_size(obj);
2332 Serge 231
	mutex_unlock(&dev->struct_mutex);
232
 
4104 Serge 233
	args->aper_size = dev_priv->gtt.base.total;
2342 Serge 234
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 235
 
236
	return 0;
237
}
238
 
3480 Serge 239
void *i915_gem_object_alloc(struct drm_device *dev)
240
{
241
	struct drm_i915_private *dev_priv = dev->dev_private;
242
	return kmalloc(sizeof(struct drm_i915_gem_object), 0);
243
}
244
 
245
void i915_gem_object_free(struct drm_i915_gem_object *obj)
246
{
247
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
248
	kfree(obj);
249
}
250
 
3031 serge 251
static int
252
i915_gem_create(struct drm_file *file,
2332 Serge 253
		struct drm_device *dev,
254
		uint64_t size,
255
		uint32_t *handle_p)
256
{
257
	struct drm_i915_gem_object *obj;
258
	int ret;
259
	u32 handle;
260
 
261
	size = roundup(size, PAGE_SIZE);
2342 Serge 262
	if (size == 0)
263
		return -EINVAL;
2332 Serge 264
 
265
	/* Allocate the new object */
266
	obj = i915_gem_alloc_object(dev, size);
267
	if (obj == NULL)
268
		return -ENOMEM;
269
 
270
	ret = drm_gem_handle_create(file, &obj->base, &handle);
4104 Serge 271
	/* drop reference from allocate - handle holds it now */
272
	drm_gem_object_unreference_unlocked(&obj->base);
273
	if (ret)
2332 Serge 274
		return ret;
275
 
276
	*handle_p = handle;
277
	return 0;
278
}
279
 
280
int
281
i915_gem_dumb_create(struct drm_file *file,
282
		     struct drm_device *dev,
283
		     struct drm_mode_create_dumb *args)
284
{
285
	/* have to work out size/pitch and return them */
286
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
287
	args->size = args->pitch * args->height;
288
	return i915_gem_create(file, dev,
289
			       args->size, &args->handle);
290
}
291
 
2326 Serge 292
/**
2332 Serge 293
 * Creates a new mm object and returns a handle to it.
294
 */
295
int
296
i915_gem_create_ioctl(struct drm_device *dev, void *data,
297
		      struct drm_file *file)
298
{
299
	struct drm_i915_gem_create *args = data;
3031 serge 300
 
2332 Serge 301
	return i915_gem_create(file, dev,
302
			       args->size, &args->handle);
303
}
304
 
305
 
3260 Serge 306
#if 0
2332 Serge 307
 
3031 serge 308
static inline int
309
__copy_to_user_swizzled(char __user *cpu_vaddr,
310
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 311
		int length)
312
{
3031 serge 313
	int ret, cpu_offset = 0;
2332 Serge 314
 
3031 serge 315
	while (length > 0) {
316
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
317
		int this_length = min(cacheline_end - gpu_offset, length);
318
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 319
 
3031 serge 320
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
321
				     gpu_vaddr + swizzled_gpu_offset,
322
				     this_length);
323
		if (ret)
324
			return ret + length;
2332 Serge 325
 
3031 serge 326
		cpu_offset += this_length;
327
		gpu_offset += this_length;
328
		length -= this_length;
329
	}
330
 
331
	return 0;
2332 Serge 332
}
333
 
3031 serge 334
static inline int
335
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
336
			  const char __user *cpu_vaddr,
337
			  int length)
2332 Serge 338
{
3031 serge 339
	int ret, cpu_offset = 0;
2332 Serge 340
 
341
	while (length > 0) {
342
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
343
		int this_length = min(cacheline_end - gpu_offset, length);
344
		int swizzled_gpu_offset = gpu_offset ^ 64;
345
 
3031 serge 346
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 347
			       cpu_vaddr + cpu_offset,
348
			       this_length);
3031 serge 349
		if (ret)
350
			return ret + length;
351
 
2332 Serge 352
		cpu_offset += this_length;
353
		gpu_offset += this_length;
354
		length -= this_length;
355
	}
356
 
3031 serge 357
	return 0;
2332 Serge 358
}
359
 
3031 serge 360
/* Per-page copy function for the shmem pread fastpath.
361
 * Flushes invalid cachelines before reading the target if
362
 * needs_clflush is set. */
2332 Serge 363
static int
3031 serge 364
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
365
		 char __user *user_data,
366
		 bool page_do_bit17_swizzling, bool needs_clflush)
367
{
368
		char *vaddr;
369
		int ret;
370
 
371
	if (unlikely(page_do_bit17_swizzling))
372
		return -EINVAL;
373
 
374
		vaddr = kmap_atomic(page);
375
	if (needs_clflush)
376
		drm_clflush_virt_range(vaddr + shmem_page_offset,
377
				       page_length);
378
		ret = __copy_to_user_inatomic(user_data,
379
				      vaddr + shmem_page_offset,
380
					      page_length);
381
		kunmap_atomic(vaddr);
382
 
383
	return ret ? -EFAULT : 0;
384
}
385
 
386
static void
387
shmem_clflush_swizzled_range(char *addr, unsigned long length,
388
			     bool swizzled)
389
{
390
	if (unlikely(swizzled)) {
391
		unsigned long start = (unsigned long) addr;
392
		unsigned long end = (unsigned long) addr + length;
393
 
394
		/* For swizzling simply ensure that we always flush both
395
		 * channels. Lame, but simple and it works. Swizzled
396
		 * pwrite/pread is far from a hotpath - current userspace
397
		 * doesn't use it at all. */
398
		start = round_down(start, 128);
399
		end = round_up(end, 128);
400
 
401
		drm_clflush_virt_range((void *)start, end - start);
402
	} else {
403
		drm_clflush_virt_range(addr, length);
404
	}
405
 
406
}
407
 
408
/* Only difference to the fast-path function is that this can handle bit17
409
 * and uses non-atomic copy and kmap functions. */
410
static int
411
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
412
		 char __user *user_data,
413
		 bool page_do_bit17_swizzling, bool needs_clflush)
414
{
415
	char *vaddr;
416
	int ret;
417
 
418
	vaddr = kmap(page);
419
	if (needs_clflush)
420
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
421
					     page_length,
422
					     page_do_bit17_swizzling);
423
 
424
	if (page_do_bit17_swizzling)
425
		ret = __copy_to_user_swizzled(user_data,
426
					      vaddr, shmem_page_offset,
427
					      page_length);
428
	else
429
		ret = __copy_to_user(user_data,
430
				     vaddr + shmem_page_offset,
431
				     page_length);
432
	kunmap(page);
433
 
434
	return ret ? - EFAULT : 0;
435
}
436
 
437
static int
438
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 439
			  struct drm_i915_gem_object *obj,
440
			  struct drm_i915_gem_pread *args,
441
			  struct drm_file *file)
442
{
3031 serge 443
	char __user *user_data;
2332 Serge 444
	ssize_t remain;
445
	loff_t offset;
3031 serge 446
	int shmem_page_offset, page_length, ret = 0;
447
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
448
	int prefaulted = 0;
449
	int needs_clflush = 0;
3746 Serge 450
	struct sg_page_iter sg_iter;
2332 Serge 451
 
3746 Serge 452
	user_data = to_user_ptr(args->data_ptr);
2332 Serge 453
	remain = args->size;
454
 
3031 serge 455
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
456
 
457
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
458
		/* If we're not in the cpu read domain, set ourself into the gtt
459
		 * read domain and manually flush cachelines (if required). This
460
		 * optimizes for the case when the gpu will dirty the data
461
		 * anyway again before the next pread happens. */
4104 Serge 462
		needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
463
		if (i915_gem_obj_bound_any(obj)) {
3031 serge 464
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
465
			if (ret)
466
				return ret;
467
		}
468
	}
469
 
470
	ret = i915_gem_object_get_pages(obj);
471
	if (ret)
472
		return ret;
473
 
474
	i915_gem_object_pin_pages(obj);
475
 
2332 Serge 476
	offset = args->offset;
477
 
3746 Serge 478
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
479
			 offset >> PAGE_SHIFT) {
480
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 481
 
3031 serge 482
		if (remain <= 0)
483
			break;
484
 
2332 Serge 485
		/* Operation in this page
486
		 *
3031 serge 487
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 488
		 * page_length = bytes to copy for this page
489
		 */
3031 serge 490
		shmem_page_offset = offset_in_page(offset);
2332 Serge 491
		page_length = remain;
3031 serge 492
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
493
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 494
 
3031 serge 495
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
496
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 497
 
3031 serge 498
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
499
				       user_data, page_do_bit17_swizzling,
500
				       needs_clflush);
501
		if (ret == 0)
502
			goto next_page;
2332 Serge 503
 
3031 serge 504
		mutex_unlock(&dev->struct_mutex);
505
 
4104 Serge 506
		if (likely(!i915_prefault_disable) && !prefaulted) {
3031 serge 507
			ret = fault_in_multipages_writeable(user_data, remain);
508
			/* Userspace is tricking us, but we've already clobbered
509
			 * its pages with the prefault and promised to write the
510
			 * data up to the first fault. Hence ignore any errors
511
			 * and just continue. */
512
			(void)ret;
513
			prefaulted = 1;
514
		}
515
 
516
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
517
				       user_data, page_do_bit17_swizzling,
518
				       needs_clflush);
519
 
520
		mutex_lock(&dev->struct_mutex);
521
 
522
next_page:
2332 Serge 523
		mark_page_accessed(page);
3031 serge 524
 
2332 Serge 525
		if (ret)
3031 serge 526
			goto out;
2332 Serge 527
 
528
		remain -= page_length;
529
		user_data += page_length;
530
		offset += page_length;
531
	}
532
 
3031 serge 533
out:
534
	i915_gem_object_unpin_pages(obj);
535
 
536
	return ret;
2332 Serge 537
}
538
 
539
/**
3031 serge 540
 * Reads data from the object referenced by handle.
541
 *
542
 * On error, the contents of *data are undefined.
2332 Serge 543
 */
3031 serge 544
int
545
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
546
		     struct drm_file *file)
547
{
548
	struct drm_i915_gem_pread *args = data;
549
	struct drm_i915_gem_object *obj;
550
	int ret = 0;
551
 
552
	if (args->size == 0)
553
		return 0;
554
 
555
	if (!access_ok(VERIFY_WRITE,
3746 Serge 556
		       to_user_ptr(args->data_ptr),
3031 serge 557
		       args->size))
558
		return -EFAULT;
559
 
560
	ret = i915_mutex_lock_interruptible(dev);
561
	if (ret)
562
		return ret;
563
 
564
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
565
	if (&obj->base == NULL) {
566
		ret = -ENOENT;
567
		goto unlock;
568
	}
569
 
570
	/* Bounds check source.  */
571
	if (args->offset > obj->base.size ||
572
	    args->size > obj->base.size - args->offset) {
573
		ret = -EINVAL;
574
		goto out;
575
	}
576
 
577
	/* prime objects have no backing filp to GEM pread/pwrite
578
	 * pages from.
579
	 */
580
	if (!obj->base.filp) {
581
		ret = -EINVAL;
582
		goto out;
583
	}
584
 
585
	trace_i915_gem_object_pread(obj, args->offset, args->size);
586
 
587
	ret = i915_gem_shmem_pread(dev, obj, args, file);
588
 
589
out:
590
	drm_gem_object_unreference(&obj->base);
591
unlock:
592
	mutex_unlock(&dev->struct_mutex);
593
	return ret;
594
}
595
 
596
/* This is the fast write path which cannot handle
597
 * page faults in the source data
598
 */
599
 
600
static inline int
601
fast_user_write(struct io_mapping *mapping,
602
		loff_t page_base, int page_offset,
603
		char __user *user_data,
604
		int length)
605
{
606
	void __iomem *vaddr_atomic;
607
	void *vaddr;
608
	unsigned long unwritten;
609
 
610
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
611
	/* We can use the cpu mem copy function because this is X86. */
612
	vaddr = (void __force*)vaddr_atomic + page_offset;
613
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
614
						      user_data, length);
615
	io_mapping_unmap_atomic(vaddr_atomic);
616
	return unwritten;
617
}
3260 Serge 618
#endif
3031 serge 619
 
3260 Serge 620
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 621
/**
622
 * This is the fast pwrite path, where we copy the data directly from the
623
 * user into the GTT, uncached.
624
 */
2332 Serge 625
static int
3031 serge 626
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
627
			 struct drm_i915_gem_object *obj,
628
			 struct drm_i915_gem_pwrite *args,
629
			 struct drm_file *file)
2332 Serge 630
{
3031 serge 631
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 632
	ssize_t remain;
3031 serge 633
	loff_t offset, page_base;
634
	char __user *user_data;
635
	int page_offset, page_length, ret;
3260 Serge 636
    char *vaddr;
2332 Serge 637
 
4104 Serge 638
	ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
3031 serge 639
	if (ret)
640
		goto out;
641
 
642
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
643
	if (ret)
644
		goto out_unpin;
645
 
646
	ret = i915_gem_object_put_fence(obj);
647
	if (ret)
648
		goto out_unpin;
649
 
3260 Serge 650
    vaddr = AllocKernelSpace(4096);
651
    if(vaddr == NULL)
652
    {
653
        ret = -ENOSPC;
654
        goto out_unpin;
655
    };
656
 
3031 serge 657
	user_data = (char __user *) (uintptr_t) args->data_ptr;
2332 Serge 658
	remain = args->size;
659
 
4104 Serge 660
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
2332 Serge 661
 
3031 serge 662
	while (remain > 0) {
663
		/* Operation in this page
664
		 *
665
		 * page_base = page offset within aperture
666
		 * page_offset = offset within page
667
		 * page_length = bytes to copy for this page
668
		 */
669
		page_base = offset & PAGE_MASK;
670
		page_offset = offset_in_page(offset);
671
		page_length = remain;
672
		if ((page_offset + remain) > PAGE_SIZE)
673
			page_length = PAGE_SIZE - page_offset;
2332 Serge 674
 
4371 Serge 675
        MapPage(vaddr, dev_priv->gtt.mappable_base+page_base, PG_SW|PG_NOCACHE);
3031 serge 676
 
3260 Serge 677
        memcpy(vaddr+page_offset, user_data, page_length);
678
 
3031 serge 679
		remain -= page_length;
680
		user_data += page_length;
681
		offset += page_length;
2332 Serge 682
	}
683
 
3260 Serge 684
    FreeKernelSpace(vaddr);
685
 
3031 serge 686
out_unpin:
687
	i915_gem_object_unpin(obj);
688
out:
689
	return ret;
690
}
691
 
692
/* Per-page copy function for the shmem pwrite fastpath.
693
 * Flushes invalid cachelines before writing to the target if
694
 * needs_clflush_before is set and flushes out any written cachelines after
695
 * writing if needs_clflush is set. */
696
static int
697
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
698
		  char __user *user_data,
699
		  bool page_do_bit17_swizzling,
700
		  bool needs_clflush_before,
701
		  bool needs_clflush_after)
702
{
703
	char *vaddr;
3260 Serge 704
	int ret = 0;
3031 serge 705
 
706
	if (unlikely(page_do_bit17_swizzling))
707
		return -EINVAL;
708
 
4371 Serge 709
	vaddr = (char *)MapIoMem((addr_t)page, 4096, PG_SW|PG_NOCACHE);
3031 serge 710
	if (needs_clflush_before)
711
		drm_clflush_virt_range(vaddr + shmem_page_offset,
712
				       page_length);
3260 Serge 713
	memcpy(vaddr + shmem_page_offset,
3031 serge 714
						user_data,
715
						page_length);
716
	if (needs_clflush_after)
717
		drm_clflush_virt_range(vaddr + shmem_page_offset,
718
				       page_length);
3260 Serge 719
	FreeKernelSpace(vaddr);
3031 serge 720
 
721
	return ret ? -EFAULT : 0;
722
}
3260 Serge 723
#if 0
3031 serge 724
 
725
/* Only difference to the fast-path function is that this can handle bit17
726
 * and uses non-atomic copy and kmap functions. */
727
static int
728
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
729
		  char __user *user_data,
730
		  bool page_do_bit17_swizzling,
731
		  bool needs_clflush_before,
732
		  bool needs_clflush_after)
733
{
734
	char *vaddr;
735
	int ret;
736
 
737
	vaddr = kmap(page);
738
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
739
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
740
					     page_length,
741
					     page_do_bit17_swizzling);
742
	if (page_do_bit17_swizzling)
743
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
744
						user_data,
745
						page_length);
746
	else
747
		ret = __copy_from_user(vaddr + shmem_page_offset,
748
				       user_data,
749
				       page_length);
750
	if (needs_clflush_after)
751
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
752
					     page_length,
753
					     page_do_bit17_swizzling);
754
	kunmap(page);
755
 
756
	return ret ? -EFAULT : 0;
757
}
3260 Serge 758
#endif
3031 serge 759
 
3260 Serge 760
 
3031 serge 761
static int
762
i915_gem_shmem_pwrite(struct drm_device *dev,
763
		      struct drm_i915_gem_object *obj,
764
		      struct drm_i915_gem_pwrite *args,
765
		      struct drm_file *file)
766
{
767
	ssize_t remain;
768
	loff_t offset;
769
	char __user *user_data;
770
	int shmem_page_offset, page_length, ret = 0;
771
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
772
	int hit_slowpath = 0;
773
	int needs_clflush_after = 0;
774
	int needs_clflush_before = 0;
3746 Serge 775
	struct sg_page_iter sg_iter;
3031 serge 776
 
3746 Serge 777
	user_data = to_user_ptr(args->data_ptr);
3031 serge 778
	remain = args->size;
779
 
780
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
781
 
782
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
783
		/* If we're not in the cpu write domain, set ourself into the gtt
784
		 * write domain and manually flush cachelines (if required). This
785
		 * optimizes for the case when the gpu will use the data
786
		 * right away and we therefore have to clflush anyway. */
4104 Serge 787
		needs_clflush_after = cpu_write_needs_clflush(obj);
788
		if (i915_gem_obj_bound_any(obj)) {
3031 serge 789
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
790
			if (ret)
791
				return ret;
792
		}
793
	}
4104 Serge 794
	/* Same trick applies to invalidate partially written cachelines read
795
	 * before writing. */
796
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
797
		needs_clflush_before =
798
			!cpu_cache_is_coherent(dev, obj->cache_level);
3031 serge 799
 
800
	ret = i915_gem_object_get_pages(obj);
2332 Serge 801
	if (ret)
3031 serge 802
		return ret;
2332 Serge 803
 
3031 serge 804
	i915_gem_object_pin_pages(obj);
2332 Serge 805
 
806
	offset = args->offset;
3031 serge 807
	obj->dirty = 1;
2332 Serge 808
 
3746 Serge 809
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
810
			 offset >> PAGE_SHIFT) {
811
		struct page *page = sg_page_iter_page(&sg_iter);
3031 serge 812
		int partial_cacheline_write;
2332 Serge 813
 
3031 serge 814
		if (remain <= 0)
815
			break;
816
 
2332 Serge 817
		/* Operation in this page
818
		 *
819
		 * shmem_page_offset = offset within page in shmem file
820
		 * page_length = bytes to copy for this page
821
		 */
822
		shmem_page_offset = offset_in_page(offset);
823
 
