Subversion Repositories Kolibri OS

Rev

Rev 3298 | Rev 3482 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
29
#include 
2326 Serge 30
#include "i915_drv.h"
2351 Serge 31
#include "i915_trace.h"
2326 Serge 32
#include "intel_drv.h"
3260 Serge 33
#include 
2330 Serge 34
#include 
2326 Serge 35
//#include 
36
#include 
37
 
2344 Serge 38
extern int x86_clflush_size;
2332 Serge 39
 
3263 Serge 40
#define PROT_READ       0x1             /* page can be read */
41
#define PROT_WRITE      0x2             /* page can be written */
42
#define MAP_SHARED      0x01            /* Share changes */
43
 
2344 Serge 44
#undef mb
45
#undef rmb
46
#undef wmb
47
#define mb() asm volatile("mfence")
48
#define rmb() asm volatile ("lfence")
49
#define wmb() asm volatile ("sfence")
50
 
3266 Serge 51
struct drm_i915_gem_object *get_fb_obj();
52
 
3263 Serge 53
unsigned long vm_mmap(struct file *file, unsigned long addr,
54
         unsigned long len, unsigned long prot,
55
         unsigned long flag, unsigned long offset);
56
 
2344 Serge 57
static inline void clflush(volatile void *__p)
58
{
59
    asm volatile("clflush %0" : "+m" (*(volatile char*)__p));
60
}
61
 
2332 Serge 62
#define MAX_ERRNO       4095
63
 
64
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
65
 
66
 
2326 Serge 67
#define I915_EXEC_CONSTANTS_MASK        (3<<6)
68
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
69
#define I915_EXEC_CONSTANTS_ABSOLUTE    (1<<6)
70
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
71
 
2332 Serge 72
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
73
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
74
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
75
						    unsigned alignment,
3031 serge 76
						    bool map_and_fenceable,
77
						    bool nonblocking);
2332 Serge 78
static int i915_gem_phys_pwrite(struct drm_device *dev,
79
				struct drm_i915_gem_object *obj,
80
				struct drm_i915_gem_pwrite *args,
81
				struct drm_file *file);
2326 Serge 82
 
3031 serge 83
static void i915_gem_write_fence(struct drm_device *dev, int reg,
84
				 struct drm_i915_gem_object *obj);
85
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
86
					 struct drm_i915_fence_reg *fence,
87
					 bool enable);
2332 Serge 88
 
3031 serge 89
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
90
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
91
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
92
 
93
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
94
{
95
	if (obj->tiling_mode)
96
		i915_gem_release_mmap(obj);
97
 
98
	/* As we do not have an associated fence register, we will force
99
	 * a tiling change if we ever need to acquire one.
100
	 */
101
	obj->fence_dirty = false;
102
	obj->fence_reg = I915_FENCE_REG_NONE;
103
}
104
 
2332 Serge 105
/* some bookkeeping */
106
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
107
				  size_t size)
108
{
109
	dev_priv->mm.object_count++;
110
	dev_priv->mm.object_memory += size;
111
}
112
 
113
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
114
				     size_t size)
115
{
116
	dev_priv->mm.object_count--;
117
	dev_priv->mm.object_memory -= size;
118
}
119
 
120
static int
3480 Serge 121
i915_gem_wait_for_error(struct i915_gpu_error *error)
2332 Serge 122
{
123
	int ret;
124
 
3480 Serge 125
#define EXIT_COND (!i915_reset_in_progress(error))
126
	if (EXIT_COND)
2332 Serge 127
		return 0;
3255 Serge 128
#if 0
3031 serge 129
	/*
130
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
131
	 * userspace. If it takes that long something really bad is going on and
132
	 * we should simply try to bail out and fail as gracefully as possible.
133
	 */
3480 Serge 134
	ret = wait_event_interruptible_timeout(error->reset_queue,
135
					       EXIT_COND,
136
					       10*HZ);
3031 serge 137
	if (ret == 0) {
138
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
139
		return -EIO;
140
	} else if (ret < 0) {
2332 Serge 141
		return ret;
3031 serge 142
	}
2332 Serge 143
 
3255 Serge 144
#endif
3480 Serge 145
#undef EXIT_COND
3255 Serge 146
 
2332 Serge 147
	return 0;
148
}
149
 
150
int i915_mutex_lock_interruptible(struct drm_device *dev)
151
{
3480 Serge 152
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 153
	int ret;
154
 
3480 Serge 155
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
2332 Serge 156
	if (ret)
157
		return ret;
158
 
3480 Serge 159
	ret = mutex_lock_interruptible(&dev->struct_mutex);
160
	if (ret)
161
		return ret;
2332 Serge 162
 
163
	WARN_ON(i915_verify_lists(dev));
164
	return 0;
165
}
166
 
167
static inline bool
168
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
169
{
3031 serge 170
	return obj->gtt_space && !obj->active;
2332 Serge 171
}
172
 
173
 
174
#if 0
175
 
176
int
177
i915_gem_init_ioctl(struct drm_device *dev, void *data,
178
		    struct drm_file *file)
179
{
3480 Serge 180
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 181
	struct drm_i915_gem_init *args = data;
182
 
3031 serge 183
	if (drm_core_check_feature(dev, DRIVER_MODESET))
184
		return -ENODEV;
185
 
2332 Serge 186
	if (args->gtt_start >= args->gtt_end ||
187
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
188
		return -EINVAL;
189
 
3031 serge 190
	/* GEM with user mode setting was never supported on ilk and later. */
191
	if (INTEL_INFO(dev)->gen >= 5)
192
		return -ENODEV;
193
 
2332 Serge 194
	mutex_lock(&dev->struct_mutex);
3480 Serge 195
	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
196
				  args->gtt_end);
197
	dev_priv->gtt.mappable_end = args->gtt_end;
2332 Serge 198
	mutex_unlock(&dev->struct_mutex);
199
 
200
	return 0;
201
}
2351 Serge 202
#endif
2332 Serge 203
 
204
int
205
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
206
			    struct drm_file *file)
207
{
208
	struct drm_i915_private *dev_priv = dev->dev_private;
209
	struct drm_i915_gem_get_aperture *args = data;
210
	struct drm_i915_gem_object *obj;
211
	size_t pinned;
212
 
213
	pinned = 0;
214
	mutex_lock(&dev->struct_mutex);
3031 serge 215
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
216
		if (obj->pin_count)
2332 Serge 217
		pinned += obj->gtt_space->size;
218
	mutex_unlock(&dev->struct_mutex);
219
 
3480 Serge 220
	args->aper_size = dev_priv->gtt.total;
2342 Serge 221
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 222
 
223
	return 0;
224
}
225
 
3480 Serge 226
void *i915_gem_object_alloc(struct drm_device *dev)
227
{
228
	struct drm_i915_private *dev_priv = dev->dev_private;
229
	return kmalloc(sizeof(struct drm_i915_gem_object), 0);
230
}
231
 
232
void i915_gem_object_free(struct drm_i915_gem_object *obj)
233
{
234
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
235
	kfree(obj);
236
}
237
 
3031 serge 238
static int
239
i915_gem_create(struct drm_file *file,
2332 Serge 240
		struct drm_device *dev,
241
		uint64_t size,
242
		uint32_t *handle_p)
243
{
244
	struct drm_i915_gem_object *obj;
245
	int ret;
246
	u32 handle;
247
 
248
	size = roundup(size, PAGE_SIZE);
2342 Serge 249
	if (size == 0)
250
		return -EINVAL;
2332 Serge 251
 
252
	/* Allocate the new object */
253
	obj = i915_gem_alloc_object(dev, size);
254
	if (obj == NULL)
255
		return -ENOMEM;
256
 
257
	ret = drm_gem_handle_create(file, &obj->base, &handle);
258
	if (ret) {
259
		drm_gem_object_release(&obj->base);
260
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
261
		kfree(obj);
262
		return ret;
263
	}
264
 
265
	/* drop reference from allocate - handle holds it now */
266
	drm_gem_object_unreference(&obj->base);
2351 Serge 267
	trace_i915_gem_object_create(obj);
2332 Serge 268
 
269
	*handle_p = handle;
3290 Serge 270
 
3298 Serge 271
//    printf("%s obj %p handle %d\n", __FUNCTION__, obj, handle);
3290 Serge 272
 
2332 Serge 273
	return 0;
274
}
275
 
276
int
277
i915_gem_dumb_create(struct drm_file *file,
278
		     struct drm_device *dev,
279
		     struct drm_mode_create_dumb *args)
280
{
281
	/* have to work out size/pitch and return them */
282
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
283
	args->size = args->pitch * args->height;
284
	return i915_gem_create(file, dev,
285
			       args->size, &args->handle);
286
}
287
 
288
int i915_gem_dumb_destroy(struct drm_file *file,
289
			  struct drm_device *dev,
290
			  uint32_t handle)
291
{
292
	return drm_gem_handle_delete(file, handle);
293
}
294
 
2326 Serge 295
/**
2332 Serge 296
 * Creates a new mm object and returns a handle to it.
297
 */
298
int
299
i915_gem_create_ioctl(struct drm_device *dev, void *data,
300
		      struct drm_file *file)
301
{
302
	struct drm_i915_gem_create *args = data;
3031 serge 303
 
2332 Serge 304
	return i915_gem_create(file, dev,
305
			       args->size, &args->handle);
306
}
307
 
308
 
3260 Serge 309
#if 0
2332 Serge 310
 
3031 serge 311
static inline int
312
__copy_to_user_swizzled(char __user *cpu_vaddr,
313
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 314
		int length)
315
{
3031 serge 316
	int ret, cpu_offset = 0;
2332 Serge 317
 
3031 serge 318
	while (length > 0) {
319
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
320
		int this_length = min(cacheline_end - gpu_offset, length);
321
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 322
 
3031 serge 323
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
324
				     gpu_vaddr + swizzled_gpu_offset,
325
				     this_length);
326
		if (ret)
327
			return ret + length;
2332 Serge 328
 
3031 serge 329
		cpu_offset += this_length;
330
		gpu_offset += this_length;
331
		length -= this_length;
332
	}
333
 
334
	return 0;
2332 Serge 335
}
336
 
3031 serge 337
static inline int
338
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
339
			  const char __user *cpu_vaddr,
340
			  int length)
2332 Serge 341
{
3031 serge 342
	int ret, cpu_offset = 0;
2332 Serge 343
 
344
	while (length > 0) {
345
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
346
		int this_length = min(cacheline_end - gpu_offset, length);
347
		int swizzled_gpu_offset = gpu_offset ^ 64;
348
 
3031 serge 349
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 350
			       cpu_vaddr + cpu_offset,
351
			       this_length);
3031 serge 352
		if (ret)
353
			return ret + length;
354
 
2332 Serge 355
		cpu_offset += this_length;
356
		gpu_offset += this_length;
357
		length -= this_length;
358
	}
359
 
3031 serge 360
	return 0;
2332 Serge 361
}
362
 
3031 serge 363
/* Per-page copy function for the shmem pread fastpath.
364
 * Flushes invalid cachelines before reading the target if
365
 * needs_clflush is set. */
2332 Serge 366
static int
3031 serge 367
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
368
		 char __user *user_data,
369
		 bool page_do_bit17_swizzling, bool needs_clflush)
370
{
371
		char *vaddr;
372
		int ret;
373
 
374
	if (unlikely(page_do_bit17_swizzling))
375
		return -EINVAL;
376
 
377
		vaddr = kmap_atomic(page);
378
	if (needs_clflush)
379
		drm_clflush_virt_range(vaddr + shmem_page_offset,
380
				       page_length);
381
		ret = __copy_to_user_inatomic(user_data,
382
				      vaddr + shmem_page_offset,
383
					      page_length);
384
		kunmap_atomic(vaddr);
385
 
386
	return ret ? -EFAULT : 0;
387
}
388
 
389
static void
390
shmem_clflush_swizzled_range(char *addr, unsigned long length,
391
			     bool swizzled)
392
{
393
	if (unlikely(swizzled)) {
394
		unsigned long start = (unsigned long) addr;
395
		unsigned long end = (unsigned long) addr + length;
396
 
397
		/* For swizzling simply ensure that we always flush both
398
		 * channels. Lame, but simple and it works. Swizzled
399
		 * pwrite/pread is far from a hotpath - current userspace
400
		 * doesn't use it at all. */
401
		start = round_down(start, 128);
402
		end = round_up(end, 128);
403
 
404
		drm_clflush_virt_range((void *)start, end - start);
405
	} else {
406
		drm_clflush_virt_range(addr, length);
407
	}
408
 
409
}
410
 
411
/* Only difference to the fast-path function is that this can handle bit17
412
 * and uses non-atomic copy and kmap functions. */
413
static int
414
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
415
		 char __user *user_data,
416
		 bool page_do_bit17_swizzling, bool needs_clflush)
417
{
418
	char *vaddr;
419
	int ret;
420
 
421
	vaddr = kmap(page);
422
	if (needs_clflush)
423
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
424
					     page_length,
425
					     page_do_bit17_swizzling);
426
 
427
	if (page_do_bit17_swizzling)
428
		ret = __copy_to_user_swizzled(user_data,
429
					      vaddr, shmem_page_offset,
430
					      page_length);
431
	else
432
		ret = __copy_to_user(user_data,
433
				     vaddr + shmem_page_offset,
434
				     page_length);
435
	kunmap(page);
436
 
437
	return ret ? - EFAULT : 0;
438
}
439
 
440
static int
441
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 442
			  struct drm_i915_gem_object *obj,
443
			  struct drm_i915_gem_pread *args,
444
			  struct drm_file *file)
445
{
3031 serge 446
	char __user *user_data;
2332 Serge 447
	ssize_t remain;
448
	loff_t offset;
3031 serge 449
	int shmem_page_offset, page_length, ret = 0;
450
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
451
	int prefaulted = 0;
452
	int needs_clflush = 0;
453
	struct scatterlist *sg;
454
	int i;
2332 Serge 455
 
456
	user_data = (char __user *) (uintptr_t) args->data_ptr;
457
	remain = args->size;
458
 
3031 serge 459
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
460
 
461
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
462
		/* If we're not in the cpu read domain, set ourself into the gtt
463
		 * read domain and manually flush cachelines (if required). This
464
		 * optimizes for the case when the gpu will dirty the data
465
		 * anyway again before the next pread happens. */
466
		if (obj->cache_level == I915_CACHE_NONE)
467
			needs_clflush = 1;
468
		if (obj->gtt_space) {
469
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
470
			if (ret)
471
				return ret;
472
		}
473
	}
474
 
475
	ret = i915_gem_object_get_pages(obj);
476
	if (ret)
477
		return ret;
478
 
479
	i915_gem_object_pin_pages(obj);
480
 
2332 Serge 481
	offset = args->offset;
482
 
3031 serge 483
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
2332 Serge 484
		struct page *page;
485
 
3031 serge 486
		if (i < offset >> PAGE_SHIFT)
487
			continue;
488
 
489
		if (remain <= 0)
490
			break;
491
 
2332 Serge 492
		/* Operation in this page
493
		 *
3031 serge 494
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 495
		 * page_length = bytes to copy for this page
496
		 */
3031 serge 497
		shmem_page_offset = offset_in_page(offset);
2332 Serge 498
		page_length = remain;
3031 serge 499
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
500
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 501
 
3031 serge 502
		page = sg_page(sg);
503
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
504
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 505
 
3031 serge 506
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
507
				       user_data, page_do_bit17_swizzling,
508
				       needs_clflush);
509
		if (ret == 0)
510
			goto next_page;
2332 Serge 511
 
3031 serge 512
		mutex_unlock(&dev->struct_mutex);
513
 
514
		if (!prefaulted) {
515
			ret = fault_in_multipages_writeable(user_data, remain);
516
			/* Userspace is tricking us, but we've already clobbered
517
			 * its pages with the prefault and promised to write the
518
			 * data up to the first fault. Hence ignore any errors
519
			 * and just continue. */
520
			(void)ret;
521
			prefaulted = 1;
522
		}
523
 
524
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
525
				       user_data, page_do_bit17_swizzling,
526
				       needs_clflush);
527
 
528
		mutex_lock(&dev->struct_mutex);
529
 
530
next_page:
2332 Serge 531
		mark_page_accessed(page);
3031 serge 532
 
2332 Serge 533
		if (ret)
3031 serge 534
			goto out;
2332 Serge 535
 
536
		remain -= page_length;
537
		user_data += page_length;
538
		offset += page_length;
539
	}
540
 
3031 serge 541
out:
542
	i915_gem_object_unpin_pages(obj);
543
 
544
	return ret;
2332 Serge 545
}
546
 
547
/**
3031 serge 548
 * Reads data from the object referenced by handle.
549
 *
550
 * On error, the contents of *data are undefined.
2332 Serge 551
 */
3031 serge 552
int
553
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
554
		     struct drm_file *file)
555
{
556
	struct drm_i915_gem_pread *args = data;
557
	struct drm_i915_gem_object *obj;
558
	int ret = 0;
559
 
560
	if (args->size == 0)
561
		return 0;
562
 
563
	if (!access_ok(VERIFY_WRITE,
564
		       (char __user *)(uintptr_t)args->data_ptr,
565
		       args->size))
566
		return -EFAULT;
567
 
