Subversion Repositories Kolibri OS

Rev

Rev 3290 | Rev 3480 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
29
#include 
2326 Serge 30
#include "i915_drv.h"
2351 Serge 31
#include "i915_trace.h"
2326 Serge 32
#include "intel_drv.h"
3260 Serge 33
#include 
2330 Serge 34
#include 
2326 Serge 35
//#include 
36
#include 
37
 
2344 Serge 38
extern int x86_clflush_size;
2332 Serge 39
 
3263 Serge 40
#define PROT_READ       0x1             /* page can be read */
41
#define PROT_WRITE      0x2             /* page can be written */
42
#define MAP_SHARED      0x01            /* Share changes */
43
 
2344 Serge 44
#undef mb
45
#undef rmb
46
#undef wmb
47
#define mb() asm volatile("mfence")
48
#define rmb() asm volatile ("lfence")
49
#define wmb() asm volatile ("sfence")
50
 
3266 Serge 51
struct drm_i915_gem_object *get_fb_obj();
52
 
3263 Serge 53
unsigned long vm_mmap(struct file *file, unsigned long addr,
54
         unsigned long len, unsigned long prot,
55
         unsigned long flag, unsigned long offset);
56
 
2344 Serge 57
static inline void clflush(volatile void *__p)
58
{
59
    asm volatile("clflush %0" : "+m" (*(volatile char*)__p));
60
}
61
 
2332 Serge 62
#define MAX_ERRNO       4095
63
 
64
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
65
 
66
 
2326 Serge 67
#define I915_EXEC_CONSTANTS_MASK        (3<<6)
68
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
69
#define I915_EXEC_CONSTANTS_ABSOLUTE    (1<<6)
70
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
71
 
2332 Serge 72
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
73
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
74
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
75
						    unsigned alignment,
3031 serge 76
						    bool map_and_fenceable,
77
						    bool nonblocking);
2332 Serge 78
static int i915_gem_phys_pwrite(struct drm_device *dev,
79
				struct drm_i915_gem_object *obj,
80
				struct drm_i915_gem_pwrite *args,
81
				struct drm_file *file);
2326 Serge 82
 
3031 serge 83
static void i915_gem_write_fence(struct drm_device *dev, int reg,
84
				 struct drm_i915_gem_object *obj);
85
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
86
					 struct drm_i915_fence_reg *fence,
87
					 bool enable);
2332 Serge 88
 
3031 serge 89
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
90
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
91
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
92
 
93
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
94
{
95
	if (obj->tiling_mode)
96
		i915_gem_release_mmap(obj);
97
 
98
	/* As we do not have an associated fence register, we will force
99
	 * a tiling change if we ever need to acquire one.
100
	 */
101
	obj->fence_dirty = false;
102
	obj->fence_reg = I915_FENCE_REG_NONE;
103
}
104
 
2332 Serge 105
/* some bookkeeping */
106
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
107
				  size_t size)
108
{
109
	dev_priv->mm.object_count++;
110
	dev_priv->mm.object_memory += size;
111
}
112
 
113
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
114
				     size_t size)
115
{
116
	dev_priv->mm.object_count--;
117
	dev_priv->mm.object_memory -= size;
118
}
119
 
120
static int
121
i915_gem_wait_for_error(struct drm_device *dev)
122
{
123
	struct drm_i915_private *dev_priv = dev->dev_private;
124
	struct completion *x = &dev_priv->error_completion;
125
	unsigned long flags;
126
	int ret;
127
 
128
	if (!atomic_read(&dev_priv->mm.wedged))
129
		return 0;
3255 Serge 130
#if 0
3031 serge 131
	/*
132
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
133
	 * userspace. If it takes that long something really bad is going on and
134
	 * we should simply try to bail out and fail as gracefully as possible.
135
	 */
136
	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
137
	if (ret == 0) {
138
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
139
		return -EIO;
140
	} else if (ret < 0) {
2332 Serge 141
		return ret;
3031 serge 142
	}
2332 Serge 143
 
144
	if (atomic_read(&dev_priv->mm.wedged)) {
145
		/* GPU is hung, bump the completion count to account for
146
		 * the token we just consumed so that we never hit zero and
147
		 * end up waiting upon a subsequent completion event that
148
		 * will never happen.
149
		 */
150
		spin_lock_irqsave(&x->wait.lock, flags);
151
		x->done++;
152
		spin_unlock_irqrestore(&x->wait.lock, flags);
153
	}
3255 Serge 154
#endif
155
 
2332 Serge 156
	return 0;
157
}
158
 
159
int i915_mutex_lock_interruptible(struct drm_device *dev)
160
{
161
	int ret;
162
 
163
	ret = i915_gem_wait_for_error(dev);
164
	if (ret)
165
		return ret;
166
 
3255 Serge 167
    mutex_lock(&dev->struct_mutex);
2332 Serge 168
 
169
	WARN_ON(i915_verify_lists(dev));
170
	return 0;
171
}
172
 
173
static inline bool
174
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
175
{
3031 serge 176
	return obj->gtt_space && !obj->active;
2332 Serge 177
}
178
 
179
 
180
#if 0
181
 
182
int
183
i915_gem_init_ioctl(struct drm_device *dev, void *data,
184
		    struct drm_file *file)
185
{
186
	struct drm_i915_gem_init *args = data;
187
 
3031 serge 188
	if (drm_core_check_feature(dev, DRIVER_MODESET))
189
		return -ENODEV;
190
 
2332 Serge 191
	if (args->gtt_start >= args->gtt_end ||
192
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
193
		return -EINVAL;
194
 
3031 serge 195
	/* GEM with user mode setting was never supported on ilk and later. */
196
	if (INTEL_INFO(dev)->gen >= 5)
197
		return -ENODEV;
198
 
2332 Serge 199
	mutex_lock(&dev->struct_mutex);
3031 serge 200
	i915_gem_init_global_gtt(dev, args->gtt_start,
201
				 args->gtt_end, args->gtt_end);
2332 Serge 202
	mutex_unlock(&dev->struct_mutex);
203
 
204
	return 0;
205
}
2351 Serge 206
#endif
2332 Serge 207
 
208
int
209
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210
			    struct drm_file *file)
211
{
212
	struct drm_i915_private *dev_priv = dev->dev_private;
213
	struct drm_i915_gem_get_aperture *args = data;
214
	struct drm_i915_gem_object *obj;
215
	size_t pinned;
216
 
217
	pinned = 0;
218
	mutex_lock(&dev->struct_mutex);
3031 serge 219
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
220
		if (obj->pin_count)
2332 Serge 221
		pinned += obj->gtt_space->size;
222
	mutex_unlock(&dev->struct_mutex);
223
 
224
	args->aper_size = dev_priv->mm.gtt_total;
2342 Serge 225
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 226
 
227
	return 0;
228
}
229
 
3031 serge 230
static int
231
i915_gem_create(struct drm_file *file,
2332 Serge 232
		struct drm_device *dev,
233
		uint64_t size,
234
		uint32_t *handle_p)
235
{
236
	struct drm_i915_gem_object *obj;
237
	int ret;
238
	u32 handle;
239
 
240
	size = roundup(size, PAGE_SIZE);
2342 Serge 241
	if (size == 0)
242
		return -EINVAL;
2332 Serge 243
 
244
	/* Allocate the new object */
245
	obj = i915_gem_alloc_object(dev, size);
246
	if (obj == NULL)
247
		return -ENOMEM;
248
 
249
	ret = drm_gem_handle_create(file, &obj->base, &handle);
250
	if (ret) {
251
		drm_gem_object_release(&obj->base);
252
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
253
		kfree(obj);
254
		return ret;
255
	}
256
 
257
	/* drop reference from allocate - handle holds it now */
258
	drm_gem_object_unreference(&obj->base);
2351 Serge 259
	trace_i915_gem_object_create(obj);
2332 Serge 260
 
261
	*handle_p = handle;
3290 Serge 262
 
3298 Serge 263
//    printf("%s obj %p handle %d\n", __FUNCTION__, obj, handle);
3290 Serge 264
 
2332 Serge 265
	return 0;
266
}
267
 
268
int
269
i915_gem_dumb_create(struct drm_file *file,
270
		     struct drm_device *dev,
271
		     struct drm_mode_create_dumb *args)
272
{
273
	/* have to work out size/pitch and return them */
274
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
275
	args->size = args->pitch * args->height;
276
	return i915_gem_create(file, dev,
277
			       args->size, &args->handle);
278
}
279
 
280
int i915_gem_dumb_destroy(struct drm_file *file,
281
			  struct drm_device *dev,
282
			  uint32_t handle)
283
{
284
	return drm_gem_handle_delete(file, handle);
285
}
286
 
2326 Serge 287
/**
2332 Serge 288
 * Creates a new mm object and returns a handle to it.
289
 */
290
int
291
i915_gem_create_ioctl(struct drm_device *dev, void *data,
292
		      struct drm_file *file)
293
{
294
	struct drm_i915_gem_create *args = data;
3031 serge 295
 
2332 Serge 296
	return i915_gem_create(file, dev,
297
			       args->size, &args->handle);
298
}
299
 
300
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
301
{
302
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
303
 
304
	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
305
		obj->tiling_mode != I915_TILING_NONE;
306
}
3260 Serge 307
#if 0
2332 Serge 308
 
3031 serge 309
static inline int
310
__copy_to_user_swizzled(char __user *cpu_vaddr,
311
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 312
		int length)
313
{
3031 serge 314
	int ret, cpu_offset = 0;
2332 Serge 315
 
3031 serge 316
	while (length > 0) {
317
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
318
		int this_length = min(cacheline_end - gpu_offset, length);
319
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 320
 
3031 serge 321
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
322
				     gpu_vaddr + swizzled_gpu_offset,
323
				     this_length);
324
		if (ret)
325
			return ret + length;
2332 Serge 326
 
3031 serge 327
		cpu_offset += this_length;
328
		gpu_offset += this_length;
329
		length -= this_length;
330
	}
331
 
332
	return 0;
2332 Serge 333
}
334
 
3031 serge 335
static inline int
336
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
337
			  const char __user *cpu_vaddr,
338
			  int length)
2332 Serge 339
{
3031 serge 340
	int ret, cpu_offset = 0;
2332 Serge 341
 
342
	while (length > 0) {
343
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
344
		int this_length = min(cacheline_end - gpu_offset, length);
345
		int swizzled_gpu_offset = gpu_offset ^ 64;
346
 
3031 serge 347
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 348
			       cpu_vaddr + cpu_offset,
349
			       this_length);
3031 serge 350
		if (ret)
351
			return ret + length;
352
 
2332 Serge 353
		cpu_offset += this_length;
354
		gpu_offset += this_length;
355
		length -= this_length;
356
	}
357
 
3031 serge 358
	return 0;
2332 Serge 359
}
360
 
3031 serge 361
/* Per-page copy function for the shmem pread fastpath.
362
 * Flushes invalid cachelines before reading the target if
363
 * needs_clflush is set. */
2332 Serge 364
static int
3031 serge 365
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
366
		 char __user *user_data,
367
		 bool page_do_bit17_swizzling, bool needs_clflush)
368
{
369
		char *vaddr;
370
		int ret;
371
 
372
	if (unlikely(page_do_bit17_swizzling))
373
		return -EINVAL;
374
 
375
		vaddr = kmap_atomic(page);
376
	if (needs_clflush)
377
		drm_clflush_virt_range(vaddr + shmem_page_offset,
378
				       page_length);
379
		ret = __copy_to_user_inatomic(user_data,
380
				      vaddr + shmem_page_offset,
381
					      page_length);
382
		kunmap_atomic(vaddr);
383
 
384
	return ret ? -EFAULT : 0;
385
}
386
 
387
static void
388
shmem_clflush_swizzled_range(char *addr, unsigned long length,
389
			     bool swizzled)
390
{
391
	if (unlikely(swizzled)) {
392
		unsigned long start = (unsigned long) addr;
393
		unsigned long end = (unsigned long) addr + length;
394
 
395
		/* For swizzling simply ensure that we always flush both
396
		 * channels. Lame, but simple and it works. Swizzled
397
		 * pwrite/pread is far from a hotpath - current userspace
398
		 * doesn't use it at all. */
399
		start = round_down(start, 128);
400
		end = round_up(end, 128);
401
 
402
		drm_clflush_virt_range((void *)start, end - start);
403
	} else {
404
		drm_clflush_virt_range(addr, length);
405
	}
406
 
407
}
408
 
409
/* Only difference to the fast-path function is that this can handle bit17
410
 * and uses non-atomic copy and kmap functions. */
411
static int
412
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
413
		 char __user *user_data,
414
		 bool page_do_bit17_swizzling, bool needs_clflush)
415
{
416
	char *vaddr;
417
	int ret;
418
 
419
	vaddr = kmap(page);
420
	if (needs_clflush)
421
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
422
					     page_length,
423
					     page_do_bit17_swizzling);
424
 
425
	if (page_do_bit17_swizzling)
426
		ret = __copy_to_user_swizzled(user_data,
427
					      vaddr, shmem_page_offset,
428
					      page_length);
429
	else
430
		ret = __copy_to_user(user_data,
431
				     vaddr + shmem_page_offset,
432
				     page_length);
433
	kunmap(page);
434
 