824
		page_length = remain;
825
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
826
			page_length = PAGE_SIZE - shmem_page_offset;
827
 
3031 serge 828
		/* If we don't overwrite a cacheline completely we need to be
829
		 * careful to have up-to-date data by first clflushing. Don't
830
		 * overcomplicate things and flush the entire patch. */
831
		partial_cacheline_write = needs_clflush_before &&
832
			((shmem_page_offset | page_length)
3260 Serge 833
				& (x86_clflush_size - 1));
2332 Serge 834
 
3031 serge 835
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
836
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 837
 
3031 serge 838
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
839
					user_data, page_do_bit17_swizzling,
840
					partial_cacheline_write,
841
					needs_clflush_after);
842
		if (ret == 0)
843
			goto next_page;
844
 
845
		hit_slowpath = 1;
846
		mutex_unlock(&dev->struct_mutex);
3260 Serge 847
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 848
 
3260 Serge 849
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
850
//					user_data, page_do_bit17_swizzling,
851
//					partial_cacheline_write,
852
//					needs_clflush_after);
853
 
3031 serge 854
		mutex_lock(&dev->struct_mutex);
855
 
856
next_page:
2332 Serge 857
 
3031 serge 858
		if (ret)
859
			goto out;
860
 
2332 Serge 861
		remain -= page_length;
3031 serge 862
		user_data += page_length;
2332 Serge 863
		offset += page_length;
864
	}
865
 
866
out:
3031 serge 867
	i915_gem_object_unpin_pages(obj);
868
 
869
	if (hit_slowpath) {
3480 Serge 870
		/*
871
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
872
		 * cachelines in-line while writing and the object moved
873
		 * out of the cpu write domain while we've dropped the lock.
874
		 */
875
		if (!needs_clflush_after &&
876
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
4104 Serge 877
			if (i915_gem_clflush_object(obj, obj->pin_display))
3243 Serge 878
			i915_gem_chipset_flush(dev);
3031 serge 879
		}
2332 Serge 880
	}
881
 
3031 serge 882
	if (needs_clflush_after)
3243 Serge 883
		i915_gem_chipset_flush(dev);
3031 serge 884
 
2332 Serge 885
	return ret;
886
}
3031 serge 887
 
888
/**
889
 * Writes data to the object referenced by handle.
890
 *
891
 * On error, the contents of the buffer that were to be modified are undefined.
892
 */
893
int
894
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
895
		      struct drm_file *file)
896
{
897
	struct drm_i915_gem_pwrite *args = data;
898
	struct drm_i915_gem_object *obj;
899
	int ret;
900
 
4104 Serge 901
	if (args->size == 0)
902
		return 0;
903
 
3480 Serge 904
 
3031 serge 905
	ret = i915_mutex_lock_interruptible(dev);
906
	if (ret)
907
		return ret;
908
 
909
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
910
	if (&obj->base == NULL) {
911
		ret = -ENOENT;
912
		goto unlock;
913
	}
914
 
915
	/* Bounds check destination. */
916
	if (args->offset > obj->base.size ||
917
	    args->size > obj->base.size - args->offset) {
918
		ret = -EINVAL;
919
		goto out;
920
	}
921
 
922
	/* prime objects have no backing filp to GEM pread/pwrite
923
	 * pages from.
924
	 */
925
	if (!obj->base.filp) {
926
		ret = -EINVAL;
927
		goto out;
928
	}
929
 
930
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
931
 
932
	ret = -EFAULT;
933
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
934
	 * it would end up going through the fenced access, and we'll get
935
	 * different detiling behavior between reading and writing.
936
	 * pread/pwrite currently are reading and writing from the CPU
937
	 * perspective, requiring manual detiling by the client.
938
	 */
3260 Serge 939
//   if (obj->phys_obj) {
940
//       ret = i915_gem_phys_pwrite(dev, obj, args, file);
941
//       goto out;
942
//   }
3031 serge 943
 
4104 Serge 944
	if (obj->tiling_mode == I915_TILING_NONE &&
945
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
946
	    cpu_write_needs_clflush(obj)) {
3031 serge 947
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
948
		/* Note that the gtt paths might fail with non-page-backed user
949
		 * pointers (e.g. gtt mappings when moving data between
950
		 * textures). Fallback to the shmem path in that case. */
951
	}
952
 
953
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 954
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 955
 
956
out:
957
	drm_gem_object_unreference(&obj->base);
958
unlock:
959
	mutex_unlock(&dev->struct_mutex);
960
	return ret;
961
}
962
 
963
int
3480 Serge 964
i915_gem_check_wedge(struct i915_gpu_error *error,
3031 serge 965
		     bool interruptible)
966
{
3480 Serge 967
	if (i915_reset_in_progress(error)) {
3031 serge 968
		/* Non-interruptible callers can't handle -EAGAIN, hence return
969
		 * -EIO unconditionally for these. */
970
		if (!interruptible)
971
			return -EIO;
2332 Serge 972
 
3480 Serge 973
		/* Recovery complete, but the reset failed ... */
974
		if (i915_terminally_wedged(error))
3031 serge 975
			return -EIO;
2332 Serge 976
 
3031 serge 977
		return -EAGAIN;
978
	}
2332 Serge 979
 
3031 serge 980
	return 0;
981
}
2332 Serge 982
 
3031 serge 983
/*
984
 * Compare seqno against outstanding lazy request. Emit a request if they are
985
 * equal.
986
 */
987
static int
988
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
989
{
990
	int ret;
2332 Serge 991
 
3031 serge 992
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 993
 
3031 serge 994
	ret = 0;
995
	if (seqno == ring->outstanding_lazy_request)
4104 Serge 996
		ret = i915_add_request(ring, NULL);
2332 Serge 997
 
3031 serge 998
	return ret;
999
}
2332 Serge 1000
 
3031 serge 1001
/**
1002
 * __wait_seqno - wait until execution of seqno has finished
1003
 * @ring: the ring expected to report seqno
1004
 * @seqno: duh!
3480 Serge 1005
 * @reset_counter: reset sequence associated with the given seqno
3031 serge 1006
 * @interruptible: do an interruptible wait (normally yes)
1007
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1008
 *
3480 Serge 1009
 * Note: It is of utmost importance that the passed in seqno and reset_counter
1010
 * values have been read by the caller in an smp safe manner. Where read-side
1011
 * locks are involved, it is sufficient to read the reset_counter before
1012
 * unlocking the lock that protects the seqno. For lockless tricks, the
1013
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1014
 * inserted.
1015
 *
3031 serge 1016
 * Returns 0 if the seqno was found within the alloted time. Else returns the
1017
 * errno with remaining time filled in timeout argument.
1018
 */
1019
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
3480 Serge 1020
			unsigned reset_counter,
3031 serge 1021
			bool interruptible, struct timespec *timeout)
1022
{
1023
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1024
	struct timespec before, now, wait_time={1,0};
1025
	unsigned long timeout_jiffies;
1026
	long end;
1027
	bool wait_forever = true;
1028
	int ret;
2332 Serge 1029
 
4104 Serge 1030
	WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1031
 
3031 serge 1032
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1033
		return 0;
2332 Serge 1034
 
3031 serge 1035
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1036
 
3031 serge 1037
	if (timeout != NULL) {
1038
		wait_time = *timeout;
1039
		wait_forever = false;
1040
	}
2332 Serge 1041
 
4104 Serge 1042
	timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
2332 Serge 1043
 
3031 serge 1044
	if (WARN_ON(!ring->irq_get(ring)))
1045
		return -ENODEV;
2332 Serge 1046
 
3031 serge 1047
    /* Record current time in case interrupted by signal, or wedged * */
1048
	getrawmonotonic(&before);
2332 Serge 1049
 
3031 serge 1050
#define EXIT_COND \
1051
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
3480 Serge 1052
	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1053
	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3031 serge 1054
	do {
3266 Serge 1055
		if (interruptible)
1056
			end = wait_event_interruptible_timeout(ring->irq_queue,
1057
							       EXIT_COND,
1058
							       timeout_jiffies);
1059
		else
3031 serge 1060
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1061
						 timeout_jiffies);
2332 Serge 1062
 
3480 Serge 1063
		/* We need to check whether any gpu reset happened in between
1064
		 * the caller grabbing the seqno and now ... */
1065
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1066
			end = -EAGAIN;
1067
 
1068
		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1069
		 * gone. */
1070
		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1071
		if (ret)
1072
			end = ret;
1073
	} while (end == 0 && wait_forever);
2332 Serge 1074
 
3031 serge 1075
	getrawmonotonic(&now);
2332 Serge 1076
 
3031 serge 1077
	ring->irq_put(ring);
1078
	trace_i915_gem_request_wait_end(ring, seqno);
1079
#undef EXIT_COND
2332 Serge 1080
 
3031 serge 1081
	if (timeout) {
4104 Serge 1082
//		struct timespec sleep_time = timespec_sub(now, before);
1083
//		*timeout = timespec_sub(*timeout, sleep_time);
3031 serge 1084
	}
2332 Serge 1085
 
3031 serge 1086
	switch (end) {
1087
	case -EIO:
1088
	case -EAGAIN: /* Wedged */
1089
	case -ERESTARTSYS: /* Signal */
1090
		return (int)end;
1091
	case 0: /* Timeout */
1092
		return -ETIME;
1093
	default: /* Completed */
1094
		WARN_ON(end < 0); /* We're not aware of other errors */
1095
		return 0;
1096
	}
1097
}
2332 Serge 1098
 
3031 serge 1099
/**
1100
 * Waits for a sequence number to be signaled, and cleans up the
1101
 * request and object lists appropriately for that event.
1102
 */
1103
int
1104
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1105
{
1106
	struct drm_device *dev = ring->dev;
1107
	struct drm_i915_private *dev_priv = dev->dev_private;
1108
	bool interruptible = dev_priv->mm.interruptible;
1109
	int ret;
2332 Serge 1110
 
3031 serge 1111
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1112
	BUG_ON(seqno == 0);
2332 Serge 1113
 
3480 Serge 1114
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1115
	if (ret)
1116
		return ret;
2332 Serge 1117
 
3031 serge 1118
	ret = i915_gem_check_olr(ring, seqno);
1119
	if (ret)
1120
		return ret;
2332 Serge 1121
 
3480 Serge 1122
	return __wait_seqno(ring, seqno,
1123
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1124
			    interruptible, NULL);
3031 serge 1125
}
2332 Serge 1126
 
4104 Serge 1127
static int
1128
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1129
				     struct intel_ring_buffer *ring)
1130
{
1131
	i915_gem_retire_requests_ring(ring);
1132
 
1133
	/* Manually manage the write flush as we may have not yet
1134
	 * retired the buffer.
1135
	 *
1136
	 * Note that the last_write_seqno is always the earlier of
1137
	 * the two (read/write) seqno, so if we haved successfully waited,
1138
	 * we know we have passed the last write.
1139
	 */
1140
	obj->last_write_seqno = 0;
1141
	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1142
 
1143
	return 0;
1144
}
1145
 
3031 serge 1146
/**
1147
 * Ensures that all rendering to the object has completed and the object is
1148
 * safe to unbind from the GTT or access from the CPU.
1149
 */
1150
static __must_check int
1151
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1152
			       bool readonly)
1153
{
1154
	struct intel_ring_buffer *ring = obj->ring;
1155
	u32 seqno;
1156
	int ret;
2332 Serge 1157
 
3031 serge 1158
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1159
	if (seqno == 0)
1160
		return 0;
2332 Serge 1161
 
3031 serge 1162
	ret = i915_wait_seqno(ring, seqno);
4104 Serge 1163
    if (ret)
1164
        return ret;
2332 Serge 1165
 
4104 Serge 1166
	return i915_gem_object_wait_rendering__tail(obj, ring);
3031 serge 1167
}
2332 Serge 1168
 
3260 Serge 1169
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1170
 * as the object state may change during this call.
1171
 */
1172
static __must_check int
1173
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1174
					    bool readonly)
1175
{
1176
	struct drm_device *dev = obj->base.dev;
1177
	struct drm_i915_private *dev_priv = dev->dev_private;
1178
	struct intel_ring_buffer *ring = obj->ring;
3480 Serge 1179
	unsigned reset_counter;
3260 Serge 1180
	u32 seqno;
1181
	int ret;
2332 Serge 1182
 
3260 Serge 1183
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1184
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1185
 
3260 Serge 1186
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1187
	if (seqno == 0)
1188
		return 0;
2332 Serge 1189
 
3480 Serge 1190
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3260 Serge 1191
	if (ret)
1192
		return ret;
2332 Serge 1193
 
3260 Serge 1194
	ret = i915_gem_check_olr(ring, seqno);
1195
	if (ret)
1196
		return ret;
2332 Serge 1197
 
3480 Serge 1198
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3260 Serge 1199
	mutex_unlock(&dev->struct_mutex);
3480 Serge 1200
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3260 Serge 1201
	mutex_lock(&dev->struct_mutex);
4104 Serge 1202
	if (ret)
1203
		return ret;
2332 Serge 1204
 
4104 Serge 1205
	return i915_gem_object_wait_rendering__tail(obj, ring);
3260 Serge 1206
}
2332 Serge 1207
 
3260 Serge 1208
/**
1209
 * Called when user space prepares to use an object with the CPU, either
1210
 * through the mmap ioctl's mapping or a GTT mapping.
1211
 */
1212
int
1213
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1214
			  struct drm_file *file)
1215
{
1216
	struct drm_i915_gem_set_domain *args = data;
1217
	struct drm_i915_gem_object *obj;
1218
	uint32_t read_domains = args->read_domains;
1219
	uint32_t write_domain = args->write_domain;
1220
	int ret;
2332 Serge 1221
 
3260 Serge 1222
	/* Only handle setting domains to types used by the CPU. */
1223
	if (write_domain & I915_GEM_GPU_DOMAINS)
1224
		return -EINVAL;
2332 Serge 1225
 
3260 Serge 1226
	if (read_domains & I915_GEM_GPU_DOMAINS)
1227
		return -EINVAL;
2332 Serge 1228
 
3260 Serge 1229
	/* Having something in the write domain implies it's in the read
1230
	 * domain, and only that read domain.  Enforce that in the request.
1231
	 */
1232
	if (write_domain != 0 && read_domains != write_domain)
1233
		return -EINVAL;
2332 Serge 1234
 
3260 Serge 1235
	ret = i915_mutex_lock_interruptible(dev);
1236
	if (ret)
1237
		return ret;
2332 Serge 1238
 
3260 Serge 1239
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1240
	if (&obj->base == NULL) {
1241
		ret = -ENOENT;
1242
		goto unlock;
1243
	}
2332 Serge 1244
 
3260 Serge 1245
	/* Try to flush the object off the GPU without holding the lock.
1246
	 * We will repeat the flush holding the lock in the normal manner
1247
	 * to catch cases where we are gazumped.
1248
	 */
1249
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1250
	if (ret)
1251
		goto unref;
2332 Serge 1252
 
3260 Serge 1253
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1254
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1255
 
3260 Serge 1256
		/* Silently promote "you're not bound, there was nothing to do"
1257
		 * to success, since the client was just asking us to
1258
		 * make sure everything was done.
1259
		 */
1260
		if (ret == -EINVAL)
1261
			ret = 0;
1262
	} else {
1263
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1264
	}
2332 Serge 1265
 
3260 Serge 1266
unref:
1267
	drm_gem_object_unreference(&obj->base);
1268
unlock:
1269
	mutex_unlock(&dev->struct_mutex);
1270
	return ret;
1271
}
2332 Serge 1272
 
4293 Serge 1273
/**
1274
 * Called when user space has done writes to this buffer
1275
 */
1276
int
1277
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1278
			 struct drm_file *file)
1279
{
1280
	struct drm_i915_gem_sw_finish *args = data;
1281
	struct drm_i915_gem_object *obj;
1282
	int ret = 0;
2332 Serge 1283
 
4293 Serge 1284
	ret = i915_mutex_lock_interruptible(dev);
1285
	if (ret)
1286
		return ret;
2332 Serge 1287
 
4293 Serge 1288
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1289
	if (&obj->base == NULL) {
1290
		ret = -ENOENT;
1291
		goto unlock;
1292
	}
2332 Serge 1293
 
4293 Serge 1294
	/* Pinned buffers may be scanout, so flush the cache */
1295
	if (obj->pin_display)
1296
		i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 1297
 
4293 Serge 1298
	drm_gem_object_unreference(&obj->base);
1299
unlock:
1300
	mutex_unlock(&dev->struct_mutex);
1301
	return ret;
1302
}
1303
 
3260 Serge 1304
/**
1305
 * Maps the contents of an object, returning the address it is mapped
1306
 * into.
1307
 *
1308
 * While the mapping holds a reference on the contents of the object, it doesn't
1309
 * imply a ref on the object itself.
1310
 */
1311
int
1312
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1313
		    struct drm_file *file)
1314
{
1315
	struct drm_i915_gem_mmap *args = data;
1316
	struct drm_gem_object *obj;
4392 Serge 1317
	unsigned long addr;
2332 Serge 1318
 
3260 Serge 1319
	obj = drm_gem_object_lookup(dev, file, args->handle);
1320
	if (obj == NULL)
1321
		return -ENOENT;
4104 Serge 1322
 
3260 Serge 1323
	/* prime objects have no backing filp to GEM mmap
1324
	 * pages from.
1325
	 */
1326
	if (!obj->filp) {
1327
		drm_gem_object_unreference_unlocked(obj);
1328
		return -EINVAL;
1329
	}
2332 Serge 1330
 
3263 Serge 1331
    addr = vm_mmap(obj->filp, 0, args->size,
1332
              PROT_READ | PROT_WRITE, MAP_SHARED,
1333
              args->offset);
3260 Serge 1334
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1335
    if (IS_ERR((void *)addr))
1336
        return addr;
2332 Serge 1337
 
3260 Serge 1338
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1339
 
3263 Serge 1340
    return 0;
3260 Serge 1341
}
2332 Serge 1342
 
1343
 
1344
 
1345
 
1346
 
1347
 
1348
 
1349
 
3031 serge 1350
 
1351
 
1352
 
1353
 
1354
 
1355
/**
1356
 * i915_gem_release_mmap - remove physical page mappings
1357
 * @obj: obj in question
1358
 *
1359
 * Preserve the reservation of the mmapping with the DRM core code, but
1360
 * relinquish ownership of the pages back to the system.
1361
 *
1362
 * It is vital that we remove the page mapping if we have mapped a tiled
1363
 * object through the GTT and then lose the fence register due to
1364
 * resource pressure. Similarly if the object has been moved out of the
1365
 * aperture, than pages mapped into userspace must be revoked. Removing the
1366
 * mapping will then trigger a page fault on the next user access, allowing
1367
 * fixup by i915_gem_fault().
1368
 */
1369
void
1370
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1371
{
1372
	if (!obj->fault_mappable)
1373
		return;
1374
 
4104 Serge 1375
//	drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
3031 serge 1376
	obj->fault_mappable = false;
1377
}
1378
 
3480 Serge 1379
uint32_t
2332 Serge 1380
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1381
{
1382
	uint32_t gtt_size;
1383
 
1384
	if (INTEL_INFO(dev)->gen >= 4 ||
1385
	    tiling_mode == I915_TILING_NONE)
1386
		return size;
1387
 