568
	ret = i915_mutex_lock_interruptible(dev);
569
	if (ret)
570
		return ret;
571
 
572
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
573
	if (&obj->base == NULL) {
574
		ret = -ENOENT;
575
		goto unlock;
576
	}
577
 
578
	/* Bounds check source.  */
579
	if (args->offset > obj->base.size ||
580
	    args->size > obj->base.size - args->offset) {
581
		ret = -EINVAL;
582
		goto out;
583
	}
584
 
585
	/* prime objects have no backing filp to GEM pread/pwrite
586
	 * pages from.
587
	 */
588
	if (!obj->base.filp) {
589
		ret = -EINVAL;
590
		goto out;
591
	}
592
 
593
	trace_i915_gem_object_pread(obj, args->offset, args->size);
594
 
595
	ret = i915_gem_shmem_pread(dev, obj, args, file);
596
 
597
out:
598
	drm_gem_object_unreference(&obj->base);
599
unlock:
600
	mutex_unlock(&dev->struct_mutex);
601
	return ret;
602
}
603
 
604
/* This is the fast write path which cannot handle
605
 * page faults in the source data
606
 */
607
 
608
static inline int
609
fast_user_write(struct io_mapping *mapping,
610
		loff_t page_base, int page_offset,
611
		char __user *user_data,
612
		int length)
613
{
614
	void __iomem *vaddr_atomic;
615
	void *vaddr;
616
	unsigned long unwritten;
617
 
618
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
619
	/* We can use the cpu mem copy function because this is X86. */
620
	vaddr = (void __force*)vaddr_atomic + page_offset;
621
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
622
						      user_data, length);
623
	io_mapping_unmap_atomic(vaddr_atomic);
624
	return unwritten;
625
}
3260 Serge 626
#endif
3031 serge 627
 
3260 Serge 628
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 629
/**
630
 * This is the fast pwrite path, where we copy the data directly from the
631
 * user into the GTT, uncached.
632
 */
2332 Serge 633
static int
3031 serge 634
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
635
			 struct drm_i915_gem_object *obj,
636
			 struct drm_i915_gem_pwrite *args,
637
			 struct drm_file *file)
2332 Serge 638
{
3031 serge 639
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 640
	ssize_t remain;
3031 serge 641
	loff_t offset, page_base;
642
	char __user *user_data;
643
	int page_offset, page_length, ret;
3260 Serge 644
    char *vaddr;
2332 Serge 645
 
3031 serge 646
	ret = i915_gem_object_pin(obj, 0, true, true);
647
	if (ret)
648
		goto out;
649
 
650
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
651
	if (ret)
652
		goto out_unpin;
653
 
654
	ret = i915_gem_object_put_fence(obj);
655
	if (ret)
656
		goto out_unpin;
657
 
3260 Serge 658
    vaddr = AllocKernelSpace(4096);
659
    if(vaddr == NULL)
660
    {
661
        ret = -ENOSPC;
662
        goto out_unpin;
663
    };
664
 
3031 serge 665
	user_data = (char __user *) (uintptr_t) args->data_ptr;
2332 Serge 666
	remain = args->size;
667
 
3031 serge 668
	offset = obj->gtt_offset + args->offset;
2332 Serge 669
 
3031 serge 670
	while (remain > 0) {
671
		/* Operation in this page
672
		 *
673
		 * page_base = page offset within aperture
674
		 * page_offset = offset within page
675
		 * page_length = bytes to copy for this page
676
		 */
677
		page_base = offset & PAGE_MASK;
678
		page_offset = offset_in_page(offset);
679
		page_length = remain;
680
		if ((page_offset + remain) > PAGE_SIZE)
681
			page_length = PAGE_SIZE - page_offset;
2332 Serge 682
 
3260 Serge 683
        MapPage(vaddr, page_base, PG_SW|PG_NOCACHE);
3031 serge 684
 
3260 Serge 685
        memcpy(vaddr+page_offset, user_data, page_length);
686
 
3031 serge 687
		remain -= page_length;
688
		user_data += page_length;
689
		offset += page_length;
2332 Serge 690
	}
691
 
3260 Serge 692
    FreeKernelSpace(vaddr);
693
 
3031 serge 694
out_unpin:
695
	i915_gem_object_unpin(obj);
696
out:
3260 Serge 697
    printf("% s ret = %d\n", __FUNCTION__, ret);
698
 
3031 serge 699
	return ret;
700
}
701
 
702
/* Per-page copy function for the shmem pwrite fastpath.
703
 * Flushes invalid cachelines before writing to the target if
704
 * needs_clflush_before is set and flushes out any written cachelines after
705
 * writing if needs_clflush is set. */
706
static int
707
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
708
		  char __user *user_data,
709
		  bool page_do_bit17_swizzling,
710
		  bool needs_clflush_before,
711
		  bool needs_clflush_after)
712
{
713
	char *vaddr;
3260 Serge 714
	int ret = 0;
3031 serge 715
 
716
	if (unlikely(page_do_bit17_swizzling))
717
		return -EINVAL;
718
 
3260 Serge 719
	vaddr = (char *)MapIoMem((addr_t)page, 4096, PG_SW);
3031 serge 720
	if (needs_clflush_before)
721
		drm_clflush_virt_range(vaddr + shmem_page_offset,
722
				       page_length);
3260 Serge 723
	memcpy(vaddr + shmem_page_offset,
3031 serge 724
						user_data,
725
						page_length);
726
	if (needs_clflush_after)
727
		drm_clflush_virt_range(vaddr + shmem_page_offset,
728
				       page_length);
3260 Serge 729
	FreeKernelSpace(vaddr);
3031 serge 730
 
731
	return ret ? -EFAULT : 0;
732
}
3260 Serge 733
#if 0
3031 serge 734
 
735
/* Only difference to the fast-path function is that this can handle bit17
736
 * and uses non-atomic copy and kmap functions. */
737
static int
738
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
739
		  char __user *user_data,
740
		  bool page_do_bit17_swizzling,
741
		  bool needs_clflush_before,
742
		  bool needs_clflush_after)
743
{
744
	char *vaddr;
745
	int ret;
746
 
747
	vaddr = kmap(page);
748
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
749
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
750
					     page_length,
751
					     page_do_bit17_swizzling);
752
	if (page_do_bit17_swizzling)
753
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
754
						user_data,
755
						page_length);
756
	else
757
		ret = __copy_from_user(vaddr + shmem_page_offset,
758
				       user_data,
759
				       page_length);
760
	if (needs_clflush_after)
761
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
762
					     page_length,
763
					     page_do_bit17_swizzling);
764
	kunmap(page);
765
 
766
	return ret ? -EFAULT : 0;
767
}
3260 Serge 768
#endif
3031 serge 769
 
3260 Serge 770
 
3031 serge 771
static int
772
i915_gem_shmem_pwrite(struct drm_device *dev,
773
		      struct drm_i915_gem_object *obj,
774
		      struct drm_i915_gem_pwrite *args,
775
		      struct drm_file *file)
776
{
777
	ssize_t remain;
778
	loff_t offset;
779
	char __user *user_data;
780
	int shmem_page_offset, page_length, ret = 0;
781
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
782
	int hit_slowpath = 0;
783
	int needs_clflush_after = 0;
784
	int needs_clflush_before = 0;
785
	int i;
786
	struct scatterlist *sg;
787
 
788
	user_data = (char __user *) (uintptr_t) args->data_ptr;
789
	remain = args->size;
790
 
791
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
792
 
793
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
794
		/* If we're not in the cpu write domain, set ourself into the gtt
795
		 * write domain and manually flush cachelines (if required). This
796
		 * optimizes for the case when the gpu will use the data
797
		 * right away and we therefore have to clflush anyway. */
798
		if (obj->cache_level == I915_CACHE_NONE)
799
			needs_clflush_after = 1;
800
		if (obj->gtt_space) {
801
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
802
			if (ret)
803
				return ret;
804
		}
805
	}
806
	/* Same trick applies for invalidate partially written cachelines before
807
	 * writing.  */
808
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
809
	    && obj->cache_level == I915_CACHE_NONE)
810
		needs_clflush_before = 1;
811
 
812
	ret = i915_gem_object_get_pages(obj);
2332 Serge 813
	if (ret)
3031 serge 814
		return ret;
2332 Serge 815
 
3031 serge 816
	i915_gem_object_pin_pages(obj);
2332 Serge 817
 
818
	offset = args->offset;
3031 serge 819
	obj->dirty = 1;
2332 Serge 820
 
3031 serge 821
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
2332 Serge 822
		struct page *page;
3031 serge 823
		int partial_cacheline_write;
2332 Serge 824
 
3031 serge 825
		if (i < offset >> PAGE_SHIFT)
826
			continue;
827
 
828
		if (remain <= 0)
829
			break;
830
 
2332 Serge 831
		/* Operation in this page
832
		 *
833
		 * shmem_page_offset = offset within page in shmem file
834
		 * page_length = bytes to copy for this page
835
		 */
836
		shmem_page_offset = offset_in_page(offset);
837
 
838
		page_length = remain;
839
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
840
			page_length = PAGE_SIZE - shmem_page_offset;
841
 
3031 serge 842
		/* If we don't overwrite a cacheline completely we need to be
843
		 * careful to have up-to-date data by first clflushing. Don't
844
		 * overcomplicate things and flush the entire patch. */
845
		partial_cacheline_write = needs_clflush_before &&
846
			((shmem_page_offset | page_length)
3260 Serge 847
				& (x86_clflush_size - 1));
2332 Serge 848
 
3031 serge 849
		page = sg_page(sg);
850
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
851
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 852
 
3031 serge 853
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
854
					user_data, page_do_bit17_swizzling,
855
					partial_cacheline_write,
856
					needs_clflush_after);
857
		if (ret == 0)
858
			goto next_page;
859
 
860
		hit_slowpath = 1;
861
		mutex_unlock(&dev->struct_mutex);
3260 Serge 862
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 863
 
3260 Serge 864
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
865
//					user_data, page_do_bit17_swizzling,
866
//					partial_cacheline_write,
867
//					needs_clflush_after);
868
 
3031 serge 869
		mutex_lock(&dev->struct_mutex);
870
 
871
next_page:
2332 Serge 872
 
3031 serge 873
		if (ret)
874
			goto out;
875
 
2332 Serge 876
		remain -= page_length;
3031 serge 877
		user_data += page_length;
2332 Serge 878
		offset += page_length;
879
	}
880
 
881
out:
3031 serge 882
	i915_gem_object_unpin_pages(obj);
883
 
884
	if (hit_slowpath) {
3480 Serge 885
		/*
886
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
887
		 * cachelines in-line while writing and the object moved
888
		 * out of the cpu write domain while we've dropped the lock.
889
		 */
890
		if (!needs_clflush_after &&
891
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
3031 serge 892
			i915_gem_clflush_object(obj);
3243 Serge 893
			i915_gem_chipset_flush(dev);
3031 serge 894
		}
2332 Serge 895
	}
896
 
3031 serge 897
	if (needs_clflush_after)
3243 Serge 898
		i915_gem_chipset_flush(dev);
3031 serge 899
 
2332 Serge 900
	return ret;
901
}
3031 serge 902
 
903
/**
904
 * Writes data to the object referenced by handle.
905
 *
906
 * On error, the contents of the buffer that were to be modified are undefined.
907
 */
908
int
909
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
910
		      struct drm_file *file)
911
{
912
	struct drm_i915_gem_pwrite *args = data;
913
	struct drm_i915_gem_object *obj;
914
	int ret;
915
 
3480 Serge 916
     if(args->handle == -2)
917
     {
918
        printf("%s handle %d\n", __FUNCTION__, args->handle);
919
        return 0;
920
     }
921
 
3031 serge 922
	if (args->size == 0)
923
		return 0;
924
 
925
	ret = i915_mutex_lock_interruptible(dev);
926
	if (ret)
927
		return ret;
928
 
929
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
930
	if (&obj->base == NULL) {
931
		ret = -ENOENT;
932
		goto unlock;
933
	}
934
 
935
	/* Bounds check destination. */
936
	if (args->offset > obj->base.size ||
937
	    args->size > obj->base.size - args->offset) {
938
		ret = -EINVAL;
939
		goto out;
940
	}
941
 
942
	/* prime objects have no backing filp to GEM pread/pwrite
943
	 * pages from.
944
	 */
945
	if (!obj->base.filp) {
946
		ret = -EINVAL;
947
		goto out;
948
	}
949
 
950
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
951
 
952
	ret = -EFAULT;
953
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
954
	 * it would end up going through the fenced access, and we'll get
955
	 * different detiling behavior between reading and writing.
956
	 * pread/pwrite currently are reading and writing from the CPU
957
	 * perspective, requiring manual detiling by the client.
958
	 */
3260 Serge 959
//   if (obj->phys_obj) {
960
//       ret = i915_gem_phys_pwrite(dev, obj, args, file);
961
//       goto out;
962
//   }
3031 serge 963
 
964
	if (obj->cache_level == I915_CACHE_NONE &&
965
	    obj->tiling_mode == I915_TILING_NONE &&
966
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
967
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
968
		/* Note that the gtt paths might fail with non-page-backed user
969
		 * pointers (e.g. gtt mappings when moving data between
970
		 * textures). Fallback to the shmem path in that case. */
971
	}
972
 
973
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 974
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 975
 
976
out:
977
	drm_gem_object_unreference(&obj->base);
978
unlock:
979
	mutex_unlock(&dev->struct_mutex);
980
	return ret;
981
}
982
 
983
int
3480 Serge 984
i915_gem_check_wedge(struct i915_gpu_error *error,
3031 serge 985
		     bool interruptible)
986
{
3480 Serge 987
	if (i915_reset_in_progress(error)) {
3031 serge 988
		/* Non-interruptible callers can't handle -EAGAIN, hence return
989
		 * -EIO unconditionally for these. */
990
		if (!interruptible)
991
			return -EIO;
2332 Serge 992
 
3480 Serge 993
		/* Recovery complete, but the reset failed ... */
994
		if (i915_terminally_wedged(error))
3031 serge 995
			return -EIO;
2332 Serge 996
 
3031 serge 997
		return -EAGAIN;
998
	}
2332 Serge 999
 
3031 serge 1000
	return 0;
1001
}
2332 Serge 1002
 
3031 serge 1003
/*
1004
 * Compare seqno against outstanding lazy request. Emit a request if they are
1005
 * equal.
1006
 */
1007
static int
1008
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1009
{
1010
	int ret;
2332 Serge 1011
 
3031 serge 1012
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 1013
 
3031 serge 1014
	ret = 0;
1015
	if (seqno == ring->outstanding_lazy_request)
1016
		ret = i915_add_request(ring, NULL, NULL);
2332 Serge 1017
 
3031 serge 1018
	return ret;
1019
}
2332 Serge 1020
 
3031 serge 1021
/**
1022
 * __wait_seqno - wait until execution of seqno has finished
1023
 * @ring: the ring expected to report seqno
1024
 * @seqno: duh!
3480 Serge 1025
 * @reset_counter: reset sequence associated with the given seqno
3031 serge 1026
 * @interruptible: do an interruptible wait (normally yes)
1027
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1028
 *
3480 Serge 1029
 * Note: It is of utmost importance that the passed in seqno and reset_counter
1030
 * values have been read by the caller in an smp safe manner. Where read-side
1031
 * locks are involved, it is sufficient to read the reset_counter before
1032
 * unlocking the lock that protects the seqno. For lockless tricks, the
1033
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1034
 * inserted.
1035
 *
3031 serge 1036
 * Returns 0 if the seqno was found within the alloted time. Else returns the
1037
 * errno with remaining time filled in timeout argument.
1038
 */
1039
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
3480 Serge 1040
			unsigned reset_counter,
3031 serge 1041
			bool interruptible, struct timespec *timeout)
1042
{
1043
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1044
	struct timespec before, now, wait_time={1,0};
1045
	unsigned long timeout_jiffies;
1046
	long end;
1047
	bool wait_forever = true;
1048
	int ret;
2332 Serge 1049
 
3031 serge 1050
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1051
		return 0;
2332 Serge 1052
 
3031 serge 1053
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1054
 
3031 serge 1055
	if (timeout != NULL) {
1056
		wait_time = *timeout;
1057
		wait_forever = false;
1058
	}
2332 Serge 1059
 
3266 Serge 1060
	timeout_jiffies = timespec_to_jiffies(&wait_time);
2332 Serge 1061
 
3031 serge 1062
	if (WARN_ON(!ring->irq_get(ring)))
1063
		return -ENODEV;
2332 Serge 1064
 
3031 serge 1065
    /* Record current time in case interrupted by signal, or wedged * */
1066
	getrawmonotonic(&before);
2332 Serge 1067
 
3031 serge 1068
#define EXIT_COND \
1069
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
3480 Serge 1070
	 i915_reset_in_progress(&dev_priv->gpu_error) || \
1071
	 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3031 serge 1072
	do {
3266 Serge 1073
		if (interruptible)
1074
			end = wait_event_interruptible_timeout(ring->irq_queue,
1075
							       EXIT_COND,
1076
							       timeout_jiffies);
1077
		else
3031 serge 1078
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1079
						 timeout_jiffies);
2332 Serge 1080
 