435
	return ret ? - EFAULT : 0;
436
}
437
 
438
static int
439
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 440
			  struct drm_i915_gem_object *obj,
441
			  struct drm_i915_gem_pread *args,
442
			  struct drm_file *file)
443
{
3031 serge 444
	char __user *user_data;
2332 Serge 445
	ssize_t remain;
446
	loff_t offset;
3031 serge 447
	int shmem_page_offset, page_length, ret = 0;
448
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
449
	int hit_slowpath = 0;
450
	int prefaulted = 0;
451
	int needs_clflush = 0;
452
	struct scatterlist *sg;
453
	int i;
2332 Serge 454
 
455
	user_data = (char __user *) (uintptr_t) args->data_ptr;
456
	remain = args->size;
457
 
3031 serge 458
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
459
 
460
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
461
		/* If we're not in the cpu read domain, set ourself into the gtt
462
		 * read domain and manually flush cachelines (if required). This
463
		 * optimizes for the case when the gpu will dirty the data
464
		 * anyway again before the next pread happens. */
465
		if (obj->cache_level == I915_CACHE_NONE)
466
			needs_clflush = 1;
467
		if (obj->gtt_space) {
468
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
469
			if (ret)
470
				return ret;
471
		}
472
	}
473
 
474
	ret = i915_gem_object_get_pages(obj);
475
	if (ret)
476
		return ret;
477
 
478
	i915_gem_object_pin_pages(obj);
479
 
2332 Serge 480
	offset = args->offset;
481
 
3031 serge 482
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
2332 Serge 483
		struct page *page;
484
 
3031 serge 485
		if (i < offset >> PAGE_SHIFT)
486
			continue;
487
 
488
		if (remain <= 0)
489
			break;
490
 
2332 Serge 491
		/* Operation in this page
492
		 *
3031 serge 493
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 494
		 * page_length = bytes to copy for this page
495
		 */
3031 serge 496
		shmem_page_offset = offset_in_page(offset);
2332 Serge 497
		page_length = remain;
3031 serge 498
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
499
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 500
 
3031 serge 501
		page = sg_page(sg);
502
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
503
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 504
 
3031 serge 505
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
506
				       user_data, page_do_bit17_swizzling,
507
				       needs_clflush);
508
		if (ret == 0)
509
			goto next_page;
2332 Serge 510
 
3031 serge 511
		hit_slowpath = 1;
512
		mutex_unlock(&dev->struct_mutex);
513
 
514
		if (!prefaulted) {
515
			ret = fault_in_multipages_writeable(user_data, remain);
516
			/* Userspace is tricking us, but we've already clobbered
517
			 * its pages with the prefault and promised to write the
518
			 * data up to the first fault. Hence ignore any errors
519
			 * and just continue. */
520
			(void)ret;
521
			prefaulted = 1;
522
		}
523
 
524
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
525
				       user_data, page_do_bit17_swizzling,
526
				       needs_clflush);
527
 
528
		mutex_lock(&dev->struct_mutex);
529
 
530
next_page:
2332 Serge 531
		mark_page_accessed(page);
3031 serge 532
 
2332 Serge 533
		if (ret)
3031 serge 534
			goto out;
2332 Serge 535
 
536
		remain -= page_length;
537
		user_data += page_length;
538
		offset += page_length;
539
	}
540
 
3031 serge 541
out:
542
	i915_gem_object_unpin_pages(obj);
543
 
544
	if (hit_slowpath) {
545
		/* Fixup: Kill any reinstated backing storage pages */
546
		if (obj->madv == __I915_MADV_PURGED)
547
			i915_gem_object_truncate(obj);
548
	}
549
 
550
	return ret;
2332 Serge 551
}
552
 
553
/**
3031 serge 554
 * Reads data from the object referenced by handle.
555
 *
556
 * On error, the contents of *data are undefined.
2332 Serge 557
 */
3031 serge 558
int
559
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
560
		     struct drm_file *file)
561
{
562
	struct drm_i915_gem_pread *args = data;
563
	struct drm_i915_gem_object *obj;
564
	int ret = 0;
565
 
566
	if (args->size == 0)
567
		return 0;
568
 
569
	if (!access_ok(VERIFY_WRITE,
570
		       (char __user *)(uintptr_t)args->data_ptr,
571
		       args->size))
572
		return -EFAULT;
573
 
574
	ret = i915_mutex_lock_interruptible(dev);
575
	if (ret)
576
		return ret;
577
 
578
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
579
	if (&obj->base == NULL) {
580
		ret = -ENOENT;
581
		goto unlock;
582
	}
583
 
584
	/* Bounds check source.  */
585
	if (args->offset > obj->base.size ||
586
	    args->size > obj->base.size - args->offset) {
587
		ret = -EINVAL;
588
		goto out;
589
	}
590
 
591
	/* prime objects have no backing filp to GEM pread/pwrite
592
	 * pages from.
593
	 */
594
	if (!obj->base.filp) {
595
		ret = -EINVAL;
596
		goto out;
597
	}
598
 
599
	trace_i915_gem_object_pread(obj, args->offset, args->size);
600
 
601
	ret = i915_gem_shmem_pread(dev, obj, args, file);
602
 
603
out:
604
	drm_gem_object_unreference(&obj->base);
605
unlock:
606
	mutex_unlock(&dev->struct_mutex);
607
	return ret;
608
}
609
 
610
/* This is the fast write path which cannot handle
611
 * page faults in the source data
612
 */
613
 
614
static inline int
615
fast_user_write(struct io_mapping *mapping,
616
		loff_t page_base, int page_offset,
617
		char __user *user_data,
618
		int length)
619
{
620
	void __iomem *vaddr_atomic;
621
	void *vaddr;
622
	unsigned long unwritten;
623
 
624
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
625
	/* We can use the cpu mem copy function because this is X86. */
626
	vaddr = (void __force*)vaddr_atomic + page_offset;
627
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
628
						      user_data, length);
629
	io_mapping_unmap_atomic(vaddr_atomic);
630
	return unwritten;
631
}
3260 Serge 632
#endif
3031 serge 633
 
3260 Serge 634
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 635
/**
636
 * This is the fast pwrite path, where we copy the data directly from the
637
 * user into the GTT, uncached.
638
 */
2332 Serge 639
static int
3031 serge 640
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
641
			 struct drm_i915_gem_object *obj,
642
			 struct drm_i915_gem_pwrite *args,
643
			 struct drm_file *file)
2332 Serge 644
{
3031 serge 645
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 646
	ssize_t remain;
3031 serge 647
	loff_t offset, page_base;
648
	char __user *user_data;
649
	int page_offset, page_length, ret;
3260 Serge 650
    char *vaddr;
2332 Serge 651
 
3031 serge 652
	ret = i915_gem_object_pin(obj, 0, true, true);
653
	if (ret)
654
		goto out;
655
 
656
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
657
	if (ret)
658
		goto out_unpin;
659
 
660
	ret = i915_gem_object_put_fence(obj);
661
	if (ret)
662
		goto out_unpin;
663
 
3260 Serge 664
    vaddr = AllocKernelSpace(4096);
665
    if(vaddr == NULL)
666
    {
667
        ret = -ENOSPC;
668
        goto out_unpin;
669
    };
670
 
3031 serge 671
	user_data = (char __user *) (uintptr_t) args->data_ptr;
2332 Serge 672
	remain = args->size;
673
 
3031 serge 674
	offset = obj->gtt_offset + args->offset;
2332 Serge 675
 
3031 serge 676
	while (remain > 0) {
677
		/* Operation in this page
678
		 *
679
		 * page_base = page offset within aperture
680
		 * page_offset = offset within page
681
		 * page_length = bytes to copy for this page
682
		 */
683
		page_base = offset & PAGE_MASK;
684
		page_offset = offset_in_page(offset);
685
		page_length = remain;
686
		if ((page_offset + remain) > PAGE_SIZE)
687
			page_length = PAGE_SIZE - page_offset;
2332 Serge 688
 
3260 Serge 689
        MapPage(vaddr, page_base, PG_SW|PG_NOCACHE);
3031 serge 690
 
3260 Serge 691
        memcpy(vaddr+page_offset, user_data, page_length);
692
 
3031 serge 693
		remain -= page_length;
694
		user_data += page_length;
695
		offset += page_length;
2332 Serge 696
	}
697
 
3260 Serge 698
    FreeKernelSpace(vaddr);
699
 
3031 serge 700
out_unpin:
701
	i915_gem_object_unpin(obj);
702
out:
3260 Serge 703
    printf("% s ret = %d\n", __FUNCTION__, ret);
704
 
3031 serge 705
	return ret;
706
}
707
 
708
/* Per-page copy function for the shmem pwrite fastpath.
709
 * Flushes invalid cachelines before writing to the target if
710
 * needs_clflush_before is set and flushes out any written cachelines after
711
 * writing if needs_clflush is set. */
712
static int
713
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
714
		  char __user *user_data,
715
		  bool page_do_bit17_swizzling,
716
		  bool needs_clflush_before,
717
		  bool needs_clflush_after)
718
{
719
	char *vaddr;
3260 Serge 720
	int ret = 0;
3031 serge 721
 
722
	if (unlikely(page_do_bit17_swizzling))
723
		return -EINVAL;
724
 
3260 Serge 725
	vaddr = (char *)MapIoMem((addr_t)page, 4096, PG_SW);
3031 serge 726
	if (needs_clflush_before)
727
		drm_clflush_virt_range(vaddr + shmem_page_offset,
728
				       page_length);
3260 Serge 729
	memcpy(vaddr + shmem_page_offset,
3031 serge 730
						user_data,
731
						page_length);
732
	if (needs_clflush_after)
733
		drm_clflush_virt_range(vaddr + shmem_page_offset,
734
				       page_length);
3260 Serge 735
	FreeKernelSpace(vaddr);
3031 serge 736
 
737
	return ret ? -EFAULT : 0;
738
}
3260 Serge 739
#if 0
3031 serge 740
 
741
/* Only difference to the fast-path function is that this can handle bit17
742
 * and uses non-atomic copy and kmap functions. */
743
static int
744
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
745
		  char __user *user_data,
746
		  bool page_do_bit17_swizzling,
747
		  bool needs_clflush_before,
748
		  bool needs_clflush_after)
749
{
750
	char *vaddr;
751
	int ret;
752
 
753
	vaddr = kmap(page);
754
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
755
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
756
					     page_length,
757
					     page_do_bit17_swizzling);
758
	if (page_do_bit17_swizzling)
759
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
760
						user_data,
761
						page_length);
762
	else
763
		ret = __copy_from_user(vaddr + shmem_page_offset,
764
				       user_data,
765
				       page_length);
766
	if (needs_clflush_after)
767
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
768
					     page_length,
769
					     page_do_bit17_swizzling);
770
	kunmap(page);
771
 
772
	return ret ? -EFAULT : 0;
773
}
3260 Serge 774
#endif
3031 serge 775
 
3260 Serge 776
 
3031 serge 777
static int
778
i915_gem_shmem_pwrite(struct drm_device *dev,
779
		      struct drm_i915_gem_object *obj,
780
		      struct drm_i915_gem_pwrite *args,
781
		      struct drm_file *file)
782
{
783
	ssize_t remain;
784
	loff_t offset;
785
	char __user *user_data;
786
	int shmem_page_offset, page_length, ret = 0;
787
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
788
	int hit_slowpath = 0;
789
	int needs_clflush_after = 0;
790
	int needs_clflush_before = 0;
791
	int i;
792
	struct scatterlist *sg;
793
 
794
	user_data = (char __user *) (uintptr_t) args->data_ptr;
795
	remain = args->size;
796
 
797
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
798
 
799
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
800
		/* If we're not in the cpu write domain, set ourself into the gtt
801
		 * write domain and manually flush cachelines (if required). This
802
		 * optimizes for the case when the gpu will use the data
803
		 * right away and we therefore have to clflush anyway. */
804
		if (obj->cache_level == I915_CACHE_NONE)
805
			needs_clflush_after = 1;
806
		if (obj->gtt_space) {
807
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
808
			if (ret)
809
				return ret;
810
		}
811
	}
812
	/* Same trick applies for invalidate partially written cachelines before
813
	 * writing.  */
814
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
815
	    && obj->cache_level == I915_CACHE_NONE)
816
		needs_clflush_before = 1;
817
 
818
	ret = i915_gem_object_get_pages(obj);
2332 Serge 819
	if (ret)
3031 serge 820
		return ret;
2332 Serge 821
 
3031 serge 822
	i915_gem_object_pin_pages(obj);
2332 Serge 823
 
824
	offset = args->offset;
3031 serge 825
	obj->dirty = 1;
2332 Serge 826
 
3031 serge 827
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
2332 Serge 828
		struct page *page;
3031 serge 829
		int partial_cacheline_write;
2332 Serge 830
 
3031 serge 831
		if (i < offset >> PAGE_SHIFT)
832
			continue;
833
 
834
		if (remain <= 0)
835
			break;
836
 
2332 Serge 837
		/* Operation in this page
838
		 *
839
		 * shmem_page_offset = offset within page in shmem file
840
		 * page_length = bytes to copy for this page
841
		 */
842
		shmem_page_offset = offset_in_page(offset);
843
 
844
		page_length = remain;
845
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
846
			page_length = PAGE_SIZE - shmem_page_offset;
847
 