1388
	/* Previous chips need a power-of-two fence region when tiling */
1389
	if (INTEL_INFO(dev)->gen == 3)
1390
		gtt_size = 1024*1024;
1391
	else
1392
		gtt_size = 512*1024;
1393
 
1394
	while (gtt_size < size)
1395
		gtt_size <<= 1;
1396
 
1397
	return gtt_size;
1398
}
1399
 
1400
/**
1401
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1402
 * @obj: object to check
1403
 *
1404
 * Return the required GTT alignment for an object, taking into account
1405
 * potential fence register mapping.
1406
 */
3480 Serge 1407
uint32_t
1408
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1409
			   int tiling_mode, bool fenced)
2332 Serge 1410
{
1411
	/*
1412
	 * Minimum alignment is 4k (GTT page size), but might be greater
1413
	 * if a fence register is needed for the object.
1414
	 */
3480 Serge 1415
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2332 Serge 1416
	    tiling_mode == I915_TILING_NONE)
1417
		return 4096;
1418
 
1419
	/*
1420
	 * Previous chips need to be aligned to the size of the smallest
1421
	 * fence register that can contain the object.
1422
	 */
1423
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1424
}
1425
 
1426
 
1427
 
3480 Serge 1428
int
1429
i915_gem_mmap_gtt(struct drm_file *file,
1430
          struct drm_device *dev,
1431
          uint32_t handle,
1432
          uint64_t *offset)
1433
{
1434
    struct drm_i915_private *dev_priv = dev->dev_private;
1435
    struct drm_i915_gem_object *obj;
1436
    unsigned long pfn;
1437
    char *mem, *ptr;
1438
    int ret;
1439
 
1440
    ret = i915_mutex_lock_interruptible(dev);
1441
    if (ret)
1442
        return ret;
1443
 
1444
    obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1445
    if (&obj->base == NULL) {
1446
        ret = -ENOENT;
1447
        goto unlock;
1448
    }
1449
 
1450
    if (obj->base.size > dev_priv->gtt.mappable_end) {
1451
        ret = -E2BIG;
1452
        goto out;
1453
    }
1454
 
1455
    if (obj->madv != I915_MADV_WILLNEED) {
1456
        DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1457
        ret = -EINVAL;
1458
        goto out;
1459
    }
1460
    /* Now bind it into the GTT if needed */
4104 Serge 1461
    ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
3480 Serge 1462
    if (ret)
1463
        goto out;
1464
 
1465
    ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1466
    if (ret)
1467
        goto unpin;
1468
 
1469
    ret = i915_gem_object_get_fence(obj);
1470
    if (ret)
1471
        goto unpin;
1472
 
1473
    obj->fault_mappable = true;
1474
 
4104 Serge 1475
    pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
3480 Serge 1476
 
1477
    /* Finally, remap it using the new GTT offset */
1478
 
1479
    mem = UserAlloc(obj->base.size);
1480
    if(unlikely(mem == NULL))
1481
    {
1482
        ret = -ENOMEM;
1483
        goto unpin;
1484
    }
1485
 
1486
    for(ptr = mem; ptr < mem + obj->base.size; ptr+= 4096, pfn+= 4096)
1487
        MapPage(ptr, pfn, PG_SHARED|PG_UW);
1488
 
1489
unpin:
1490
    i915_gem_object_unpin(obj);
1491
 
1492
 
4104 Serge 1493
    *offset = mem;
3480 Serge 1494
 
1495
out:
1496
    drm_gem_object_unreference(&obj->base);
1497
unlock:
1498
    mutex_unlock(&dev->struct_mutex);
1499
    return ret;
1500
}
1501
 
1502
/**
1503
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1504
 * @dev: DRM device
1505
 * @data: GTT mapping ioctl data
1506
 * @file: GEM object info
1507
 *
1508
 * Simply returns the fake offset to userspace so it can mmap it.
1509
 * The mmap call will end up in drm_gem_mmap(), which will set things
1510
 * up so we can get faults in the handler above.
1511
 *
1512
 * The fault handler will take care of binding the object into the GTT
1513
 * (since it may have been evicted to make room for something), allocating
1514
 * a fence register, and mapping the appropriate aperture address into
1515
 * userspace.
1516
 */
1517
int
1518
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1519
            struct drm_file *file)
1520
{
1521
    struct drm_i915_gem_mmap_gtt *args = data;
1522
 
1523
    return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1524
}
1525
 
3031 serge 1526
/* Immediately discard the backing storage */
1527
static void
1528
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1529
{
1530
//	struct inode *inode;
2332 Serge 1531
 
3031 serge 1532
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1533
 
3263 Serge 1534
	if (obj->base.filp == NULL)
1535
		return;
2332 Serge 1536
 
3031 serge 1537
	/* Our goal here is to return as much of the memory as
1538
	 * is possible back to the system as we are called from OOM.
1539
	 * To do this we must instruct the shmfs to drop all of its
1540
	 * backing pages, *now*.
1541
	 */
1542
//	inode = obj->base.filp->f_path.dentry->d_inode;
1543
//	shmem_truncate_range(inode, 0, (loff_t)-1);
2332 Serge 1544
 
3031 serge 1545
	obj->madv = __I915_MADV_PURGED;
1546
}
2332 Serge 1547
 
3031 serge 1548
static inline int
1549
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1550
{
1551
	return obj->madv == I915_MADV_DONTNEED;
1552
}
2332 Serge 1553
 
3031 serge 1554
static void
1555
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1556
{
3746 Serge 1557
	struct sg_page_iter sg_iter;
1558
	int ret;
2332 Serge 1559
 
3031 serge 1560
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1561
 
3031 serge 1562
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1563
	if (ret) {
1564
		/* In the event of a disaster, abandon all caches and
1565
		 * hope for the best.
1566
		 */
1567
		WARN_ON(ret != -EIO);
4104 Serge 1568
		i915_gem_clflush_object(obj, true);
3031 serge 1569
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1570
	}
2332 Serge 1571
 
3031 serge 1572
	if (obj->madv == I915_MADV_DONTNEED)
1573
		obj->dirty = 0;
2332 Serge 1574
 
3746 Serge 1575
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1576
		struct page *page = sg_page_iter_page(&sg_iter);
2332 Serge 1577
 
3290 Serge 1578
        page_cache_release(page);
3243 Serge 1579
	}
1580
    //DRM_DEBUG_KMS("%s release %d pages\n", __FUNCTION__, page_count);
3290 Serge 1581
 
4104 Serge 1582
    obj->dirty = 0;
3243 Serge 1583
 
1584
	sg_free_table(obj->pages);
1585
	kfree(obj->pages);
3031 serge 1586
}
2332 Serge 1587
 
3480 Serge 1588
int
3031 serge 1589
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1590
{
1591
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1592
 
3243 Serge 1593
	if (obj->pages == NULL)
3031 serge 1594
		return 0;
2332 Serge 1595
 
3031 serge 1596
	if (obj->pages_pin_count)
1597
		return -EBUSY;
1598
 
4104 Serge 1599
	BUG_ON(i915_gem_obj_bound_any(obj));
1600
 
3243 Serge 1601
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1602
	 * array, hence protect them from being reaped by removing them from gtt
1603
	 * lists early. */
4104 Serge 1604
	list_del(&obj->global_list);
3243 Serge 1605
 
3031 serge 1606
	ops->put_pages(obj);
3243 Serge 1607
	obj->pages = NULL;
3031 serge 1608
 
1609
	if (i915_gem_object_is_purgeable(obj))
1610
		i915_gem_object_truncate(obj);
1611
 
1612
	return 0;
1613
}
1614
 
1615
 
1616
 
1617
 
1618
 
1619
 
1620
 
1621
 
2332 Serge 1622
static int
3031 serge 1623
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1624
{
3260 Serge 1625
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1626
    int page_count, i;
4104 Serge 1627
    struct sg_table *st;
3243 Serge 1628
	struct scatterlist *sg;
3746 Serge 1629
	struct sg_page_iter sg_iter;
3243 Serge 1630
	struct page *page;
3746 Serge 1631
	unsigned long last_pfn = 0;	/* suppress gcc warning */
3243 Serge 1632
	gfp_t gfp;
2332 Serge 1633
 
3243 Serge 1634
	/* Assert that the object is not currently in any GPU domain. As it
1635
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1636
	 * a GPU cache
2332 Serge 1637
	 */
3243 Serge 1638
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1639
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1640
 
1641
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1642
	if (st == NULL)
1643
		return -ENOMEM;
1644
 
2332 Serge 1645
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1646
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1647
		kfree(st);
3746 Serge 1648
        FAIL();
2332 Serge 1649
		return -ENOMEM;
3243 Serge 1650
	}
2332 Serge 1651
 
3243 Serge 1652
	/* Get the list of pages out of our struct file.  They'll be pinned
1653
	 * at this point until we release them.
1654
	 *
1655
	 * Fail silently without starting the shrinker
1656
	 */
3746 Serge 1657
	sg = st->sgl;
1658
	st->nents = 0;
1659
	for (i = 0; i < page_count; i++) {
4104 Serge 1660
        page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
3260 Serge 1661
		if (IS_ERR(page)) {
1662
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1663
			goto err_pages;
1664
 
3260 Serge 1665
		}
3746 Serge 1666
 
1667
		if (!i || page_to_pfn(page) != last_pfn + 1) {
1668
			if (i)
1669
				sg = sg_next(sg);
1670
			st->nents++;
3243 Serge 1671
		sg_set_page(sg, page, PAGE_SIZE, 0);
3746 Serge 1672
		} else {
1673
			sg->length += PAGE_SIZE;
1674
		}
1675
		last_pfn = page_to_pfn(page);
3243 Serge 1676
	}
3031 serge 1677
 
3746 Serge 1678
		sg_mark_end(sg);
3243 Serge 1679
	obj->pages = st;
3031 serge 1680
 
2332 Serge 1681
	return 0;
1682
 
1683
err_pages:
3746 Serge 1684
	sg_mark_end(sg);
1685
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1686
		page_cache_release(sg_page_iter_page(&sg_iter));
3243 Serge 1687
	sg_free_table(st);
1688
	kfree(st);
3746 Serge 1689
    FAIL();
3243 Serge 1690
	return PTR_ERR(page);
2332 Serge 1691
}
1692
 
3031 serge 1693
/* Ensure that the associated pages are gathered from the backing storage
1694
 * and pinned into our object. i915_gem_object_get_pages() may be called
1695
 * multiple times before they are released by a single call to
1696
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1697
 * either as a result of memory pressure (reaping pages under the shrinker)
1698
 * or as the object is itself released.
1699
 */
1700
int
1701
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1702
{
3031 serge 1703
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1704
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1705
	int ret;
2332 Serge 1706
 
3243 Serge 1707
	if (obj->pages)
3031 serge 1708
		return 0;
2332 Serge 1709
 
4392 Serge 1710
	if (obj->madv != I915_MADV_WILLNEED) {
1711
		DRM_ERROR("Attempting to obtain a purgeable object\n");
1712
		return -EINVAL;
1713
	}
1714
 
3031 serge 1715
	BUG_ON(obj->pages_pin_count);
2332 Serge 1716
 
3031 serge 1717
	ret = ops->get_pages(obj);
1718
	if (ret)
1719
		return ret;
2344 Serge 1720
 
4104 Serge 1721
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3243 Serge 1722
    return 0;
2332 Serge 1723
}
1724
 
1725
void
1726
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
3243 Serge 1727
			       struct intel_ring_buffer *ring)
2332 Serge 1728
{
1729
	struct drm_device *dev = obj->base.dev;
1730
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1731
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1732
 
1733
	BUG_ON(ring == NULL);
4104 Serge 1734
	if (obj->ring != ring && obj->last_write_seqno) {
1735
		/* Keep the seqno relative to the current ring */
1736
		obj->last_write_seqno = seqno;
1737
	}
2332 Serge 1738
	obj->ring = ring;
1739
 
1740
	/* Add a reference if we're newly entering the active list. */
1741
	if (!obj->active) {
2344 Serge 1742
		drm_gem_object_reference(&obj->base);
2332 Serge 1743
		obj->active = 1;
1744
	}
1745
 
1746
	list_move_tail(&obj->ring_list, &ring->active_list);
1747
 
3031 serge 1748
	obj->last_read_seqno = seqno;
1749
 
2332 Serge 1750
	if (obj->fenced_gpu_access) {
3031 serge 1751
		obj->last_fenced_seqno = seqno;
1752
 
1753
		/* Bump MRU to take account of the delayed flush */
1754
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2332 Serge 1755
		struct drm_i915_fence_reg *reg;
1756
 
1757
		reg = &dev_priv->fence_regs[obj->fence_reg];
3031 serge 1758
			list_move_tail(®->lru_list,
1759
				       &dev_priv->mm.fence_list);
1760
		}
2332 Serge 1761
	}
1762
}
1763
 
2344 Serge 1764
static void
3031 serge 1765
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1766
{
4104 Serge 1767
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1768
	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1769
	struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2332 Serge 1770
 
3031 serge 1771
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1772
	BUG_ON(!obj->active);
2332 Serge 1773
 
4104 Serge 1774
	list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2344 Serge 1775
 
3031 serge 1776
	list_del_init(&obj->ring_list);
2352 Serge 1777
	obj->ring = NULL;
2344 Serge 1778
 
3031 serge 1779
	obj->last_read_seqno = 0;
1780
	obj->last_write_seqno = 0;
1781
	obj->base.write_domain = 0;
1782
 
1783
	obj->last_fenced_seqno = 0;
2352 Serge 1784
	obj->fenced_gpu_access = false;
2344 Serge 1785
 
2352 Serge 1786
	obj->active = 0;
1787
	drm_gem_object_unreference(&obj->base);
1788
 
1789
	WARN_ON(i915_verify_lists(dev));
1790
}
1791
 
3243 Serge 1792
static int
3480 Serge 1793
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2344 Serge 1794
{
3243 Serge 1795
	struct drm_i915_private *dev_priv = dev->dev_private;
1796
	struct intel_ring_buffer *ring;
1797
	int ret, i, j;
2344 Serge 1798
 
3480 Serge 1799
	/* Carefully retire all requests without writing to the rings */
3243 Serge 1800
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1801
		ret = intel_ring_idle(ring);
3243 Serge 1802
	if (ret)
1803
		return ret;
3480 Serge 1804
	}
1805
	i915_gem_retire_requests(dev);
3243 Serge 1806
 
3480 Serge 1807
	/* Finally reset hw state */
3243 Serge 1808
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1809
		intel_ring_init_seqno(ring, seqno);
1810
 
3243 Serge 1811
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1812
			ring->sync_seqno[j] = 0;
1813
	}
1814
 
1815
	return 0;
2344 Serge 1816
}
1817
 
3480 Serge 1818
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1819
{
1820
	struct drm_i915_private *dev_priv = dev->dev_private;
1821
	int ret;
1822
 
1823
	if (seqno == 0)
1824
		return -EINVAL;
1825
 
1826
	/* HWS page needs to be set less than what we
1827
	 * will inject to ring
1828
	 */
1829
	ret = i915_gem_init_seqno(dev, seqno - 1);
1830
	if (ret)
1831
		return ret;
1832
 
1833
	/* Carefully set the last_seqno value so that wrap
1834
	 * detection still works
1835
	 */
1836
	dev_priv->next_seqno = seqno;
1837
	dev_priv->last_seqno = seqno - 1;
1838
	if (dev_priv->last_seqno == 0)
1839
		dev_priv->last_seqno--;
1840
 
1841
	return 0;
1842
}
1843
 
3243 Serge 1844
int
1845
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1846
{
3243 Serge 1847
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1848
 
3243 Serge 1849
	/* reserve 0 for non-seqno */
1850
	if (dev_priv->next_seqno == 0) {
3480 Serge 1851
		int ret = i915_gem_init_seqno(dev, 0);
3243 Serge 1852
		if (ret)
1853
			return ret;
1854
 
1855
		dev_priv->next_seqno = 1;
1856
	}
1857
 
3480 Serge 1858
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3243 Serge 1859
	return 0;
2332 Serge 1860
}
1861
 
4104 Serge 1862
int __i915_add_request(struct intel_ring_buffer *ring,
2352 Serge 1863
		 struct drm_file *file,
4104 Serge 1864
		       struct drm_i915_gem_object *obj,
3031 serge 1865
		 u32 *out_seqno)
2352 Serge 1866
{
1867
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
3031 serge 1868
	struct drm_i915_gem_request *request;
4104 Serge 1869
	u32 request_ring_position, request_start;
2352 Serge 1870
	int was_empty;
1871
	int ret;
2332 Serge 1872
 
4104 Serge 1873
	request_start = intel_ring_get_tail(ring);
3031 serge 1874
	/*
1875
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1876
	 * after having emitted the batchbuffer command. Hence we need to fix
1877
	 * things up similar to emitting the lazy request. The difference here
1878
	 * is that the flush _must_ happen before the next request, no matter
1879
	 * what.
1880
	 */
4104 Serge 1881
   ret = intel_ring_flush_all_caches(ring);
1882
   if (ret)
1883
       return ret;
2332 Serge 1884
 
3031 serge 1885
	request = kmalloc(sizeof(*request), GFP_KERNEL);
1886
	if (request == NULL)
1887
		return -ENOMEM;
1888
 
1889
 
1890
	/* Record the position of the start of the request so that
1891
	 * should we detect the updated seqno part-way through the
4104 Serge 1892
    * GPU processing the request, we never over-estimate the
3031 serge 1893
	 * position of the head.
1894
	 */
4104 Serge 1895
   request_ring_position = intel_ring_get_tail(ring);
3031 serge 1896
 
3243 Serge 1897
	ret = ring->add_request(ring);
3031 serge 1898
	if (ret) {
1899
		kfree(request);
4104 Serge 1900
		return ret;
3031 serge 1901
	}
2332 Serge 1902
 
3243 Serge 1903
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1904
	request->ring = ring;
4104 Serge 1905
	request->head = request_start;
3031 serge 1906
	request->tail = request_ring_position;
4104 Serge 1907
	request->ctx = ring->last_context;
1908
	request->batch_obj = obj;
1909
 
1910
	/* Whilst this request exists, batch_obj will be on the
1911
	 * active_list, and so will hold the active reference. Only when this
1912
	 * request is retired will the the batch_obj be moved onto the
1913
	 * inactive_list and lose its active reference. Hence we do not need
1914
	 * to explicitly hold another reference here.
1915
	 */
1916
 
1917
	if (request->ctx)
1918
		i915_gem_context_reference(request->ctx);
1919
 
3031 serge 1920
    request->emitted_jiffies = GetTimerTicks();
2352 Serge 1921
	was_empty = list_empty(&ring->request_list);
1922
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1923
	request->file_priv = NULL;
2332 Serge 1924
 
3263 Serge 1925
	if (file) {
1926
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1927
 
3263 Serge 1928
		spin_lock(&file_priv->mm.lock);
1929
		request->file_priv = file_priv;
1930
		list_add_tail(&request->client_list,
1931
			      &file_priv->mm.request_list);
1932
		spin_unlock(&file_priv->mm.lock);
1933
	}
1934
 