3480 Serge 1081
		/* We need to check whether any gpu reset happened in between
1082
		 * the caller grabbing the seqno and now ... */
1083
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1084
			end = -EAGAIN;
1085
 
1086
		/* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1087
		 * gone. */
1088
		ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1089
		if (ret)
1090
			end = ret;
1091
	} while (end == 0 && wait_forever);
2332 Serge 1092
 
3031 serge 1093
	getrawmonotonic(&now);
2332 Serge 1094
 
3031 serge 1095
	ring->irq_put(ring);
1096
	trace_i915_gem_request_wait_end(ring, seqno);
1097
#undef EXIT_COND
2332 Serge 1098
 
3031 serge 1099
	if (timeout) {
1100
//       struct timespec sleep_time = timespec_sub(now, before);
1101
//       *timeout = timespec_sub(*timeout, sleep_time);
1102
	}
2332 Serge 1103
 
3031 serge 1104
	switch (end) {
1105
	case -EIO:
1106
	case -EAGAIN: /* Wedged */
1107
	case -ERESTARTSYS: /* Signal */
1108
		return (int)end;
1109
	case 0: /* Timeout */
3266 Serge 1110
		if (timeout)
1111
			set_normalized_timespec(timeout, 0, 0);
3031 serge 1112
		return -ETIME;
1113
	default: /* Completed */
1114
		WARN_ON(end < 0); /* We're not aware of other errors */
1115
		return 0;
1116
	}
1117
}
2332 Serge 1118
 
3031 serge 1119
/**
1120
 * Waits for a sequence number to be signaled, and cleans up the
1121
 * request and object lists appropriately for that event.
1122
 */
1123
int
1124
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1125
{
1126
	struct drm_device *dev = ring->dev;
1127
	struct drm_i915_private *dev_priv = dev->dev_private;
1128
	bool interruptible = dev_priv->mm.interruptible;
1129
	int ret;
2332 Serge 1130
 
3031 serge 1131
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1132
	BUG_ON(seqno == 0);
2332 Serge 1133
 
3480 Serge 1134
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
3031 serge 1135
	if (ret)
1136
		return ret;
2332 Serge 1137
 
3031 serge 1138
	ret = i915_gem_check_olr(ring, seqno);
1139
	if (ret)
1140
		return ret;
2332 Serge 1141
 
3480 Serge 1142
	return __wait_seqno(ring, seqno,
1143
			    atomic_read(&dev_priv->gpu_error.reset_counter),
1144
			    interruptible, NULL);
3031 serge 1145
}
2332 Serge 1146
 
3031 serge 1147
/**
1148
 * Ensures that all rendering to the object has completed and the object is
1149
 * safe to unbind from the GTT or access from the CPU.
1150
 */
1151
static __must_check int
1152
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1153
			       bool readonly)
1154
{
1155
	struct intel_ring_buffer *ring = obj->ring;
1156
	u32 seqno;
1157
	int ret;
2332 Serge 1158
 
3031 serge 1159
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1160
	if (seqno == 0)
1161
		return 0;
2332 Serge 1162
 
3031 serge 1163
	ret = i915_wait_seqno(ring, seqno);
1164
       if (ret)
1165
           return ret;
2332 Serge 1166
 
3031 serge 1167
	i915_gem_retire_requests_ring(ring);
2332 Serge 1168
 
3031 serge 1169
	/* Manually manage the write flush as we may have not yet
1170
	 * retired the buffer.
1171
	 */
1172
	if (obj->last_write_seqno &&
1173
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1174
		obj->last_write_seqno = 0;
1175
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1176
	}
2332 Serge 1177
 
3031 serge 1178
	return 0;
1179
}
2332 Serge 1180
 
3260 Serge 1181
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1182
 * as the object state may change during this call.
1183
 */
1184
static __must_check int
1185
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1186
					    bool readonly)
1187
{
1188
	struct drm_device *dev = obj->base.dev;
1189
	struct drm_i915_private *dev_priv = dev->dev_private;
1190
	struct intel_ring_buffer *ring = obj->ring;
3480 Serge 1191
	unsigned reset_counter;
3260 Serge 1192
	u32 seqno;
1193
	int ret;
2332 Serge 1194
 
3260 Serge 1195
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1196
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1197
 
3260 Serge 1198
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1199
	if (seqno == 0)
1200
		return 0;
2332 Serge 1201
 
3480 Serge 1202
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3260 Serge 1203
	if (ret)
1204
		return ret;
2332 Serge 1205
 
3260 Serge 1206
	ret = i915_gem_check_olr(ring, seqno);
1207
	if (ret)
1208
		return ret;
2332 Serge 1209
 
3480 Serge 1210
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3260 Serge 1211
	mutex_unlock(&dev->struct_mutex);
3480 Serge 1212
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3260 Serge 1213
	mutex_lock(&dev->struct_mutex);
2332 Serge 1214
 
3260 Serge 1215
	i915_gem_retire_requests_ring(ring);
2332 Serge 1216
 
3260 Serge 1217
	/* Manually manage the write flush as we may have not yet
1218
	 * retired the buffer.
1219
	 */
1220
	if (obj->last_write_seqno &&
1221
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1222
		obj->last_write_seqno = 0;
1223
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1224
	}
2332 Serge 1225
 
3260 Serge 1226
	return ret;
1227
}
2332 Serge 1228
 
3260 Serge 1229
/**
1230
 * Called when user space prepares to use an object with the CPU, either
1231
 * through the mmap ioctl's mapping or a GTT mapping.
1232
 */
1233
int
1234
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1235
			  struct drm_file *file)
1236
{
1237
	struct drm_i915_gem_set_domain *args = data;
1238
	struct drm_i915_gem_object *obj;
1239
	uint32_t read_domains = args->read_domains;
1240
	uint32_t write_domain = args->write_domain;
1241
	int ret;
2332 Serge 1242
 
3480 Serge 1243
 
1244
     if(args->handle == -2)
1245
     {
1246
        printf("%s handle %d\n", __FUNCTION__, args->handle);
1247
        return 0;
1248
     }
1249
 
3260 Serge 1250
	/* Only handle setting domains to types used by the CPU. */
1251
	if (write_domain & I915_GEM_GPU_DOMAINS)
1252
		return -EINVAL;
2332 Serge 1253
 
3260 Serge 1254
	if (read_domains & I915_GEM_GPU_DOMAINS)
1255
		return -EINVAL;
2332 Serge 1256
 
3260 Serge 1257
	/* Having something in the write domain implies it's in the read
1258
	 * domain, and only that read domain.  Enforce that in the request.
1259
	 */
1260
	if (write_domain != 0 && read_domains != write_domain)
1261
		return -EINVAL;
2332 Serge 1262
 
3260 Serge 1263
	ret = i915_mutex_lock_interruptible(dev);
1264
	if (ret)
1265
		return ret;
2332 Serge 1266
 
3260 Serge 1267
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1268
	if (&obj->base == NULL) {
1269
		ret = -ENOENT;
1270
		goto unlock;
1271
	}
2332 Serge 1272
 
3260 Serge 1273
	/* Try to flush the object off the GPU without holding the lock.
1274
	 * We will repeat the flush holding the lock in the normal manner
1275
	 * to catch cases where we are gazumped.
1276
	 */
1277
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1278
	if (ret)
1279
		goto unref;
2332 Serge 1280
 
3260 Serge 1281
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1282
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1283
 
3260 Serge 1284
		/* Silently promote "you're not bound, there was nothing to do"
1285
		 * to success, since the client was just asking us to
1286
		 * make sure everything was done.
1287
		 */
1288
		if (ret == -EINVAL)
1289
			ret = 0;
1290
	} else {
1291
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1292
	}
2332 Serge 1293
 
3260 Serge 1294
unref:
1295
	drm_gem_object_unreference(&obj->base);
1296
unlock:
1297
	mutex_unlock(&dev->struct_mutex);
1298
	return ret;
1299
}
2332 Serge 1300
 
1301
 
1302
 
1303
 
1304
 
1305
 
3260 Serge 1306
/**
1307
 * Maps the contents of an object, returning the address it is mapped
1308
 * into.
1309
 *
1310
 * While the mapping holds a reference on the contents of the object, it doesn't
1311
 * imply a ref on the object itself.
1312
 */
1313
int
1314
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1315
		    struct drm_file *file)
1316
{
1317
	struct drm_i915_gem_mmap *args = data;
1318
	struct drm_gem_object *obj;
1319
	unsigned long addr = 0;
2332 Serge 1320
 
3480 Serge 1321
     if(args->handle == -2)
1322
     {
1323
        printf("%s handle %d\n", __FUNCTION__, args->handle);
1324
        return 0;
1325
     }
1326
 
3260 Serge 1327
	obj = drm_gem_object_lookup(dev, file, args->handle);
1328
	if (obj == NULL)
1329
		return -ENOENT;
1330
 
3298 Serge 1331
    //dbgprintf("%s offset %lld size %lld\n",
1332
//                __FUNCTION__, args->offset, args->size);
3260 Serge 1333
	/* prime objects have no backing filp to GEM mmap
1334
	 * pages from.
1335
	 */
1336
	if (!obj->filp) {
1337
		drm_gem_object_unreference_unlocked(obj);
1338
		return -EINVAL;
1339
	}
2332 Serge 1340
 
3263 Serge 1341
    addr = vm_mmap(obj->filp, 0, args->size,
1342
              PROT_READ | PROT_WRITE, MAP_SHARED,
1343
              args->offset);
3260 Serge 1344
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1345
    if (IS_ERR((void *)addr))
1346
        return addr;
2332 Serge 1347
 
3260 Serge 1348
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1349
 
3263 Serge 1350
    return 0;
3260 Serge 1351
}
2332 Serge 1352
 
1353
 
1354
 
1355
 
1356
 
1357
 
1358
 
1359
 
3031 serge 1360
 
1361
 
1362
 
1363
 
1364
 
1365
/**
1366
 * i915_gem_release_mmap - remove physical page mappings
1367
 * @obj: obj in question
1368
 *
1369
 * Preserve the reservation of the mmapping with the DRM core code, but
1370
 * relinquish ownership of the pages back to the system.
1371
 *
1372
 * It is vital that we remove the page mapping if we have mapped a tiled
1373
 * object through the GTT and then lose the fence register due to
1374
 * resource pressure. Similarly if the object has been moved out of the
1375
 * aperture, than pages mapped into userspace must be revoked. Removing the
1376
 * mapping will then trigger a page fault on the next user access, allowing
1377
 * fixup by i915_gem_fault().
1378
 */
1379
void
1380
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1381
{
1382
	if (!obj->fault_mappable)
1383
		return;
1384
 
1385
	if (obj->base.dev->dev_mapping)
1386
//		unmap_mapping_range(obj->base.dev->dev_mapping,
1387
//				    (loff_t)obj->base.map_list.hash.key<
1388
//				    obj->base.size, 1);
1389
 
1390
	obj->fault_mappable = false;
1391
}
1392
 
3480 Serge 1393
uint32_t
2332 Serge 1394
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1395
{
1396
	uint32_t gtt_size;
1397
 
1398
	if (INTEL_INFO(dev)->gen >= 4 ||
1399
	    tiling_mode == I915_TILING_NONE)
1400
		return size;
1401
 
1402
	/* Previous chips need a power-of-two fence region when tiling */
1403
	if (INTEL_INFO(dev)->gen == 3)
1404
		gtt_size = 1024*1024;
1405
	else
1406
		gtt_size = 512*1024;
1407
 
1408
	while (gtt_size < size)
1409
		gtt_size <<= 1;
1410
 
1411
	return gtt_size;
1412
}
1413
 
1414
/**
1415
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1416
 * @obj: object to check
1417
 *
1418
 * Return the required GTT alignment for an object, taking into account
1419
 * potential fence register mapping.
1420
 */
3480 Serge 1421
uint32_t
1422
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1423
			   int tiling_mode, bool fenced)
2332 Serge 1424
{
1425
	/*
1426
	 * Minimum alignment is 4k (GTT page size), but might be greater
1427
	 * if a fence register is needed for the object.
1428
	 */
3480 Serge 1429
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2332 Serge 1430
	    tiling_mode == I915_TILING_NONE)
1431
		return 4096;
1432
 
1433
	/*
1434
	 * Previous chips need to be aligned to the size of the smallest
1435
	 * fence register that can contain the object.
1436
	 */
1437
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1438
}
1439
 
1440
/**
1441
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1442
 *					 unfenced object
1443
 * @dev: the device
1444
 * @size: size of the object
1445
 * @tiling_mode: tiling mode of the object
1446
 *
1447
 * Return the required GTT alignment for an object, only taking into account
1448
 * unfenced tiled surface requirements.
1449
 */
1450
uint32_t
1451
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1452
				    uint32_t size,
1453
				    int tiling_mode)
1454
{
1455
	/*
1456
	 * Minimum alignment is 4k (GTT page size) for sane hw.
1457
	 */
1458
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1459
	    tiling_mode == I915_TILING_NONE)
1460
		return 4096;
1461
 
1462
	/* Previous hardware however needs to be aligned to a power-of-two
1463
	 * tile height. The simplest method for determining this is to reuse
1464
	 * the power-of-tile object size.
1465
	 */
1466
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1467
}
1468
 
3480 Serge 1469
int
1470
i915_gem_mmap_gtt(struct drm_file *file,
1471
          struct drm_device *dev,
1472
          uint32_t handle,
1473
          uint64_t *offset)
1474
{
1475
    struct drm_i915_private *dev_priv = dev->dev_private;
1476
    struct drm_i915_gem_object *obj;
1477
    unsigned long pfn;
1478
    char *mem, *ptr;
1479
    int ret;
1480
 
1481
    ret = i915_mutex_lock_interruptible(dev);
1482
    if (ret)
1483
        return ret;
1484
 
1485
    obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1486
    if (&obj->base == NULL) {
1487
        ret = -ENOENT;
1488
        goto unlock;
1489
    }
1490
 
1491
    if (obj->base.size > dev_priv->gtt.mappable_end) {
1492
        ret = -E2BIG;
1493
        goto out;
1494
    }
1495
 
1496
    if (obj->madv != I915_MADV_WILLNEED) {
1497
        DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1498
        ret = -EINVAL;
1499
        goto out;
1500
    }
1501
    /* Now bind it into the GTT if needed */
1502
    ret = i915_gem_object_pin(obj, 0, true, false);
1503
    if (ret)
1504
        goto out;
1505
 
1506
    ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1507
    if (ret)
1508
        goto unpin;
1509
 
1510
    ret = i915_gem_object_get_fence(obj);
1511
    if (ret)
1512
        goto unpin;
1513
 
1514
    obj->fault_mappable = true;
1515
 
1516
    pfn = dev_priv->gtt.mappable_base + obj->gtt_offset;
1517
 
1518
    /* Finally, remap it using the new GTT offset */
1519
 
1520
    mem = UserAlloc(obj->base.size);
1521
    if(unlikely(mem == NULL))
1522
    {
1523
        ret = -ENOMEM;
1524
        goto unpin;
1525
    }
1526
 
1527
    for(ptr = mem; ptr < mem + obj->base.size; ptr+= 4096, pfn+= 4096)
1528
        MapPage(ptr, pfn, PG_SHARED|PG_UW);
1529
 
1530
unpin:
1531
    i915_gem_object_unpin(obj);
1532
 
1533
 
1534
    *offset = (u64)mem;
1535
 
1536
out:
1537
    drm_gem_object_unreference(&obj->base);
1538
unlock:
1539
    mutex_unlock(&dev->struct_mutex);
1540
    return ret;
1541
}
1542
 
1543
/**
1544
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1545
 * @dev: DRM device
1546
 * @data: GTT mapping ioctl data
1547
 * @file: GEM object info
1548
 *
1549
 * Simply returns the fake offset to userspace so it can mmap it.
1550
 * The mmap call will end up in drm_gem_mmap(), which will set things
1551
 * up so we can get faults in the handler above.
1552
 *
1553
 * The fault handler will take care of binding the object into the GTT
1554
 * (since it may have been evicted to make room for something), allocating
1555
 * a fence register, and mapping the appropriate aperture address into
1556
 * userspace.
1557
 */
1558
int
1559
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1560
            struct drm_file *file)
1561
{
1562
    struct drm_i915_gem_mmap_gtt *args = data;
1563
 
1564
    return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1565
}
1566
 
3031 serge 1567
/* Immediately discard the backing storage */
1568
static void
1569
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1570
{
1571
//	struct inode *inode;
2332 Serge 1572
 
3031 serge 1573
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1574
 
3263 Serge 1575
	if (obj->base.filp == NULL)
1576
		return;
2332 Serge 1577
 
3031 serge 1578
	/* Our goal here is to return as much of the memory as
1579
	 * is possible back to the system as we are called from OOM.
1580
	 * To do this we must instruct the shmfs to drop all of its
1581
	 * backing pages, *now*.
1582
	 */
1583
//	inode = obj->base.filp->f_path.dentry->d_inode;
1584
//	shmem_truncate_range(inode, 0, (loff_t)-1);
2332 Serge 1585
 
3031 serge 1586
	obj->madv = __I915_MADV_PURGED;
1587
}
2332 Serge 1588
 
3031 serge 1589
static inline int
1590
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1591
{
1592
	return obj->madv == I915_MADV_DONTNEED;
1593
}
2332 Serge 1594
 