3031 serge 848
		/* If we don't overwrite a cacheline completely we need to be
849
		 * careful to have up-to-date data by first clflushing. Don't
850
		 * overcomplicate things and flush the entire patch. */
851
		partial_cacheline_write = needs_clflush_before &&
852
			((shmem_page_offset | page_length)
3260 Serge 853
				& (x86_clflush_size - 1));
2332 Serge 854
 
3031 serge 855
		page = sg_page(sg);
856
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
857
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 858
 
3031 serge 859
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
860
					user_data, page_do_bit17_swizzling,
861
					partial_cacheline_write,
862
					needs_clflush_after);
863
		if (ret == 0)
864
			goto next_page;
865
 
866
		hit_slowpath = 1;
867
		mutex_unlock(&dev->struct_mutex);
3260 Serge 868
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 869
 
3260 Serge 870
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
871
//					user_data, page_do_bit17_swizzling,
872
//					partial_cacheline_write,
873
//					needs_clflush_after);
874
 
3031 serge 875
		mutex_lock(&dev->struct_mutex);
876
 
877
next_page:
2332 Serge 878
 
3031 serge 879
		if (ret)
880
			goto out;
881
 
2332 Serge 882
		remain -= page_length;
3031 serge 883
		user_data += page_length;
2332 Serge 884
		offset += page_length;
885
	}
886
 
887
out:
3031 serge 888
	i915_gem_object_unpin_pages(obj);
889
 
890
	if (hit_slowpath) {
891
		/* Fixup: Kill any reinstated backing storage pages */
892
		if (obj->madv == __I915_MADV_PURGED)
893
			i915_gem_object_truncate(obj);
894
		/* and flush dirty cachelines in case the object isn't in the cpu write
895
		 * domain anymore. */
896
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
897
			i915_gem_clflush_object(obj);
3243 Serge 898
			i915_gem_chipset_flush(dev);
3031 serge 899
		}
2332 Serge 900
	}
901
 
3031 serge 902
	if (needs_clflush_after)
3243 Serge 903
		i915_gem_chipset_flush(dev);
3031 serge 904
 
2332 Serge 905
	return ret;
906
}
3031 serge 907
 
908
/**
909
 * Writes data to the object referenced by handle.
910
 *
911
 * On error, the contents of the buffer that were to be modified are undefined.
912
 */
913
int
914
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
915
		      struct drm_file *file)
916
{
917
	struct drm_i915_gem_pwrite *args = data;
918
	struct drm_i915_gem_object *obj;
919
	int ret;
920
 
921
	if (args->size == 0)
922
		return 0;
923
 
924
	ret = i915_mutex_lock_interruptible(dev);
925
	if (ret)
926
		return ret;
927
 
928
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
929
	if (&obj->base == NULL) {
930
		ret = -ENOENT;
931
		goto unlock;
932
	}
933
 
934
	/* Bounds check destination. */
935
	if (args->offset > obj->base.size ||
936
	    args->size > obj->base.size - args->offset) {
937
		ret = -EINVAL;
938
		goto out;
939
	}
940
 
941
	/* prime objects have no backing filp to GEM pread/pwrite
942
	 * pages from.
943
	 */
944
	if (!obj->base.filp) {
945
		ret = -EINVAL;
946
		goto out;
947
	}
948
 
949
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
950
 
951
	ret = -EFAULT;
952
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
953
	 * it would end up going through the fenced access, and we'll get
954
	 * different detiling behavior between reading and writing.
955
	 * pread/pwrite currently are reading and writing from the CPU
956
	 * perspective, requiring manual detiling by the client.
957
	 */
3260 Serge 958
//   if (obj->phys_obj) {
959
//       ret = i915_gem_phys_pwrite(dev, obj, args, file);
960
//       goto out;
961
//   }
3031 serge 962
 
963
	if (obj->cache_level == I915_CACHE_NONE &&
964
	    obj->tiling_mode == I915_TILING_NONE &&
965
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
966
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
967
		/* Note that the gtt paths might fail with non-page-backed user
968
		 * pointers (e.g. gtt mappings when moving data between
969
		 * textures). Fallback to the shmem path in that case. */
970
	}
971
 
972
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 973
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 974
 
975
out:
976
	drm_gem_object_unreference(&obj->base);
977
unlock:
978
	mutex_unlock(&dev->struct_mutex);
979
	return ret;
980
}
981
 
982
int
983
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
984
		     bool interruptible)
985
{
986
	if (atomic_read(&dev_priv->mm.wedged)) {
987
		struct completion *x = &dev_priv->error_completion;
988
		bool recovery_complete;
989
		unsigned long flags;
2332 Serge 990
 
3031 serge 991
		/* Give the error handler a chance to run. */
992
		spin_lock_irqsave(&x->wait.lock, flags);
993
		recovery_complete = x->done > 0;
994
		spin_unlock_irqrestore(&x->wait.lock, flags);
2332 Serge 995
 
3031 serge 996
		/* Non-interruptible callers can't handle -EAGAIN, hence return
997
		 * -EIO unconditionally for these. */
998
		if (!interruptible)
999
			return -EIO;
2332 Serge 1000
 
3031 serge 1001
		/* Recovery complete, but still wedged means reset failure. */
1002
		if (recovery_complete)
1003
			return -EIO;
2332 Serge 1004
 
3031 serge 1005
		return -EAGAIN;
1006
	}
2332 Serge 1007
 
3031 serge 1008
	return 0;
1009
}
2332 Serge 1010
 
3031 serge 1011
/*
1012
 * Compare seqno against outstanding lazy request. Emit a request if they are
1013
 * equal.
1014
 */
1015
static int
1016
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1017
{
1018
	int ret;
2332 Serge 1019
 
3031 serge 1020
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 1021
 
3031 serge 1022
	ret = 0;
1023
	if (seqno == ring->outstanding_lazy_request)
1024
		ret = i915_add_request(ring, NULL, NULL);
2332 Serge 1025
 
3031 serge 1026
	return ret;
1027
}
2332 Serge 1028
 
3031 serge 1029
/**
1030
 * __wait_seqno - wait until execution of seqno has finished
1031
 * @ring: the ring expected to report seqno
1032
 * @seqno: duh!
1033
 * @interruptible: do an interruptible wait (normally yes)
1034
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1035
 *
1036
 * Returns 0 if the seqno was found within the alloted time. Else returns the
1037
 * errno with remaining time filled in timeout argument.
1038
 */
1039
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1040
			bool interruptible, struct timespec *timeout)
1041
{
1042
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1043
	struct timespec before, now, wait_time={1,0};
1044
	unsigned long timeout_jiffies;
1045
	long end;
1046
	bool wait_forever = true;
1047
	int ret;
2332 Serge 1048
 
3031 serge 1049
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1050
		return 0;
2332 Serge 1051
 
3031 serge 1052
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1053
 
3031 serge 1054
	if (timeout != NULL) {
1055
		wait_time = *timeout;
1056
		wait_forever = false;
1057
	}
2332 Serge 1058
 
3266 Serge 1059
	timeout_jiffies = timespec_to_jiffies(&wait_time);
2332 Serge 1060
 
3031 serge 1061
	if (WARN_ON(!ring->irq_get(ring)))
1062
		return -ENODEV;
2332 Serge 1063
 
3031 serge 1064
    /* Record current time in case interrupted by signal, or wedged * */
1065
	getrawmonotonic(&before);
2332 Serge 1066
 
3031 serge 1067
#define EXIT_COND \
1068
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1069
	atomic_read(&dev_priv->mm.wedged))
1070
	do {
3266 Serge 1071
		if (interruptible)
1072
			end = wait_event_interruptible_timeout(ring->irq_queue,
1073
							       EXIT_COND,
1074
							       timeout_jiffies);
1075
		else
3031 serge 1076
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1077
						 timeout_jiffies);
2332 Serge 1078
 
3031 serge 1079
		ret = i915_gem_check_wedge(dev_priv, interruptible);
1080
		if (ret)
1081
			end = ret;
1082
	} while (end == 0 && wait_forever);
2332 Serge 1083
 
3031 serge 1084
	getrawmonotonic(&now);
2332 Serge 1085
 
3031 serge 1086
	ring->irq_put(ring);
1087
	trace_i915_gem_request_wait_end(ring, seqno);
1088
#undef EXIT_COND
2332 Serge 1089
 
3031 serge 1090
	if (timeout) {
1091
//       struct timespec sleep_time = timespec_sub(now, before);
1092
//       *timeout = timespec_sub(*timeout, sleep_time);
1093
	}
2332 Serge 1094
 
3031 serge 1095
	switch (end) {
1096
	case -EIO:
1097
	case -EAGAIN: /* Wedged */
1098
	case -ERESTARTSYS: /* Signal */
1099
		return (int)end;
1100
	case 0: /* Timeout */
3266 Serge 1101
		if (timeout)
1102
			set_normalized_timespec(timeout, 0, 0);
3031 serge 1103
		return -ETIME;
1104
	default: /* Completed */
1105
		WARN_ON(end < 0); /* We're not aware of other errors */
1106
		return 0;
1107
	}
1108
}
2332 Serge 1109
 
3031 serge 1110
/**
1111
 * Waits for a sequence number to be signaled, and cleans up the
1112
 * request and object lists appropriately for that event.
1113
 */
1114
int
1115
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1116
{
1117
	struct drm_device *dev = ring->dev;
1118
	struct drm_i915_private *dev_priv = dev->dev_private;
1119
	bool interruptible = dev_priv->mm.interruptible;
1120
	int ret;
2332 Serge 1121
 
3031 serge 1122
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1123
	BUG_ON(seqno == 0);
2332 Serge 1124
 
3031 serge 1125
	ret = i915_gem_check_wedge(dev_priv, interruptible);
1126
	if (ret)
1127
		return ret;
2332 Serge 1128
 
3031 serge 1129
	ret = i915_gem_check_olr(ring, seqno);
1130
	if (ret)
1131
		return ret;
2332 Serge 1132
 
3031 serge 1133
	return __wait_seqno(ring, seqno, interruptible, NULL);
1134
}
2332 Serge 1135
 
3031 serge 1136
/**
1137
 * Ensures that all rendering to the object has completed and the object is
1138
 * safe to unbind from the GTT or access from the CPU.
1139
 */
1140
static __must_check int
1141
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1142
			       bool readonly)
1143
{
1144
	struct intel_ring_buffer *ring = obj->ring;
1145
	u32 seqno;
1146
	int ret;
2332 Serge 1147
 
3031 serge 1148
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1149
	if (seqno == 0)
1150
		return 0;
2332 Serge 1151
 
3031 serge 1152
	ret = i915_wait_seqno(ring, seqno);
1153
       if (ret)
1154
           return ret;
2332 Serge 1155
 
3031 serge 1156
	i915_gem_retire_requests_ring(ring);
2332 Serge 1157
 
3031 serge 1158
	/* Manually manage the write flush as we may have not yet
1159
	 * retired the buffer.
1160
	 */
1161
	if (obj->last_write_seqno &&
1162
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1163
		obj->last_write_seqno = 0;
1164
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1165
	}
2332 Serge 1166
 
3031 serge 1167
	return 0;
1168
}
2332 Serge 1169
 
3260 Serge 1170
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1171
 * as the object state may change during this call.
1172
 */
1173
static __must_check int
1174
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1175
					    bool readonly)
1176
{
1177
	struct drm_device *dev = obj->base.dev;
1178
	struct drm_i915_private *dev_priv = dev->dev_private;
1179
	struct intel_ring_buffer *ring = obj->ring;
1180
	u32 seqno;
1181
	int ret;
2332 Serge 1182
 
3260 Serge 1183
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1184
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1185
 
3260 Serge 1186
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1187
	if (seqno == 0)
1188
		return 0;
2332 Serge 1189
 
3260 Serge 1190
	ret = i915_gem_check_wedge(dev_priv, true);
1191
	if (ret)
1192
		return ret;
2332 Serge 1193
 
3260 Serge 1194
	ret = i915_gem_check_olr(ring, seqno);
1195
	if (ret)
1196
		return ret;
2332 Serge 1197
 
3260 Serge 1198
	mutex_unlock(&dev->struct_mutex);
1199
	ret = __wait_seqno(ring, seqno, true, NULL);
1200
	mutex_lock(&dev->struct_mutex);
2332 Serge 1201
 
3260 Serge 1202
	i915_gem_retire_requests_ring(ring);
2332 Serge 1203
 
3260 Serge 1204
	/* Manually manage the write flush as we may have not yet
1205
	 * retired the buffer.
1206
	 */
1207
	if (obj->last_write_seqno &&
1208
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1209
		obj->last_write_seqno = 0;
1210
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1211
	}
2332 Serge 1212
 
3260 Serge 1213
	return ret;
1214
}
2332 Serge 1215
 
3260 Serge 1216
/**
1217
 * Called when user space prepares to use an object with the CPU, either
1218
 * through the mmap ioctl's mapping or a GTT mapping.
1219
 */
1220
int
1221
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1222
			  struct drm_file *file)
1223
{
1224
	struct drm_i915_gem_set_domain *args = data;
1225
	struct drm_i915_gem_object *obj;
1226
	uint32_t read_domains = args->read_domains;
1227
	uint32_t write_domain = args->write_domain;
1228
	int ret;
2332 Serge 1229
 