1935
	trace_i915_gem_request_add(ring, request->seqno);
3031 serge 1936
	ring->outstanding_lazy_request = 0;
2332 Serge 1937
 
4104 Serge 1938
	if (!dev_priv->ums.mm_suspended) {
1939
//		i915_queue_hangcheck(ring->dev);
1940
 
1941
       if (was_empty) {
2360 Serge 1942
           queue_delayed_work(dev_priv->wq,
3482 Serge 1943
					   &dev_priv->mm.retire_work,
1944
					   round_jiffies_up_relative(HZ));
4104 Serge 1945
           intel_mark_busy(dev_priv->dev);
1946
       }
1947
   }
3031 serge 1948
 
1949
	if (out_seqno)
3243 Serge 1950
		*out_seqno = request->seqno;
2352 Serge 1951
	return 0;
1952
}
2332 Serge 1953
 
3263 Serge 1954
static inline void
1955
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1956
{
1957
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1958
 
3263 Serge 1959
	if (!file_priv)
1960
		return;
2332 Serge 1961
 
3263 Serge 1962
	spin_lock(&file_priv->mm.lock);
1963
	if (request->file_priv) {
1964
		list_del(&request->client_list);
1965
		request->file_priv = NULL;
1966
	}
1967
	spin_unlock(&file_priv->mm.lock);
1968
}
2332 Serge 1969
 
4104 Serge 1970
static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
1971
				    struct i915_address_space *vm)
1972
{
1973
	if (acthd >= i915_gem_obj_offset(obj, vm) &&
1974
	    acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
1975
		return true;
1976
 
1977
	return false;
1978
}
1979
 
1980
static bool i915_head_inside_request(const u32 acthd_unmasked,
1981
				     const u32 request_start,
1982
				     const u32 request_end)
1983
{
1984
	const u32 acthd = acthd_unmasked & HEAD_ADDR;
1985
 
1986
	if (request_start < request_end) {
1987
		if (acthd >= request_start && acthd < request_end)
1988
			return true;
1989
	} else if (request_start > request_end) {
1990
		if (acthd >= request_start || acthd < request_end)
1991
			return true;
1992
	}
1993
 
1994
	return false;
1995
}
1996
 
1997
static struct i915_address_space *
1998
request_to_vm(struct drm_i915_gem_request *request)
1999
{
2000
	struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2001
	struct i915_address_space *vm;
2002
 
2003
	vm = &dev_priv->gtt.base;
2004
 
2005
	return vm;
2006
}
2007
 
2008
static bool i915_request_guilty(struct drm_i915_gem_request *request,
2009
				const u32 acthd, bool *inside)
2010
{
2011
	/* There is a possibility that unmasked head address
2012
	 * pointing inside the ring, matches the batch_obj address range.
2013
	 * However this is extremely unlikely.
2014
	 */
2015
	if (request->batch_obj) {
2016
		if (i915_head_inside_object(acthd, request->batch_obj,
2017
					    request_to_vm(request))) {
2018
			*inside = true;
2019
			return true;
2020
		}
2021
	}
2022
 
2023
	if (i915_head_inside_request(acthd, request->head, request->tail)) {
2024
		*inside = false;
2025
		return true;
2026
	}
2027
 
2028
	return false;
2029
}
2030
 
2031
static void i915_set_reset_status(struct intel_ring_buffer *ring,
2032
				  struct drm_i915_gem_request *request,
2033
				  u32 acthd)
2034
{
2035
	struct i915_ctx_hang_stats *hs = NULL;
2036
	bool inside, guilty;
2037
	unsigned long offset = 0;
2038
 
2039
	/* Innocent until proven guilty */
2040
	guilty = false;
2041
 
2042
	if (request->batch_obj)
2043
		offset = i915_gem_obj_offset(request->batch_obj,
2044
					     request_to_vm(request));
2045
 
2046
	if (ring->hangcheck.action != HANGCHECK_WAIT &&
2047
	    i915_request_guilty(request, acthd, &inside)) {
2048
		DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2049
			  ring->name,
2050
			  inside ? "inside" : "flushing",
2051
			  offset,
2052
			  request->ctx ? request->ctx->id : 0,
2053
			  acthd);
2054
 
2055
		guilty = true;
2056
	}
2057
 
2058
	/* If contexts are disabled or this is the default context, use
2059
	 * file_priv->reset_state
2060
	 */
2061
	if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2062
		hs = &request->ctx->hang_stats;
2063
	else if (request->file_priv)
2064
		hs = &request->file_priv->hang_stats;
2065
 
2066
	if (hs) {
2067
		if (guilty)
2068
			hs->batch_active++;
2069
		else
2070
			hs->batch_pending++;
2071
	}
2072
}
2073
 
2074
static void i915_gem_free_request(struct drm_i915_gem_request *request)
2075
{
2076
	list_del(&request->list);
2077
	i915_gem_request_remove_from_client(request);
2078
 
2079
	if (request->ctx)
2080
		i915_gem_context_unreference(request->ctx);
2081
 
2082
	kfree(request);
2083
}
2084
 
3031 serge 2085
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2086
				      struct intel_ring_buffer *ring)
2087
{
4104 Serge 2088
	u32 completed_seqno;
2089
	u32 acthd;
2090
 
2091
	acthd = intel_ring_get_active_head(ring);
2092
	completed_seqno = ring->get_seqno(ring, false);
2093
 
3031 serge 2094
	while (!list_empty(&ring->request_list)) {
2095
		struct drm_i915_gem_request *request;
2332 Serge 2096
 
3031 serge 2097
		request = list_first_entry(&ring->request_list,
2098
					   struct drm_i915_gem_request,
2099
					   list);
2332 Serge 2100
 
4104 Serge 2101
		if (request->seqno > completed_seqno)
2102
			i915_set_reset_status(ring, request, acthd);
2103
 
2104
		i915_gem_free_request(request);
3031 serge 2105
	}
2332 Serge 2106
 
3031 serge 2107
	while (!list_empty(&ring->active_list)) {
2108
		struct drm_i915_gem_object *obj;
2332 Serge 2109
 
3031 serge 2110
		obj = list_first_entry(&ring->active_list,
2111
				       struct drm_i915_gem_object,
2112
				       ring_list);
2332 Serge 2113
 
3031 serge 2114
		i915_gem_object_move_to_inactive(obj);
2115
	}
2116
}
2332 Serge 2117
 
3746 Serge 2118
void i915_gem_restore_fences(struct drm_device *dev)
3031 serge 2119
{
2120
	struct drm_i915_private *dev_priv = dev->dev_private;
2121
	int i;
2332 Serge 2122
 
3031 serge 2123
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2124
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
4104 Serge 2125
 
2126
		/*
2127
		 * Commit delayed tiling changes if we have an object still
2128
		 * attached to the fence, otherwise just clear the fence.
2129
		 */
2130
		if (reg->obj) {
2131
			i915_gem_object_update_fence(reg->obj, reg,
2132
						     reg->obj->tiling_mode);
2133
		} else {
2134
			i915_gem_write_fence(dev, i, NULL);
2135
		}
3031 serge 2136
	}
2137
}
2360 Serge 2138
 
3031 serge 2139
void i915_gem_reset(struct drm_device *dev)
2140
{
2141
	struct drm_i915_private *dev_priv = dev->dev_private;
2142
	struct intel_ring_buffer *ring;
2143
	int i;
2360 Serge 2144
 
3031 serge 2145
	for_each_ring(ring, dev_priv, i)
2146
		i915_gem_reset_ring_lists(dev_priv, ring);
2360 Serge 2147
 
3746 Serge 2148
	i915_gem_restore_fences(dev);
3031 serge 2149
}
2360 Serge 2150
 
2352 Serge 2151
/**
2152
 * This function clears the request list as sequence numbers are passed.
2153
 */
3031 serge 2154
void
2352 Serge 2155
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2156
{
2157
	uint32_t seqno;
2332 Serge 2158
 
2352 Serge 2159
	if (list_empty(&ring->request_list))
2160
		return;
2332 Serge 2161
 
2352 Serge 2162
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 2163
 
3031 serge 2164
	seqno = ring->get_seqno(ring, true);
2332 Serge 2165
 
2352 Serge 2166
	while (!list_empty(&ring->request_list)) {
2167
		struct drm_i915_gem_request *request;
2332 Serge 2168
 
2352 Serge 2169
		request = list_first_entry(&ring->request_list,
2170
					   struct drm_i915_gem_request,
2171
					   list);
2332 Serge 2172
 
2352 Serge 2173
		if (!i915_seqno_passed(seqno, request->seqno))
2174
			break;
2332 Serge 2175
 
2352 Serge 2176
		trace_i915_gem_request_retire(ring, request->seqno);
3031 serge 2177
		/* We know the GPU must have read the request to have
2178
		 * sent us the seqno + interrupt, so use the position
2179
		 * of tail of the request to update the last known position
2180
		 * of the GPU head.
2181
		 */
2182
		ring->last_retired_head = request->tail;
2332 Serge 2183
 
4104 Serge 2184
		i915_gem_free_request(request);
2352 Serge 2185
	}
2332 Serge 2186
 
2352 Serge 2187
	/* Move any buffers on the active list that are no longer referenced
2188
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2189
	 */
2190
	while (!list_empty(&ring->active_list)) {
2191
		struct drm_i915_gem_object *obj;
2332 Serge 2192
 
2352 Serge 2193
		obj = list_first_entry(&ring->active_list,
2194
				      struct drm_i915_gem_object,
2195
				      ring_list);
2332 Serge 2196
 
3031 serge 2197
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2352 Serge 2198
			break;
2332 Serge 2199
 
2352 Serge 2200
			i915_gem_object_move_to_inactive(obj);
2201
	}
2332 Serge 2202
 
2352 Serge 2203
	if (unlikely(ring->trace_irq_seqno &&
2204
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2205
		ring->irq_put(ring);
2206
		ring->trace_irq_seqno = 0;
2207
	}
2332 Serge 2208
 
2352 Serge 2209
	WARN_ON(i915_verify_lists(ring->dev));
2210
}
2332 Serge 2211
 
2352 Serge 2212
void
2213
i915_gem_retire_requests(struct drm_device *dev)
2214
{
2215
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2216
	struct intel_ring_buffer *ring;
2352 Serge 2217
	int i;
2332 Serge 2218
 
3031 serge 2219
	for_each_ring(ring, dev_priv, i)
2220
		i915_gem_retire_requests_ring(ring);
2352 Serge 2221
}
2222
 
2360 Serge 2223
static void
2224
i915_gem_retire_work_handler(struct work_struct *work)
2225
{
2226
	drm_i915_private_t *dev_priv;
2227
	struct drm_device *dev;
3031 serge 2228
	struct intel_ring_buffer *ring;
2360 Serge 2229
	bool idle;
2230
	int i;
2352 Serge 2231
 
2360 Serge 2232
	dev_priv = container_of(work, drm_i915_private_t,
2233
				mm.retire_work.work);
2234
	dev = dev_priv->dev;
2352 Serge 2235
 
2360 Serge 2236
	/* Come back later if the device is busy... */
2237
	if (!mutex_trylock(&dev->struct_mutex)) {
3482 Serge 2238
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2239
				   round_jiffies_up_relative(HZ));
3243 Serge 2240
        return;
2360 Serge 2241
	}
2352 Serge 2242
 
2360 Serge 2243
	i915_gem_retire_requests(dev);
2352 Serge 2244
 
2360 Serge 2245
	/* Send a periodic flush down the ring so we don't hold onto GEM
2246
	 * objects indefinitely.
2247
	 */
2248
	idle = true;
3031 serge 2249
	for_each_ring(ring, dev_priv, i) {
2250
		if (ring->gpu_caches_dirty)
4104 Serge 2251
			i915_add_request(ring, NULL);
2352 Serge 2252
 
2360 Serge 2253
		idle &= list_empty(&ring->request_list);
2254
	}
2352 Serge 2255
 
4104 Serge 2256
	if (!dev_priv->ums.mm_suspended && !idle)
3482 Serge 2257
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2258
				   round_jiffies_up_relative(HZ));
3031 serge 2259
	if (idle)
2260
		intel_mark_idle(dev);
2360 Serge 2261
 
2262
	mutex_unlock(&dev->struct_mutex);
2263
}
2264
 
2344 Serge 2265
/**
3031 serge 2266
 * Ensures that an object will eventually get non-busy by flushing any required
2267
 * write domains, emitting any outstanding lazy request and retiring and
2268
 * completed requests.
2352 Serge 2269
 */
3031 serge 2270
static int
2271
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2272
{
3031 serge 2273
	int ret;
2352 Serge 2274
 
3031 serge 2275
	if (obj->active) {
2276
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2277
		if (ret)
2278
			return ret;
2352 Serge 2279
 
3031 serge 2280
		i915_gem_retire_requests_ring(obj->ring);
2281
	}
2352 Serge 2282
 
3031 serge 2283
	return 0;
2284
}
2352 Serge 2285
 
3243 Serge 2286
/**
2287
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2288
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2289
 *
2290
 * Returns 0 if successful, else an error is returned with the remaining time in
2291
 * the timeout parameter.
2292
 *  -ETIME: object is still busy after timeout
2293
 *  -ERESTARTSYS: signal interrupted the wait
2294
 *  -ENONENT: object doesn't exist
2295
 * Also possible, but rare:
2296
 *  -EAGAIN: GPU wedged
2297
 *  -ENOMEM: damn
2298
 *  -ENODEV: Internal IRQ fail
2299
 *  -E?: The add request failed
2300
 *
2301
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2302
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2303
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2304
 * without holding struct_mutex the object may become re-busied before this
2305
 * function completes. A similar but shorter * race condition exists in the busy
2306
 * ioctl
2307
 */
4246 Serge 2308
int
2309
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2310
{
2311
	drm_i915_private_t *dev_priv = dev->dev_private;
2312
	struct drm_i915_gem_wait *args = data;
2313
	struct drm_i915_gem_object *obj;
2314
	struct intel_ring_buffer *ring = NULL;
2315
	struct timespec timeout_stack, *timeout = NULL;
2316
	unsigned reset_counter;
2317
	u32 seqno = 0;
2318
	int ret = 0;
2352 Serge 2319
 
4246 Serge 2320
	if (args->timeout_ns >= 0) {
2321
		timeout_stack = ns_to_timespec(args->timeout_ns);
2322
		timeout = &timeout_stack;
2323
	}
2352 Serge 2324
 
4246 Serge 2325
	ret = i915_mutex_lock_interruptible(dev);
2326
	if (ret)
2327
		return ret;
2352 Serge 2328
 
4246 Serge 2329
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2330
	if (&obj->base == NULL) {
2331
		mutex_unlock(&dev->struct_mutex);
2332
		return -ENOENT;
2333
	}
2352 Serge 2334
 
4246 Serge 2335
	/* Need to make sure the object gets inactive eventually. */
2336
	ret = i915_gem_object_flush_active(obj);
2337
	if (ret)
2338
		goto out;
2352 Serge 2339
 
4246 Serge 2340
	if (obj->active) {
2341
		seqno = obj->last_read_seqno;
2342
		ring = obj->ring;
2343
	}
2352 Serge 2344
 
4246 Serge 2345
	if (seqno == 0)
2346
		 goto out;
2352 Serge 2347
 
4246 Serge 2348
	/* Do this after OLR check to make sure we make forward progress polling
2349
	 * on this IOCTL with a 0 timeout (like busy ioctl)
2350
	 */
2351
	if (!args->timeout_ns) {
2352
		ret = -ETIME;
2353
		goto out;
2354
	}
2352 Serge 2355
 
4246 Serge 2356
	drm_gem_object_unreference(&obj->base);
2357
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2358
	mutex_unlock(&dev->struct_mutex);
2352 Serge 2359
 
4246 Serge 2360
	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2361
	if (timeout)
2362
		args->timeout_ns = timespec_to_ns(timeout);
2363
	return ret;
3243 Serge 2364
 
4246 Serge 2365
out:
2366
	drm_gem_object_unreference(&obj->base);
2367
	mutex_unlock(&dev->struct_mutex);
2368
	return ret;
2369
}
3243 Serge 2370
 
2352 Serge 2371
/**
3031 serge 2372
 * i915_gem_object_sync - sync an object to a ring.
2373
 *
2374
 * @obj: object which may be in use on another ring.
2375
 * @to: ring we wish to use the object on. May be NULL.
2376
 *
2377
 * This code is meant to abstract object synchronization with the GPU.
2378
 * Calling with NULL implies synchronizing the object with the CPU
2379
 * rather than a particular GPU ring.
2380
 *
2381
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2382
 */
2383
int
3031 serge 2384
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2385
		     struct intel_ring_buffer *to)
2344 Serge 2386
{
3031 serge 2387
	struct intel_ring_buffer *from = obj->ring;
2388
	u32 seqno;
2389
	int ret, idx;
2332 Serge 2390
 
3031 serge 2391
	if (from == NULL || to == from)
2392
		return 0;
2332 Serge 2393
 
3031 serge 2394
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2395
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2396
 
3031 serge 2397
	idx = intel_ring_sync_index(from, to);
2398
 
2399
	seqno = obj->last_read_seqno;
2400
	if (seqno <= from->sync_seqno[idx])
2401
		return 0;
2402
 
2403
	ret = i915_gem_check_olr(obj->ring, seqno);
2404
	if (ret)
2405
		return ret;
2406
 
2407
	ret = to->sync_to(to, from, seqno);
2408
	if (!ret)
3243 Serge 2409
		/* We use last_read_seqno because sync_to()
2410
		 * might have just caused seqno wrap under
2411
		 * the radar.
2412
		 */
2413
		from->sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2414
 
2415
	return ret;
2344 Serge 2416
}
2332 Serge 2417
 
2344 Serge 2418
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2419
{
2420
	u32 old_write_domain, old_read_domains;
2332 Serge 2421
 
2344 Serge 2422
	/* Force a pagefault for domain tracking on next user access */
2423
//	i915_gem_release_mmap(obj);
2332 Serge 2424
 
2344 Serge 2425
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2426
		return;
2332 Serge 2427
 
3480 Serge 2428
	/* Wait for any direct GTT access to complete */
2429
	mb();
2430
 
2344 Serge 2431
	old_read_domains = obj->base.read_domains;
2432
	old_write_domain = obj->base.write_domain;
2351 Serge 2433
 
2344 Serge 2434
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2435
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2436
 
2351 Serge 2437
	trace_i915_gem_object_change_domain(obj,
2438
					    old_read_domains,
2439
					    old_write_domain);
2344 Serge 2440
}
2332 Serge 2441
 
4104 Serge 2442
int i915_vma_unbind(struct i915_vma *vma)
2344 Serge 2443
{
4104 Serge 2444
	struct drm_i915_gem_object *obj = vma->obj;
3031 serge 2445
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3480 Serge 2446
	int ret;
2332 Serge 2447
 