3031 serge 1595
static void
1596
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1597
{
3243 Serge 1598
	int page_count = obj->base.size / PAGE_SIZE;
1599
	struct scatterlist *sg;
3031 serge 1600
	int ret, i;
2332 Serge 1601
 
3031 serge 1602
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1603
 
3031 serge 1604
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1605
	if (ret) {
1606
		/* In the event of a disaster, abandon all caches and
1607
		 * hope for the best.
1608
		 */
1609
		WARN_ON(ret != -EIO);
1610
		i915_gem_clflush_object(obj);
1611
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1612
	}
2332 Serge 1613
 
3031 serge 1614
	if (obj->madv == I915_MADV_DONTNEED)
1615
		obj->dirty = 0;
2332 Serge 1616
 
3243 Serge 1617
	for_each_sg(obj->pages->sgl, sg, page_count, i) {
1618
		struct page *page = sg_page(sg);
2332 Serge 1619
 
3290 Serge 1620
        page_cache_release(page);
3243 Serge 1621
	}
1622
    //DRM_DEBUG_KMS("%s release %d pages\n", __FUNCTION__, page_count);
3290 Serge 1623
 
3031 serge 1624
	obj->dirty = 0;
3243 Serge 1625
 
1626
	sg_free_table(obj->pages);
1627
	kfree(obj->pages);
3031 serge 1628
}
2332 Serge 1629
 
3480 Serge 1630
int
3031 serge 1631
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1632
{
1633
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1634
 
3243 Serge 1635
	if (obj->pages == NULL)
3031 serge 1636
		return 0;
2332 Serge 1637
 
3031 serge 1638
	BUG_ON(obj->gtt_space);
1639
 
1640
	if (obj->pages_pin_count)
1641
		return -EBUSY;
1642
 
3243 Serge 1643
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1644
	 * array, hence protect them from being reaped by removing them from gtt
1645
	 * lists early. */
1646
	list_del(&obj->gtt_list);
1647
 
3031 serge 1648
	ops->put_pages(obj);
3243 Serge 1649
	obj->pages = NULL;
3031 serge 1650
 
1651
	if (i915_gem_object_is_purgeable(obj))
1652
		i915_gem_object_truncate(obj);
1653
 
1654
	return 0;
1655
}
1656
 
1657
 
1658
 
1659
 
1660
 
1661
 
1662
 
1663
 
2332 Serge 1664
static int
3031 serge 1665
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1666
{
3260 Serge 1667
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1668
    int page_count, i;
3260 Serge 1669
	struct address_space *mapping;
3243 Serge 1670
	struct sg_table *st;
1671
	struct scatterlist *sg;
1672
	struct page *page;
1673
	gfp_t gfp;
2332 Serge 1674
 
3243 Serge 1675
	/* Assert that the object is not currently in any GPU domain. As it
1676
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1677
	 * a GPU cache
2332 Serge 1678
	 */
3243 Serge 1679
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1680
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1681
 
1682
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1683
	if (st == NULL)
1684
		return -ENOMEM;
1685
 
2332 Serge 1686
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1687
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1688
		sg_free_table(st);
1689
		kfree(st);
2332 Serge 1690
		return -ENOMEM;
3243 Serge 1691
	}
2332 Serge 1692
 
3243 Serge 1693
	/* Get the list of pages out of our struct file.  They'll be pinned
1694
	 * at this point until we release them.
1695
	 *
1696
	 * Fail silently without starting the shrinker
1697
	 */
1698
	for_each_sg(st->sgl, sg, page_count, i) {
3260 Serge 1699
		page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
1700
		if (IS_ERR(page)) {
1701
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1702
			goto err_pages;
1703
 
3260 Serge 1704
		}
3243 Serge 1705
		sg_set_page(sg, page, PAGE_SIZE, 0);
1706
	}
3031 serge 1707
 
3243 Serge 1708
	obj->pages = st;
3031 serge 1709
 
3298 Serge 1710
//    DRM_DEBUG_KMS("%s alloc %d pages\n", __FUNCTION__, page_count);
2332 Serge 1711
 
1712
	return 0;
1713
 
1714
err_pages:
3243 Serge 1715
	for_each_sg(st->sgl, sg, i, page_count)
1716
		page_cache_release(sg_page(sg));
1717
	sg_free_table(st);
1718
	kfree(st);
1719
	return PTR_ERR(page);
2332 Serge 1720
}
1721
 
3031 serge 1722
/* Ensure that the associated pages are gathered from the backing storage
1723
 * and pinned into our object. i915_gem_object_get_pages() may be called
1724
 * multiple times before they are released by a single call to
1725
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1726
 * either as a result of memory pressure (reaping pages under the shrinker)
1727
 * or as the object is itself released.
1728
 */
1729
int
1730
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1731
{
3031 serge 1732
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1733
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1734
	int ret;
2332 Serge 1735
 
3243 Serge 1736
	if (obj->pages)
3031 serge 1737
		return 0;
2332 Serge 1738
 
3031 serge 1739
	BUG_ON(obj->pages_pin_count);
2332 Serge 1740
 
3031 serge 1741
	ret = ops->get_pages(obj);
1742
	if (ret)
1743
		return ret;
2344 Serge 1744
 
3031 serge 1745
	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
3243 Serge 1746
    return 0;
2332 Serge 1747
}
1748
 
1749
void
1750
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
3243 Serge 1751
			       struct intel_ring_buffer *ring)
2332 Serge 1752
{
1753
	struct drm_device *dev = obj->base.dev;
1754
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1755
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1756
 
1757
	BUG_ON(ring == NULL);
1758
	obj->ring = ring;
1759
 
1760
	/* Add a reference if we're newly entering the active list. */
1761
	if (!obj->active) {
2344 Serge 1762
		drm_gem_object_reference(&obj->base);
2332 Serge 1763
		obj->active = 1;
1764
	}
1765
 
1766
	/* Move from whatever list we were on to the tail of execution. */
1767
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1768
	list_move_tail(&obj->ring_list, &ring->active_list);
1769
 
3031 serge 1770
	obj->last_read_seqno = seqno;
1771
 
2332 Serge 1772
	if (obj->fenced_gpu_access) {
3031 serge 1773
		obj->last_fenced_seqno = seqno;
1774
 
1775
		/* Bump MRU to take account of the delayed flush */
1776
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2332 Serge 1777
		struct drm_i915_fence_reg *reg;
1778
 
1779
		reg = &dev_priv->fence_regs[obj->fence_reg];
3031 serge 1780
			list_move_tail(®->lru_list,
1781
				       &dev_priv->mm.fence_list);
1782
		}
2332 Serge 1783
	}
1784
}
1785
 
2344 Serge 1786
static void
3031 serge 1787
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1788
{
1789
	struct drm_device *dev = obj->base.dev;
3031 serge 1790
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 1791
 
3031 serge 1792
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1793
	BUG_ON(!obj->active);
2332 Serge 1794
 
2352 Serge 1795
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2344 Serge 1796
 
3031 serge 1797
	list_del_init(&obj->ring_list);
2352 Serge 1798
	obj->ring = NULL;
2344 Serge 1799
 
3031 serge 1800
	obj->last_read_seqno = 0;
1801
	obj->last_write_seqno = 0;
1802
	obj->base.write_domain = 0;
1803
 
1804
	obj->last_fenced_seqno = 0;
2352 Serge 1805
	obj->fenced_gpu_access = false;
2344 Serge 1806
 
2352 Serge 1807
	obj->active = 0;
1808
	drm_gem_object_unreference(&obj->base);
1809
 
1810
	WARN_ON(i915_verify_lists(dev));
1811
}
1812
 
3243 Serge 1813
static int
3480 Serge 1814
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2344 Serge 1815
{
3243 Serge 1816
	struct drm_i915_private *dev_priv = dev->dev_private;
1817
	struct intel_ring_buffer *ring;
1818
	int ret, i, j;
2344 Serge 1819
 
3480 Serge 1820
	/* Carefully retire all requests without writing to the rings */
3243 Serge 1821
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1822
		ret = intel_ring_idle(ring);
3243 Serge 1823
	if (ret)
1824
		return ret;
3480 Serge 1825
	}
1826
	i915_gem_retire_requests(dev);
3243 Serge 1827
 
3480 Serge 1828
	/* Finally reset hw state */
3243 Serge 1829
	for_each_ring(ring, dev_priv, i) {
3480 Serge 1830
		intel_ring_init_seqno(ring, seqno);
1831
 
3243 Serge 1832
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1833
			ring->sync_seqno[j] = 0;
1834
	}
1835
 
1836
	return 0;
2344 Serge 1837
}
1838
 
3480 Serge 1839
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1840
{
1841
	struct drm_i915_private *dev_priv = dev->dev_private;
1842
	int ret;
1843
 
1844
	if (seqno == 0)
1845
		return -EINVAL;
1846
 
1847
	/* HWS page needs to be set less than what we
1848
	 * will inject to ring
1849
	 */
1850
	ret = i915_gem_init_seqno(dev, seqno - 1);
1851
	if (ret)
1852
		return ret;
1853
 
1854
	/* Carefully set the last_seqno value so that wrap
1855
	 * detection still works
1856
	 */
1857
	dev_priv->next_seqno = seqno;
1858
	dev_priv->last_seqno = seqno - 1;
1859
	if (dev_priv->last_seqno == 0)
1860
		dev_priv->last_seqno--;
1861
 
1862
	return 0;
1863
}
1864
 
3243 Serge 1865
int
1866
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1867
{
3243 Serge 1868
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1869
 
3243 Serge 1870
	/* reserve 0 for non-seqno */
1871
	if (dev_priv->next_seqno == 0) {
3480 Serge 1872
		int ret = i915_gem_init_seqno(dev, 0);
3243 Serge 1873
		if (ret)
1874
			return ret;
1875
 
1876
		dev_priv->next_seqno = 1;
1877
	}
1878
 
3480 Serge 1879
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
3243 Serge 1880
	return 0;
2332 Serge 1881
}
1882
 
2352 Serge 1883
int
1884
i915_add_request(struct intel_ring_buffer *ring,
1885
		 struct drm_file *file,
3031 serge 1886
		 u32 *out_seqno)
2352 Serge 1887
{
1888
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
3031 serge 1889
	struct drm_i915_gem_request *request;
1890
	u32 request_ring_position;
2352 Serge 1891
	int was_empty;
1892
	int ret;
2332 Serge 1893
 
3031 serge 1894
	/*
1895
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1896
	 * after having emitted the batchbuffer command. Hence we need to fix
1897
	 * things up similar to emitting the lazy request. The difference here
1898
	 * is that the flush _must_ happen before the next request, no matter
1899
	 * what.
1900
	 */
1901
	ret = intel_ring_flush_all_caches(ring);
1902
	if (ret)
1903
		return ret;
2332 Serge 1904
 
3031 serge 1905
	request = kmalloc(sizeof(*request), GFP_KERNEL);
1906
	if (request == NULL)
1907
		return -ENOMEM;
1908
 
1909
 
1910
	/* Record the position of the start of the request so that
1911
	 * should we detect the updated seqno part-way through the
1912
	 * GPU processing the request, we never over-estimate the
1913
	 * position of the head.
1914
	 */
1915
	request_ring_position = intel_ring_get_tail(ring);
1916
 
3243 Serge 1917
	ret = ring->add_request(ring);
3031 serge 1918
	if (ret) {
1919
		kfree(request);
2352 Serge 1920
	    return ret;
3031 serge 1921
	}
2332 Serge 1922
 
3243 Serge 1923
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1924
	request->ring = ring;
3031 serge 1925
	request->tail = request_ring_position;
1926
    request->emitted_jiffies = GetTimerTicks();
2352 Serge 1927
	was_empty = list_empty(&ring->request_list);
1928
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1929
	request->file_priv = NULL;
2332 Serge 1930
 
3263 Serge 1931
	if (file) {
1932
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1933
 
3263 Serge 1934
		spin_lock(&file_priv->mm.lock);
1935
		request->file_priv = file_priv;
1936
		list_add_tail(&request->client_list,
1937
			      &file_priv->mm.request_list);
1938
		spin_unlock(&file_priv->mm.lock);
1939
	}
1940
 
1941
	trace_i915_gem_request_add(ring, request->seqno);
3031 serge 1942
	ring->outstanding_lazy_request = 0;
2332 Serge 1943
 
2360 Serge 1944
	if (!dev_priv->mm.suspended) {
1945
		if (i915_enable_hangcheck) {
2352 Serge 1946
//			mod_timer(&dev_priv->hangcheck_timer,
1947
//				  jiffies +
1948
//				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2360 Serge 1949
		}
3031 serge 1950
		if (was_empty) {
2360 Serge 1951
           queue_delayed_work(dev_priv->wq,
1952
                      &dev_priv->mm.retire_work, HZ);
3031 serge 1953
			intel_mark_busy(dev_priv->dev);
1954
		}
2360 Serge 1955
	}
3031 serge 1956
 
1957
	if (out_seqno)
3243 Serge 1958
		*out_seqno = request->seqno;
2352 Serge 1959
	return 0;
1960
}
2332 Serge 1961
 
3263 Serge 1962
static inline void
1963
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1964
{
1965
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1966
 
3263 Serge 1967
	if (!file_priv)
1968
		return;
2332 Serge 1969
 
3263 Serge 1970
	spin_lock(&file_priv->mm.lock);
1971
	if (request->file_priv) {
1972
		list_del(&request->client_list);
1973
		request->file_priv = NULL;
1974
	}
1975
	spin_unlock(&file_priv->mm.lock);
1976
}
2332 Serge 1977
 
3031 serge 1978
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1979
				      struct intel_ring_buffer *ring)
1980
{
1981
	while (!list_empty(&ring->request_list)) {
1982
		struct drm_i915_gem_request *request;
2332 Serge 1983
 
3031 serge 1984
		request = list_first_entry(&ring->request_list,
1985
					   struct drm_i915_gem_request,
1986
					   list);
2332 Serge 1987
 
3031 serge 1988
		list_del(&request->list);
3263 Serge 1989
		i915_gem_request_remove_from_client(request);
3031 serge 1990
		kfree(request);
1991
	}
2332 Serge 1992
 
3031 serge 1993
	while (!list_empty(&ring->active_list)) {
1994
		struct drm_i915_gem_object *obj;
2332 Serge 1995
 
3031 serge 1996
		obj = list_first_entry(&ring->active_list,
1997
				       struct drm_i915_gem_object,
1998
				       ring_list);
2332 Serge 1999
 
3031 serge 2000
		i915_gem_object_move_to_inactive(obj);
2001
	}
2002
}
2332 Serge 2003
 
3031 serge 2004
static void i915_gem_reset_fences(struct drm_device *dev)
2005
{
2006
	struct drm_i915_private *dev_priv = dev->dev_private;
2007
	int i;
2332 Serge 2008
 
3031 serge 2009
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2010
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2332 Serge 2011
 
3031 serge 2012
		i915_gem_write_fence(dev, i, NULL);
2360 Serge 2013
 
3031 serge 2014
		if (reg->obj)
2015
			i915_gem_object_fence_lost(reg->obj);
2360 Serge 2016
 
3031 serge 2017
		reg->pin_count = 0;
2018
		reg->obj = NULL;
2019
		INIT_LIST_HEAD(®->lru_list);
2020
	}
2360 Serge 2021
 
3031 serge 2022
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2023
}
2360 Serge 2024
 
3031 serge 2025
void i915_gem_reset(struct drm_device *dev)
2026
{
2027
	struct drm_i915_private *dev_priv = dev->dev_private;
2028
	struct drm_i915_gem_object *obj;
2029
	struct intel_ring_buffer *ring;
2030
	int i;
2360 Serge 2031
 
3031 serge 2032
	for_each_ring(ring, dev_priv, i)
2033
		i915_gem_reset_ring_lists(dev_priv, ring);
2360 Serge 2034
 
3031 serge 2035
	/* Move everything out of the GPU domains to ensure we do any
2036
	 * necessary invalidation upon reuse.
2037
	 */
2038
	list_for_each_entry(obj,
2039
			    &dev_priv->mm.inactive_list,
2040
			    mm_list)
2041
	{
2042
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2043
	}
2360 Serge 2044
 
3031 serge 2045
	/* The fence registers are invalidated so clear them out */
2046
	i915_gem_reset_fences(dev);
2047
}
2360 Serge 2048
 
2352 Serge 2049
/**
2050
 * This function clears the request list as sequence numbers are passed.
2051
 */
3031 serge 2052
void
2352 Serge 2053
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2054
{
2055
	uint32_t seqno;
2332 Serge 2056
 
2352 Serge 2057
	if (list_empty(&ring->request_list))
2058
		return;
2332 Serge 2059
 
2352 Serge 2060
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 2061
 
3031 serge 2062
	seqno = ring->get_seqno(ring, true);
2332 Serge 2063
 
2352 Serge 2064
	while (!list_empty(&ring->request_list)) {
2065
		struct drm_i915_gem_request *request;
2332 Serge 2066
 
2352 Serge 2067
		request = list_first_entry(&ring->request_list,
2068
					   struct drm_i915_gem_request,
2069
					   list);
2332 Serge 2070
 