3260 Serge 1230
	/* Only handle setting domains to types used by the CPU. */
1231
	if (write_domain & I915_GEM_GPU_DOMAINS)
1232
		return -EINVAL;
2332 Serge 1233
 
3260 Serge 1234
	if (read_domains & I915_GEM_GPU_DOMAINS)
1235
		return -EINVAL;
2332 Serge 1236
 
3260 Serge 1237
	/* Having something in the write domain implies it's in the read
1238
	 * domain, and only that read domain.  Enforce that in the request.
1239
	 */
1240
	if (write_domain != 0 && read_domains != write_domain)
1241
		return -EINVAL;
2332 Serge 1242
 
3260 Serge 1243
	ret = i915_mutex_lock_interruptible(dev);
1244
	if (ret)
1245
		return ret;
2332 Serge 1246
 
3260 Serge 1247
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1248
	if (&obj->base == NULL) {
1249
		ret = -ENOENT;
1250
		goto unlock;
1251
	}
2332 Serge 1252
 
3260 Serge 1253
	/* Try to flush the object off the GPU without holding the lock.
1254
	 * We will repeat the flush holding the lock in the normal manner
1255
	 * to catch cases where we are gazumped.
1256
	 */
1257
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1258
	if (ret)
1259
		goto unref;
2332 Serge 1260
 
3260 Serge 1261
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1262
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1263
 
3260 Serge 1264
		/* Silently promote "you're not bound, there was nothing to do"
1265
		 * to success, since the client was just asking us to
1266
		 * make sure everything was done.
1267
		 */
1268
		if (ret == -EINVAL)
1269
			ret = 0;
1270
	} else {
1271
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1272
	}
2332 Serge 1273
 
3260 Serge 1274
unref:
1275
	drm_gem_object_unreference(&obj->base);
1276
unlock:
1277
	mutex_unlock(&dev->struct_mutex);
1278
	return ret;
1279
}
2332 Serge 1280
 
1281
 
1282
 
1283
 
1284
 
1285
 
3260 Serge 1286
/**
1287
 * Maps the contents of an object, returning the address it is mapped
1288
 * into.
1289
 *
1290
 * While the mapping holds a reference on the contents of the object, it doesn't
1291
 * imply a ref on the object itself.
1292
 */
1293
int
1294
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1295
		    struct drm_file *file)
1296
{
1297
	struct drm_i915_gem_mmap *args = data;
1298
	struct drm_gem_object *obj;
1299
	unsigned long addr = 0;
2332 Serge 1300
 
3260 Serge 1301
	obj = drm_gem_object_lookup(dev, file, args->handle);
1302
	if (obj == NULL)
1303
		return -ENOENT;
1304
 
3298 Serge 1305
    //dbgprintf("%s offset %lld size %lld\n",
1306
//                __FUNCTION__, args->offset, args->size);
3260 Serge 1307
	/* prime objects have no backing filp to GEM mmap
1308
	 * pages from.
1309
	 */
1310
	if (!obj->filp) {
1311
		drm_gem_object_unreference_unlocked(obj);
1312
		return -EINVAL;
1313
	}
2332 Serge 1314
 
3263 Serge 1315
    addr = vm_mmap(obj->filp, 0, args->size,
1316
              PROT_READ | PROT_WRITE, MAP_SHARED,
1317
              args->offset);
3260 Serge 1318
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1319
    if (IS_ERR((void *)addr))
1320
        return addr;
2332 Serge 1321
 
3260 Serge 1322
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1323
 
3263 Serge 1324
    return 0;
3260 Serge 1325
}
2332 Serge 1326
 
1327
 
1328
 
1329
 
1330
 
1331
 
1332
 
1333
 
3031 serge 1334
 
1335
 
1336
 
1337
 
1338
 
1339
/**
1340
 * i915_gem_release_mmap - remove physical page mappings
1341
 * @obj: obj in question
1342
 *
1343
 * Preserve the reservation of the mmapping with the DRM core code, but
1344
 * relinquish ownership of the pages back to the system.
1345
 *
1346
 * It is vital that we remove the page mapping if we have mapped a tiled
1347
 * object through the GTT and then lose the fence register due to
1348
 * resource pressure. Similarly if the object has been moved out of the
1349
 * aperture, than pages mapped into userspace must be revoked. Removing the
1350
 * mapping will then trigger a page fault on the next user access, allowing
1351
 * fixup by i915_gem_fault().
1352
 */
1353
void
1354
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1355
{
1356
	if (!obj->fault_mappable)
1357
		return;
1358
 
1359
	if (obj->base.dev->dev_mapping)
1360
//		unmap_mapping_range(obj->base.dev->dev_mapping,
1361
//				    (loff_t)obj->base.map_list.hash.key<
1362
//				    obj->base.size, 1);
1363
 
1364
	obj->fault_mappable = false;
1365
}
1366
 
2332 Serge 1367
static uint32_t
1368
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1369
{
1370
	uint32_t gtt_size;
1371
 
1372
	if (INTEL_INFO(dev)->gen >= 4 ||
1373
	    tiling_mode == I915_TILING_NONE)
1374
		return size;
1375
 
1376
	/* Previous chips need a power-of-two fence region when tiling */
1377
	if (INTEL_INFO(dev)->gen == 3)
1378
		gtt_size = 1024*1024;
1379
	else
1380
		gtt_size = 512*1024;
1381
 
1382
	while (gtt_size < size)
1383
		gtt_size <<= 1;
1384
 
1385
	return gtt_size;
1386
}
1387
 
1388
/**
1389
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1390
 * @obj: object to check
1391
 *
1392
 * Return the required GTT alignment for an object, taking into account
1393
 * potential fence register mapping.
1394
 */
1395
static uint32_t
1396
i915_gem_get_gtt_alignment(struct drm_device *dev,
1397
			   uint32_t size,
1398
			   int tiling_mode)
1399
{
1400
	/*
1401
	 * Minimum alignment is 4k (GTT page size), but might be greater
1402
	 * if a fence register is needed for the object.
1403
	 */
1404
	if (INTEL_INFO(dev)->gen >= 4 ||
1405
	    tiling_mode == I915_TILING_NONE)
1406
		return 4096;
1407
 
1408
	/*
1409
	 * Previous chips need to be aligned to the size of the smallest
1410
	 * fence register that can contain the object.
1411
	 */
1412
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1413
}
1414
 
1415
/**
1416
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1417
 *					 unfenced object
1418
 * @dev: the device
1419
 * @size: size of the object
1420
 * @tiling_mode: tiling mode of the object
1421
 *
1422
 * Return the required GTT alignment for an object, only taking into account
1423
 * unfenced tiled surface requirements.
1424
 */
1425
uint32_t
1426
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1427
				    uint32_t size,
1428
				    int tiling_mode)
1429
{
1430
	/*
1431
	 * Minimum alignment is 4k (GTT page size) for sane hw.
1432
	 */
1433
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1434
	    tiling_mode == I915_TILING_NONE)
1435
		return 4096;
1436
 
1437
	/* Previous hardware however needs to be aligned to a power-of-two
1438
	 * tile height. The simplest method for determining this is to reuse
1439
	 * the power-of-tile object size.
1440
	 */
1441
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1442
}
1443
 
3031 serge 1444
/* Immediately discard the backing storage */
1445
static void
1446
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1447
{
1448
//	struct inode *inode;
2332 Serge 1449
 
3031 serge 1450
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1451
 
3263 Serge 1452
	if (obj->base.filp == NULL)
1453
		return;
2332 Serge 1454
 
3031 serge 1455
	/* Our goal here is to return as much of the memory as
1456
	 * is possible back to the system as we are called from OOM.
1457
	 * To do this we must instruct the shmfs to drop all of its
1458
	 * backing pages, *now*.
1459
	 */
1460
//	inode = obj->base.filp->f_path.dentry->d_inode;
1461
//	shmem_truncate_range(inode, 0, (loff_t)-1);
2332 Serge 1462
 
3031 serge 1463
	obj->madv = __I915_MADV_PURGED;
1464
}
2332 Serge 1465
 
3031 serge 1466
static inline int
1467
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1468
{
1469
	return obj->madv == I915_MADV_DONTNEED;
1470
}
2332 Serge 1471
 
3031 serge 1472
static void
1473
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1474
{
3243 Serge 1475
	int page_count = obj->base.size / PAGE_SIZE;
1476
	struct scatterlist *sg;
3031 serge 1477
	int ret, i;
2332 Serge 1478
 
3031 serge 1479
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1480
 
3031 serge 1481
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1482
	if (ret) {
1483
		/* In the event of a disaster, abandon all caches and
1484
		 * hope for the best.
1485
		 */
1486
		WARN_ON(ret != -EIO);
1487
		i915_gem_clflush_object(obj);
1488
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1489
	}
2332 Serge 1490
 
3031 serge 1491
	if (obj->madv == I915_MADV_DONTNEED)
1492
		obj->dirty = 0;
2332 Serge 1493
 
3243 Serge 1494
	for_each_sg(obj->pages->sgl, sg, page_count, i) {
1495
		struct page *page = sg_page(sg);
2332 Serge 1496
 
3290 Serge 1497
        page_cache_release(page);
3243 Serge 1498
	}
1499
    //DRM_DEBUG_KMS("%s release %d pages\n", __FUNCTION__, page_count);
3290 Serge 1500
 
3031 serge 1501
	obj->dirty = 0;
3243 Serge 1502
 
1503
	sg_free_table(obj->pages);
1504
	kfree(obj->pages);
3031 serge 1505
}
2332 Serge 1506
 
3031 serge 1507
static int
1508
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1509
{
1510
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1511
 
3243 Serge 1512
	if (obj->pages == NULL)
3031 serge 1513
		return 0;
2332 Serge 1514
 
3031 serge 1515
	BUG_ON(obj->gtt_space);
1516
 
1517
	if (obj->pages_pin_count)
1518
		return -EBUSY;
1519
 
3243 Serge 1520
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1521
	 * array, hence protect them from being reaped by removing them from gtt
1522
	 * lists early. */
1523
	list_del(&obj->gtt_list);
1524
 
3031 serge 1525
	ops->put_pages(obj);
3243 Serge 1526
	obj->pages = NULL;
3031 serge 1527
 
1528
	if (i915_gem_object_is_purgeable(obj))
1529
		i915_gem_object_truncate(obj);
1530
 
1531
	return 0;
1532
}
1533
 
1534
 
1535
 
1536
 
1537
 
1538
 
1539
 
1540
 
2332 Serge 1541
static int
3031 serge 1542
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1543
{
3260 Serge 1544
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1545
    int page_count, i;
3260 Serge 1546
	struct address_space *mapping;
3243 Serge 1547
	struct sg_table *st;
1548
	struct scatterlist *sg;
1549
	struct page *page;
1550
	gfp_t gfp;
2332 Serge 1551
 
3243 Serge 1552
	/* Assert that the object is not currently in any GPU domain. As it
1553
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1554
	 * a GPU cache
2332 Serge 1555
	 */
3243 Serge 1556
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1557
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1558
 
1559
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1560
	if (st == NULL)
1561
		return -ENOMEM;
1562
 
2332 Serge 1563
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1564
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1565
		sg_free_table(st);
1566
		kfree(st);
2332 Serge 1567
		return -ENOMEM;
3243 Serge 1568
	}
2332 Serge 1569
 
3243 Serge 1570
	/* Get the list of pages out of our struct file.  They'll be pinned
1571
	 * at this point until we release them.
1572
	 *
1573
	 * Fail silently without starting the shrinker
1574
	 */
1575
	for_each_sg(st->sgl, sg, page_count, i) {
3260 Serge 1576
		page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
1577
		if (IS_ERR(page)) {
1578
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1579
			goto err_pages;
1580
 
3260 Serge 1581
		}
3243 Serge 1582
		sg_set_page(sg, page, PAGE_SIZE, 0);
1583
	}
3031 serge 1584
 
3243 Serge 1585
	obj->pages = st;
3031 serge 1586
 
3298 Serge 1587
//    DRM_DEBUG_KMS("%s alloc %d pages\n", __FUNCTION__, page_count);
2332 Serge 1588
 
1589
	return 0;
1590
 
1591
err_pages:
3243 Serge 1592
	for_each_sg(st->sgl, sg, i, page_count)
1593
		page_cache_release(sg_page(sg));
1594
	sg_free_table(st);
1595
	kfree(st);
1596
	return PTR_ERR(page);
2332 Serge 1597
}
1598
 
3031 serge 1599
/* Ensure that the associated pages are gathered from the backing storage
1600
 * and pinned into our object. i915_gem_object_get_pages() may be called
1601
 * multiple times before they are released by a single call to
1602
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1603
 * either as a result of memory pressure (reaping pages under the shrinker)
1604
 * or as the object is itself released.
1605
 */
1606
int
1607
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1608
{
3031 serge 1609
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1610
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1611
	int ret;
2332 Serge 1612
 
3243 Serge 1613
	if (obj->pages)
3031 serge 1614
		return 0;
2332 Serge 1615
 
3031 serge 1616
	BUG_ON(obj->pages_pin_count);
2332 Serge 1617
 
3031 serge 1618
	ret = ops->get_pages(obj);
1619
	if (ret)
1620
		return ret;
2344 Serge 1621
 