3263 Serge 2448
    if(obj == get_fb_obj())
2449
        return 0;
2450
 
4104 Serge 2451
	if (list_empty(&vma->vma_link))
2344 Serge 2452
		return 0;
2332 Serge 2453
 
4104 Serge 2454
	if (!drm_mm_node_allocated(&vma->node))
2455
		goto destroy;
2456
 
3031 serge 2457
	if (obj->pin_count)
2458
		return -EBUSY;
2332 Serge 2459
 
3243 Serge 2460
	BUG_ON(obj->pages == NULL);
3031 serge 2461
 
2344 Serge 2462
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2463
	if (ret)
2344 Serge 2464
		return ret;
2465
	/* Continue on if we fail due to EIO, the GPU is hung so we
2466
	 * should be safe and we need to cleanup or else we might
2467
	 * cause memory corruption through use-after-free.
2468
	 */
2332 Serge 2469
 
2344 Serge 2470
	i915_gem_object_finish_gtt(obj);
2332 Serge 2471
 
2344 Serge 2472
	/* release the fence reg _after_ flushing */
2473
	ret = i915_gem_object_put_fence(obj);
3031 serge 2474
	if (ret)
2344 Serge 2475
		return ret;
2332 Serge 2476
 
4104 Serge 2477
	trace_i915_vma_unbind(vma);
2332 Serge 2478
 
3031 serge 2479
	if (obj->has_global_gtt_mapping)
3243 Serge 2480
        i915_gem_gtt_unbind_object(obj);
3031 serge 2481
	if (obj->has_aliasing_ppgtt_mapping) {
2482
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2483
		obj->has_aliasing_ppgtt_mapping = 0;
2484
	}
2485
	i915_gem_gtt_finish_object(obj);
4104 Serge 2486
	i915_gem_object_unpin_pages(obj);
2332 Serge 2487
 
4104 Serge 2488
	list_del(&vma->mm_list);
2344 Serge 2489
	/* Avoid an unnecessary call to unbind on rebind. */
4104 Serge 2490
	if (i915_is_ggtt(vma->vm))
2344 Serge 2491
	obj->map_and_fenceable = true;
2332 Serge 2492
 
4104 Serge 2493
	drm_mm_remove_node(&vma->node);
2332 Serge 2494
 
4104 Serge 2495
destroy:
2496
	i915_gem_vma_destroy(vma);
2497
 
2498
	/* Since the unbound list is global, only move to that list if
2499
	 * no more VMAs exist.
2500
	 * NB: Until we have real VMAs there will only ever be one */
2501
	WARN_ON(!list_empty(&obj->vma_list));
2502
	if (list_empty(&obj->vma_list))
2503
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2504
 
2344 Serge 2505
	return 0;
2506
}
2332 Serge 2507
 
4104 Serge 2508
/**
2509
 * Unbinds an object from the global GTT aperture.
2510
 */
2511
int
2512
i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2513
{
2514
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2515
	struct i915_address_space *ggtt = &dev_priv->gtt.base;
2516
 
2517
	if (!i915_gem_obj_ggtt_bound(obj))
2518
		return 0;
2519
 
2520
	if (obj->pin_count)
2521
		return -EBUSY;
2522
 
2523
	BUG_ON(obj->pages == NULL);
2524
 
2525
	return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2526
}
2527
 
3031 serge 2528
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2529
{
2530
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2531
	struct intel_ring_buffer *ring;
2344 Serge 2532
	int ret, i;
2332 Serge 2533
 
2344 Serge 2534
	/* Flush everything onto the inactive list. */
3031 serge 2535
	for_each_ring(ring, dev_priv, i) {
2536
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2344 Serge 2537
		if (ret)
2538
			return ret;
3031 serge 2539
 
3243 Serge 2540
		ret = intel_ring_idle(ring);
3031 serge 2541
		if (ret)
2542
			return ret;
2344 Serge 2543
	}
2332 Serge 2544
 
2344 Serge 2545
	return 0;
2546
}
2332 Serge 2547
 
3480 Serge 2548
static void i965_write_fence_reg(struct drm_device *dev, int reg,
3031 serge 2549
					struct drm_i915_gem_object *obj)
2550
{
2551
	drm_i915_private_t *dev_priv = dev->dev_private;
3480 Serge 2552
	int fence_reg;
2553
	int fence_pitch_shift;
2332 Serge 2554
 
3480 Serge 2555
	if (INTEL_INFO(dev)->gen >= 6) {
2556
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2557
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2558
	} else {
2559
		fence_reg = FENCE_REG_965_0;
2560
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2561
	}
2332 Serge 2562
 
4104 Serge 2563
	fence_reg += reg * 8;
2564
 
2565
	/* To w/a incoherency with non-atomic 64-bit register updates,
2566
	 * we split the 64-bit update into two 32-bit writes. In order
2567
	 * for a partial fence not to be evaluated between writes, we
2568
	 * precede the update with write to turn off the fence register,
2569
	 * and only enable the fence as the last step.
2570
	 *
2571
	 * For extra levels of paranoia, we make sure each step lands
2572
	 * before applying the next step.
2573
	 */
2574
	I915_WRITE(fence_reg, 0);
2575
	POSTING_READ(fence_reg);
2576
 
3031 serge 2577
	if (obj) {
4104 Serge 2578
		u32 size = i915_gem_obj_ggtt_size(obj);
2579
		uint64_t val;
2332 Serge 2580
 
4104 Serge 2581
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3031 serge 2582
				 0xfffff000) << 32;
4104 Serge 2583
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3480 Serge 2584
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 serge 2585
		if (obj->tiling_mode == I915_TILING_Y)
2586
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2587
		val |= I965_FENCE_REG_VALID;
2332 Serge 2588
 
4104 Serge 2589
		I915_WRITE(fence_reg + 4, val >> 32);
2590
		POSTING_READ(fence_reg + 4);
2591
 
2592
		I915_WRITE(fence_reg + 0, val);
3480 Serge 2593
	POSTING_READ(fence_reg);
4104 Serge 2594
	} else {
2595
		I915_WRITE(fence_reg + 4, 0);
2596
		POSTING_READ(fence_reg + 4);
2597
	}
3031 serge 2598
}
2332 Serge 2599
 
3031 serge 2600
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2601
				 struct drm_i915_gem_object *obj)
2602
{
2603
	drm_i915_private_t *dev_priv = dev->dev_private;
2604
	u32 val;
2332 Serge 2605
 
3031 serge 2606
	if (obj) {
4104 Serge 2607
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2608
		int pitch_val;
2609
		int tile_width;
2332 Serge 2610
 
4104 Serge 2611
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3031 serge 2612
		     (size & -size) != size ||
4104 Serge 2613
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2614
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2615
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2332 Serge 2616
 
3031 serge 2617
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2618
			tile_width = 128;
2619
		else
2620
			tile_width = 512;
2332 Serge 2621
 
3031 serge 2622
		/* Note: pitch better be a power of two tile widths */
2623
		pitch_val = obj->stride / tile_width;
2624
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2625
 
4104 Serge 2626
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2627
		if (obj->tiling_mode == I915_TILING_Y)
2628
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2629
		val |= I915_FENCE_SIZE_BITS(size);
2630
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2631
		val |= I830_FENCE_REG_VALID;
2632
	} else
2633
		val = 0;
2332 Serge 2634
 
3031 serge 2635
	if (reg < 8)
2636
		reg = FENCE_REG_830_0 + reg * 4;
2637
	else
2638
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2639
 
3031 serge 2640
	I915_WRITE(reg, val);
2641
	POSTING_READ(reg);
2642
}
2332 Serge 2643
 
3031 serge 2644
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2645
				struct drm_i915_gem_object *obj)
2646
{
2647
	drm_i915_private_t *dev_priv = dev->dev_private;
2648
	uint32_t val;
2344 Serge 2649
 
3031 serge 2650
	if (obj) {
4104 Serge 2651
		u32 size = i915_gem_obj_ggtt_size(obj);
3031 serge 2652
		uint32_t pitch_val;
2344 Serge 2653
 
4104 Serge 2654
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3031 serge 2655
		     (size & -size) != size ||
4104 Serge 2656
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2657
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2658
		     i915_gem_obj_ggtt_offset(obj), size);
2344 Serge 2659
 
3031 serge 2660
		pitch_val = obj->stride / 128;
2661
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2662
 
4104 Serge 2663
		val = i915_gem_obj_ggtt_offset(obj);
3031 serge 2664
		if (obj->tiling_mode == I915_TILING_Y)
2665
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2666
		val |= I830_FENCE_SIZE_BITS(size);
2667
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2668
		val |= I830_FENCE_REG_VALID;
2669
	} else
2670
		val = 0;
2671
 
2672
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2673
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2674
}
2675
 
3480 Serge 2676
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2677
{
2678
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2679
}
2680
 
3031 serge 2681
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2682
				 struct drm_i915_gem_object *obj)
2332 Serge 2683
{
3480 Serge 2684
	struct drm_i915_private *dev_priv = dev->dev_private;
2685
 
2686
	/* Ensure that all CPU reads are completed before installing a fence
2687
	 * and all writes before removing the fence.
2688
	 */
2689
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2690
		mb();
2691
 
4104 Serge 2692
	WARN(obj && (!obj->stride || !obj->tiling_mode),
2693
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2694
	     obj->stride, obj->tiling_mode);
2695
 
3031 serge 2696
	switch (INTEL_INFO(dev)->gen) {
2697
	case 7:
3480 Serge 2698
	case 6:
3031 serge 2699
	case 5:
2700
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2701
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2702
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3480 Serge 2703
	default: BUG();
3031 serge 2704
	}
3480 Serge 2705
 
2706
	/* And similarly be paranoid that no direct access to this region
2707
	 * is reordered to before the fence is installed.
2708
	 */
2709
	if (i915_gem_object_needs_mb(obj))
2710
		mb();
2344 Serge 2711
}
2712
 
3031 serge 2713
static inline int fence_number(struct drm_i915_private *dev_priv,
2714
			       struct drm_i915_fence_reg *fence)
2344 Serge 2715
{
3031 serge 2716
	return fence - dev_priv->fence_regs;
2717
}
2332 Serge 2718
 
3031 serge 2719
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2720
					 struct drm_i915_fence_reg *fence,
2721
					 bool enable)
2722
{
4104 Serge 2723
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2724
	int reg = fence_number(dev_priv, fence);
2332 Serge 2725
 
4104 Serge 2726
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3031 serge 2727
 
2728
	if (enable) {
4104 Serge 2729
		obj->fence_reg = reg;
3031 serge 2730
		fence->obj = obj;
2731
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2732
	} else {
2733
		obj->fence_reg = I915_FENCE_REG_NONE;
2734
		fence->obj = NULL;
2735
		list_del_init(&fence->lru_list);
2344 Serge 2736
	}
4104 Serge 2737
	obj->fence_dirty = false;
3031 serge 2738
}
2344 Serge 2739
 
3031 serge 2740
static int
3480 Serge 2741
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3031 serge 2742
{
2743
	if (obj->last_fenced_seqno) {
2744
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2745
			if (ret)
2746
				return ret;
2344 Serge 2747
 
2748
		obj->last_fenced_seqno = 0;
2749
	}
2750
 
3031 serge 2751
	obj->fenced_gpu_access = false;
2332 Serge 2752
	return 0;
2753
}
2754
 
2755
int
2344 Serge 2756
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2757
{
3031 serge 2758
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3746 Serge 2759
	struct drm_i915_fence_reg *fence;
2332 Serge 2760
	int ret;
2761
 
3480 Serge 2762
	ret = i915_gem_object_wait_fence(obj);
2332 Serge 2763
	if (ret)
2764
		return ret;
2765
 
3031 serge 2766
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2767
		return 0;
2332 Serge 2768
 
3746 Serge 2769
	fence = &dev_priv->fence_regs[obj->fence_reg];
2770
 
3031 serge 2771
	i915_gem_object_fence_lost(obj);
3746 Serge 2772
	i915_gem_object_update_fence(obj, fence, false);
2344 Serge 2773
 
2332 Serge 2774
	return 0;
2775
}
2776
 
3031 serge 2777
static struct drm_i915_fence_reg *
2778
i915_find_fence_reg(struct drm_device *dev)
2779
{
2780
	struct drm_i915_private *dev_priv = dev->dev_private;
2781
	struct drm_i915_fence_reg *reg, *avail;
2782
	int i;
2332 Serge 2783
 
3031 serge 2784
	/* First try to find a free reg */
2785
	avail = NULL;
2786
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2787
		reg = &dev_priv->fence_regs[i];
2788
		if (!reg->obj)
2789
			return reg;
2332 Serge 2790
 
3031 serge 2791
		if (!reg->pin_count)
2792
			avail = reg;
2793
	}
2332 Serge 2794
 
3031 serge 2795
	if (avail == NULL)
2796
		return NULL;
2332 Serge 2797
 
3031 serge 2798
	/* None available, try to steal one or wait for a user to finish */
2799
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2800
		if (reg->pin_count)
2801
			continue;
2332 Serge 2802
 
3031 serge 2803
		return reg;
2804
	}
2332 Serge 2805
 
3031 serge 2806
	return NULL;
2807
}
2332 Serge 2808
 
3031 serge 2809
/**
2810
 * i915_gem_object_get_fence - set up fencing for an object
2811
 * @obj: object to map through a fence reg
2812
 *
2813
 * When mapping objects through the GTT, userspace wants to be able to write
2814
 * to them without having to worry about swizzling if the object is tiled.
2815
 * This function walks the fence regs looking for a free one for @obj,
2816
 * stealing one if it can't find any.
2817
 *
2818
 * It then sets up the reg based on the object's properties: address, pitch
2819
 * and tiling format.
2820
 *
2821
 * For an untiled surface, this removes any existing fence.
2822
 */
2823
int
2824
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2825
{
2826
	struct drm_device *dev = obj->base.dev;
2827
	struct drm_i915_private *dev_priv = dev->dev_private;
2828
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2829
	struct drm_i915_fence_reg *reg;
2830
	int ret;
2332 Serge 2831
 
3031 serge 2832
	/* Have we updated the tiling parameters upon the object and so
2833
	 * will need to serialise the write to the associated fence register?
2834
	 */
2835
	if (obj->fence_dirty) {
3480 Serge 2836
		ret = i915_gem_object_wait_fence(obj);
3031 serge 2837
		if (ret)
2838
			return ret;
2839
	}
2332 Serge 2840
 
3031 serge 2841
	/* Just update our place in the LRU if our fence is getting reused. */
2842
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2843
		reg = &dev_priv->fence_regs[obj->fence_reg];
2844
		if (!obj->fence_dirty) {
2845
			list_move_tail(®->lru_list,
2846
				       &dev_priv->mm.fence_list);
2847
			return 0;
2848
		}
2849
	} else if (enable) {
2850
		reg = i915_find_fence_reg(dev);
2851
		if (reg == NULL)
2852
			return -EDEADLK;
2332 Serge 2853
 
3031 serge 2854
		if (reg->obj) {
2855
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2856
 
3480 Serge 2857
			ret = i915_gem_object_wait_fence(old);
3031 serge 2858
			if (ret)
2859
				return ret;
2332 Serge 2860
 
3031 serge 2861
			i915_gem_object_fence_lost(old);
2862
		}
2863
	} else
2864
		return 0;
2332 Serge 2865
 
3031 serge 2866
	i915_gem_object_update_fence(obj, reg, enable);
2332 Serge 2867
 
3031 serge 2868
	return 0;
2869
}
2332 Serge 2870
 
3031 serge 2871
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2872
				     struct drm_mm_node *gtt_space,
2873
				     unsigned long cache_level)
2874
{
2875
	struct drm_mm_node *other;
2332 Serge 2876
 
3031 serge 2877
	/* On non-LLC machines we have to be careful when putting differing
2878
	 * types of snoopable memory together to avoid the prefetcher
3480 Serge 2879
	 * crossing memory domains and dying.
3031 serge 2880
	 */
2881
	if (HAS_LLC(dev))
2882
		return true;
2332 Serge 2883
 
4104 Serge 2884
	if (!drm_mm_node_allocated(gtt_space))
3031 serge 2885
		return true;
2332 Serge 2886
 
3031 serge 2887
	if (list_empty(>t_space->node_list))
2888
		return true;
2332 Serge 2889
 
3031 serge 2890
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2891
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2892
		return false;
2344 Serge 2893
 
3031 serge 2894
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2895
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2896
		return false;
2344 Serge 2897
 
3031 serge 2898
	return true;
2899
}
2344 Serge 2900
 
3031 serge 2901
static void i915_gem_verify_gtt(struct drm_device *dev)
2902
{
2903
#if WATCH_GTT
2904
	struct drm_i915_private *dev_priv = dev->dev_private;
2905
	struct drm_i915_gem_object *obj;
2906
	int err = 0;
2344 Serge 2907
 
4104 Serge 2908
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3031 serge 2909
		if (obj->gtt_space == NULL) {
2910
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2911
			err++;
2912
			continue;
2913
		}
2344 Serge 2914
 
3031 serge 2915
		if (obj->cache_level != obj->gtt_space->color) {
2916
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
4104 Serge 2917
			       i915_gem_obj_ggtt_offset(obj),
2918
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2919
			       obj->cache_level,
2920
			       obj->gtt_space->color);
2921
			err++;
2922
			continue;
2923
		}
2344 Serge 2924
 
3031 serge 2925
		if (!i915_gem_valid_gtt_space(dev,
2926
					      obj->gtt_space,
2927
					      obj->cache_level)) {
2928
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
4104 Serge 2929
			       i915_gem_obj_ggtt_offset(obj),
2930
			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3031 serge 2931
			       obj->cache_level);
2932
			err++;
2933
			continue;
2934
		}
2935
	}
2344 Serge 2936
 
3031 serge 2937
	WARN_ON(err);
2938
#endif
2326 Serge 2939
}
2940
 
2332 Serge 2941
/**
2942
 * Finds free space in the GTT aperture and binds the object there.
2943
 */
2944
static int
4104 Serge 2945
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
2946
			   struct i915_address_space *vm,
2332 Serge 2947
			    unsigned alignment,
3031 serge 2948
			    bool map_and_fenceable,
2949
			    bool nonblocking)
2332 Serge 2950
{
2951
	struct drm_device *dev = obj->base.dev;
2952
	drm_i915_private_t *dev_priv = dev->dev_private;
2953
	u32 size, fence_size, fence_alignment, unfenced_alignment;
4104 Serge 2954
	size_t gtt_max =
2955
		map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2956
	struct i915_vma *vma;
2332 Serge 2957
	int ret;
2326 Serge 2958
 
2332 Serge 2959
	fence_size = i915_gem_get_gtt_size(dev,
2960
					   obj->base.size,
2961
					   obj->tiling_mode);
2962
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2963
						     obj->base.size,
3480 Serge 2964
						     obj->tiling_mode, true);
2332 Serge 2965
	unfenced_alignment =
3480 Serge 2966
		i915_gem_get_gtt_alignment(dev,
2332 Serge 2967
						    obj->base.size,
3480 Serge 2968
						    obj->tiling_mode, false);
2332 Serge 2969
 
2970
	if (alignment == 0)
2971
		alignment = map_and_fenceable ? fence_alignment :
2972
						unfenced_alignment;
2973
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2974
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2975
		return -EINVAL;
2976
	}
2977
 
2978
	size = map_and_fenceable ? fence_size : obj->base.size;
2979
 
2980
	/* If the object is bigger than the entire aperture, reject it early
2981
	 * before evicting everything in a vain attempt to find space.
2982
	 */
4104 Serge 2983
	if (obj->base.size > gtt_max) {
2984
		DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
2985
			  obj->base.size,
2986
			  map_and_fenceable ? "mappable" : "total",
2987
			  gtt_max);
2332 Serge 2988
		return -E2BIG;
2989
	}
2990
 