2352 Serge 2071
		if (!i915_seqno_passed(seqno, request->seqno))
2072
			break;
2332 Serge 2073
 
2352 Serge 2074
		trace_i915_gem_request_retire(ring, request->seqno);
3031 serge 2075
		/* We know the GPU must have read the request to have
2076
		 * sent us the seqno + interrupt, so use the position
2077
		 * of tail of the request to update the last known position
2078
		 * of the GPU head.
2079
		 */
2080
		ring->last_retired_head = request->tail;
2332 Serge 2081
 
2352 Serge 2082
		list_del(&request->list);
3263 Serge 2083
		i915_gem_request_remove_from_client(request);
2352 Serge 2084
		kfree(request);
2085
	}
2332 Serge 2086
 
2352 Serge 2087
	/* Move any buffers on the active list that are no longer referenced
2088
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
2089
	 */
2090
	while (!list_empty(&ring->active_list)) {
2091
		struct drm_i915_gem_object *obj;
2332 Serge 2092
 
2352 Serge 2093
		obj = list_first_entry(&ring->active_list,
2094
				      struct drm_i915_gem_object,
2095
				      ring_list);
2332 Serge 2096
 
3031 serge 2097
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2352 Serge 2098
			break;
2332 Serge 2099
 
2352 Serge 2100
			i915_gem_object_move_to_inactive(obj);
2101
	}
2332 Serge 2102
 
2352 Serge 2103
	if (unlikely(ring->trace_irq_seqno &&
2104
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2105
		ring->irq_put(ring);
2106
		ring->trace_irq_seqno = 0;
2107
	}
2332 Serge 2108
 
2352 Serge 2109
	WARN_ON(i915_verify_lists(ring->dev));
2110
}
2332 Serge 2111
 
2352 Serge 2112
void
2113
i915_gem_retire_requests(struct drm_device *dev)
2114
{
2115
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2116
	struct intel_ring_buffer *ring;
2352 Serge 2117
	int i;
2332 Serge 2118
 
3031 serge 2119
	for_each_ring(ring, dev_priv, i)
2120
		i915_gem_retire_requests_ring(ring);
2352 Serge 2121
}
2122
 
2360 Serge 2123
static void
2124
i915_gem_retire_work_handler(struct work_struct *work)
2125
{
2126
	drm_i915_private_t *dev_priv;
2127
	struct drm_device *dev;
3031 serge 2128
	struct intel_ring_buffer *ring;
2360 Serge 2129
	bool idle;
2130
	int i;
2352 Serge 2131
 
2360 Serge 2132
	dev_priv = container_of(work, drm_i915_private_t,
2133
				mm.retire_work.work);
2134
	dev = dev_priv->dev;
2352 Serge 2135
 
2360 Serge 2136
	/* Come back later if the device is busy... */
2137
	if (!mutex_trylock(&dev->struct_mutex)) {
2138
        queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
3243 Serge 2139
        return;
2360 Serge 2140
	}
2352 Serge 2141
 
2360 Serge 2142
	i915_gem_retire_requests(dev);
2352 Serge 2143
 
2360 Serge 2144
	/* Send a periodic flush down the ring so we don't hold onto GEM
2145
	 * objects indefinitely.
2146
	 */
2147
	idle = true;
3031 serge 2148
	for_each_ring(ring, dev_priv, i) {
2149
		if (ring->gpu_caches_dirty)
2150
			i915_add_request(ring, NULL, NULL);
2352 Serge 2151
 
2360 Serge 2152
		idle &= list_empty(&ring->request_list);
2153
	}
2352 Serge 2154
 
2360 Serge 2155
   if (!dev_priv->mm.suspended && !idle)
2156
       queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
3031 serge 2157
	if (idle)
2158
		intel_mark_idle(dev);
2360 Serge 2159
 
2160
	mutex_unlock(&dev->struct_mutex);
2161
}
2162
 
2344 Serge 2163
/**
3031 serge 2164
 * Ensures that an object will eventually get non-busy by flushing any required
2165
 * write domains, emitting any outstanding lazy request and retiring and
2166
 * completed requests.
2352 Serge 2167
 */
3031 serge 2168
static int
2169
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2170
{
3031 serge 2171
	int ret;
2352 Serge 2172
 
3031 serge 2173
	if (obj->active) {
2174
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2175
		if (ret)
2176
			return ret;
2352 Serge 2177
 
3031 serge 2178
		i915_gem_retire_requests_ring(obj->ring);
2179
	}
2352 Serge 2180
 
3031 serge 2181
	return 0;
2182
}
2352 Serge 2183
 
3243 Serge 2184
/**
2185
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2186
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2187
 *
2188
 * Returns 0 if successful, else an error is returned with the remaining time in
2189
 * the timeout parameter.
2190
 *  -ETIME: object is still busy after timeout
2191
 *  -ERESTARTSYS: signal interrupted the wait
2192
 *  -ENONENT: object doesn't exist
2193
 * Also possible, but rare:
2194
 *  -EAGAIN: GPU wedged
2195
 *  -ENOMEM: damn
2196
 *  -ENODEV: Internal IRQ fail
2197
 *  -E?: The add request failed
2198
 *
2199
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2200
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2201
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2202
 * without holding struct_mutex the object may become re-busied before this
2203
 * function completes. A similar but shorter * race condition exists in the busy
2204
 * ioctl
2205
 */
2352 Serge 2206
 
2207
 
2208
 
2209
 
2210
 
2211
 
2212
 
2213
 
2214
 
3243 Serge 2215
 
2216
 
2217
 
2352 Serge 2218
/**
3031 serge 2219
 * i915_gem_object_sync - sync an object to a ring.
2220
 *
2221
 * @obj: object which may be in use on another ring.
2222
 * @to: ring we wish to use the object on. May be NULL.
2223
 *
2224
 * This code is meant to abstract object synchronization with the GPU.
2225
 * Calling with NULL implies synchronizing the object with the CPU
2226
 * rather than a particular GPU ring.
2227
 *
2228
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2229
 */
2230
int
3031 serge 2231
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2232
		     struct intel_ring_buffer *to)
2344 Serge 2233
{
3031 serge 2234
	struct intel_ring_buffer *from = obj->ring;
2235
	u32 seqno;
2236
	int ret, idx;
2332 Serge 2237
 
3031 serge 2238
	if (from == NULL || to == from)
2239
		return 0;
2332 Serge 2240
 
3031 serge 2241
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2242
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2243
 
3031 serge 2244
	idx = intel_ring_sync_index(from, to);
2245
 
2246
	seqno = obj->last_read_seqno;
2247
	if (seqno <= from->sync_seqno[idx])
2248
		return 0;
2249
 
2250
	ret = i915_gem_check_olr(obj->ring, seqno);
2251
	if (ret)
2252
		return ret;
2253
 
2254
	ret = to->sync_to(to, from, seqno);
2255
	if (!ret)
3243 Serge 2256
		/* We use last_read_seqno because sync_to()
2257
		 * might have just caused seqno wrap under
2258
		 * the radar.
2259
		 */
2260
		from->sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2261
 
2262
	return ret;
2344 Serge 2263
}
2332 Serge 2264
 
2344 Serge 2265
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2266
{
2267
	u32 old_write_domain, old_read_domains;
2332 Serge 2268
 
2344 Serge 2269
	/* Force a pagefault for domain tracking on next user access */
2270
//	i915_gem_release_mmap(obj);
2332 Serge 2271
 
2344 Serge 2272
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2273
		return;
2332 Serge 2274
 
3480 Serge 2275
	/* Wait for any direct GTT access to complete */
2276
	mb();
2277
 
2344 Serge 2278
	old_read_domains = obj->base.read_domains;
2279
	old_write_domain = obj->base.write_domain;
2351 Serge 2280
 
2344 Serge 2281
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2282
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2283
 
2351 Serge 2284
	trace_i915_gem_object_change_domain(obj,
2285
					    old_read_domains,
2286
					    old_write_domain);
2344 Serge 2287
}
2332 Serge 2288
 
2344 Serge 2289
/**
2290
 * Unbinds an object from the GTT aperture.
2291
 */
2292
int
2293
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2294
{
3031 serge 2295
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3480 Serge 2296
	int ret;
2332 Serge 2297
 
3263 Serge 2298
    if(obj == get_fb_obj())
2299
        return 0;
2300
 
2344 Serge 2301
	if (obj->gtt_space == NULL)
2302
		return 0;
2332 Serge 2303
 
3031 serge 2304
	if (obj->pin_count)
2305
		return -EBUSY;
2332 Serge 2306
 
3243 Serge 2307
	BUG_ON(obj->pages == NULL);
3031 serge 2308
 
2344 Serge 2309
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2310
	if (ret)
2344 Serge 2311
		return ret;
2312
	/* Continue on if we fail due to EIO, the GPU is hung so we
2313
	 * should be safe and we need to cleanup or else we might
2314
	 * cause memory corruption through use-after-free.
2315
	 */
2332 Serge 2316
 
2344 Serge 2317
	i915_gem_object_finish_gtt(obj);
2332 Serge 2318
 
2344 Serge 2319
	/* release the fence reg _after_ flushing */
2320
	ret = i915_gem_object_put_fence(obj);
3031 serge 2321
	if (ret)
2344 Serge 2322
		return ret;
2332 Serge 2323
 
2351 Serge 2324
	trace_i915_gem_object_unbind(obj);
2332 Serge 2325
 
3031 serge 2326
	if (obj->has_global_gtt_mapping)
3243 Serge 2327
        i915_gem_gtt_unbind_object(obj);
3031 serge 2328
	if (obj->has_aliasing_ppgtt_mapping) {
2329
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2330
		obj->has_aliasing_ppgtt_mapping = 0;
2331
	}
2332
	i915_gem_gtt_finish_object(obj);
2332 Serge 2333
 
3031 serge 2334
	list_del(&obj->mm_list);
2335
	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2344 Serge 2336
	/* Avoid an unnecessary call to unbind on rebind. */
2337
	obj->map_and_fenceable = true;
2332 Serge 2338
 
2344 Serge 2339
	drm_mm_put_block(obj->gtt_space);
2340
	obj->gtt_space = NULL;
2341
	obj->gtt_offset = 0;
2332 Serge 2342
 
2344 Serge 2343
	return 0;
2344
}
2332 Serge 2345
 
3031 serge 2346
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2347
{
2348
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2349
	struct intel_ring_buffer *ring;
2344 Serge 2350
	int ret, i;
2332 Serge 2351
 
2344 Serge 2352
	/* Flush everything onto the inactive list. */
3031 serge 2353
	for_each_ring(ring, dev_priv, i) {
2354
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2344 Serge 2355
		if (ret)
2356
			return ret;
3031 serge 2357
 
3243 Serge 2358
		ret = intel_ring_idle(ring);
3031 serge 2359
		if (ret)
2360
			return ret;
2344 Serge 2361
	}
2332 Serge 2362
 
2344 Serge 2363
	return 0;
2364
}
2332 Serge 2365
 
3480 Serge 2366
static void i965_write_fence_reg(struct drm_device *dev, int reg,
3031 serge 2367
					struct drm_i915_gem_object *obj)
2368
{
2369
	drm_i915_private_t *dev_priv = dev->dev_private;
3480 Serge 2370
	int fence_reg;
2371
	int fence_pitch_shift;
3031 serge 2372
	uint64_t val;
2332 Serge 2373
 
3480 Serge 2374
	if (INTEL_INFO(dev)->gen >= 6) {
2375
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2376
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2377
	} else {
2378
		fence_reg = FENCE_REG_965_0;
2379
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2380
	}
2332 Serge 2381
 
3031 serge 2382
	if (obj) {
2383
		u32 size = obj->gtt_space->size;
2332 Serge 2384
 
3031 serge 2385
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2386
				 0xfffff000) << 32;
2387
		val |= obj->gtt_offset & 0xfffff000;
3480 Serge 2388
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3031 serge 2389
		if (obj->tiling_mode == I915_TILING_Y)
2390
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2391
		val |= I965_FENCE_REG_VALID;
2392
	} else
2393
		val = 0;
2332 Serge 2394
 
3480 Serge 2395
	fence_reg += reg * 8;
2396
	I915_WRITE64(fence_reg, val);
2397
	POSTING_READ(fence_reg);
3031 serge 2398
}
2332 Serge 2399
 
3031 serge 2400
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2401
				 struct drm_i915_gem_object *obj)
2402
{
2403
	drm_i915_private_t *dev_priv = dev->dev_private;
2404
	u32 val;
2332 Serge 2405
 
3031 serge 2406
	if (obj) {
2407
		u32 size = obj->gtt_space->size;
2408
		int pitch_val;
2409
		int tile_width;
2332 Serge 2410
 
3031 serge 2411
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2412
		     (size & -size) != size ||
2413
		     (obj->gtt_offset & (size - 1)),
2414
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2415
		     obj->gtt_offset, obj->map_and_fenceable, size);
2332 Serge 2416
 
3031 serge 2417
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2418
			tile_width = 128;
2419
		else
2420
			tile_width = 512;
2332 Serge 2421
 
3031 serge 2422
		/* Note: pitch better be a power of two tile widths */
2423
		pitch_val = obj->stride / tile_width;
2424
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2425
 
3031 serge 2426
		val = obj->gtt_offset;
2427
		if (obj->tiling_mode == I915_TILING_Y)
2428
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2429
		val |= I915_FENCE_SIZE_BITS(size);
2430
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2431
		val |= I830_FENCE_REG_VALID;
2432
	} else
2433
		val = 0;
2332 Serge 2434
 
3031 serge 2435
	if (reg < 8)
2436
		reg = FENCE_REG_830_0 + reg * 4;
2437
	else
2438
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2439
 
3031 serge 2440
	I915_WRITE(reg, val);
2441
	POSTING_READ(reg);
2442
}
2332 Serge 2443
 
3031 serge 2444
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2445
				struct drm_i915_gem_object *obj)
2446
{
2447
	drm_i915_private_t *dev_priv = dev->dev_private;
2448
	uint32_t val;
2344 Serge 2449
 
3031 serge 2450
	if (obj) {
2451
		u32 size = obj->gtt_space->size;
2452
		uint32_t pitch_val;
2344 Serge 2453
 
3031 serge 2454
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2455
		     (size & -size) != size ||
2456
		     (obj->gtt_offset & (size - 1)),
2457
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2458
		     obj->gtt_offset, size);
2344 Serge 2459
 
3031 serge 2460
		pitch_val = obj->stride / 128;
2461
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2462
 
3031 serge 2463
		val = obj->gtt_offset;
2464
		if (obj->tiling_mode == I915_TILING_Y)
2465
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2466
		val |= I830_FENCE_SIZE_BITS(size);
2467
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2468
		val |= I830_FENCE_REG_VALID;
2469
	} else
2470
		val = 0;
2471
 
2472
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2473
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2474
}
2475
 
3480 Serge 2476
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2477
{
2478
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2479
}
2480
 
3031 serge 2481
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2482
				 struct drm_i915_gem_object *obj)
2332 Serge 2483
{
3480 Serge 2484
	struct drm_i915_private *dev_priv = dev->dev_private;
2485
 
2486
	/* Ensure that all CPU reads are completed before installing a fence
2487
	 * and all writes before removing the fence.
2488
	 */
2489
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2490
		mb();
2491
 
3031 serge 2492
	switch (INTEL_INFO(dev)->gen) {
2493
	case 7:
3480 Serge 2494
	case 6:
3031 serge 2495
	case 5:
2496
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2497
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2498
	case 2: i830_write_fence_reg(dev, reg, obj); break;
3480 Serge 2499
	default: BUG();
3031 serge 2500
	}
3480 Serge 2501
 
2502
	/* And similarly be paranoid that no direct access to this region
2503
	 * is reordered to before the fence is installed.
2504
	 */
2505
	if (i915_gem_object_needs_mb(obj))
2506
		mb();
2344 Serge 2507
}
2508
 
3031 serge 2509
static inline int fence_number(struct drm_i915_private *dev_priv,
2510
			       struct drm_i915_fence_reg *fence)
2344 Serge 2511
{
3031 serge 2512
	return fence - dev_priv->fence_regs;
2513
}
2332 Serge 2514
 
3031 serge 2515
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2516
					 struct drm_i915_fence_reg *fence,
2517
					 bool enable)
2518
{
2519
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2520
	int reg = fence_number(dev_priv, fence);
2332 Serge 2521
 
3031 serge 2522
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2523
 
2524
	if (enable) {
2525
		obj->fence_reg = reg;
2526
		fence->obj = obj;
2527
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2528
	} else {
2529
		obj->fence_reg = I915_FENCE_REG_NONE;
2530
		fence->obj = NULL;
2531
		list_del_init(&fence->lru_list);
2344 Serge 2532
	}
3031 serge 2533
}
2344 Serge 2534
 
3031 serge 2535
static int
3480 Serge 2536
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3031 serge 2537
{
2538
	if (obj->last_fenced_seqno) {
2539
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2540
			if (ret)
2541
				return ret;
2344 Serge 2542
 
2543
		obj->last_fenced_seqno = 0;
2544
	}
2545
 
3031 serge 2546
	obj->fenced_gpu_access = false;
2332 Serge 2547
	return 0;
2548
}
2549
 