3031 serge 1622
	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
3243 Serge 1623
    return 0;
2332 Serge 1624
}
1625
 
1626
void
1627
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
3243 Serge 1628
			       struct intel_ring_buffer *ring)
2332 Serge 1629
{
1630
	struct drm_device *dev = obj->base.dev;
1631
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1632
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1633
 
1634
	BUG_ON(ring == NULL);
1635
	obj->ring = ring;
1636
 
1637
	/* Add a reference if we're newly entering the active list. */
1638
	if (!obj->active) {
2344 Serge 1639
		drm_gem_object_reference(&obj->base);
2332 Serge 1640
		obj->active = 1;
1641
	}
1642
 
1643
	/* Move from whatever list we were on to the tail of execution. */
1644
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1645
	list_move_tail(&obj->ring_list, &ring->active_list);
1646
 
3031 serge 1647
	obj->last_read_seqno = seqno;
1648
 
2332 Serge 1649
	if (obj->fenced_gpu_access) {
3031 serge 1650
		obj->last_fenced_seqno = seqno;
1651
 
1652
		/* Bump MRU to take account of the delayed flush */
1653
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2332 Serge 1654
		struct drm_i915_fence_reg *reg;
1655
 
1656
		reg = &dev_priv->fence_regs[obj->fence_reg];
3031 serge 1657
			list_move_tail(®->lru_list,
1658
				       &dev_priv->mm.fence_list);
1659
		}
2332 Serge 1660
	}
1661
}
1662
 
2344 Serge 1663
static void
3031 serge 1664
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1665
{
1666
	struct drm_device *dev = obj->base.dev;
3031 serge 1667
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 1668
 
3031 serge 1669
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1670
	BUG_ON(!obj->active);
2332 Serge 1671
 
3031 serge 1672
	if (obj->pin_count) /* are we a framebuffer? */
1673
		intel_mark_fb_idle(obj);
2344 Serge 1674
 
2352 Serge 1675
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2344 Serge 1676
 
3031 serge 1677
	list_del_init(&obj->ring_list);
2352 Serge 1678
	obj->ring = NULL;
2344 Serge 1679
 
3031 serge 1680
	obj->last_read_seqno = 0;
1681
	obj->last_write_seqno = 0;
1682
	obj->base.write_domain = 0;
1683
 
1684
	obj->last_fenced_seqno = 0;
2352 Serge 1685
	obj->fenced_gpu_access = false;
2344 Serge 1686
 
2352 Serge 1687
	obj->active = 0;
1688
	drm_gem_object_unreference(&obj->base);
1689
 
1690
	WARN_ON(i915_verify_lists(dev));
1691
}
1692
 
3243 Serge 1693
static int
1694
i915_gem_handle_seqno_wrap(struct drm_device *dev)
2344 Serge 1695
{
3243 Serge 1696
	struct drm_i915_private *dev_priv = dev->dev_private;
1697
	struct intel_ring_buffer *ring;
1698
	int ret, i, j;
2344 Serge 1699
 
3243 Serge 1700
	/* The hardware uses various monotonic 32-bit counters, if we
1701
	 * detect that they will wraparound we need to idle the GPU
1702
	 * and reset those counters.
1703
	 */
1704
	ret = 0;
1705
	for_each_ring(ring, dev_priv, i) {
1706
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1707
			ret |= ring->sync_seqno[j] != 0;
1708
	}
1709
	if (ret == 0)
1710
		return ret;
2344 Serge 1711
 
3243 Serge 1712
	ret = i915_gpu_idle(dev);
1713
	if (ret)
1714
		return ret;
1715
 
1716
	i915_gem_retire_requests(dev);
1717
	for_each_ring(ring, dev_priv, i) {
1718
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1719
			ring->sync_seqno[j] = 0;
1720
	}
1721
 
1722
	return 0;
2344 Serge 1723
}
1724
 
3243 Serge 1725
int
1726
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1727
{
3243 Serge 1728
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1729
 
3243 Serge 1730
	/* reserve 0 for non-seqno */
1731
	if (dev_priv->next_seqno == 0) {
1732
		int ret = i915_gem_handle_seqno_wrap(dev);
1733
		if (ret)
1734
			return ret;
1735
 
1736
		dev_priv->next_seqno = 1;
1737
	}
1738
 
1739
	*seqno = dev_priv->next_seqno++;
1740
	return 0;
2332 Serge 1741
}
1742
 
2352 Serge 1743
int
1744
i915_add_request(struct intel_ring_buffer *ring,
1745
		 struct drm_file *file,
3031 serge 1746
		 u32 *out_seqno)
2352 Serge 1747
{
1748
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
3031 serge 1749
	struct drm_i915_gem_request *request;
1750
	u32 request_ring_position;
2352 Serge 1751
	int was_empty;
1752
	int ret;
2332 Serge 1753
 
3031 serge 1754
	/*
1755
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1756
	 * after having emitted the batchbuffer command. Hence we need to fix
1757
	 * things up similar to emitting the lazy request. The difference here
1758
	 * is that the flush _must_ happen before the next request, no matter
1759
	 * what.
1760
	 */
1761
	ret = intel_ring_flush_all_caches(ring);
1762
	if (ret)
1763
		return ret;
2332 Serge 1764
 
3031 serge 1765
	request = kmalloc(sizeof(*request), GFP_KERNEL);
1766
	if (request == NULL)
1767
		return -ENOMEM;
1768
 
1769
 
1770
	/* Record the position of the start of the request so that
1771
	 * should we detect the updated seqno part-way through the
1772
	 * GPU processing the request, we never over-estimate the
1773
	 * position of the head.
1774
	 */
1775
	request_ring_position = intel_ring_get_tail(ring);
1776
 
3243 Serge 1777
	ret = ring->add_request(ring);
3031 serge 1778
	if (ret) {
1779
		kfree(request);
2352 Serge 1780
	    return ret;
3031 serge 1781
	}
2332 Serge 1782
 
3243 Serge 1783
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1784
	request->ring = ring;
3031 serge 1785
	request->tail = request_ring_position;
1786
    request->emitted_jiffies = GetTimerTicks();
2352 Serge 1787
	was_empty = list_empty(&ring->request_list);
1788
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1789
	request->file_priv = NULL;
2332 Serge 1790
 
3263 Serge 1791
	if (file) {
1792
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1793
 
3263 Serge 1794
		spin_lock(&file_priv->mm.lock);
1795
		request->file_priv = file_priv;
1796
		list_add_tail(&request->client_list,
1797
			      &file_priv->mm.request_list);
1798
		spin_unlock(&file_priv->mm.lock);
1799
	}
1800
 
1801
	trace_i915_gem_request_add(ring, request->seqno);
3031 serge 1802
	ring->outstanding_lazy_request = 0;
2332 Serge 1803
 
2360 Serge 1804
	if (!dev_priv->mm.suspended) {
1805
		if (i915_enable_hangcheck) {
2352 Serge 1806
//			mod_timer(&dev_priv->hangcheck_timer,
1807
//				  jiffies +
1808
//				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2360 Serge 1809
		}
3031 serge 1810
		if (was_empty) {
2360 Serge 1811
           queue_delayed_work(dev_priv->wq,
1812
                      &dev_priv->mm.retire_work, HZ);
3031 serge 1813
			intel_mark_busy(dev_priv->dev);
1814
		}
2360 Serge 1815
	}
3031 serge 1816
 
1817
	if (out_seqno)
3243 Serge 1818
		*out_seqno = request->seqno;
2352 Serge 1819
	return 0;
1820
}
2332 Serge 1821
 
3263 Serge 1822
static inline void
1823
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1824
{
1825
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1826
 
3263 Serge 1827
	if (!file_priv)
1828
		return;
2332 Serge 1829
 
3263 Serge 1830
	spin_lock(&file_priv->mm.lock);
1831
	if (request->file_priv) {
1832
		list_del(&request->client_list);
1833
		request->file_priv = NULL;
1834
	}
1835
	spin_unlock(&file_priv->mm.lock);
1836
}
2332 Serge 1837
 
3031 serge 1838
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1839
				      struct intel_ring_buffer *ring)
1840
{
1841
	while (!list_empty(&ring->request_list)) {
1842
		struct drm_i915_gem_request *request;
2332 Serge 1843
 
3031 serge 1844
		request = list_first_entry(&ring->request_list,
1845
					   struct drm_i915_gem_request,
1846
					   list);
2332 Serge 1847
 
3031 serge 1848
		list_del(&request->list);
3263 Serge 1849
		i915_gem_request_remove_from_client(request);
3031 serge 1850
		kfree(request);
1851
	}
2332 Serge 1852
 
3031 serge 1853
	while (!list_empty(&ring->active_list)) {
1854
		struct drm_i915_gem_object *obj;
2332 Serge 1855
 
3031 serge 1856
		obj = list_first_entry(&ring->active_list,
1857
				       struct drm_i915_gem_object,
1858
				       ring_list);
2332 Serge 1859
 
3031 serge 1860
		i915_gem_object_move_to_inactive(obj);
1861
	}
1862
}
2332 Serge 1863
 
3031 serge 1864
static void i915_gem_reset_fences(struct drm_device *dev)
1865
{
1866
	struct drm_i915_private *dev_priv = dev->dev_private;
1867
	int i;
2332 Serge 1868
 
3031 serge 1869
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1870
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2332 Serge 1871
 
3031 serge 1872
		i915_gem_write_fence(dev, i, NULL);
2360 Serge 1873
 
3031 serge 1874
		if (reg->obj)
1875
			i915_gem_object_fence_lost(reg->obj);
2360 Serge 1876
 
3031 serge 1877
		reg->pin_count = 0;
1878
		reg->obj = NULL;
1879
		INIT_LIST_HEAD(®->lru_list);
1880
	}
2360 Serge 1881
 
3031 serge 1882
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1883
}
2360 Serge 1884
 
3031 serge 1885
void i915_gem_reset(struct drm_device *dev)
1886
{
1887
	struct drm_i915_private *dev_priv = dev->dev_private;
1888
	struct drm_i915_gem_object *obj;
1889
	struct intel_ring_buffer *ring;
1890
	int i;
2360 Serge 1891
 
3031 serge 1892
	for_each_ring(ring, dev_priv, i)
1893
		i915_gem_reset_ring_lists(dev_priv, ring);
2360 Serge 1894
 
3031 serge 1895
	/* Move everything out of the GPU domains to ensure we do any
1896
	 * necessary invalidation upon reuse.
1897
	 */
1898
	list_for_each_entry(obj,
1899
			    &dev_priv->mm.inactive_list,
1900
			    mm_list)
1901
	{
1902
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1903
	}
2360 Serge 1904
 
3031 serge 1905
	/* The fence registers are invalidated so clear them out */
1906
	i915_gem_reset_fences(dev);
1907
}
2360 Serge 1908
 
2352 Serge 1909
/**
1910
 * This function clears the request list as sequence numbers are passed.
1911
 */
3031 serge 1912
void
2352 Serge 1913
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1914
{
1915
	uint32_t seqno;
2332 Serge 1916
 
2352 Serge 1917
	if (list_empty(&ring->request_list))
1918
		return;
2332 Serge 1919
 
2352 Serge 1920
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 1921
 
3031 serge 1922
	seqno = ring->get_seqno(ring, true);
2332 Serge 1923
 
2352 Serge 1924
	while (!list_empty(&ring->request_list)) {
1925
		struct drm_i915_gem_request *request;
2332 Serge 1926
 
2352 Serge 1927
		request = list_first_entry(&ring->request_list,
1928
					   struct drm_i915_gem_request,
1929
					   list);
2332 Serge 1930
 
2352 Serge 1931
		if (!i915_seqno_passed(seqno, request->seqno))
1932
			break;
2332 Serge 1933
 
2352 Serge 1934
		trace_i915_gem_request_retire(ring, request->seqno);
3031 serge 1935
		/* We know the GPU must have read the request to have
1936
		 * sent us the seqno + interrupt, so use the position
1937
		 * of tail of the request to update the last known position
1938
		 * of the GPU head.
1939
		 */
1940
		ring->last_retired_head = request->tail;
2332 Serge 1941
 
2352 Serge 1942
		list_del(&request->list);
3263 Serge 1943
		i915_gem_request_remove_from_client(request);
2352 Serge 1944
		kfree(request);
1945
	}
2332 Serge 1946
 
2352 Serge 1947
	/* Move any buffers on the active list that are no longer referenced
1948
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
1949
	 */
1950
	while (!list_empty(&ring->active_list)) {
1951
		struct drm_i915_gem_object *obj;
2332 Serge 1952
 
2352 Serge 1953
		obj = list_first_entry(&ring->active_list,
1954
				      struct drm_i915_gem_object,
1955
				      ring_list);
2332 Serge 1956
 
3031 serge 1957
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2352 Serge 1958
			break;
2332 Serge 1959
 
2352 Serge 1960
			i915_gem_object_move_to_inactive(obj);
1961
	}
2332 Serge 1962
 
2352 Serge 1963
	if (unlikely(ring->trace_irq_seqno &&
1964
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1965
		ring->irq_put(ring);
1966
		ring->trace_irq_seqno = 0;
1967
	}
2332 Serge 1968
 