3031 serge 2991
	ret = i915_gem_object_get_pages(obj);
2992
	if (ret)
2993
		return ret;
2994
 
3243 Serge 2995
	i915_gem_object_pin_pages(obj);
2996
 
4104 Serge 2997
	BUG_ON(!i915_is_ggtt(vm));
2998
 
2999
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3000
	if (IS_ERR(vma)) {
3001
		ret = PTR_ERR(vma);
3002
		goto err_unpin;
3243 Serge 3003
	}
3004
 
4104 Serge 3005
	/* For now we only ever use 1 vma per object */
3006
	WARN_ON(!list_is_singular(&obj->vma_list));
3007
 
3008
search_free:
3009
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3010
						  size, alignment,
3011
						  obj->cache_level, 0, gtt_max,
3012
						  DRM_MM_SEARCH_DEFAULT);
3243 Serge 3013
	if (ret) {
2332 Serge 3014
 
4104 Serge 3015
		goto err_free_vma;
2332 Serge 3016
	}
4104 Serge 3017
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3018
					      obj->cache_level))) {
3019
		ret = -EINVAL;
3020
		goto err_remove_node;
3031 serge 3021
	}
2332 Serge 3022
 
3031 serge 3023
	ret = i915_gem_gtt_prepare_object(obj);
4104 Serge 3024
	if (ret)
3025
		goto err_remove_node;
2332 Serge 3026
 
4104 Serge 3027
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3028
	list_add_tail(&vma->mm_list, &vm->inactive_list);
2332 Serge 3029
 
4104 Serge 3030
	if (i915_is_ggtt(vm)) {
3031
		bool mappable, fenceable;
2332 Serge 3032
 
4104 Serge 3033
		fenceable = (vma->node.size == fence_size &&
3034
			     (vma->node.start & (fence_alignment - 1)) == 0);
2332 Serge 3035
 
4104 Serge 3036
		mappable = (vma->node.start + obj->base.size <=
3037
			    dev_priv->gtt.mappable_end);
2332 Serge 3038
 
3039
	obj->map_and_fenceable = mappable && fenceable;
4104 Serge 3040
	}
2332 Serge 3041
 
4104 Serge 3042
	WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3043
 
3044
	trace_i915_vma_bind(vma, map_and_fenceable);
3031 serge 3045
	i915_gem_verify_gtt(dev);
2332 Serge 3046
	return 0;
4104 Serge 3047
 
3048
err_remove_node:
3049
	drm_mm_remove_node(&vma->node);
3050
err_free_vma:
3051
	i915_gem_vma_destroy(vma);
3052
err_unpin:
3053
	i915_gem_object_unpin_pages(obj);
3054
	return ret;
2332 Serge 3055
}
3056
 
4104 Serge 3057
bool
3058
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3059
			bool force)
2332 Serge 3060
{
3061
	/* If we don't have a page list set up, then we're not pinned
3062
	 * to GPU, and we can ignore the cache flush because it'll happen
3063
	 * again at bind time.
3064
	 */
3243 Serge 3065
	if (obj->pages == NULL)
4104 Serge 3066
		return false;
2332 Serge 3067
 
3480 Serge 3068
	/*
3069
	 * Stolen memory is always coherent with the GPU as it is explicitly
3070
	 * marked as wc by the system, or the system is cache-coherent.
3071
	 */
3072
	if (obj->stolen)
4104 Serge 3073
		return false;
3480 Serge 3074
 
2332 Serge 3075
	/* If the GPU is snooping the contents of the CPU cache,
3076
	 * we do not need to manually clear the CPU cache lines.  However,
3077
	 * the caches are only snooped when the render cache is
3078
	 * flushed/invalidated.  As we always have to emit invalidations
3079
	 * and flushes when moving into and out of the RENDER domain, correct
3080
	 * snooping behaviour occurs naturally as the result of our domain
3081
	 * tracking.
3082
	 */
4104 Serge 3083
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3084
		return false;
2332 Serge 3085
 
4293 Serge 3086
	trace_i915_gem_object_clflush(obj);
3087
	drm_clflush_sg(obj->pages);
2344 Serge 3088
 
4104 Serge 3089
	return true;
2332 Serge 3090
}
3091
 
2344 Serge 3092
/** Flushes the GTT write domain for the object if it's dirty. */
3093
static void
3094
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3095
{
3096
	uint32_t old_write_domain;
2332 Serge 3097
 
2344 Serge 3098
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3099
		return;
2332 Serge 3100
 
2344 Serge 3101
	/* No actual flushing is required for the GTT write domain.  Writes
3102
	 * to it immediately go to main memory as far as we know, so there's
3103
	 * no chipset flush.  It also doesn't land in render cache.
3104
	 *
3105
	 * However, we do have to enforce the order so that all writes through
3106
	 * the GTT land before any writes to the device, such as updates to
3107
	 * the GATT itself.
3108
	 */
3109
	wmb();
2332 Serge 3110
 
2344 Serge 3111
	old_write_domain = obj->base.write_domain;
3112
	obj->base.write_domain = 0;
2332 Serge 3113
 
2351 Serge 3114
	trace_i915_gem_object_change_domain(obj,
3115
					    obj->base.read_domains,
3116
					    old_write_domain);
2344 Serge 3117
}
2332 Serge 3118
 
3119
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 3120
static void
4104 Serge 3121
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3122
				       bool force)
2332 Serge 3123
{
3124
	uint32_t old_write_domain;
3125
 
3126
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3127
		return;
3128
 
4104 Serge 3129
	if (i915_gem_clflush_object(obj, force))
3243 Serge 3130
	i915_gem_chipset_flush(obj->base.dev);
4104 Serge 3131
 
2332 Serge 3132
	old_write_domain = obj->base.write_domain;
3133
	obj->base.write_domain = 0;
3134
 
2351 Serge 3135
	trace_i915_gem_object_change_domain(obj,
3136
					    obj->base.read_domains,
3137
					    old_write_domain);
2332 Serge 3138
}
3139
 
3140
/**
3141
 * Moves a single object to the GTT read, and possibly write domain.
3142
 *
3143
 * This function returns when the move is complete, including waiting on
3144
 * flushes to occur.
3145
 */
3146
int
3147
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3148
{
3031 serge 3149
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2332 Serge 3150
	uint32_t old_write_domain, old_read_domains;
3151
	int ret;
3152
 
3153
	/* Not valid to be called on unbound objects. */
4104 Serge 3154
	if (!i915_gem_obj_bound_any(obj))
2332 Serge 3155
		return -EINVAL;
3156
 
3157
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3158
		return 0;
3159
 
3031 serge 3160
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 3161
		if (ret)
3162
			return ret;
3163
 
4104 Serge 3164
	i915_gem_object_flush_cpu_write_domain(obj, false);
2332 Serge 3165
 
3480 Serge 3166
	/* Serialise direct access to this object with the barriers for
3167
	 * coherent writes from the GPU, by effectively invalidating the
3168
	 * GTT domain upon first access.
3169
	 */
3170
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3171
		mb();
3172
 
2332 Serge 3173
	old_write_domain = obj->base.write_domain;
3174
	old_read_domains = obj->base.read_domains;
3175
 
3176
	/* It should now be out of any other write domains, and we can update
3177
	 * the domain values for our changes.
3178
	 */
3179
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3180
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3181
	if (write) {
3182
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3183
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3184
		obj->dirty = 1;
3185
	}
3186
 
2351 Serge 3187
	trace_i915_gem_object_change_domain(obj,
3188
					    old_read_domains,
3189
					    old_write_domain);
3190
 
3031 serge 3191
	/* And bump the LRU for this access */
4104 Serge 3192
	if (i915_gem_object_is_inactive(obj)) {
3193
		struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3194
							   &dev_priv->gtt.base);
3195
		if (vma)
3196
			list_move_tail(&vma->mm_list,
3197
				       &dev_priv->gtt.base.inactive_list);
3031 serge 3198
 
4104 Serge 3199
	}
3200
 
2332 Serge 3201
	return 0;
3202
}
3203
 
2335 Serge 3204
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3205
				    enum i915_cache_level cache_level)
3206
{
3031 serge 3207
	struct drm_device *dev = obj->base.dev;
3208
	drm_i915_private_t *dev_priv = dev->dev_private;
4104 Serge 3209
	struct i915_vma *vma;
2335 Serge 3210
	int ret;
2332 Serge 3211
 
2335 Serge 3212
	if (obj->cache_level == cache_level)
3213
		return 0;
2332 Serge 3214
 
2335 Serge 3215
	if (obj->pin_count) {
3216
		DRM_DEBUG("can not change the cache level of pinned objects\n");
3217
		return -EBUSY;
3218
	}
2332 Serge 3219
 
4104 Serge 3220
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
3221
		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3222
			ret = i915_vma_unbind(vma);
3031 serge 3223
		if (ret)
3224
			return ret;
4104 Serge 3225
 
3226
			break;
3227
		}
3031 serge 3228
	}
3229
 
4104 Serge 3230
	if (i915_gem_obj_bound_any(obj)) {
2335 Serge 3231
		ret = i915_gem_object_finish_gpu(obj);
3232
		if (ret)
3233
			return ret;
2332 Serge 3234
 
2335 Serge 3235
		i915_gem_object_finish_gtt(obj);
2332 Serge 3236
 
2335 Serge 3237
		/* Before SandyBridge, you could not use tiling or fence
3238
		 * registers with snooped memory, so relinquish any fences
3239
		 * currently pointing to our region in the aperture.
3240
		 */
3031 serge 3241
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 3242
			ret = i915_gem_object_put_fence(obj);
3243
			if (ret)
3244
				return ret;
3245
		}
2332 Serge 3246
 
3031 serge 3247
		if (obj->has_global_gtt_mapping)
3248
			i915_gem_gtt_bind_object(obj, cache_level);
3249
		if (obj->has_aliasing_ppgtt_mapping)
3250
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3251
					       obj, cache_level);
2335 Serge 3252
	}
2332 Serge 3253
 
4104 Serge 3254
	list_for_each_entry(vma, &obj->vma_list, vma_link)
3255
		vma->node.color = cache_level;
3256
	obj->cache_level = cache_level;
3257
 
3258
	if (cpu_write_needs_clflush(obj)) {
2335 Serge 3259
		u32 old_read_domains, old_write_domain;
2332 Serge 3260
 
2335 Serge 3261
		/* If we're coming from LLC cached, then we haven't
3262
		 * actually been tracking whether the data is in the
3263
		 * CPU cache or not, since we only allow one bit set
3264
		 * in obj->write_domain and have been skipping the clflushes.
3265
		 * Just set it to the CPU cache for now.
3266
		 */
3267
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2332 Serge 3268
 
2335 Serge 3269
		old_read_domains = obj->base.read_domains;
3270
		old_write_domain = obj->base.write_domain;
2332 Serge 3271
 
2335 Serge 3272
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3273
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 3274
 
2351 Serge 3275
		trace_i915_gem_object_change_domain(obj,
3276
						    old_read_domains,
3277
						    old_write_domain);
2344 Serge 3278
    }
2332 Serge 3279
 
3031 serge 3280
	i915_gem_verify_gtt(dev);
2335 Serge 3281
	return 0;
3282
}
2332 Serge 3283
 
3260 Serge 3284
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3285
			       struct drm_file *file)
3286
{
3287
	struct drm_i915_gem_caching *args = data;
3288
	struct drm_i915_gem_object *obj;
3289
	int ret;
3290
 
3291
	ret = i915_mutex_lock_interruptible(dev);
3292
	if (ret)
3293
		return ret;
3294
 
3295
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3296
	if (&obj->base == NULL) {
3297
		ret = -ENOENT;
3298
		goto unlock;
3299
	}
3300
 
4104 Serge 3301
	switch (obj->cache_level) {
3302
	case I915_CACHE_LLC:
3303
	case I915_CACHE_L3_LLC:
3304
		args->caching = I915_CACHING_CACHED;
3305
		break;
3260 Serge 3306
 
4104 Serge 3307
	case I915_CACHE_WT:
3308
		args->caching = I915_CACHING_DISPLAY;
3309
		break;
3310
 
3311
	default:
3312
		args->caching = I915_CACHING_NONE;
3313
		break;
3314
	}
3315
 
3260 Serge 3316
	drm_gem_object_unreference(&obj->base);
3317
unlock:
3318
	mutex_unlock(&dev->struct_mutex);
3319
	return ret;
3320
}
3321
 
3322
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3323
			       struct drm_file *file)
3324
{
3325
	struct drm_i915_gem_caching *args = data;
3326
	struct drm_i915_gem_object *obj;
3327
	enum i915_cache_level level;
3328
	int ret;
3329
 
3330
	switch (args->caching) {
3331
	case I915_CACHING_NONE:
3332
		level = I915_CACHE_NONE;
3333
		break;
3334
	case I915_CACHING_CACHED:
3335
		level = I915_CACHE_LLC;
3336
		break;
4104 Serge 3337
	case I915_CACHING_DISPLAY:
3338
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3339
		break;
3260 Serge 3340
	default:
3341
		return -EINVAL;
3342
	}
3343
 
3344
	ret = i915_mutex_lock_interruptible(dev);
3345
	if (ret)
3346
		return ret;
3347
 
3348
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3349
	if (&obj->base == NULL) {
3350
		ret = -ENOENT;
3351
		goto unlock;
3352
	}
3353
 
3354
	ret = i915_gem_object_set_cache_level(obj, level);
3355
 
3356
	drm_gem_object_unreference(&obj->base);
3357
unlock:
3358
	mutex_unlock(&dev->struct_mutex);
3359
	return ret;
3360
}
3361
 
4104 Serge 3362
static bool is_pin_display(struct drm_i915_gem_object *obj)
3363
{
3364
	/* There are 3 sources that pin objects:
3365
	 *   1. The display engine (scanouts, sprites, cursors);
3366
	 *   2. Reservations for execbuffer;
3367
	 *   3. The user.
3368
	 *
3369
	 * We can ignore reservations as we hold the struct_mutex and
3370
	 * are only called outside of the reservation path.  The user
3371
	 * can only increment pin_count once, and so if after
3372
	 * subtracting the potential reference by the user, any pin_count
3373
	 * remains, it must be due to another use by the display engine.
3374
	 */
3375
	return obj->pin_count - !!obj->user_pin_count;
3376
}
3377
 
2335 Serge 3378
/*
3379
 * Prepare buffer for display plane (scanout, cursors, etc).
3380
 * Can be called from an uninterruptible phase (modesetting) and allows
3381
 * any flushes to be pipelined (for pageflips).
3382
 */
3383
int
3384
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3385
				     u32 alignment,
3386
				     struct intel_ring_buffer *pipelined)
3387
{
3388
	u32 old_read_domains, old_write_domain;
3389
	int ret;
2332 Serge 3390
 
3031 serge 3391
	if (pipelined != obj->ring) {
3392
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3393
	if (ret)
3394
		return ret;
3395
	}
2332 Serge 3396
 
4104 Serge 3397
	/* Mark the pin_display early so that we account for the
3398
	 * display coherency whilst setting up the cache domains.
3399
	 */
3400
	obj->pin_display = true;
3401
 
2335 Serge 3402
	/* The display engine is not coherent with the LLC cache on gen6.  As
3403
	 * a result, we make sure that the pinning that is about to occur is
3404
	 * done with uncached PTEs. This is lowest common denominator for all
3405
	 * chipsets.
3406
	 *
3407
	 * However for gen6+, we could do better by using the GFDT bit instead
3408
	 * of uncaching, which would allow us to flush all the LLC-cached data
3409
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3410
	 */
4104 Serge 3411
	ret = i915_gem_object_set_cache_level(obj,
3412
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
2360 Serge 3413
	if (ret)
4104 Serge 3414
		goto err_unpin_display;
2332 Serge 3415
 
2335 Serge 3416
	/* As the user may map the buffer once pinned in the display plane
3417
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3418
	 * always use map_and_fenceable for all scanout buffers.
3419
	 */
4104 Serge 3420
	ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2335 Serge 3421
	if (ret)
4104 Serge 3422
		goto err_unpin_display;
2332 Serge 3423
 
4104 Serge 3424
	i915_gem_object_flush_cpu_write_domain(obj, true);
2332 Serge 3425
 
2335 Serge 3426
	old_write_domain = obj->base.write_domain;
3427
	old_read_domains = obj->base.read_domains;
2332 Serge 3428
 
2335 Serge 3429
	/* It should now be out of any other write domains, and we can update
3430
	 * the domain values for our changes.
3431
	 */
3031 serge 3432
	obj->base.write_domain = 0;
2335 Serge 3433
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3434
 
2351 Serge 3435
	trace_i915_gem_object_change_domain(obj,
3436
					    old_read_domains,
3437
					    old_write_domain);
2332 Serge 3438
 
2335 Serge 3439
	return 0;
4104 Serge 3440
 
3441
err_unpin_display:
3442
	obj->pin_display = is_pin_display(obj);
3443
	return ret;
2335 Serge 3444
}
2332 Serge 3445
 
4104 Serge 3446
void
3447
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3448
{
3449
	i915_gem_object_unpin(obj);
3450
	obj->pin_display = is_pin_display(obj);
3451
}
3452
 
2344 Serge 3453
int
3454
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3455
{
3456
	int ret;
2332 Serge 3457
 
2344 Serge 3458
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3459
		return 0;
2332 Serge 3460
 
3031 serge 3461
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3462
    if (ret)
3463
        return ret;
2332 Serge 3464
 
2344 Serge 3465
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3466
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3467
	return 0;
2344 Serge 3468
}
2332 Serge 3469
 
2344 Serge 3470
/**
3471
 * Moves a single object to the CPU read, and possibly write domain.
3472
 *
3473
 * This function returns when the move is complete, including waiting on
3474
 * flushes to occur.
3475
 */
3031 serge 3476
int
2344 Serge 3477
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3478
{
3479
	uint32_t old_write_domain, old_read_domains;
3480
	int ret;
2332 Serge 3481
 
2344 Serge 3482
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3483
		return 0;
2332 Serge 3484
 
3031 serge 3485
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3486
	if (ret)
3487
		return ret;
2332 Serge 3488
 
2344 Serge 3489
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3490
 
2344 Serge 3491
	old_write_domain = obj->base.write_domain;
3492
	old_read_domains = obj->base.read_domains;
2332 Serge 3493
 
2344 Serge 3494
	/* Flush the CPU cache if it's still invalid. */
3495
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4104 Serge 3496
		i915_gem_clflush_object(obj, false);
2332 Serge 3497
 
2344 Serge 3498
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3499
	}
2332 Serge 3500
 
2344 Serge 3501
	/* It should now be out of any other write domains, and we can update
3502
	 * the domain values for our changes.
3503
	 */
3504
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3505
 
2344 Serge 3506
	/* If we're writing through the CPU, then the GPU read domains will
3507
	 * need to be invalidated at next use.
3508
	 */
3509
	if (write) {
3510
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3511
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3512
	}
2332 Serge 3513
 
2351 Serge 3514
	trace_i915_gem_object_change_domain(obj,
3515
					    old_read_domains,
3516
					    old_write_domain);
2332 Serge 3517
 