2550
int
2344 Serge 2551
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2552
{
3031 serge 2553
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2332 Serge 2554
	int ret;
2555
 
3480 Serge 2556
	ret = i915_gem_object_wait_fence(obj);
2332 Serge 2557
	if (ret)
2558
		return ret;
2559
 
3031 serge 2560
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2561
		return 0;
2332 Serge 2562
 
3031 serge 2563
	i915_gem_object_update_fence(obj,
2564
				     &dev_priv->fence_regs[obj->fence_reg],
2565
				     false);
2566
	i915_gem_object_fence_lost(obj);
2344 Serge 2567
 
2332 Serge 2568
	return 0;
2569
}
2570
 
3031 serge 2571
static struct drm_i915_fence_reg *
2572
i915_find_fence_reg(struct drm_device *dev)
2573
{
2574
	struct drm_i915_private *dev_priv = dev->dev_private;
2575
	struct drm_i915_fence_reg *reg, *avail;
2576
	int i;
2332 Serge 2577
 
3031 serge 2578
	/* First try to find a free reg */
2579
	avail = NULL;
2580
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2581
		reg = &dev_priv->fence_regs[i];
2582
		if (!reg->obj)
2583
			return reg;
2332 Serge 2584
 
3031 serge 2585
		if (!reg->pin_count)
2586
			avail = reg;
2587
	}
2332 Serge 2588
 
3031 serge 2589
	if (avail == NULL)
2590
		return NULL;
2332 Serge 2591
 
3031 serge 2592
	/* None available, try to steal one or wait for a user to finish */
2593
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2594
		if (reg->pin_count)
2595
			continue;
2332 Serge 2596
 
3031 serge 2597
		return reg;
2598
	}
2332 Serge 2599
 
3031 serge 2600
	return NULL;
2601
}
2332 Serge 2602
 
3031 serge 2603
/**
2604
 * i915_gem_object_get_fence - set up fencing for an object
2605
 * @obj: object to map through a fence reg
2606
 *
2607
 * When mapping objects through the GTT, userspace wants to be able to write
2608
 * to them without having to worry about swizzling if the object is tiled.
2609
 * This function walks the fence regs looking for a free one for @obj,
2610
 * stealing one if it can't find any.
2611
 *
2612
 * It then sets up the reg based on the object's properties: address, pitch
2613
 * and tiling format.
2614
 *
2615
 * For an untiled surface, this removes any existing fence.
2616
 */
2617
int
2618
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2619
{
2620
	struct drm_device *dev = obj->base.dev;
2621
	struct drm_i915_private *dev_priv = dev->dev_private;
2622
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2623
	struct drm_i915_fence_reg *reg;
2624
	int ret;
2332 Serge 2625
 
3031 serge 2626
	/* Have we updated the tiling parameters upon the object and so
2627
	 * will need to serialise the write to the associated fence register?
2628
	 */
2629
	if (obj->fence_dirty) {
3480 Serge 2630
		ret = i915_gem_object_wait_fence(obj);
3031 serge 2631
		if (ret)
2632
			return ret;
2633
	}
2332 Serge 2634
 
3031 serge 2635
	/* Just update our place in the LRU if our fence is getting reused. */
2636
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2637
		reg = &dev_priv->fence_regs[obj->fence_reg];
2638
		if (!obj->fence_dirty) {
2639
			list_move_tail(®->lru_list,
2640
				       &dev_priv->mm.fence_list);
2641
			return 0;
2642
		}
2643
	} else if (enable) {
2644
		reg = i915_find_fence_reg(dev);
2645
		if (reg == NULL)
2646
			return -EDEADLK;
2332 Serge 2647
 
3031 serge 2648
		if (reg->obj) {
2649
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2650
 
3480 Serge 2651
			ret = i915_gem_object_wait_fence(old);
3031 serge 2652
			if (ret)
2653
				return ret;
2332 Serge 2654
 
3031 serge 2655
			i915_gem_object_fence_lost(old);
2656
		}
2657
	} else
2658
		return 0;
2332 Serge 2659
 
3031 serge 2660
	i915_gem_object_update_fence(obj, reg, enable);
2661
	obj->fence_dirty = false;
2332 Serge 2662
 
3031 serge 2663
	return 0;
2664
}
2332 Serge 2665
 
3031 serge 2666
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2667
				     struct drm_mm_node *gtt_space,
2668
				     unsigned long cache_level)
2669
{
2670
	struct drm_mm_node *other;
2332 Serge 2671
 
3031 serge 2672
	/* On non-LLC machines we have to be careful when putting differing
2673
	 * types of snoopable memory together to avoid the prefetcher
3480 Serge 2674
	 * crossing memory domains and dying.
3031 serge 2675
	 */
2676
	if (HAS_LLC(dev))
2677
		return true;
2332 Serge 2678
 
3031 serge 2679
	if (gtt_space == NULL)
2680
		return true;
2332 Serge 2681
 
3031 serge 2682
	if (list_empty(>t_space->node_list))
2683
		return true;
2332 Serge 2684
 
3031 serge 2685
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2686
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2687
		return false;
2344 Serge 2688
 
3031 serge 2689
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2690
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2691
		return false;
2344 Serge 2692
 
3031 serge 2693
	return true;
2694
}
2344 Serge 2695
 
3031 serge 2696
static void i915_gem_verify_gtt(struct drm_device *dev)
2697
{
2698
#if WATCH_GTT
2699
	struct drm_i915_private *dev_priv = dev->dev_private;
2700
	struct drm_i915_gem_object *obj;
2701
	int err = 0;
2344 Serge 2702
 
3031 serge 2703
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2704
		if (obj->gtt_space == NULL) {
2705
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2706
			err++;
2707
			continue;
2708
		}
2344 Serge 2709
 
3031 serge 2710
		if (obj->cache_level != obj->gtt_space->color) {
2711
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2712
			       obj->gtt_space->start,
2713
			       obj->gtt_space->start + obj->gtt_space->size,
2714
			       obj->cache_level,
2715
			       obj->gtt_space->color);
2716
			err++;
2717
			continue;
2718
		}
2344 Serge 2719
 
3031 serge 2720
		if (!i915_gem_valid_gtt_space(dev,
2721
					      obj->gtt_space,
2722
					      obj->cache_level)) {
2723
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2724
			       obj->gtt_space->start,
2725
			       obj->gtt_space->start + obj->gtt_space->size,
2726
			       obj->cache_level);
2727
			err++;
2728
			continue;
2729
		}
2730
	}
2344 Serge 2731
 
3031 serge 2732
	WARN_ON(err);
2733
#endif
2326 Serge 2734
}
2735
 
2332 Serge 2736
/**
2737
 * Finds free space in the GTT aperture and binds the object there.
2738
 */
2739
static int
2740
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2741
			    unsigned alignment,
3031 serge 2742
			    bool map_and_fenceable,
2743
			    bool nonblocking)
2332 Serge 2744
{
2745
	struct drm_device *dev = obj->base.dev;
2746
	drm_i915_private_t *dev_priv = dev->dev_private;
3243 Serge 2747
	struct drm_mm_node *node;
2332 Serge 2748
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2749
	bool mappable, fenceable;
2750
	int ret;
2326 Serge 2751
 
2332 Serge 2752
	fence_size = i915_gem_get_gtt_size(dev,
2753
					   obj->base.size,
2754
					   obj->tiling_mode);
2755
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2756
						     obj->base.size,
3480 Serge 2757
						     obj->tiling_mode, true);
2332 Serge 2758
	unfenced_alignment =
3480 Serge 2759
		i915_gem_get_gtt_alignment(dev,
2332 Serge 2760
						    obj->base.size,
3480 Serge 2761
						    obj->tiling_mode, false);
2332 Serge 2762
 
2763
	if (alignment == 0)
2764
		alignment = map_and_fenceable ? fence_alignment :
2765
						unfenced_alignment;
2766
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2767
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2768
		return -EINVAL;
2769
	}
2770
 
2771
	size = map_and_fenceable ? fence_size : obj->base.size;
2772
 
2773
	/* If the object is bigger than the entire aperture, reject it early
2774
	 * before evicting everything in a vain attempt to find space.
2775
	 */
2776
	if (obj->base.size >
3480 Serge 2777
	    (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2332 Serge 2778
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2779
		return -E2BIG;
2780
	}
2781
 
3031 serge 2782
	ret = i915_gem_object_get_pages(obj);
2783
	if (ret)
2784
		return ret;
2785
 
3243 Serge 2786
	i915_gem_object_pin_pages(obj);
2787
 
2788
	node = kzalloc(sizeof(*node), GFP_KERNEL);
2789
	if (node == NULL) {
2790
		i915_gem_object_unpin_pages(obj);
2791
		return -ENOMEM;
2792
	}
2793
 
2332 Serge 2794
 search_free:
2795
	if (map_and_fenceable)
3243 Serge 2796
		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3031 serge 2797
							  size, alignment, obj->cache_level,
3480 Serge 2798
							  0, dev_priv->gtt.mappable_end);
2332 Serge 2799
	else
3243 Serge 2800
		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2801
						 size, alignment, obj->cache_level);
2802
	if (ret) {
2332 Serge 2803
 
3243 Serge 2804
		i915_gem_object_unpin_pages(obj);
2805
		kfree(node);
2332 Serge 2806
			return ret;
2807
	}
3243 Serge 2808
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2809
		i915_gem_object_unpin_pages(obj);
2810
		drm_mm_put_block(node);
3031 serge 2811
		return -EINVAL;
2812
	}
2332 Serge 2813
 
3031 serge 2814
	ret = i915_gem_gtt_prepare_object(obj);
2332 Serge 2815
	if (ret) {
3243 Serge 2816
		i915_gem_object_unpin_pages(obj);
2817
		drm_mm_put_block(node);
2332 Serge 2818
			return ret;
2819
	}
2820
 
3031 serge 2821
	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2332 Serge 2822
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2823
 
3243 Serge 2824
	obj->gtt_space = node;
2825
	obj->gtt_offset = node->start;
2332 Serge 2826
 
2827
	fenceable =
3243 Serge 2828
		node->size == fence_size &&
2829
		(node->start & (fence_alignment - 1)) == 0;
2332 Serge 2830
 
2831
	mappable =
3480 Serge 2832
		obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
2332 Serge 2833
 
2834
	obj->map_and_fenceable = mappable && fenceable;
2835
 
3243 Serge 2836
	i915_gem_object_unpin_pages(obj);
2351 Serge 2837
	trace_i915_gem_object_bind(obj, map_and_fenceable);
3031 serge 2838
	i915_gem_verify_gtt(dev);
2332 Serge 2839
	return 0;
2840
}
2841
 
2842
void
2843
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2844
{
2845
	/* If we don't have a page list set up, then we're not pinned
2846
	 * to GPU, and we can ignore the cache flush because it'll happen
2847
	 * again at bind time.
2848
	 */
3243 Serge 2849
	if (obj->pages == NULL)
2332 Serge 2850
		return;
2851
 
3480 Serge 2852
	/*
2853
	 * Stolen memory is always coherent with the GPU as it is explicitly
2854
	 * marked as wc by the system, or the system is cache-coherent.
2855
	 */
2856
	if (obj->stolen)
2857
		return;
2858
 
2332 Serge 2859
	/* If the GPU is snooping the contents of the CPU cache,
2860
	 * we do not need to manually clear the CPU cache lines.  However,
2861
	 * the caches are only snooped when the render cache is
2862
	 * flushed/invalidated.  As we always have to emit invalidations
2863
	 * and flushes when moving into and out of the RENDER domain, correct
2864
	 * snooping behaviour occurs naturally as the result of our domain
2865
	 * tracking.
2866
	 */
2867
	if (obj->cache_level != I915_CACHE_NONE)
2868
		return;
3243 Serge 2869
#if 0
2344 Serge 2870
     if(obj->mapped != NULL)
2871
     {
2872
        uint8_t *page_virtual;
2873
        unsigned int i;
2332 Serge 2874
 
2344 Serge 2875
        page_virtual = obj->mapped;
2876
        asm volatile("mfence");
2877
        for (i = 0; i < obj->base.size; i += x86_clflush_size)
2878
            clflush(page_virtual + i);
2879
        asm volatile("mfence");
2880
     }
2881
     else
2882
     {
2883
        uint8_t *page_virtual;
2884
        unsigned int i;
2885
        page_virtual = AllocKernelSpace(obj->base.size);
2886
        if(page_virtual != NULL)
2887
        {
3031 serge 2888
            dma_addr_t *src, *dst;
2344 Serge 2889
            u32 count;
2890
 
2891
#define page_tabs  0xFDC00000      /* really dirty hack */
2892
 
3031 serge 2893
            src =  obj->pages.page;
2894
            dst =  &((dma_addr_t*)page_tabs)[(u32_t)page_virtual >> 12];
2344 Serge 2895
            count = obj->base.size/4096;
2896
 
2897
            while(count--)
2898
            {
2899
                *dst++ = (0xFFFFF000 & *src++) | 0x001 ;
2900
            };
2901
 
2902
            asm volatile("mfence");
2903
            for (i = 0; i < obj->base.size; i += x86_clflush_size)
2904
                clflush(page_virtual + i);
2905
            asm volatile("mfence");
2906
            FreeKernelSpace(page_virtual);
2907
        }
2908
        else
2909
        {
2910
            asm volatile (
2911
            "mfence         \n"
2912
            "wbinvd         \n"                 /* this is really ugly  */
2913
            "mfence");
2914
        }
2915
     }
3243 Serge 2916
#endif
2917
 
2332 Serge 2918
}
2919
 
2344 Serge 2920
/** Flushes the GTT write domain for the object if it's dirty. */
2921
static void
2922
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2923
{
2924
	uint32_t old_write_domain;
2332 Serge 2925
 
2344 Serge 2926
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2927
		return;
2332 Serge 2928
 
2344 Serge 2929
	/* No actual flushing is required for the GTT write domain.  Writes
2930
	 * to it immediately go to main memory as far as we know, so there's
2931
	 * no chipset flush.  It also doesn't land in render cache.
2932
	 *
2933
	 * However, we do have to enforce the order so that all writes through
2934
	 * the GTT land before any writes to the device, such as updates to
2935
	 * the GATT itself.
2936
	 */
2937
	wmb();
2332 Serge 2938
 
2344 Serge 2939
	old_write_domain = obj->base.write_domain;
2940
	obj->base.write_domain = 0;
2332 Serge 2941
 
2351 Serge 2942
	trace_i915_gem_object_change_domain(obj,
2943
					    obj->base.read_domains,
2944
					    old_write_domain);
2344 Serge 2945
}
2332 Serge 2946
 
2947
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 2948
static void
2332 Serge 2949
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2950
{
2951
	uint32_t old_write_domain;
2952
 
2953
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2954
		return;
2955
 
2956
	i915_gem_clflush_object(obj);
3243 Serge 2957
	i915_gem_chipset_flush(obj->base.dev);
2332 Serge 2958
	old_write_domain = obj->base.write_domain;
2959
	obj->base.write_domain = 0;
2960
 
2351 Serge 2961
	trace_i915_gem_object_change_domain(obj,
2962
					    obj->base.read_domains,
2963
					    old_write_domain);
2332 Serge 2964
}
2965
 
2966
/**
2967
 * Moves a single object to the GTT read, and possibly write domain.
2968
 *
2969
 * This function returns when the move is complete, including waiting on
2970
 * flushes to occur.
2971
 */
2972
int
2973
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2974
{
3031 serge 2975
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2332 Serge 2976
	uint32_t old_write_domain, old_read_domains;
2977
	int ret;
2978
 
2979
	/* Not valid to be called on unbound objects. */
2980
	if (obj->gtt_space == NULL)
2981
		return -EINVAL;
2982
 
2983
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2984
		return 0;
2985
 
3031 serge 2986
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 2987
		if (ret)
2988
			return ret;
2989
 
2990
	i915_gem_object_flush_cpu_write_domain(obj);
2991
 
3480 Serge 2992
	/* Serialise direct access to this object with the barriers for
2993
	 * coherent writes from the GPU, by effectively invalidating the
2994
	 * GTT domain upon first access.
2995
	 */
2996
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2997
		mb();
2998
 
2332 Serge 2999
	old_write_domain = obj->base.write_domain;
3000
	old_read_domains = obj->base.read_domains;
3001
 
3002
	/* It should now be out of any other write domains, and we can update
3003
	 * the domain values for our changes.
3004
	 */
3005
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3006
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3007
	if (write) {
3008
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3009
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3010
		obj->dirty = 1;
3011
	}
3012
 
2351 Serge 3013
	trace_i915_gem_object_change_domain(obj,
3014
					    old_read_domains,
3015
					    old_write_domain);
3016
 
3031 serge 3017
	/* And bump the LRU for this access */
3018
	if (i915_gem_object_is_inactive(obj))
3019
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3020
 
2332 Serge 3021
	return 0;
3022
}
3023
 
2335 Serge 3024
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3025
				    enum i915_cache_level cache_level)
3026
{
3031 serge 3027
	struct drm_device *dev = obj->base.dev;
3028
	drm_i915_private_t *dev_priv = dev->dev_private;
2335 Serge 3029
	int ret;
2332 Serge 3030
 