2352 Serge 1969
	WARN_ON(i915_verify_lists(ring->dev));
1970
}
2332 Serge 1971
 
2352 Serge 1972
void
1973
i915_gem_retire_requests(struct drm_device *dev)
1974
{
1975
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 1976
	struct intel_ring_buffer *ring;
2352 Serge 1977
	int i;
2332 Serge 1978
 
3031 serge 1979
	for_each_ring(ring, dev_priv, i)
1980
		i915_gem_retire_requests_ring(ring);
2352 Serge 1981
}
1982
 
2360 Serge 1983
static void
1984
i915_gem_retire_work_handler(struct work_struct *work)
1985
{
1986
	drm_i915_private_t *dev_priv;
1987
	struct drm_device *dev;
3031 serge 1988
	struct intel_ring_buffer *ring;
2360 Serge 1989
	bool idle;
1990
	int i;
2352 Serge 1991
 
2360 Serge 1992
	dev_priv = container_of(work, drm_i915_private_t,
1993
				mm.retire_work.work);
1994
	dev = dev_priv->dev;
2352 Serge 1995
 
2360 Serge 1996
	/* Come back later if the device is busy... */
1997
	if (!mutex_trylock(&dev->struct_mutex)) {
1998
        queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
3243 Serge 1999
        return;
2360 Serge 2000
	}
2352 Serge 2001
 
2360 Serge 2002
	i915_gem_retire_requests(dev);
2352 Serge 2003
 
2360 Serge 2004
	/* Send a periodic flush down the ring so we don't hold onto GEM
2005
	 * objects indefinitely.
2006
	 */
2007
	idle = true;
3031 serge 2008
	for_each_ring(ring, dev_priv, i) {
2009
		if (ring->gpu_caches_dirty)
2010
			i915_add_request(ring, NULL, NULL);
2352 Serge 2011
 
2360 Serge 2012
		idle &= list_empty(&ring->request_list);
2013
	}
2352 Serge 2014
 
2360 Serge 2015
   if (!dev_priv->mm.suspended && !idle)
2016
       queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
3031 serge 2017
	if (idle)
2018
		intel_mark_idle(dev);
2360 Serge 2019
 
2020
	mutex_unlock(&dev->struct_mutex);
2021
}
2022
 
2344 Serge 2023
/**
3031 serge 2024
 * Ensures that an object will eventually get non-busy by flushing any required
2025
 * write domains, emitting any outstanding lazy request and retiring and
2026
 * completed requests.
2352 Serge 2027
 */
3031 serge 2028
static int
2029
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2030
{
3031 serge 2031
	int ret;
2352 Serge 2032
 
3031 serge 2033
	if (obj->active) {
2034
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2035
		if (ret)
2036
			return ret;
2352 Serge 2037
 
3031 serge 2038
		i915_gem_retire_requests_ring(obj->ring);
2039
	}
2352 Serge 2040
 
3031 serge 2041
	return 0;
2042
}
2352 Serge 2043
 
3243 Serge 2044
/**
2045
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2046
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2047
 *
2048
 * Returns 0 if successful, else an error is returned with the remaining time in
2049
 * the timeout parameter.
2050
 *  -ETIME: object is still busy after timeout
2051
 *  -ERESTARTSYS: signal interrupted the wait
2052
 *  -ENONENT: object doesn't exist
2053
 * Also possible, but rare:
2054
 *  -EAGAIN: GPU wedged
2055
 *  -ENOMEM: damn
2056
 *  -ENODEV: Internal IRQ fail
2057
 *  -E?: The add request failed
2058
 *
2059
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2060
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2061
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2062
 * without holding struct_mutex the object may become re-busied before this
2063
 * function completes. A similar but shorter * race condition exists in the busy
2064
 * ioctl
2065
 */
2352 Serge 2066
 
2067
 
2068
 
2069
 
2070
 
2071
 
2072
 
2073
 
2074
 
3243 Serge 2075
 
2076
 
2077
 
2352 Serge 2078
/**
3031 serge 2079
 * i915_gem_object_sync - sync an object to a ring.
2080
 *
2081
 * @obj: object which may be in use on another ring.
2082
 * @to: ring we wish to use the object on. May be NULL.
2083
 *
2084
 * This code is meant to abstract object synchronization with the GPU.
2085
 * Calling with NULL implies synchronizing the object with the CPU
2086
 * rather than a particular GPU ring.
2087
 *
2088
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2089
 */
2090
int
3031 serge 2091
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2092
		     struct intel_ring_buffer *to)
2344 Serge 2093
{
3031 serge 2094
	struct intel_ring_buffer *from = obj->ring;
2095
	u32 seqno;
2096
	int ret, idx;
2332 Serge 2097
 
3031 serge 2098
	if (from == NULL || to == from)
2099
		return 0;
2332 Serge 2100
 
3031 serge 2101
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2102
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2103
 
3031 serge 2104
	idx = intel_ring_sync_index(from, to);
2105
 
2106
	seqno = obj->last_read_seqno;
2107
	if (seqno <= from->sync_seqno[idx])
2108
		return 0;
2109
 
2110
	ret = i915_gem_check_olr(obj->ring, seqno);
2111
	if (ret)
2112
		return ret;
2113
 
2114
	ret = to->sync_to(to, from, seqno);
2115
	if (!ret)
3243 Serge 2116
		/* We use last_read_seqno because sync_to()
2117
		 * might have just caused seqno wrap under
2118
		 * the radar.
2119
		 */
2120
		from->sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2121
 
2122
	return ret;
2344 Serge 2123
}
2332 Serge 2124
 
2344 Serge 2125
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2126
{
2127
	u32 old_write_domain, old_read_domains;
2332 Serge 2128
 
2344 Serge 2129
	/* Act a barrier for all accesses through the GTT */
2130
	mb();
2332 Serge 2131
 
2344 Serge 2132
	/* Force a pagefault for domain tracking on next user access */
2133
//	i915_gem_release_mmap(obj);
2332 Serge 2134
 
2344 Serge 2135
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2136
		return;
2332 Serge 2137
 
2344 Serge 2138
	old_read_domains = obj->base.read_domains;
2139
	old_write_domain = obj->base.write_domain;
2351 Serge 2140
 
2344 Serge 2141
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2142
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2143
 
2351 Serge 2144
	trace_i915_gem_object_change_domain(obj,
2145
					    old_read_domains,
2146
					    old_write_domain);
2344 Serge 2147
}
2332 Serge 2148
 
2344 Serge 2149
/**
2150
 * Unbinds an object from the GTT aperture.
2151
 */
2152
int
2153
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2154
{
3031 serge 2155
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2344 Serge 2156
	int ret = 0;
2332 Serge 2157
 
3263 Serge 2158
    if(obj == get_fb_obj())
2159
        return 0;
2160
 
2344 Serge 2161
	if (obj->gtt_space == NULL)
2162
		return 0;
2332 Serge 2163
 
3031 serge 2164
	if (obj->pin_count)
2165
		return -EBUSY;
2332 Serge 2166
 
3243 Serge 2167
	BUG_ON(obj->pages == NULL);
3031 serge 2168
 
2344 Serge 2169
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2170
	if (ret)
2344 Serge 2171
		return ret;
2172
	/* Continue on if we fail due to EIO, the GPU is hung so we
2173
	 * should be safe and we need to cleanup or else we might
2174
	 * cause memory corruption through use-after-free.
2175
	 */
2332 Serge 2176
 
2344 Serge 2177
	i915_gem_object_finish_gtt(obj);
2332 Serge 2178
 
2344 Serge 2179
	/* release the fence reg _after_ flushing */
2180
	ret = i915_gem_object_put_fence(obj);
3031 serge 2181
	if (ret)
2344 Serge 2182
		return ret;
2332 Serge 2183
 
2351 Serge 2184
	trace_i915_gem_object_unbind(obj);
2332 Serge 2185
 
3031 serge 2186
	if (obj->has_global_gtt_mapping)
3243 Serge 2187
        i915_gem_gtt_unbind_object(obj);
3031 serge 2188
	if (obj->has_aliasing_ppgtt_mapping) {
2189
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2190
		obj->has_aliasing_ppgtt_mapping = 0;
2191
	}
2192
	i915_gem_gtt_finish_object(obj);
2332 Serge 2193
 
3031 serge 2194
	list_del(&obj->mm_list);
2195
	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2344 Serge 2196
	/* Avoid an unnecessary call to unbind on rebind. */
2197
	obj->map_and_fenceable = true;
2332 Serge 2198
 
2344 Serge 2199
	drm_mm_put_block(obj->gtt_space);
2200
	obj->gtt_space = NULL;
2201
	obj->gtt_offset = 0;
2332 Serge 2202
 
2344 Serge 2203
	return 0;
2204
}
2332 Serge 2205
 
3031 serge 2206
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2207
{
2208
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2209
	struct intel_ring_buffer *ring;
2344 Serge 2210
	int ret, i;
2332 Serge 2211
 
2344 Serge 2212
	/* Flush everything onto the inactive list. */
3031 serge 2213
	for_each_ring(ring, dev_priv, i) {
2214
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2344 Serge 2215
		if (ret)
2216
			return ret;
3031 serge 2217
 
3243 Serge 2218
		ret = intel_ring_idle(ring);
3031 serge 2219
		if (ret)
2220
			return ret;
2344 Serge 2221
	}
2332 Serge 2222
 
2344 Serge 2223
	return 0;
2224
}
2332 Serge 2225
 
3031 serge 2226
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2227
					struct drm_i915_gem_object *obj)
2228
{
2229
	drm_i915_private_t *dev_priv = dev->dev_private;
2230
	uint64_t val;
2332 Serge 2231
 
3031 serge 2232
	if (obj) {
2233
		u32 size = obj->gtt_space->size;
2332 Serge 2234
 
3031 serge 2235
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2236
				 0xfffff000) << 32;
2237
		val |= obj->gtt_offset & 0xfffff000;
2238
		val |= (uint64_t)((obj->stride / 128) - 1) <<
2239
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2332 Serge 2240
 
3031 serge 2241
		if (obj->tiling_mode == I915_TILING_Y)
2242
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2243
		val |= I965_FENCE_REG_VALID;
2244
	} else
2245
		val = 0;
2332 Serge 2246
 
3031 serge 2247
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2248
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2249
}
2332 Serge 2250
 
3031 serge 2251
static void i965_write_fence_reg(struct drm_device *dev, int reg,
2252
				 struct drm_i915_gem_object *obj)
2253
{
2254
	drm_i915_private_t *dev_priv = dev->dev_private;
2255
	uint64_t val;
2332 Serge 2256
 
3031 serge 2257
	if (obj) {
2258
		u32 size = obj->gtt_space->size;
2332 Serge 2259
 
3031 serge 2260
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2261
				 0xfffff000) << 32;
2262
		val |= obj->gtt_offset & 0xfffff000;
2263
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2264
		if (obj->tiling_mode == I915_TILING_Y)
2265
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2266
		val |= I965_FENCE_REG_VALID;
2267
	} else
2268
		val = 0;
2332 Serge 2269
 
3031 serge 2270
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2271
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2272
}
2332 Serge 2273
 
3031 serge 2274
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2275
				 struct drm_i915_gem_object *obj)
2276
{
2277
	drm_i915_private_t *dev_priv = dev->dev_private;
2278
	u32 val;
2332 Serge 2279
 
3031 serge 2280
	if (obj) {
2281
		u32 size = obj->gtt_space->size;
2282
		int pitch_val;
2283
		int tile_width;
2332 Serge 2284
 
3031 serge 2285
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2286
		     (size & -size) != size ||
2287
		     (obj->gtt_offset & (size - 1)),
2288
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2289
		     obj->gtt_offset, obj->map_and_fenceable, size);
2332 Serge 2290
 
3031 serge 2291
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2292
			tile_width = 128;
2293
		else
2294
			tile_width = 512;
2332 Serge 2295
 
3031 serge 2296
		/* Note: pitch better be a power of two tile widths */
2297
		pitch_val = obj->stride / tile_width;
2298
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2299
 
3031 serge 2300
		val = obj->gtt_offset;
2301
		if (obj->tiling_mode == I915_TILING_Y)
2302
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2303
		val |= I915_FENCE_SIZE_BITS(size);
2304
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2305
		val |= I830_FENCE_REG_VALID;
2306
	} else
2307
		val = 0;
2332 Serge 2308
 
3031 serge 2309
	if (reg < 8)
2310
		reg = FENCE_REG_830_0 + reg * 4;
2311
	else
2312
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2313
 
3031 serge 2314
	I915_WRITE(reg, val);
2315
	POSTING_READ(reg);
2316
}
2332 Serge 2317
 
3031 serge 2318
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2319
				struct drm_i915_gem_object *obj)
2320
{
2321
	drm_i915_private_t *dev_priv = dev->dev_private;
2322
	uint32_t val;
2344 Serge 2323
 
3031 serge 2324
	if (obj) {
2325
		u32 size = obj->gtt_space->size;
2326
		uint32_t pitch_val;
2344 Serge 2327
 
3031 serge 2328
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2329
		     (size & -size) != size ||
2330
		     (obj->gtt_offset & (size - 1)),
2331
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2332
		     obj->gtt_offset, size);
2344 Serge 2333
 
3031 serge 2334
		pitch_val = obj->stride / 128;
2335
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2336
 