2344 Serge 3518
	return 0;
3519
}
2332 Serge 3520
 
3031 serge 3521
/* Throttle our rendering by waiting until the ring has completed our requests
3522
 * emitted over 20 msec ago.
2344 Serge 3523
 *
3031 serge 3524
 * Note that if we were to use the current jiffies each time around the loop,
3525
 * we wouldn't escape the function with any frames outstanding if the time to
3526
 * render a frame was over 20ms.
3527
 *
3528
 * This should get us reasonable parallelism between CPU and GPU but also
3529
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3530
 */
3031 serge 3531
static int
3532
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3533
{
3031 serge 3534
	struct drm_i915_private *dev_priv = dev->dev_private;
3535
	struct drm_i915_file_private *file_priv = file->driver_priv;
3263 Serge 3536
	unsigned long recent_enough = GetTimerTicks() - msecs_to_jiffies(20);
3031 serge 3537
	struct drm_i915_gem_request *request;
3538
	struct intel_ring_buffer *ring = NULL;
3480 Serge 3539
	unsigned reset_counter;
3031 serge 3540
	u32 seqno = 0;
3541
	int ret;
2332 Serge 3542
 
3480 Serge 3543
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3544
	if (ret)
3545
		return ret;
2332 Serge 3546
 
3480 Serge 3547
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3548
	if (ret)
3549
		return ret;
3550
 
3031 serge 3551
	spin_lock(&file_priv->mm.lock);
3552
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3553
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3554
			break;
2332 Serge 3555
 
3031 serge 3556
		ring = request->ring;
3557
		seqno = request->seqno;
3558
	}
3480 Serge 3559
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 3560
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3561
 
3031 serge 3562
	if (seqno == 0)
3563
		return 0;
2332 Serge 3564
 
3480 Serge 3565
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3031 serge 3566
	if (ret == 0)
3567
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3568
 
3031 serge 3569
	return ret;
2352 Serge 3570
}
2332 Serge 3571
 
3572
int
3573
i915_gem_object_pin(struct drm_i915_gem_object *obj,
4104 Serge 3574
		    struct i915_address_space *vm,
2332 Serge 3575
		    uint32_t alignment,
3031 serge 3576
		    bool map_and_fenceable,
3577
		    bool nonblocking)
2332 Serge 3578
{
4104 Serge 3579
	struct i915_vma *vma;
2332 Serge 3580
	int ret;
3581
 
3031 serge 3582
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3583
		return -EBUSY;
2332 Serge 3584
 
4104 Serge 3585
	WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3586
 
3587
	vma = i915_gem_obj_to_vma(obj, vm);
3588
 
3589
	if (vma) {
3590
		if ((alignment &&
3591
		     vma->node.start & (alignment - 1)) ||
2332 Serge 3592
		    (map_and_fenceable && !obj->map_and_fenceable)) {
3593
			WARN(obj->pin_count,
3594
			     "bo is already pinned with incorrect alignment:"
4104 Serge 3595
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
2332 Serge 3596
			     " obj->map_and_fenceable=%d\n",
4104 Serge 3597
			     i915_gem_obj_offset(obj, vm), alignment,
2332 Serge 3598
			     map_and_fenceable,
3599
			     obj->map_and_fenceable);
4104 Serge 3600
			ret = i915_vma_unbind(vma);
2332 Serge 3601
			if (ret)
3602
				return ret;
3603
		}
3604
	}
3605
 
4104 Serge 3606
	if (!i915_gem_obj_bound(obj, vm)) {
3243 Serge 3607
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3608
 
4104 Serge 3609
		ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3031 serge 3610
						  map_and_fenceable,
3611
						  nonblocking);
2332 Serge 3612
		if (ret)
3613
			return ret;
3243 Serge 3614
 
3615
		if (!dev_priv->mm.aliasing_ppgtt)
3616
			i915_gem_gtt_bind_object(obj, obj->cache_level);
2332 Serge 3617
	}
3618
 
3031 serge 3619
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3620
		i915_gem_gtt_bind_object(obj, obj->cache_level);
3621
 
3622
	obj->pin_count++;
2332 Serge 3623
	obj->pin_mappable |= map_and_fenceable;
3624
 
3625
	return 0;
3626
}
3627
 
2344 Serge 3628
void
3629
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3630
{
3631
	BUG_ON(obj->pin_count == 0);
4104 Serge 3632
	BUG_ON(!i915_gem_obj_bound_any(obj));
2332 Serge 3633
 
3031 serge 3634
	if (--obj->pin_count == 0)
2344 Serge 3635
		obj->pin_mappable = false;
3636
}
2332 Serge 3637
 
3031 serge 3638
int
3639
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3640
		   struct drm_file *file)
3641
{
3642
	struct drm_i915_gem_pin *args = data;
3643
	struct drm_i915_gem_object *obj;
3644
	int ret;
2332 Serge 3645
 
3031 serge 3646
	ret = i915_mutex_lock_interruptible(dev);
3647
	if (ret)
3648
		return ret;
2332 Serge 3649
 
3031 serge 3650
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3651
	if (&obj->base == NULL) {
3652
		ret = -ENOENT;
3653
		goto unlock;
3654
	}
2332 Serge 3655
 
3031 serge 3656
	if (obj->madv != I915_MADV_WILLNEED) {
3657
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3658
		ret = -EINVAL;
3659
		goto out;
3660
	}
2332 Serge 3661
 
3031 serge 3662
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3663
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3664
			  args->handle);
3665
		ret = -EINVAL;
3666
		goto out;
3667
	}
2332 Serge 3668
 
3243 Serge 3669
	if (obj->user_pin_count == 0) {
4104 Serge 3670
		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3031 serge 3671
		if (ret)
3672
			goto out;
3673
	}
2332 Serge 3674
 
3243 Serge 3675
	obj->user_pin_count++;
3676
	obj->pin_filp = file;
3677
 
4104 Serge 3678
	args->offset = i915_gem_obj_ggtt_offset(obj);
3031 serge 3679
out:
3680
	drm_gem_object_unreference(&obj->base);
3681
unlock:
3682
	mutex_unlock(&dev->struct_mutex);
3683
	return ret;
3684
}
2332 Serge 3685
 
3031 serge 3686
int
3687
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3688
		     struct drm_file *file)
3689
{
3690
	struct drm_i915_gem_pin *args = data;
3691
	struct drm_i915_gem_object *obj;
3692
	int ret;
2332 Serge 3693
 
3031 serge 3694
	ret = i915_mutex_lock_interruptible(dev);
3695
	if (ret)
3696
		return ret;
2332 Serge 3697
 
3031 serge 3698
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3699
	if (&obj->base == NULL) {
3700
		ret = -ENOENT;
3701
		goto unlock;
3702
	}
2332 Serge 3703
 
3031 serge 3704
	if (obj->pin_filp != file) {
3705
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3706
			  args->handle);
3707
		ret = -EINVAL;
3708
		goto out;
3709
	}
3710
	obj->user_pin_count--;
3711
	if (obj->user_pin_count == 0) {
3712
		obj->pin_filp = NULL;
3713
		i915_gem_object_unpin(obj);
3714
	}
2332 Serge 3715
 
3031 serge 3716
out:
3717
	drm_gem_object_unreference(&obj->base);
3718
unlock:
3719
	mutex_unlock(&dev->struct_mutex);
3720
	return ret;
3721
}
2332 Serge 3722
 
3031 serge 3723
int
3724
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3725
		    struct drm_file *file)
3726
{
3727
	struct drm_i915_gem_busy *args = data;
3728
	struct drm_i915_gem_object *obj;
3729
	int ret;
2332 Serge 3730
 
3031 serge 3731
	ret = i915_mutex_lock_interruptible(dev);
3732
	if (ret)
3733
		return ret;
2332 Serge 3734
 
4104 Serge 3735
        obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3031 serge 3736
	if (&obj->base == NULL) {
3737
		ret = -ENOENT;
3738
		goto unlock;
3739
	}
2332 Serge 3740
 
3031 serge 3741
	/* Count all active objects as busy, even if they are currently not used
3742
	 * by the gpu. Users of this interface expect objects to eventually
3743
	 * become non-busy without any further actions, therefore emit any
3744
	 * necessary flushes here.
3745
	 */
3746
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3747
 
3031 serge 3748
	args->busy = obj->active;
3749
	if (obj->ring) {
3750
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3751
		args->busy |= intel_ring_flag(obj->ring) << 16;
3752
	}
2332 Serge 3753
 
3031 serge 3754
	drm_gem_object_unreference(&obj->base);
3755
unlock:
3756
	mutex_unlock(&dev->struct_mutex);
3757
	return ret;
3758
}
2332 Serge 3759
 
3031 serge 3760
int
3761
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3762
			struct drm_file *file_priv)
3763
{
3764
	return i915_gem_ring_throttle(dev, file_priv);
3765
}
2332 Serge 3766
 
3263 Serge 3767
#if 0
3768
 
3031 serge 3769
int
3770
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3771
		       struct drm_file *file_priv)
3772
{
3773
	struct drm_i915_gem_madvise *args = data;
3774
	struct drm_i915_gem_object *obj;
3775
	int ret;
2332 Serge 3776
 
3031 serge 3777
	switch (args->madv) {
3778
	case I915_MADV_DONTNEED:
3779
	case I915_MADV_WILLNEED:
3780
	    break;
3781
	default:
3782
	    return -EINVAL;
3783
	}
2332 Serge 3784
 
3031 serge 3785
	ret = i915_mutex_lock_interruptible(dev);
3786
	if (ret)
3787
		return ret;
2332 Serge 3788
 
3031 serge 3789
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3790
	if (&obj->base == NULL) {
3791
		ret = -ENOENT;
3792
		goto unlock;
3793
	}
2332 Serge 3794
 
3031 serge 3795
	if (obj->pin_count) {
3796
		ret = -EINVAL;
3797
		goto out;
3798
	}
2332 Serge 3799
 
3031 serge 3800
	if (obj->madv != __I915_MADV_PURGED)
3801
		obj->madv = args->madv;
2332 Serge 3802
 
3031 serge 3803
	/* if the object is no longer attached, discard its backing storage */
3804
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3805
		i915_gem_object_truncate(obj);
2332 Serge 3806
 
3031 serge 3807
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3808
 
3031 serge 3809
out:
3810
	drm_gem_object_unreference(&obj->base);
3811
unlock:
3812
	mutex_unlock(&dev->struct_mutex);
3813
	return ret;
3814
}
3815
#endif
2332 Serge 3816
 
3031 serge 3817
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3818
			  const struct drm_i915_gem_object_ops *ops)
3819
{
4104 Serge 3820
	INIT_LIST_HEAD(&obj->global_list);
3031 serge 3821
	INIT_LIST_HEAD(&obj->ring_list);
3822
	INIT_LIST_HEAD(&obj->exec_list);
4104 Serge 3823
	INIT_LIST_HEAD(&obj->obj_exec_link);
3824
	INIT_LIST_HEAD(&obj->vma_list);
2332 Serge 3825
 
3031 serge 3826
	obj->ops = ops;
3827
 
3828
	obj->fence_reg = I915_FENCE_REG_NONE;
3829
	obj->madv = I915_MADV_WILLNEED;
3830
	/* Avoid an unnecessary call to unbind on the first bind. */
3831
	obj->map_and_fenceable = true;
3832
 
3833
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3834
}
3835
 
3836
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3837
	.get_pages = i915_gem_object_get_pages_gtt,
3838
	.put_pages = i915_gem_object_put_pages_gtt,
3839
};
3840
 
2332 Serge 3841
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3842
						  size_t size)
3843
{
3844
	struct drm_i915_gem_object *obj;
3031 serge 3845
	struct address_space *mapping;
3480 Serge 3846
	gfp_t mask;
2340 Serge 3847
 
3746 Serge 3848
	obj = i915_gem_object_alloc(dev);
2332 Serge 3849
	if (obj == NULL)
3850
		return NULL;
3851
 
3852
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4104 Serge 3853
		i915_gem_object_free(obj);
2332 Serge 3854
		return NULL;
3855
	}
3856
 
3857
 
3031 serge 3858
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3859
 
3860
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3861
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3862
 
3031 serge 3863
	if (HAS_LLC(dev)) {
3864
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3865
		 * cache) for about a 10% performance improvement
3866
		 * compared to uncached.  Graphics requests other than
3867
		 * display scanout are coherent with the CPU in
3868
		 * accessing this cache.  This means in this mode we
3869
		 * don't need to clflush on the CPU side, and on the
3870
		 * GPU side we only need to flush internal caches to
3871
		 * get data visible to the CPU.
3872
		 *
3873
		 * However, we maintain the display planes as UC, and so
3874
		 * need to rebind when first used as such.
3875
		 */
3876
		obj->cache_level = I915_CACHE_LLC;
3877
	} else
3878
		obj->cache_level = I915_CACHE_NONE;
3879
 
3880
	return obj;
3881
}
3882
 
2344 Serge 3883
int i915_gem_init_object(struct drm_gem_object *obj)
3884
{
3885
	BUG();
2332 Serge 3886
 
2344 Serge 3887
	return 0;
3888
}
2332 Serge 3889
 
3031 serge 3890
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 3891
{
3031 serge 3892
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 3893
	struct drm_device *dev = obj->base.dev;
3894
	drm_i915_private_t *dev_priv = dev->dev_private;
4104 Serge 3895
	struct i915_vma *vma, *next;
2332 Serge 3896
 
3031 serge 3897
	trace_i915_gem_object_destroy(obj);
3898
 
3899
 
3900
	obj->pin_count = 0;
4104 Serge 3901
	/* NB: 0 or 1 elements */
3902
	WARN_ON(!list_empty(&obj->vma_list) &&
3903
		!list_is_singular(&obj->vma_list));
3904
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3905
		int ret = i915_vma_unbind(vma);
3906
		if (WARN_ON(ret == -ERESTARTSYS)) {
3031 serge 3907
		bool was_interruptible;
3908
 
3909
		was_interruptible = dev_priv->mm.interruptible;
3910
		dev_priv->mm.interruptible = false;
3911
 
4104 Serge 3912
			WARN_ON(i915_vma_unbind(vma));
3031 serge 3913
 
3914
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 3915
	}
4104 Serge 3916
	}
2332 Serge 3917
 
4104 Serge 3918
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
3919
	 * before progressing. */
3920
	if (obj->stolen)
3921
		i915_gem_object_unpin_pages(obj);
3922
 
3923
	if (WARN_ON(obj->pages_pin_count))
3031 serge 3924
	obj->pages_pin_count = 0;
3925
	i915_gem_object_put_pages(obj);
3926
//   i915_gem_object_free_mmap_offset(obj);
4104 Serge 3927
	i915_gem_object_release_stolen(obj);
2332 Serge 3928
 
3243 Serge 3929
	BUG_ON(obj->pages);
2332 Serge 3930
 
3031 serge 3931
 
3290 Serge 3932
    if(obj->base.filp != NULL)
3933
    {
3298 Serge 3934
//        printf("filp %p\n", obj->base.filp);
3290 Serge 3935
        shmem_file_delete(obj->base.filp);
3936
    }
3937
 
2344 Serge 3938
	drm_gem_object_release(&obj->base);
3939
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 3940
 
2344 Serge 3941
	kfree(obj->bit_17);
4104 Serge 3942
	i915_gem_object_free(obj);
2344 Serge 3943
}
2332 Serge 3944
 
4104 Serge 3945
struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
3946
				     struct i915_address_space *vm)
3947
{
3948
	struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
3949
	if (vma == NULL)
3950
		return ERR_PTR(-ENOMEM);
3951
 
3952
	INIT_LIST_HEAD(&vma->vma_link);
3953
	INIT_LIST_HEAD(&vma->mm_list);
3954
	INIT_LIST_HEAD(&vma->exec_list);
3955
	vma->vm = vm;
3956
	vma->obj = obj;
3957
 
3958
	/* Keep GGTT vmas first to make debug easier */
3959
	if (i915_is_ggtt(vm))
3960
		list_add(&vma->vma_link, &obj->vma_list);
3961
	else
3962
		list_add_tail(&vma->vma_link, &obj->vma_list);
3963
 
3964
	return vma;
3965
}
3966
 
3967
void i915_gem_vma_destroy(struct i915_vma *vma)
3968
{
3969
	WARN_ON(vma->node.allocated);
3970
	list_del(&vma->vma_link);
3971
	kfree(vma);
3972
}
3973
 
3031 serge 3974
#if 0
3975
int
3976
i915_gem_idle(struct drm_device *dev)
2344 Serge 3977
{
3031 serge 3978
	drm_i915_private_t *dev_priv = dev->dev_private;
3979
	int ret;
2332 Serge 3980
 
4104 Serge 3981
	if (dev_priv->ums.mm_suspended) {
3031 serge 3982
		mutex_unlock(&dev->struct_mutex);
3983
		return 0;
3984
	}
2332 Serge 3985
 
3031 serge 3986
	ret = i915_gpu_idle(dev);
3987
	if (ret) {
3988
		mutex_unlock(&dev->struct_mutex);
3989
		return ret;
3990
	}
3991
	i915_gem_retire_requests(dev);
3992
 
3480 Serge 3993
	/* Under UMS, be paranoid and evict. */
3994
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3995
		i915_gem_evict_everything(dev);
3996
 
3997
	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3031 serge 3998
 
3999
	i915_kernel_lost_context(dev);
4000
	i915_gem_cleanup_ringbuffer(dev);
4001
 
4002
	/* Cancel the retire work handler, which should be idle now. */
3263 Serge 4003
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3031 serge 4004
 
4005
	return 0;
2344 Serge 4006
}
3031 serge 4007
#endif
2332 Serge 4008
 
3031 serge 4009
void i915_gem_l3_remap(struct drm_device *dev)
4010
{
4011
	drm_i915_private_t *dev_priv = dev->dev_private;
4012
	u32 misccpctl;
4013
	int i;
2332 Serge 4014
 
3480 Serge 4015
	if (!HAS_L3_GPU_CACHE(dev))
3031 serge 4016
		return;
2332 Serge 4017
 
3243 Serge 4018
	if (!dev_priv->l3_parity.remap_info)
3031 serge 4019
		return;
2332 Serge 4020
 
3031 serge 4021
	misccpctl = I915_READ(GEN7_MISCCPCTL);
4022
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4023
	POSTING_READ(GEN7_MISCCPCTL);
2332 Serge 4024
 
3031 serge 4025
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4026
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3243 Serge 4027
		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3031 serge 4028
			DRM_DEBUG("0x%x was already programmed to %x\n",
4029
				  GEN7_L3LOG_BASE + i, remap);
3243 Serge 4030
		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3031 serge 4031
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3243 Serge 4032
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3031 serge 4033
	}
2332 Serge 4034
 
3031 serge 4035
	/* Make sure all the writes land before disabling dop clock gating */
4036
	POSTING_READ(GEN7_L3LOG_BASE);
2332 Serge 4037
 
3031 serge 4038
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4039
}
2332 Serge 4040
 
3031 serge 4041
void i915_gem_init_swizzling(struct drm_device *dev)
4042
{
4043
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 4044
 
3031 serge 4045
	if (INTEL_INFO(dev)->gen < 5 ||
4046
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4047
		return;
2332 Serge 4048
 