2335 Serge 3031
	if (obj->cache_level == cache_level)
3032
		return 0;
2332 Serge 3033
 
2335 Serge 3034
	if (obj->pin_count) {
3035
		DRM_DEBUG("can not change the cache level of pinned objects\n");
3036
		return -EBUSY;
3037
	}
2332 Serge 3038
 
3031 serge 3039
	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3040
		ret = i915_gem_object_unbind(obj);
3041
		if (ret)
3042
			return ret;
3043
	}
3044
 
2335 Serge 3045
	if (obj->gtt_space) {
3046
		ret = i915_gem_object_finish_gpu(obj);
3047
		if (ret)
3048
			return ret;
2332 Serge 3049
 
2335 Serge 3050
		i915_gem_object_finish_gtt(obj);
2332 Serge 3051
 
2335 Serge 3052
		/* Before SandyBridge, you could not use tiling or fence
3053
		 * registers with snooped memory, so relinquish any fences
3054
		 * currently pointing to our region in the aperture.
3055
		 */
3031 serge 3056
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 3057
			ret = i915_gem_object_put_fence(obj);
3058
			if (ret)
3059
				return ret;
3060
		}
2332 Serge 3061
 
3031 serge 3062
		if (obj->has_global_gtt_mapping)
3063
			i915_gem_gtt_bind_object(obj, cache_level);
3064
		if (obj->has_aliasing_ppgtt_mapping)
3065
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3066
					       obj, cache_level);
3067
 
3068
		obj->gtt_space->color = cache_level;
2335 Serge 3069
	}
2332 Serge 3070
 
2335 Serge 3071
	if (cache_level == I915_CACHE_NONE) {
3072
		u32 old_read_domains, old_write_domain;
2332 Serge 3073
 
2335 Serge 3074
		/* If we're coming from LLC cached, then we haven't
3075
		 * actually been tracking whether the data is in the
3076
		 * CPU cache or not, since we only allow one bit set
3077
		 * in obj->write_domain and have been skipping the clflushes.
3078
		 * Just set it to the CPU cache for now.
3079
		 */
3080
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3081
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2332 Serge 3082
 
2335 Serge 3083
		old_read_domains = obj->base.read_domains;
3084
		old_write_domain = obj->base.write_domain;
2332 Serge 3085
 
2335 Serge 3086
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3087
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 3088
 
2351 Serge 3089
		trace_i915_gem_object_change_domain(obj,
3090
						    old_read_domains,
3091
						    old_write_domain);
2344 Serge 3092
    }
2332 Serge 3093
 
2335 Serge 3094
	obj->cache_level = cache_level;
3031 serge 3095
	i915_gem_verify_gtt(dev);
2335 Serge 3096
	return 0;
3097
}
2332 Serge 3098
 
3260 Serge 3099
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3100
			       struct drm_file *file)
3101
{
3102
	struct drm_i915_gem_caching *args = data;
3103
	struct drm_i915_gem_object *obj;
3104
	int ret;
3105
 
3480 Serge 3106
     if(args->handle == -2)
3107
     {
3108
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3109
        return 0;
3110
     }
3111
 
3260 Serge 3112
	ret = i915_mutex_lock_interruptible(dev);
3113
	if (ret)
3114
		return ret;
3115
 
3116
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3117
	if (&obj->base == NULL) {
3118
		ret = -ENOENT;
3119
		goto unlock;
3120
	}
3121
 
3122
	args->caching = obj->cache_level != I915_CACHE_NONE;
3123
 
3124
	drm_gem_object_unreference(&obj->base);
3125
unlock:
3126
	mutex_unlock(&dev->struct_mutex);
3127
	return ret;
3128
}
3129
 
3130
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3131
			       struct drm_file *file)
3132
{
3133
	struct drm_i915_gem_caching *args = data;
3134
	struct drm_i915_gem_object *obj;
3135
	enum i915_cache_level level;
3136
	int ret;
3137
 
3480 Serge 3138
     if(args->handle == -2)
3139
     {
3140
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3141
        return 0;
3142
     }
3143
 
3260 Serge 3144
	switch (args->caching) {
3145
	case I915_CACHING_NONE:
3146
		level = I915_CACHE_NONE;
3147
		break;
3148
	case I915_CACHING_CACHED:
3149
		level = I915_CACHE_LLC;
3150
		break;
3151
	default:
3152
		return -EINVAL;
3153
	}
3154
 
3155
	ret = i915_mutex_lock_interruptible(dev);
3156
	if (ret)
3157
		return ret;
3158
 
3159
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3160
	if (&obj->base == NULL) {
3161
		ret = -ENOENT;
3162
		goto unlock;
3163
	}
3164
 
3165
	ret = i915_gem_object_set_cache_level(obj, level);
3166
 
3167
	drm_gem_object_unreference(&obj->base);
3168
unlock:
3169
	mutex_unlock(&dev->struct_mutex);
3170
	return ret;
3171
}
3172
 
2335 Serge 3173
/*
3174
 * Prepare buffer for display plane (scanout, cursors, etc).
3175
 * Can be called from an uninterruptible phase (modesetting) and allows
3176
 * any flushes to be pipelined (for pageflips).
3177
 */
3178
int
3179
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3180
				     u32 alignment,
3181
				     struct intel_ring_buffer *pipelined)
3182
{
3183
	u32 old_read_domains, old_write_domain;
3184
	int ret;
2332 Serge 3185
 
3031 serge 3186
	if (pipelined != obj->ring) {
3187
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3188
	if (ret)
3189
		return ret;
3190
	}
2332 Serge 3191
 
2335 Serge 3192
	/* The display engine is not coherent with the LLC cache on gen6.  As
3193
	 * a result, we make sure that the pinning that is about to occur is
3194
	 * done with uncached PTEs. This is lowest common denominator for all
3195
	 * chipsets.
3196
	 *
3197
	 * However for gen6+, we could do better by using the GFDT bit instead
3198
	 * of uncaching, which would allow us to flush all the LLC-cached data
3199
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3200
	 */
2360 Serge 3201
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3202
	if (ret)
3203
		return ret;
2332 Serge 3204
 
2335 Serge 3205
	/* As the user may map the buffer once pinned in the display plane
3206
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3207
	 * always use map_and_fenceable for all scanout buffers.
3208
	 */
3031 serge 3209
	ret = i915_gem_object_pin(obj, alignment, true, false);
2335 Serge 3210
	if (ret)
3211
		return ret;
2332 Serge 3212
 
2335 Serge 3213
	i915_gem_object_flush_cpu_write_domain(obj);
2332 Serge 3214
 
2335 Serge 3215
	old_write_domain = obj->base.write_domain;
3216
	old_read_domains = obj->base.read_domains;
2332 Serge 3217
 
2335 Serge 3218
	/* It should now be out of any other write domains, and we can update
3219
	 * the domain values for our changes.
3220
	 */
3031 serge 3221
	obj->base.write_domain = 0;
2335 Serge 3222
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3223
 
2351 Serge 3224
	trace_i915_gem_object_change_domain(obj,
3225
					    old_read_domains,
3226
					    old_write_domain);
2332 Serge 3227
 
2335 Serge 3228
	return 0;
3229
}
2332 Serge 3230
 
2344 Serge 3231
int
3232
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3233
{
3234
	int ret;
2332 Serge 3235
 
2344 Serge 3236
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3237
		return 0;
2332 Serge 3238
 
3031 serge 3239
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3240
    if (ret)
3241
        return ret;
2332 Serge 3242
 
2344 Serge 3243
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3244
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3245
	return 0;
2344 Serge 3246
}
2332 Serge 3247
 
2344 Serge 3248
/**
3249
 * Moves a single object to the CPU read, and possibly write domain.
3250
 *
3251
 * This function returns when the move is complete, including waiting on
3252
 * flushes to occur.
3253
 */
3031 serge 3254
int
2344 Serge 3255
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3256
{
3257
	uint32_t old_write_domain, old_read_domains;
3258
	int ret;
2332 Serge 3259
 
2344 Serge 3260
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3261
		return 0;
2332 Serge 3262
 
3031 serge 3263
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3264
	if (ret)
3265
		return ret;
2332 Serge 3266
 
2344 Serge 3267
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3268
 
2344 Serge 3269
	old_write_domain = obj->base.write_domain;
3270
	old_read_domains = obj->base.read_domains;
2332 Serge 3271
 
2344 Serge 3272
	/* Flush the CPU cache if it's still invalid. */
3273
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3274
		i915_gem_clflush_object(obj);
2332 Serge 3275
 
2344 Serge 3276
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3277
	}
2332 Serge 3278
 
2344 Serge 3279
	/* It should now be out of any other write domains, and we can update
3280
	 * the domain values for our changes.
3281
	 */
3282
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3283
 
2344 Serge 3284
	/* If we're writing through the CPU, then the GPU read domains will
3285
	 * need to be invalidated at next use.
3286
	 */
3287
	if (write) {
3288
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3289
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3290
	}
2332 Serge 3291
 
2351 Serge 3292
	trace_i915_gem_object_change_domain(obj,
3293
					    old_read_domains,
3294
					    old_write_domain);
2332 Serge 3295
 
2344 Serge 3296
	return 0;
3297
}
2332 Serge 3298
 
3031 serge 3299
/* Throttle our rendering by waiting until the ring has completed our requests
3300
 * emitted over 20 msec ago.
2344 Serge 3301
 *
3031 serge 3302
 * Note that if we were to use the current jiffies each time around the loop,
3303
 * we wouldn't escape the function with any frames outstanding if the time to
3304
 * render a frame was over 20ms.
3305
 *
3306
 * This should get us reasonable parallelism between CPU and GPU but also
3307
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3308
 */
3031 serge 3309
static int
3310
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3311
{
3031 serge 3312
	struct drm_i915_private *dev_priv = dev->dev_private;
3313
	struct drm_i915_file_private *file_priv = file->driver_priv;
3263 Serge 3314
	unsigned long recent_enough = GetTimerTicks() - msecs_to_jiffies(20);
3031 serge 3315
	struct drm_i915_gem_request *request;
3316
	struct intel_ring_buffer *ring = NULL;
3480 Serge 3317
	unsigned reset_counter;
3031 serge 3318
	u32 seqno = 0;
3319
	int ret;
2332 Serge 3320
 
3480 Serge 3321
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3322
	if (ret)
3323
		return ret;
2332 Serge 3324
 
3480 Serge 3325
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3326
	if (ret)
3327
		return ret;
3328
 
3031 serge 3329
	spin_lock(&file_priv->mm.lock);
3330
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3331
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3332
			break;
2332 Serge 3333
 
3031 serge 3334
		ring = request->ring;
3335
		seqno = request->seqno;
3336
	}
3480 Serge 3337
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3031 serge 3338
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3339
 
3031 serge 3340
	if (seqno == 0)
3341
		return 0;
2332 Serge 3342
 
3480 Serge 3343
	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3031 serge 3344
	if (ret == 0)
3345
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3346
 
3031 serge 3347
	return ret;
2352 Serge 3348
}
2332 Serge 3349
 
3350
int
3351
i915_gem_object_pin(struct drm_i915_gem_object *obj,
3352
		    uint32_t alignment,
3031 serge 3353
		    bool map_and_fenceable,
3354
		    bool nonblocking)
2332 Serge 3355
{
3356
	int ret;
3357
 
3031 serge 3358
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3359
		return -EBUSY;
2332 Serge 3360
 
3361
	if (obj->gtt_space != NULL) {
3362
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3363
		    (map_and_fenceable && !obj->map_and_fenceable)) {
3364
			WARN(obj->pin_count,
3365
			     "bo is already pinned with incorrect alignment:"
3366
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3367
			     " obj->map_and_fenceable=%d\n",
3368
			     obj->gtt_offset, alignment,
3369
			     map_and_fenceable,
3370
			     obj->map_and_fenceable);
3371
			ret = i915_gem_object_unbind(obj);
3372
			if (ret)
3373
				return ret;
3374
		}
3375
	}
3376
 
3377
	if (obj->gtt_space == NULL) {
3243 Serge 3378
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3379
 
2332 Serge 3380
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3031 serge 3381
						  map_and_fenceable,
3382
						  nonblocking);
2332 Serge 3383
		if (ret)
3384
			return ret;
3243 Serge 3385
 
3386
		if (!dev_priv->mm.aliasing_ppgtt)
3387
			i915_gem_gtt_bind_object(obj, obj->cache_level);
2332 Serge 3388
	}
3389
 
3031 serge 3390
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3391
		i915_gem_gtt_bind_object(obj, obj->cache_level);
3392
 
3393
	obj->pin_count++;
2332 Serge 3394
	obj->pin_mappable |= map_and_fenceable;
3395
 
3396
	return 0;
3397
}
3398
 
2344 Serge 3399
void
3400
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3401
{
3402
	BUG_ON(obj->pin_count == 0);
3403
	BUG_ON(obj->gtt_space == NULL);
2332 Serge 3404
 
3031 serge 3405
	if (--obj->pin_count == 0)
2344 Serge 3406
		obj->pin_mappable = false;
3407
}
2332 Serge 3408
 
3031 serge 3409
int
3410
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3411
		   struct drm_file *file)
3412
{
3413
	struct drm_i915_gem_pin *args = data;
3414
	struct drm_i915_gem_object *obj;
3415
	int ret;
2332 Serge 3416
 
3480 Serge 3417
     if(args->handle == -2)
3418
     {
3419
        printf("%s handle %d\n", __FUNCTION__, args->handle);
3420
        return 0;
3421
     }
3422
 
3031 serge 3423
	ret = i915_mutex_lock_interruptible(dev);
3424
	if (ret)
3425
		return ret;
2332 Serge 3426
 
3031 serge 3427
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3428
	if (&obj->base == NULL) {
3429
		ret = -ENOENT;
3430
		goto unlock;
3431
	}
2332 Serge 3432
 
3031 serge 3433
	if (obj->madv != I915_MADV_WILLNEED) {
3434
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3435
		ret = -EINVAL;
3436
		goto out;
3437
	}
2332 Serge 3438
 
3031 serge 3439
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3440
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3441
			  args->handle);
3442
		ret = -EINVAL;
3443
		goto out;
3444
	}
2332 Serge 3445
 
3243 Serge 3446
	if (obj->user_pin_count == 0) {
3031 serge 3447
		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3448
		if (ret)
3449
			goto out;
3450
	}
2332 Serge 3451
 
3243 Serge 3452
	obj->user_pin_count++;
3453
	obj->pin_filp = file;
3454
 
3031 serge 3455
	/* XXX - flush the CPU caches for pinned objects
3456
	 * as the X server doesn't manage domains yet
3457
	 */
3458
	i915_gem_object_flush_cpu_write_domain(obj);
3459
	args->offset = obj->gtt_offset;
3460
out:
3461
	drm_gem_object_unreference(&obj->base);
3462
unlock:
3463
	mutex_unlock(&dev->struct_mutex);
3464
	return ret;
3465
}
2332 Serge 3466
 
3255 Serge 3467
#if 0
3468
 
3031 serge 3469
int
3470
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3471
		     struct drm_file *file)
3472
{
3473
	struct drm_i915_gem_pin *args = data;
3474
	struct drm_i915_gem_object *obj;
3475
	int ret;
2332 Serge 3476
 
3031 serge 3477
	ret = i915_mutex_lock_interruptible(dev);
3478
	if (ret)
3479
		return ret;
2332 Serge 3480
 
3031 serge 3481
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3482
	if (&obj->base == NULL) {
3483
		ret = -ENOENT;
3484
		goto unlock;
3485
	}
2332 Serge 3486
 
3031 serge 3487
	if (obj->pin_filp != file) {
3488
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3489
			  args->handle);
3490
		ret = -EINVAL;
3491
		goto out;
3492
	}
3493
	obj->user_pin_count--;
3494
	if (obj->user_pin_count == 0) {
3495
		obj->pin_filp = NULL;
3496
		i915_gem_object_unpin(obj);
3497
	}
2332 Serge 3498
 
3031 serge 3499
out:
3500
	drm_gem_object_unreference(&obj->base);
3501
unlock:
3502
	mutex_unlock(&dev->struct_mutex);
3503
	return ret;
3504
}
2332 Serge 3505
 
3260 Serge 3506
#endif
3507
 
3031 serge 3508
int
3509
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3510
		    struct drm_file *file)
3511
{
3512
	struct drm_i915_gem_busy *args = data;
3513
	struct drm_i915_gem_object *obj;
3514
	int ret;
2332 Serge 3515
 
3031 serge 3516
	ret = i915_mutex_lock_interruptible(dev);
3517
	if (ret)
3518
		return ret;
2332 Serge 3519
 
3480 Serge 3520
    if(args->handle == -2)
3521
    {
3522
        obj = get_fb_obj();
3523
        drm_gem_object_reference(&obj->base);
3524
    }
3525
    else
3031 serge 3526
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3527
	if (&obj->base == NULL) {
3528
		ret = -ENOENT;
3529
		goto unlock;
3530
	}
2332 Serge 3531
 
3031 serge 3532
	/* Count all active objects as busy, even if they are currently not used
3533
	 * by the gpu. Users of this interface expect objects to eventually
3534
	 * become non-busy without any further actions, therefore emit any
3535
	 * necessary flushes here.
3536
	 */
3537
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3538
 