3031 serge 2337
		val = obj->gtt_offset;
2338
		if (obj->tiling_mode == I915_TILING_Y)
2339
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2340
		val |= I830_FENCE_SIZE_BITS(size);
2341
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2342
		val |= I830_FENCE_REG_VALID;
2343
	} else
2344
		val = 0;
2345
 
2346
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2347
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2348
}
2349
 
2350
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2351
				 struct drm_i915_gem_object *obj)
2332 Serge 2352
{
3031 serge 2353
	switch (INTEL_INFO(dev)->gen) {
2354
	case 7:
2355
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2356
	case 5:
2357
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2358
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2359
	case 2: i830_write_fence_reg(dev, reg, obj); break;
2360
	default: break;
2361
	}
2344 Serge 2362
}
2363
 
3031 serge 2364
static inline int fence_number(struct drm_i915_private *dev_priv,
2365
			       struct drm_i915_fence_reg *fence)
2344 Serge 2366
{
3031 serge 2367
	return fence - dev_priv->fence_regs;
2368
}
2332 Serge 2369
 
3031 serge 2370
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2371
					 struct drm_i915_fence_reg *fence,
2372
					 bool enable)
2373
{
2374
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2375
	int reg = fence_number(dev_priv, fence);
2332 Serge 2376
 
3031 serge 2377
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2378
 
2379
	if (enable) {
2380
		obj->fence_reg = reg;
2381
		fence->obj = obj;
2382
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2383
	} else {
2384
		obj->fence_reg = I915_FENCE_REG_NONE;
2385
		fence->obj = NULL;
2386
		list_del_init(&fence->lru_list);
2344 Serge 2387
	}
3031 serge 2388
}
2344 Serge 2389
 
3031 serge 2390
static int
2391
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2392
{
2393
	if (obj->last_fenced_seqno) {
2394
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2395
			if (ret)
2396
				return ret;
2344 Serge 2397
 
2398
		obj->last_fenced_seqno = 0;
2399
	}
2400
 
2401
	/* Ensure that all CPU reads are completed before installing a fence
2402
	 * and all writes before removing the fence.
2332 Serge 2403
	 */
2344 Serge 2404
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2405
		mb();
2332 Serge 2406
 
3031 serge 2407
	obj->fenced_gpu_access = false;
2332 Serge 2408
	return 0;
2409
}
2410
 
2411
int
2344 Serge 2412
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2413
{
3031 serge 2414
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2332 Serge 2415
	int ret;
2416
 
3031 serge 2417
	ret = i915_gem_object_flush_fence(obj);
2332 Serge 2418
	if (ret)
2419
		return ret;
2420
 
3031 serge 2421
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2422
		return 0;
2332 Serge 2423
 
3031 serge 2424
	i915_gem_object_update_fence(obj,
2425
				     &dev_priv->fence_regs[obj->fence_reg],
2426
				     false);
2427
	i915_gem_object_fence_lost(obj);
2344 Serge 2428
 
2332 Serge 2429
	return 0;
2430
}
2431
 
3031 serge 2432
static struct drm_i915_fence_reg *
2433
i915_find_fence_reg(struct drm_device *dev)
2434
{
2435
	struct drm_i915_private *dev_priv = dev->dev_private;
2436
	struct drm_i915_fence_reg *reg, *avail;
2437
	int i;
2332 Serge 2438
 
3031 serge 2439
	/* First try to find a free reg */
2440
	avail = NULL;
2441
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2442
		reg = &dev_priv->fence_regs[i];
2443
		if (!reg->obj)
2444
			return reg;
2332 Serge 2445
 
3031 serge 2446
		if (!reg->pin_count)
2447
			avail = reg;
2448
	}
2332 Serge 2449
 
3031 serge 2450
	if (avail == NULL)
2451
		return NULL;
2332 Serge 2452
 
3031 serge 2453
	/* None available, try to steal one or wait for a user to finish */
2454
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2455
		if (reg->pin_count)
2456
			continue;
2332 Serge 2457
 
3031 serge 2458
		return reg;
2459
	}
2332 Serge 2460
 
3031 serge 2461
	return NULL;
2462
}
2332 Serge 2463
 
3031 serge 2464
/**
2465
 * i915_gem_object_get_fence - set up fencing for an object
2466
 * @obj: object to map through a fence reg
2467
 *
2468
 * When mapping objects through the GTT, userspace wants to be able to write
2469
 * to them without having to worry about swizzling if the object is tiled.
2470
 * This function walks the fence regs looking for a free one for @obj,
2471
 * stealing one if it can't find any.
2472
 *
2473
 * It then sets up the reg based on the object's properties: address, pitch
2474
 * and tiling format.
2475
 *
2476
 * For an untiled surface, this removes any existing fence.
2477
 */
2478
int
2479
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2480
{
2481
	struct drm_device *dev = obj->base.dev;
2482
	struct drm_i915_private *dev_priv = dev->dev_private;
2483
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2484
	struct drm_i915_fence_reg *reg;
2485
	int ret;
2332 Serge 2486
 
3031 serge 2487
	/* Have we updated the tiling parameters upon the object and so
2488
	 * will need to serialise the write to the associated fence register?
2489
	 */
2490
	if (obj->fence_dirty) {
2491
		ret = i915_gem_object_flush_fence(obj);
2492
		if (ret)
2493
			return ret;
2494
	}
2332 Serge 2495
 
3031 serge 2496
	/* Just update our place in the LRU if our fence is getting reused. */
2497
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2498
		reg = &dev_priv->fence_regs[obj->fence_reg];
2499
		if (!obj->fence_dirty) {
2500
			list_move_tail(®->lru_list,
2501
				       &dev_priv->mm.fence_list);
2502
			return 0;
2503
		}
2504
	} else if (enable) {
2505
		reg = i915_find_fence_reg(dev);
2506
		if (reg == NULL)
2507
			return -EDEADLK;
2332 Serge 2508
 
3031 serge 2509
		if (reg->obj) {
2510
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2511
 
3031 serge 2512
			ret = i915_gem_object_flush_fence(old);
2513
			if (ret)
2514
				return ret;
2332 Serge 2515
 
3031 serge 2516
			i915_gem_object_fence_lost(old);
2517
		}
2518
	} else
2519
		return 0;
2332 Serge 2520
 
3031 serge 2521
	i915_gem_object_update_fence(obj, reg, enable);
2522
	obj->fence_dirty = false;
2332 Serge 2523
 
3031 serge 2524
	return 0;
2525
}
2332 Serge 2526
 
3031 serge 2527
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2528
				     struct drm_mm_node *gtt_space,
2529
				     unsigned long cache_level)
2530
{
2531
	struct drm_mm_node *other;
2332 Serge 2532
 
3031 serge 2533
	/* On non-LLC machines we have to be careful when putting differing
2534
	 * types of snoopable memory together to avoid the prefetcher
2535
	 * crossing memory domains and dieing.
2536
	 */
2537
	if (HAS_LLC(dev))
2538
		return true;
2332 Serge 2539
 
3031 serge 2540
	if (gtt_space == NULL)
2541
		return true;
2332 Serge 2542
 
3031 serge 2543
	if (list_empty(>t_space->node_list))
2544
		return true;
2332 Serge 2545
 
3031 serge 2546
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2547
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2548
		return false;
2344 Serge 2549
 
3031 serge 2550
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2551
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2552
		return false;
2344 Serge 2553
 
3031 serge 2554
	return true;
2555
}
2344 Serge 2556
 
3031 serge 2557
static void i915_gem_verify_gtt(struct drm_device *dev)
2558
{
2559
#if WATCH_GTT
2560
	struct drm_i915_private *dev_priv = dev->dev_private;
2561
	struct drm_i915_gem_object *obj;
2562
	int err = 0;
2344 Serge 2563
 
3031 serge 2564
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2565
		if (obj->gtt_space == NULL) {
2566
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2567
			err++;
2568
			continue;
2569
		}
2344 Serge 2570
 
3031 serge 2571
		if (obj->cache_level != obj->gtt_space->color) {
2572
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2573
			       obj->gtt_space->start,
2574
			       obj->gtt_space->start + obj->gtt_space->size,
2575
			       obj->cache_level,
2576
			       obj->gtt_space->color);
2577
			err++;
2578
			continue;
2579
		}
2344 Serge 2580
 
3031 serge 2581
		if (!i915_gem_valid_gtt_space(dev,
2582
					      obj->gtt_space,
2583
					      obj->cache_level)) {
2584
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2585
			       obj->gtt_space->start,
2586
			       obj->gtt_space->start + obj->gtt_space->size,
2587
			       obj->cache_level);
2588
			err++;
2589
			continue;
2590
		}
2591
	}
2344 Serge 2592
 
3031 serge 2593
	WARN_ON(err);
2594
#endif
2326 Serge 2595
}
2596
 
2332 Serge 2597
/**
2598
 * Finds free space in the GTT aperture and binds the object there.
2599
 */
2600
static int
2601
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2602
			    unsigned alignment,
3031 serge 2603
			    bool map_and_fenceable,
2604
			    bool nonblocking)
2332 Serge 2605
{
2606
	struct drm_device *dev = obj->base.dev;
2607
	drm_i915_private_t *dev_priv = dev->dev_private;
3243 Serge 2608
	struct drm_mm_node *node;
2332 Serge 2609
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2610
	bool mappable, fenceable;
2611
	int ret;
2326 Serge 2612
 
2332 Serge 2613
	if (obj->madv != I915_MADV_WILLNEED) {
3243 Serge 2614
        DRM_ERROR("Attempting to bind a purgeable object\n");
2332 Serge 2615
		return -EINVAL;
2616
	}
2617
 
2618
	fence_size = i915_gem_get_gtt_size(dev,
2619
					   obj->base.size,
2620
					   obj->tiling_mode);
2621
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2622
						     obj->base.size,
2623
						     obj->tiling_mode);
2624
	unfenced_alignment =
2625
		i915_gem_get_unfenced_gtt_alignment(dev,
2626
						    obj->base.size,
2627
						    obj->tiling_mode);
2628
 
2629
	if (alignment == 0)
2630
		alignment = map_and_fenceable ? fence_alignment :
2631
						unfenced_alignment;
2632
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2633
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2634
		return -EINVAL;
2635
	}
2636
 
2637
	size = map_and_fenceable ? fence_size : obj->base.size;
2638
 
2639
	/* If the object is bigger than the entire aperture, reject it early
2640
	 * before evicting everything in a vain attempt to find space.
2641
	 */
2642
	if (obj->base.size >
2643
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2644
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2645
		return -E2BIG;
2646
	}
2647
 
3031 serge 2648
	ret = i915_gem_object_get_pages(obj);
2649
	if (ret)
2650
		return ret;
2651
 
3243 Serge 2652
	i915_gem_object_pin_pages(obj);
2653
 
2654
	node = kzalloc(sizeof(*node), GFP_KERNEL);
2655
	if (node == NULL) {
2656
		i915_gem_object_unpin_pages(obj);
2657
		return -ENOMEM;
2658
	}
2659
 
2332 Serge 2660
 search_free:
2661
	if (map_and_fenceable)
3243 Serge 2662
		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3031 serge 2663
							  size, alignment, obj->cache_level,
3243 Serge 2664
							  0, dev_priv->mm.gtt_mappable_end);
2332 Serge 2665
	else
3243 Serge 2666
		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2667
						 size, alignment, obj->cache_level);
2668
	if (ret) {
2332 Serge 2669
 
3243 Serge 2670
		i915_gem_object_unpin_pages(obj);
2671
		kfree(node);
2332 Serge 2672
			return ret;
2673
	}
3243 Serge 2674
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2675
		i915_gem_object_unpin_pages(obj);
2676
		drm_mm_put_block(node);
3031 serge 2677
		return -EINVAL;
2678
	}
2332 Serge 2679
 
3031 serge 2680
	ret = i915_gem_gtt_prepare_object(obj);
2332 Serge 2681
	if (ret) {
3243 Serge 2682
		i915_gem_object_unpin_pages(obj);
2683
		drm_mm_put_block(node);
2332 Serge 2684
			return ret;
2685
	}
2686
 
3031 serge 2687
	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2332 Serge 2688
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2689
 
3243 Serge 2690
	obj->gtt_space = node;
2691
	obj->gtt_offset = node->start;
2332 Serge 2692
 
2693
	fenceable =
3243 Serge 2694
		node->size == fence_size &&
2695
		(node->start & (fence_alignment - 1)) == 0;
2332 Serge 2696
 
2697
	mappable =
2698
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2699
 
2700
	obj->map_and_fenceable = mappable && fenceable;
2701
 
3243 Serge 2702
	i915_gem_object_unpin_pages(obj);
2351 Serge 2703
	trace_i915_gem_object_bind(obj, map_and_fenceable);
3031 serge 2704
	i915_gem_verify_gtt(dev);
2332 Serge 2705
	return 0;
2706
}
2707
 
2708
void
2709
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2710
{
2711
	/* If we don't have a page list set up, then we're not pinned
2712
	 * to GPU, and we can ignore the cache flush because it'll happen
2713
	 * again at bind time.
2714
	 */
3243 Serge 2715
	if (obj->pages == NULL)
2332 Serge 2716
		return;
2717
 