3031 serge 4049
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4050
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 4051
 
3031 serge 4052
	if (IS_GEN5(dev))
4053
		return;
2344 Serge 4054
 
3031 serge 4055
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4056
	if (IS_GEN6(dev))
4057
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3480 Serge 4058
	else if (IS_GEN7(dev))
4059
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3031 serge 4060
	else
3480 Serge 4061
		BUG();
3031 serge 4062
}
4063
 
4064
static bool
4065
intel_enable_blt(struct drm_device *dev)
4066
{
4067
	if (!HAS_BLT(dev))
4068
		return false;
4069
 
4070
	/* The blitter was dysfunctional on early prototypes */
4071
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4072
		DRM_INFO("BLT not supported on this pre-production hardware;"
4073
			 " graphics performance will be degraded.\n");
4074
		return false;
4075
	}
4076
 
4077
	return true;
4078
}
4079
 
3480 Serge 4080
static int i915_gem_init_rings(struct drm_device *dev)
2332 Serge 4081
{
3480 Serge 4082
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 4083
	int ret;
2351 Serge 4084
 
2332 Serge 4085
	ret = intel_init_render_ring_buffer(dev);
4086
	if (ret)
4087
		return ret;
4088
 
4089
    if (HAS_BSD(dev)) {
4090
		ret = intel_init_bsd_ring_buffer(dev);
4091
		if (ret)
4092
			goto cleanup_render_ring;
4093
	}
4094
 
3031 serge 4095
	if (intel_enable_blt(dev)) {
2332 Serge 4096
		ret = intel_init_blt_ring_buffer(dev);
4097
		if (ret)
4098
			goto cleanup_bsd_ring;
4099
	}
4100
 
4104 Serge 4101
	if (HAS_VEBOX(dev)) {
4102
		ret = intel_init_vebox_ring_buffer(dev);
4103
		if (ret)
4104
			goto cleanup_blt_ring;
4105
	}
4106
 
4107
 
3480 Serge 4108
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4109
	if (ret)
4104 Serge 4110
		goto cleanup_vebox_ring;
2351 Serge 4111
 
2332 Serge 4112
	return 0;
4113
 
4104 Serge 4114
cleanup_vebox_ring:
4115
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
3480 Serge 4116
cleanup_blt_ring:
4117
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
2332 Serge 4118
cleanup_bsd_ring:
4119
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4120
cleanup_render_ring:
4121
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3480 Serge 4122
 
2332 Serge 4123
	return ret;
4124
}
4125
 
3480 Serge 4126
int
4127
i915_gem_init_hw(struct drm_device *dev)
3031 serge 4128
{
3480 Serge 4129
	drm_i915_private_t *dev_priv = dev->dev_private;
4130
	int ret;
3031 serge 4131
 
3480 Serge 4132
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4133
		return -EIO;
3031 serge 4134
 
4104 Serge 4135
	if (dev_priv->ellc_size)
4136
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
3480 Serge 4137
 
3746 Serge 4138
	if (HAS_PCH_NOP(dev)) {
4139
		u32 temp = I915_READ(GEN7_MSG_CTL);
4140
		temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4141
		I915_WRITE(GEN7_MSG_CTL, temp);
4142
	}
4143
 
3480 Serge 4144
	i915_gem_l3_remap(dev);
4145
 
4146
	i915_gem_init_swizzling(dev);
4147
 
4148
	ret = i915_gem_init_rings(dev);
4149
	if (ret)
4150
		return ret;
4151
 
4152
	/*
4153
	 * XXX: There was some w/a described somewhere suggesting loading
4154
	 * contexts before PPGTT.
4155
	 */
4156
	i915_gem_context_init(dev);
3746 Serge 4157
	if (dev_priv->mm.aliasing_ppgtt) {
4158
		ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4159
		if (ret) {
4160
			i915_gem_cleanup_aliasing_ppgtt(dev);
4161
			DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4162
		}
4163
	}
3480 Serge 4164
 
4165
	return 0;
3031 serge 4166
}
4167
 
4168
int i915_gem_init(struct drm_device *dev)
4169
{
4170
	struct drm_i915_private *dev_priv = dev->dev_private;
4171
	int ret;
4172
 
4173
	mutex_lock(&dev->struct_mutex);
3746 Serge 4174
 
4175
	if (IS_VALLEYVIEW(dev)) {
4176
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4177
		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4178
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4179
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4180
	}
4181
 
3480 Serge 4182
	i915_gem_init_global_gtt(dev);
3746 Serge 4183
 
3031 serge 4184
	ret = i915_gem_init_hw(dev);
4185
	mutex_unlock(&dev->struct_mutex);
4186
	if (ret) {
4187
		i915_gem_cleanup_aliasing_ppgtt(dev);
4188
		return ret;
4189
	}
4190
 
3746 Serge 4191
 
3031 serge 4192
    return 0;
4193
}
4194
 
2332 Serge 4195
void
4196
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4197
{
4198
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 4199
	struct intel_ring_buffer *ring;
2332 Serge 4200
	int i;
4201
 
3031 serge 4202
	for_each_ring(ring, dev_priv, i)
4203
		intel_cleanup_ring_buffer(ring);
2332 Serge 4204
}
4205
 
3031 serge 4206
#if 0
4207
 
2332 Serge 4208
int
4209
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4210
		       struct drm_file *file_priv)
4211
{
4104 Serge 4212
	struct drm_i915_private *dev_priv = dev->dev_private;
3031 serge 4213
	int ret;
2332 Serge 4214
 
4215
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4216
		return 0;
4217
 
3480 Serge 4218
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2332 Serge 4219
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3480 Serge 4220
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
2332 Serge 4221
	}
4222
 
4223
	mutex_lock(&dev->struct_mutex);
4104 Serge 4224
	dev_priv->ums.mm_suspended = 0;
2332 Serge 4225
 
3031 serge 4226
	ret = i915_gem_init_hw(dev);
2332 Serge 4227
	if (ret != 0) {
4228
		mutex_unlock(&dev->struct_mutex);
4229
		return ret;
4230
	}
4231
 
4104 Serge 4232
	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
2332 Serge 4233
	mutex_unlock(&dev->struct_mutex);
4234
 
4235
	ret = drm_irq_install(dev);
4236
	if (ret)
4237
		goto cleanup_ringbuffer;
4238
 
4239
	return 0;
4240
 
4241
cleanup_ringbuffer:
4242
	mutex_lock(&dev->struct_mutex);
4243
	i915_gem_cleanup_ringbuffer(dev);
4104 Serge 4244
	dev_priv->ums.mm_suspended = 1;
2332 Serge 4245
	mutex_unlock(&dev->struct_mutex);
4246
 
4247
	return ret;
4248
}
4249
 
4250
int
4251
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4252
		       struct drm_file *file_priv)
4253
{
4104 Serge 4254
	struct drm_i915_private *dev_priv = dev->dev_private;
4255
	int ret;
4256
 
2332 Serge 4257
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4258
		return 0;
4259
 
4260
	drm_irq_uninstall(dev);
4104 Serge 4261
 
4262
	mutex_lock(&dev->struct_mutex);
4263
	ret =  i915_gem_idle(dev);
4264
 
4265
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4266
	 * We need to replace this with a semaphore, or something.
4267
	 * And not confound ums.mm_suspended!
4268
	 */
4269
	if (ret != 0)
4270
		dev_priv->ums.mm_suspended = 1;
4271
	mutex_unlock(&dev->struct_mutex);
4272
 
4273
	return ret;
2332 Serge 4274
}
4275
 
4276
void
4277
i915_gem_lastclose(struct drm_device *dev)
4278
{
4279
	int ret;
4280
 
4281
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4282
		return;
4283
 
4104 Serge 4284
	mutex_lock(&dev->struct_mutex);
2332 Serge 4285
	ret = i915_gem_idle(dev);
4286
	if (ret)
4287
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4104 Serge 4288
	mutex_unlock(&dev->struct_mutex);
2332 Serge 4289
}
4290
#endif
4291
 
4292
static void
2326 Serge 4293
init_ring_lists(struct intel_ring_buffer *ring)
4294
{
4295
    INIT_LIST_HEAD(&ring->active_list);
4296
    INIT_LIST_HEAD(&ring->request_list);
4297
}
4298
 
4104 Serge 4299
static void i915_init_vm(struct drm_i915_private *dev_priv,
4300
			 struct i915_address_space *vm)
4301
{
4302
	vm->dev = dev_priv->dev;
4303
	INIT_LIST_HEAD(&vm->active_list);
4304
	INIT_LIST_HEAD(&vm->inactive_list);
4305
	INIT_LIST_HEAD(&vm->global_link);
4306
	list_add(&vm->global_link, &dev_priv->vm_list);
4307
}
4308
 
2326 Serge 4309
void
4310
i915_gem_load(struct drm_device *dev)
4311
{
3480 Serge 4312
	drm_i915_private_t *dev_priv = dev->dev_private;
2326 Serge 4313
    int i;
4314
 
4104 Serge 4315
	INIT_LIST_HEAD(&dev_priv->vm_list);
4316
	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4317
 
3031 serge 4318
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4319
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 4320
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4321
    for (i = 0; i < I915_NUM_RINGS; i++)
4322
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 4323
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 4324
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 4325
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4326
			  i915_gem_retire_work_handler);
3480 Serge 4327
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
2326 Serge 4328
 
4329
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4330
    if (IS_GEN3(dev)) {
3031 serge 4331
		I915_WRITE(MI_ARB_STATE,
4332
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 4333
    }
4334
 
4335
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4336
 
3746 Serge 4337
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4338
		dev_priv->num_fence_regs = 32;
4339
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2326 Serge 4340
        dev_priv->num_fence_regs = 16;
4341
    else
4342
        dev_priv->num_fence_regs = 8;
4343
 
4344
    /* Initialize fence registers to zero */
3746 Serge 4345
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4346
	i915_gem_restore_fences(dev);
2326 Serge 4347
 
4348
    i915_gem_detect_bit_6_swizzle(dev);
4349
 
4350
    dev_priv->mm.interruptible = true;
4351
 
4352
}
4353
 
4104 Serge 4354
#if 0
4355
/*
4356
 * Create a physically contiguous memory object for this object
4357
 * e.g. for cursor + overlay regs
4358
 */
4359
static int i915_gem_init_phys_object(struct drm_device *dev,
4360
				     int id, int size, int align)
4361
{
4362
	drm_i915_private_t *dev_priv = dev->dev_private;
4363
	struct drm_i915_gem_phys_object *phys_obj;
4364
	int ret;
2326 Serge 4365
 
4104 Serge 4366
	if (dev_priv->mm.phys_objs[id - 1] || !size)
4367
		return 0;
4368
 
4369
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4370
	if (!phys_obj)
4371
		return -ENOMEM;
4372
 
4373
	phys_obj->id = id;
4374
 
4375
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4376
	if (!phys_obj->handle) {
4377
		ret = -ENOMEM;
4378
		goto kfree_obj;
4379
	}
4380
#ifdef CONFIG_X86
4381
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4382
#endif
4383
 
4384
	dev_priv->mm.phys_objs[id - 1] = phys_obj;
4385
 
4386
	return 0;
4387
kfree_obj:
4388
	kfree(phys_obj);
4389
	return ret;
4390
}
4391
 
4392
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4393
{
4394
	drm_i915_private_t *dev_priv = dev->dev_private;
4395
	struct drm_i915_gem_phys_object *phys_obj;
4396
 
4397
	if (!dev_priv->mm.phys_objs[id - 1])
4398
		return;
4399
 
4400
	phys_obj = dev_priv->mm.phys_objs[id - 1];
4401
	if (phys_obj->cur_obj) {
4402
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4403
	}
4404
 
4405
#ifdef CONFIG_X86
4406
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4407
#endif
4408
	drm_pci_free(dev, phys_obj->handle);
4409
	kfree(phys_obj);
4410
	dev_priv->mm.phys_objs[id - 1] = NULL;
4411
}
4412
 
4413
void i915_gem_free_all_phys_object(struct drm_device *dev)
4414
{
4415
	int i;
4416
 
4417
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4418
		i915_gem_free_phys_object(dev, i);
4419
}
4420
 
4421
void i915_gem_detach_phys_object(struct drm_device *dev,
4422
				 struct drm_i915_gem_object *obj)
4423
{
4424
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4425
	char *vaddr;
4426
	int i;
4427
	int page_count;
4428
 
4429
	if (!obj->phys_obj)
4430
		return;
4431
	vaddr = obj->phys_obj->handle->vaddr;
4432
 
4433
	page_count = obj->base.size / PAGE_SIZE;
4434
	for (i = 0; i < page_count; i++) {
4435
		struct page *page = shmem_read_mapping_page(mapping, i);
4436
		if (!IS_ERR(page)) {
4437
			char *dst = kmap_atomic(page);
4438
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4439
			kunmap_atomic(dst);
4440
 
4441
			drm_clflush_pages(&page, 1);
4442
 
4443
			set_page_dirty(page);
4444
			mark_page_accessed(page);
4445
			page_cache_release(page);
4446
		}
4447
	}
4448
	i915_gem_chipset_flush(dev);
4449
 
4450
	obj->phys_obj->cur_obj = NULL;
4451
	obj->phys_obj = NULL;
4452
}
4453
 
4454
int
4455
i915_gem_attach_phys_object(struct drm_device *dev,
4456
			    struct drm_i915_gem_object *obj,
4457
			    int id,
4458
			    int align)
4459
{
4460
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4461
	drm_i915_private_t *dev_priv = dev->dev_private;
4462
	int ret = 0;
4463
	int page_count;
4464
	int i;
4465
 
4466
	if (id > I915_MAX_PHYS_OBJECT)
4467
		return -EINVAL;
4468
 
4469
	if (obj->phys_obj) {
4470
		if (obj->phys_obj->id == id)
4471
			return 0;
4472
		i915_gem_detach_phys_object(dev, obj);
4473
	}
4474
 
4475
	/* create a new object */
4476
	if (!dev_priv->mm.phys_objs[id - 1]) {
4477
		ret = i915_gem_init_phys_object(dev, id,
4478
						obj->base.size, align);
4479
		if (ret) {
4480
			DRM_ERROR("failed to init phys object %d size: %zu\n",
4481
				  id, obj->base.size);
4482
			return ret;
4483
		}
4484
	}
4485
 
4486
	/* bind to the object */
4487
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4488
	obj->phys_obj->cur_obj = obj;
4489
 
4490
	page_count = obj->base.size / PAGE_SIZE;
4491
 
4492
	for (i = 0; i < page_count; i++) {
4493
		struct page *page;
4494
		char *dst, *src;
4495
 
4496
		page = shmem_read_mapping_page(mapping, i);
4497
		if (IS_ERR(page))
4498
			return PTR_ERR(page);
4499
 
4500
		src = kmap_atomic(page);
4501
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4502
		memcpy(dst, src, PAGE_SIZE);
4503
		kunmap_atomic(src);
4504
 
4505
		mark_page_accessed(page);
4506
		page_cache_release(page);
4507
	}
4508
 
4509
	return 0;
4510
}
4511
 
4512
static int
4513
i915_gem_phys_pwrite(struct drm_device *dev,
4514
		     struct drm_i915_gem_object *obj,
4515
		     struct drm_i915_gem_pwrite *args,
4516
		     struct drm_file *file_priv)
4517
{
4518
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4519
	char __user *user_data = to_user_ptr(args->data_ptr);
4520
 
4521
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4522
		unsigned long unwritten;
4523
 
4524
		/* The physical object once assigned is fixed for the lifetime
4525
		 * of the obj, so we can safely drop the lock and continue
4526
		 * to access vaddr.
4527
		 */
4528
		mutex_unlock(&dev->struct_mutex);
4529
		unwritten = copy_from_user(vaddr, user_data, args->size);
4530
		mutex_lock(&dev->struct_mutex);
4531
		if (unwritten)
4532
			return -EFAULT;
4533
	}
4534
 
4535
	i915_gem_chipset_flush(dev);
4536
	return 0;
4537
}
4538
 
4539
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4540
{
4541
	struct drm_i915_file_private *file_priv = file->driver_priv;
4542
 
4543
	/* Clean up our request list when the client is going away, so that
4544
	 * later retire_requests won't dereference our soon-to-be-gone
4545
	 * file_priv.
4546
	 */
4547
	spin_lock(&file_priv->mm.lock);
4548
	while (!list_empty(&file_priv->mm.request_list)) {
4549
		struct drm_i915_gem_request *request;
4550
 
4551
		request = list_first_entry(&file_priv->mm.request_list,
4552
					   struct drm_i915_gem_request,
4553
					   client_list);
4554
		list_del(&request->client_list);
4555
		request->file_priv = NULL;
4556
	}
4557
	spin_unlock(&file_priv->mm.lock);
4558
}
4559
#endif
4560
 
4561
static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4562
{
4563
	if (!mutex_is_locked(mutex))
4564
		return false;
4565
 
4566
#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4567
	return mutex->owner == task;
4568
#else
4569
	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4570
	return false;
4571
#endif
4572
}
4573
 
4574
/* All the new VM stuff */
4575
unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4576
				  struct i915_address_space *vm)
4577
{
4578
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4579
	struct i915_vma *vma;
4580
 
4581
	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4582
		vm = &dev_priv->gtt.base;
4583
 
4584
	BUG_ON(list_empty(&o->vma_list));
4585
	list_for_each_entry(vma, &o->vma_list, vma_link) {
4586
		if (vma->vm == vm)
4587
			return vma->node.start;
4588
 
4589
	}
4590
    return 0; //-1;
4591
}
4592
 
4593
bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4594
			struct i915_address_space *vm)
4595
{
4596
	struct i915_vma *vma;
4597
 
4598
	list_for_each_entry(vma, &o->vma_list, vma_link)
4599
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4600
			return true;
4601
 
4602
	return false;
4603
}
4604
 
4605
bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4606
{
4607
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4608
	struct i915_address_space *vm;
4609
 
4610
	list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4611
		if (i915_gem_obj_bound(o, vm))
4612
			return true;
4613
 
4614
	return false;
4615
}
4616
 
4617
unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4618
				struct i915_address_space *vm)
4619
{
4620
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4621
	struct i915_vma *vma;
4622
 
4623
	if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4624
		vm = &dev_priv->gtt.base;
4625
 
4626
	BUG_ON(list_empty(&o->vma_list));
4627
 
4628
	list_for_each_entry(vma, &o->vma_list, vma_link)
4629
		if (vma->vm == vm)
4630
			return vma->node.size;
4631
 
4632
	return 0;
4633
}
4634
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4635
				     struct i915_address_space *vm)
4636
{
4637
	struct i915_vma *vma;
4638
	list_for_each_entry(vma, &obj->vma_list, vma_link)
4639
		if (vma->vm == vm)
4640
			return vma;
4641
 
4642
	return NULL;
4643
}
4644
 
4645
struct i915_vma *
4646
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4647
				  struct i915_address_space *vm)
4648
{
4649
	struct i915_vma *vma;
4650
 
4651
	vma = i915_gem_obj_to_vma(obj, vm);
4652
	if (!vma)
4653
		vma = i915_gem_vma_create(obj, vm);
4654
 
4655
	return vma;
4656
}