3031 serge 3539
	args->busy = obj->active;
3540
	if (obj->ring) {
3541
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3542
		args->busy |= intel_ring_flag(obj->ring) << 16;
3543
	}
2332 Serge 3544
 
3031 serge 3545
	drm_gem_object_unreference(&obj->base);
3546
unlock:
3547
	mutex_unlock(&dev->struct_mutex);
3548
	return ret;
3549
}
2332 Serge 3550
 
3031 serge 3551
int
3552
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3553
			struct drm_file *file_priv)
3554
{
3555
	return i915_gem_ring_throttle(dev, file_priv);
3556
}
2332 Serge 3557
 
3263 Serge 3558
#if 0
3559
 
3031 serge 3560
int
3561
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3562
		       struct drm_file *file_priv)
3563
{
3564
	struct drm_i915_gem_madvise *args = data;
3565
	struct drm_i915_gem_object *obj;
3566
	int ret;
2332 Serge 3567
 
3031 serge 3568
	switch (args->madv) {
3569
	case I915_MADV_DONTNEED:
3570
	case I915_MADV_WILLNEED:
3571
	    break;
3572
	default:
3573
	    return -EINVAL;
3574
	}
2332 Serge 3575
 
3031 serge 3576
	ret = i915_mutex_lock_interruptible(dev);
3577
	if (ret)
3578
		return ret;
2332 Serge 3579
 
3031 serge 3580
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3581
	if (&obj->base == NULL) {
3582
		ret = -ENOENT;
3583
		goto unlock;
3584
	}
2332 Serge 3585
 
3031 serge 3586
	if (obj->pin_count) {
3587
		ret = -EINVAL;
3588
		goto out;
3589
	}
2332 Serge 3590
 
3031 serge 3591
	if (obj->madv != __I915_MADV_PURGED)
3592
		obj->madv = args->madv;
2332 Serge 3593
 
3031 serge 3594
	/* if the object is no longer attached, discard its backing storage */
3595
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3596
		i915_gem_object_truncate(obj);
2332 Serge 3597
 
3031 serge 3598
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3599
 
3031 serge 3600
out:
3601
	drm_gem_object_unreference(&obj->base);
3602
unlock:
3603
	mutex_unlock(&dev->struct_mutex);
3604
	return ret;
3605
}
3606
#endif
2332 Serge 3607
 
3031 serge 3608
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3609
			  const struct drm_i915_gem_object_ops *ops)
3610
{
3611
	INIT_LIST_HEAD(&obj->mm_list);
3612
	INIT_LIST_HEAD(&obj->gtt_list);
3613
	INIT_LIST_HEAD(&obj->ring_list);
3614
	INIT_LIST_HEAD(&obj->exec_list);
2332 Serge 3615
 
3031 serge 3616
	obj->ops = ops;
3617
 
3618
	obj->fence_reg = I915_FENCE_REG_NONE;
3619
	obj->madv = I915_MADV_WILLNEED;
3620
	/* Avoid an unnecessary call to unbind on the first bind. */
3621
	obj->map_and_fenceable = true;
3622
 
3623
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3624
}
3625
 
3626
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3627
	.get_pages = i915_gem_object_get_pages_gtt,
3628
	.put_pages = i915_gem_object_put_pages_gtt,
3629
};
3630
 
2332 Serge 3631
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3632
						  size_t size)
3633
{
3634
	struct drm_i915_gem_object *obj;
3031 serge 3635
	struct address_space *mapping;
3480 Serge 3636
	gfp_t mask;
2340 Serge 3637
 
2332 Serge 3638
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3639
	if (obj == NULL)
3640
		return NULL;
3641
 
3642
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3643
		kfree(obj);
3644
		return NULL;
3645
	}
3646
 
3647
 
3031 serge 3648
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3649
 
3650
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3651
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3652
 
3031 serge 3653
	if (HAS_LLC(dev)) {
3654
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3655
		 * cache) for about a 10% performance improvement
3656
		 * compared to uncached.  Graphics requests other than
3657
		 * display scanout are coherent with the CPU in
3658
		 * accessing this cache.  This means in this mode we
3659
		 * don't need to clflush on the CPU side, and on the
3660
		 * GPU side we only need to flush internal caches to
3661
		 * get data visible to the CPU.
3662
		 *
3663
		 * However, we maintain the display planes as UC, and so
3664
		 * need to rebind when first used as such.
3665
		 */
3666
		obj->cache_level = I915_CACHE_LLC;
3667
	} else
3668
		obj->cache_level = I915_CACHE_NONE;
3669
 
3670
	return obj;
3671
}
3672
 
2344 Serge 3673
int i915_gem_init_object(struct drm_gem_object *obj)
3674
{
3675
	BUG();
2332 Serge 3676
 
2344 Serge 3677
	return 0;
3678
}
2332 Serge 3679
 
3031 serge 3680
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 3681
{
3031 serge 3682
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 3683
	struct drm_device *dev = obj->base.dev;
3684
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 3685
 
3031 serge 3686
	trace_i915_gem_object_destroy(obj);
3687
 
3688
//   if (obj->phys_obj)
3689
//       i915_gem_detach_phys_object(dev, obj);
3298 Serge 3690
//    printf("%s obj %p\n", __FUNCTION__, obj);
3031 serge 3691
 
3692
	obj->pin_count = 0;
3693
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3694
		bool was_interruptible;
3695
 
3696
		was_interruptible = dev_priv->mm.interruptible;
3697
		dev_priv->mm.interruptible = false;
3698
 
3699
		WARN_ON(i915_gem_object_unbind(obj));
3700
 
3701
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 3702
	}
2332 Serge 3703
 
3031 serge 3704
	obj->pages_pin_count = 0;
3705
	i915_gem_object_put_pages(obj);
3706
//   i915_gem_object_free_mmap_offset(obj);
2332 Serge 3707
 
3243 Serge 3708
	BUG_ON(obj->pages);
2332 Serge 3709
 
3031 serge 3710
//   if (obj->base.import_attach)
3711
//       drm_prime_gem_destroy(&obj->base, NULL);
3712
 
3290 Serge 3713
    if(obj->base.filp != NULL)
3714
    {
3298 Serge 3715
//        printf("filp %p\n", obj->base.filp);
3290 Serge 3716
        shmem_file_delete(obj->base.filp);
3717
    }
3718
 
2344 Serge 3719
	drm_gem_object_release(&obj->base);
3720
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 3721
 
2344 Serge 3722
	kfree(obj->bit_17);
3723
	kfree(obj);
3724
}
2332 Serge 3725
 
3031 serge 3726
#if 0
3727
int
3728
i915_gem_idle(struct drm_device *dev)
2344 Serge 3729
{
3031 serge 3730
	drm_i915_private_t *dev_priv = dev->dev_private;
3731
	int ret;
2332 Serge 3732
 
3031 serge 3733
	mutex_lock(&dev->struct_mutex);
2332 Serge 3734
 
3031 serge 3735
	if (dev_priv->mm.suspended) {
3736
		mutex_unlock(&dev->struct_mutex);
3737
		return 0;
3738
	}
2332 Serge 3739
 
3031 serge 3740
	ret = i915_gpu_idle(dev);
3741
	if (ret) {
3742
		mutex_unlock(&dev->struct_mutex);
3743
		return ret;
3744
	}
3745
	i915_gem_retire_requests(dev);
3746
 
3480 Serge 3747
	/* Under UMS, be paranoid and evict. */
3748
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
3749
		i915_gem_evict_everything(dev);
3750
 
3031 serge 3751
	i915_gem_reset_fences(dev);
3752
 
3753
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3754
	 * We need to replace this with a semaphore, or something.
3755
	 * And not confound mm.suspended!
3756
	 */
3757
	dev_priv->mm.suspended = 1;
3480 Serge 3758
	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3031 serge 3759
 
3760
	i915_kernel_lost_context(dev);
3761
	i915_gem_cleanup_ringbuffer(dev);
3762
 
3763
	mutex_unlock(&dev->struct_mutex);
3764
 
3765
	/* Cancel the retire work handler, which should be idle now. */
3263 Serge 3766
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3031 serge 3767
 
3768
	return 0;
2344 Serge 3769
}
3031 serge 3770
#endif
2332 Serge 3771
 
3031 serge 3772
void i915_gem_l3_remap(struct drm_device *dev)
3773
{
3774
	drm_i915_private_t *dev_priv = dev->dev_private;
3775
	u32 misccpctl;
3776
	int i;
2332 Serge 3777
 
3480 Serge 3778
	if (!HAS_L3_GPU_CACHE(dev))
3031 serge 3779
		return;
2332 Serge 3780
 
3243 Serge 3781
	if (!dev_priv->l3_parity.remap_info)
3031 serge 3782
		return;
2332 Serge 3783
 
3031 serge 3784
	misccpctl = I915_READ(GEN7_MISCCPCTL);
3785
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3786
	POSTING_READ(GEN7_MISCCPCTL);
2332 Serge 3787
 
3031 serge 3788
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3789
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3243 Serge 3790
		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3031 serge 3791
			DRM_DEBUG("0x%x was already programmed to %x\n",
3792
				  GEN7_L3LOG_BASE + i, remap);
3243 Serge 3793
		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3031 serge 3794
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3243 Serge 3795
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3031 serge 3796
	}
2332 Serge 3797
 
3031 serge 3798
	/* Make sure all the writes land before disabling dop clock gating */
3799
	POSTING_READ(GEN7_L3LOG_BASE);
2332 Serge 3800
 
3031 serge 3801
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3802
}
2332 Serge 3803
 
3031 serge 3804
void i915_gem_init_swizzling(struct drm_device *dev)
3805
{
3806
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 3807
 
3031 serge 3808
	if (INTEL_INFO(dev)->gen < 5 ||
3809
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3810
		return;
2332 Serge 3811
 
3031 serge 3812
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3813
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 3814
 
3031 serge 3815
	if (IS_GEN5(dev))
3816
		return;
2344 Serge 3817
 
3031 serge 3818
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3819
	if (IS_GEN6(dev))
3820
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3480 Serge 3821
	else if (IS_GEN7(dev))
3822
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3031 serge 3823
	else
3480 Serge 3824
		BUG();
3031 serge 3825
}
3826
 
3827
static bool
3828
intel_enable_blt(struct drm_device *dev)
3829
{
3830
	if (!HAS_BLT(dev))
3831
		return false;
3832
 
3833
	/* The blitter was dysfunctional on early prototypes */
3834
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3835
		DRM_INFO("BLT not supported on this pre-production hardware;"
3836
			 " graphics performance will be degraded.\n");
3837
		return false;
3838
	}
3839
 
3840
	return true;
3841
}
3842
 
3480 Serge 3843
static int i915_gem_init_rings(struct drm_device *dev)
2332 Serge 3844
{
3480 Serge 3845
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 3846
	int ret;
2351 Serge 3847
 
2332 Serge 3848
	ret = intel_init_render_ring_buffer(dev);
3849
	if (ret)
3850
		return ret;
3851
 
3852
    if (HAS_BSD(dev)) {
3853
		ret = intel_init_bsd_ring_buffer(dev);
3854
		if (ret)
3855
			goto cleanup_render_ring;
3856
	}
3857
 
3031 serge 3858
	if (intel_enable_blt(dev)) {
2332 Serge 3859
		ret = intel_init_blt_ring_buffer(dev);
3860
		if (ret)
3861
			goto cleanup_bsd_ring;
3862
	}
3863
 
3480 Serge 3864
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3865
	if (ret)
3866
		goto cleanup_blt_ring;
2351 Serge 3867
 
2332 Serge 3868
	return 0;
3869
 
3480 Serge 3870
cleanup_blt_ring:
3871
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
2332 Serge 3872
cleanup_bsd_ring:
3873
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3874
cleanup_render_ring:
3875
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3480 Serge 3876
 
2332 Serge 3877
	return ret;
3878
}
3879
 
3480 Serge 3880
int
3881
i915_gem_init_hw(struct drm_device *dev)
3031 serge 3882
{
3480 Serge 3883
	drm_i915_private_t *dev_priv = dev->dev_private;
3884
	int ret;
3031 serge 3885
 
3480 Serge 3886
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3887
		return -EIO;
3031 serge 3888
 
3480 Serge 3889
	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3890
		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3891
 
3892
	i915_gem_l3_remap(dev);
3893
 
3894
	i915_gem_init_swizzling(dev);
3895
 
3896
	ret = i915_gem_init_rings(dev);
3897
	if (ret)
3898
		return ret;
3899
 
3900
	/*
3901
	 * XXX: There was some w/a described somewhere suggesting loading
3902
	 * contexts before PPGTT.
3903
	 */
3904
	i915_gem_context_init(dev);
3905
	i915_gem_init_ppgtt(dev);
3906
 
3907
	return 0;
3031 serge 3908
}
3909
 
3910
#define LFB_SIZE 0xC00000
3911
 
3912
int i915_gem_init(struct drm_device *dev)
3913
{
3914
	struct drm_i915_private *dev_priv = dev->dev_private;
3915
	int ret;
3916
 
3917
	mutex_lock(&dev->struct_mutex);
3480 Serge 3918
	i915_gem_init_global_gtt(dev);
3031 serge 3919
	ret = i915_gem_init_hw(dev);
3920
	mutex_unlock(&dev->struct_mutex);
3921
	if (ret) {
3922
		i915_gem_cleanup_aliasing_ppgtt(dev);
3923
		return ret;
3924
	}
3925
 
3926
    return 0;
3927
}
3928
 
2332 Serge 3929
void
3930
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3931
{
3932
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 3933
	struct intel_ring_buffer *ring;
2332 Serge 3934
	int i;
3935
 
3031 serge 3936
	for_each_ring(ring, dev_priv, i)
3937
		intel_cleanup_ring_buffer(ring);
2332 Serge 3938
}
3939
 
3031 serge 3940
#if 0
3941
 
2332 Serge 3942
int
3943
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3944
		       struct drm_file *file_priv)
3945
{
3946
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 3947
	int ret;
2332 Serge 3948
 
3949
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3950
		return 0;
3951
 
3480 Serge 3952
	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
2332 Serge 3953
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3480 Serge 3954
		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
2332 Serge 3955
	}
3956
 
3957
	mutex_lock(&dev->struct_mutex);
3958
	dev_priv->mm.suspended = 0;
3959
 
3031 serge 3960
	ret = i915_gem_init_hw(dev);
2332 Serge 3961
	if (ret != 0) {
3962
		mutex_unlock(&dev->struct_mutex);
3963
		return ret;
3964
	}
3965
 
3966
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3967
	mutex_unlock(&dev->struct_mutex);
3968
 
3969
	ret = drm_irq_install(dev);
3970
	if (ret)
3971
		goto cleanup_ringbuffer;
3972
 
3973
	return 0;
3974
 
3975
cleanup_ringbuffer:
3976
	mutex_lock(&dev->struct_mutex);
3977
	i915_gem_cleanup_ringbuffer(dev);
3978
	dev_priv->mm.suspended = 1;
3979
	mutex_unlock(&dev->struct_mutex);
3980
 
3981
	return ret;
3982
}
3983
 
3984
int
3985
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3986
		       struct drm_file *file_priv)
3987
{
3988
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3989
		return 0;
3990
 
3991
	drm_irq_uninstall(dev);
3992
	return i915_gem_idle(dev);
3993
}
3994
 
3995
void
3996
i915_gem_lastclose(struct drm_device *dev)
3997
{
3998
	int ret;
3999
 
4000
	if (drm_core_check_feature(dev, DRIVER_MODESET))
4001
		return;
4002
 
4003
	ret = i915_gem_idle(dev);
4004
	if (ret)
4005
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4006
}
4007
#endif
4008
 
4009
static void
2326 Serge 4010
init_ring_lists(struct intel_ring_buffer *ring)
4011
{
4012
    INIT_LIST_HEAD(&ring->active_list);
4013
    INIT_LIST_HEAD(&ring->request_list);
4014
}
4015
 
4016
void
4017
i915_gem_load(struct drm_device *dev)
4018
{
3480 Serge 4019
	drm_i915_private_t *dev_priv = dev->dev_private;
2326 Serge 4020
    int i;
4021
 
4022
    INIT_LIST_HEAD(&dev_priv->mm.active_list);
4023
    INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3031 serge 4024
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4025
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 4026
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4027
    for (i = 0; i < I915_NUM_RINGS; i++)
4028
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 4029
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 4030
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 4031
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4032
			  i915_gem_retire_work_handler);
3480 Serge 4033
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
2326 Serge 4034
 
4035
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4036
    if (IS_GEN3(dev)) {
3031 serge 4037
		I915_WRITE(MI_ARB_STATE,
4038
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 4039
    }
4040
 
4041
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4042
 
4043
    if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4044
        dev_priv->num_fence_regs = 16;
4045
    else
4046
        dev_priv->num_fence_regs = 8;
4047
 
4048
    /* Initialize fence registers to zero */
3031 serge 4049
	i915_gem_reset_fences(dev);
2326 Serge 4050
 
4051
    i915_gem_detect_bit_6_swizzle(dev);
4052
 
4053
    dev_priv->mm.interruptible = true;
4054
 
4055
//    dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4056
//    dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4057
//    register_shrinker(&dev_priv->mm.inactive_shrinker);
4058
}
4059
 
4060