2718
	/* If the GPU is snooping the contents of the CPU cache,
2719
	 * we do not need to manually clear the CPU cache lines.  However,
2720
	 * the caches are only snooped when the render cache is
2721
	 * flushed/invalidated.  As we always have to emit invalidations
2722
	 * and flushes when moving into and out of the RENDER domain, correct
2723
	 * snooping behaviour occurs naturally as the result of our domain
2724
	 * tracking.
2725
	 */
2726
	if (obj->cache_level != I915_CACHE_NONE)
2727
		return;
3243 Serge 2728
#if 0
2344 Serge 2729
     if(obj->mapped != NULL)
2730
     {
2731
        uint8_t *page_virtual;
2732
        unsigned int i;
2332 Serge 2733
 
2344 Serge 2734
        page_virtual = obj->mapped;
2735
        asm volatile("mfence");
2736
        for (i = 0; i < obj->base.size; i += x86_clflush_size)
2737
            clflush(page_virtual + i);
2738
        asm volatile("mfence");
2739
     }
2740
     else
2741
     {
2742
        uint8_t *page_virtual;
2743
        unsigned int i;
2744
        page_virtual = AllocKernelSpace(obj->base.size);
2745
        if(page_virtual != NULL)
2746
        {
3031 serge 2747
            dma_addr_t *src, *dst;
2344 Serge 2748
            u32 count;
2749
 
2750
#define page_tabs  0xFDC00000      /* really dirty hack */
2751
 
3031 serge 2752
            src =  obj->pages.page;
2753
            dst =  &((dma_addr_t*)page_tabs)[(u32_t)page_virtual >> 12];
2344 Serge 2754
            count = obj->base.size/4096;
2755
 
2756
            while(count--)
2757
            {
2758
                *dst++ = (0xFFFFF000 & *src++) | 0x001 ;
2759
            };
2760
 
2761
            asm volatile("mfence");
2762
            for (i = 0; i < obj->base.size; i += x86_clflush_size)
2763
                clflush(page_virtual + i);
2764
            asm volatile("mfence");
2765
            FreeKernelSpace(page_virtual);
2766
        }
2767
        else
2768
        {
2769
            asm volatile (
2770
            "mfence         \n"
2771
            "wbinvd         \n"                 /* this is really ugly  */
2772
            "mfence");
2773
        }
2774
     }
3243 Serge 2775
#endif
2776
 
2332 Serge 2777
}
2778
 
2344 Serge 2779
/** Flushes the GTT write domain for the object if it's dirty. */
2780
static void
2781
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2782
{
2783
	uint32_t old_write_domain;
2332 Serge 2784
 
2344 Serge 2785
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2786
		return;
2332 Serge 2787
 
2344 Serge 2788
	/* No actual flushing is required for the GTT write domain.  Writes
2789
	 * to it immediately go to main memory as far as we know, so there's
2790
	 * no chipset flush.  It also doesn't land in render cache.
2791
	 *
2792
	 * However, we do have to enforce the order so that all writes through
2793
	 * the GTT land before any writes to the device, such as updates to
2794
	 * the GATT itself.
2795
	 */
2796
	wmb();
2332 Serge 2797
 
2344 Serge 2798
	old_write_domain = obj->base.write_domain;
2799
	obj->base.write_domain = 0;
2332 Serge 2800
 
2351 Serge 2801
	trace_i915_gem_object_change_domain(obj,
2802
					    obj->base.read_domains,
2803
					    old_write_domain);
2344 Serge 2804
}
2332 Serge 2805
 
2806
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 2807
static void
2332 Serge 2808
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2809
{
2810
	uint32_t old_write_domain;
2811
 
2812
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2813
		return;
2814
 
2815
	i915_gem_clflush_object(obj);
3243 Serge 2816
	i915_gem_chipset_flush(obj->base.dev);
2332 Serge 2817
	old_write_domain = obj->base.write_domain;
2818
	obj->base.write_domain = 0;
2819
 
2351 Serge 2820
	trace_i915_gem_object_change_domain(obj,
2821
					    obj->base.read_domains,
2822
					    old_write_domain);
2332 Serge 2823
}
2824
 
2825
/**
2826
 * Moves a single object to the GTT read, and possibly write domain.
2827
 *
2828
 * This function returns when the move is complete, including waiting on
2829
 * flushes to occur.
2830
 */
2831
int
2832
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2833
{
3031 serge 2834
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2332 Serge 2835
	uint32_t old_write_domain, old_read_domains;
2836
	int ret;
2837
 
2838
	/* Not valid to be called on unbound objects. */
2839
	if (obj->gtt_space == NULL)
2840
		return -EINVAL;
2841
 
2842
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2843
		return 0;
2844
 
3031 serge 2845
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 2846
		if (ret)
2847
			return ret;
2848
 
2849
	i915_gem_object_flush_cpu_write_domain(obj);
2850
 
2851
	old_write_domain = obj->base.write_domain;
2852
	old_read_domains = obj->base.read_domains;
2853
 
2854
	/* It should now be out of any other write domains, and we can update
2855
	 * the domain values for our changes.
2856
	 */
2857
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2858
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2859
	if (write) {
2860
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2861
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2862
		obj->dirty = 1;
2863
	}
2864
 
2351 Serge 2865
	trace_i915_gem_object_change_domain(obj,
2866
					    old_read_domains,
2867
					    old_write_domain);
2868
 
3031 serge 2869
	/* And bump the LRU for this access */
2870
	if (i915_gem_object_is_inactive(obj))
2871
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2872
 
2332 Serge 2873
	return 0;
2874
}
2875
 
2335 Serge 2876
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2877
				    enum i915_cache_level cache_level)
2878
{
3031 serge 2879
	struct drm_device *dev = obj->base.dev;
2880
	drm_i915_private_t *dev_priv = dev->dev_private;
2335 Serge 2881
	int ret;
2332 Serge 2882
 
2335 Serge 2883
	if (obj->cache_level == cache_level)
2884
		return 0;
2332 Serge 2885
 
2335 Serge 2886
	if (obj->pin_count) {
2887
		DRM_DEBUG("can not change the cache level of pinned objects\n");
2888
		return -EBUSY;
2889
	}
2332 Serge 2890
 
3031 serge 2891
	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
2892
		ret = i915_gem_object_unbind(obj);
2893
		if (ret)
2894
			return ret;
2895
	}
2896
 
2335 Serge 2897
	if (obj->gtt_space) {
2898
		ret = i915_gem_object_finish_gpu(obj);
2899
		if (ret)
2900
			return ret;
2332 Serge 2901
 
2335 Serge 2902
		i915_gem_object_finish_gtt(obj);
2332 Serge 2903
 
2335 Serge 2904
		/* Before SandyBridge, you could not use tiling or fence
2905
		 * registers with snooped memory, so relinquish any fences
2906
		 * currently pointing to our region in the aperture.
2907
		 */
3031 serge 2908
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 2909
			ret = i915_gem_object_put_fence(obj);
2910
			if (ret)
2911
				return ret;
2912
		}
2332 Serge 2913
 
3031 serge 2914
		if (obj->has_global_gtt_mapping)
2915
			i915_gem_gtt_bind_object(obj, cache_level);
2916
		if (obj->has_aliasing_ppgtt_mapping)
2917
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2918
					       obj, cache_level);
2919
 
2920
		obj->gtt_space->color = cache_level;
2335 Serge 2921
	}
2332 Serge 2922
 
2335 Serge 2923
	if (cache_level == I915_CACHE_NONE) {
2924
		u32 old_read_domains, old_write_domain;
2332 Serge 2925
 
2335 Serge 2926
		/* If we're coming from LLC cached, then we haven't
2927
		 * actually been tracking whether the data is in the
2928
		 * CPU cache or not, since we only allow one bit set
2929
		 * in obj->write_domain and have been skipping the clflushes.
2930
		 * Just set it to the CPU cache for now.
2931
		 */
2932
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2933
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2332 Serge 2934
 
2335 Serge 2935
		old_read_domains = obj->base.read_domains;
2936
		old_write_domain = obj->base.write_domain;
2332 Serge 2937
 
2335 Serge 2938
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2939
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 2940
 
2351 Serge 2941
		trace_i915_gem_object_change_domain(obj,
2942
						    old_read_domains,
2943
						    old_write_domain);
2344 Serge 2944
    }
2332 Serge 2945
 
2335 Serge 2946
	obj->cache_level = cache_level;
3031 serge 2947
	i915_gem_verify_gtt(dev);
2335 Serge 2948
	return 0;
2949
}
2332 Serge 2950
 
3260 Serge 2951
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2952
			       struct drm_file *file)
2953
{
2954
	struct drm_i915_gem_caching *args = data;
2955
	struct drm_i915_gem_object *obj;
2956
	int ret;
2957
 
2958
	ret = i915_mutex_lock_interruptible(dev);
2959
	if (ret)
2960
		return ret;
2961
 
2962
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
2963
	if (&obj->base == NULL) {
2964
		ret = -ENOENT;
2965
		goto unlock;
2966
	}
2967
 
2968
	args->caching = obj->cache_level != I915_CACHE_NONE;
2969
 
2970
	drm_gem_object_unreference(&obj->base);
2971
unlock:
2972
	mutex_unlock(&dev->struct_mutex);
2973
	return ret;
2974
}
2975
 
2976
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2977
			       struct drm_file *file)
2978
{
2979
	struct drm_i915_gem_caching *args = data;
2980
	struct drm_i915_gem_object *obj;
2981
	enum i915_cache_level level;
2982
	int ret;
2983
 
2984
	switch (args->caching) {
2985
	case I915_CACHING_NONE:
2986
		level = I915_CACHE_NONE;
2987
		break;
2988
	case I915_CACHING_CACHED:
2989
		level = I915_CACHE_LLC;
2990
		break;
2991
	default:
2992
		return -EINVAL;
2993
	}
2994
 
2995
	ret = i915_mutex_lock_interruptible(dev);
2996
	if (ret)
2997
		return ret;
2998
 
2999
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3000
	if (&obj->base == NULL) {
3001
		ret = -ENOENT;
3002
		goto unlock;
3003
	}
3004
 
3005
	ret = i915_gem_object_set_cache_level(obj, level);
3006
 
3007
	drm_gem_object_unreference(&obj->base);
3008
unlock:
3009
	mutex_unlock(&dev->struct_mutex);
3010
	return ret;
3011
}
3012
 
2335 Serge 3013
/*
3014
 * Prepare buffer for display plane (scanout, cursors, etc).
3015
 * Can be called from an uninterruptible phase (modesetting) and allows
3016
 * any flushes to be pipelined (for pageflips).
3017
 */
3018
int
3019
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3020
				     u32 alignment,
3021
				     struct intel_ring_buffer *pipelined)
3022
{
3023
	u32 old_read_domains, old_write_domain;
3024
	int ret;
2332 Serge 3025
 
3031 serge 3026
	if (pipelined != obj->ring) {
3027
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3028
	if (ret)
3029
		return ret;
3030
	}
2332 Serge 3031
 
2335 Serge 3032
	/* The display engine is not coherent with the LLC cache on gen6.  As
3033
	 * a result, we make sure that the pinning that is about to occur is
3034
	 * done with uncached PTEs. This is lowest common denominator for all
3035
	 * chipsets.
3036
	 *
3037
	 * However for gen6+, we could do better by using the GFDT bit instead
3038
	 * of uncaching, which would allow us to flush all the LLC-cached data
3039
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3040
	 */
2360 Serge 3041
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3042
	if (ret)
3043
		return ret;
2332 Serge 3044
 
2335 Serge 3045
	/* As the user may map the buffer once pinned in the display plane
3046
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3047
	 * always use map_and_fenceable for all scanout buffers.
3048
	 */
3031 serge 3049
	ret = i915_gem_object_pin(obj, alignment, true, false);
2335 Serge 3050
	if (ret)
3051
		return ret;
2332 Serge 3052
 
2335 Serge 3053
	i915_gem_object_flush_cpu_write_domain(obj);
2332 Serge 3054
 
2335 Serge 3055
	old_write_domain = obj->base.write_domain;
3056
	old_read_domains = obj->base.read_domains;
2332 Serge 3057
 
2335 Serge 3058
	/* It should now be out of any other write domains, and we can update
3059
	 * the domain values for our changes.
3060
	 */
3031 serge 3061
	obj->base.write_domain = 0;
2335 Serge 3062
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3063
 
2351 Serge 3064
	trace_i915_gem_object_change_domain(obj,
3065
					    old_read_domains,
3066
					    old_write_domain);
2332 Serge 3067
 
2335 Serge 3068
	return 0;
3069
}
2332 Serge 3070
 
2344 Serge 3071
int
3072
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3073
{
3074
	int ret;
2332 Serge 3075
 
2344 Serge 3076
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3077
		return 0;
2332 Serge 3078
 
3031 serge 3079
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3080
    if (ret)
3081
        return ret;
2332 Serge 3082
 
2344 Serge 3083
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3084
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3085
	return 0;
2344 Serge 3086
}
2332 Serge 3087
 
2344 Serge 3088
/**
3089
 * Moves a single object to the CPU read, and possibly write domain.
3090
 *
3091
 * This function returns when the move is complete, including waiting on
3092
 * flushes to occur.
3093
 */
3031 serge 3094
int
2344 Serge 3095
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3096
{
3097
	uint32_t old_write_domain, old_read_domains;
3098
	int ret;
2332 Serge 3099
 
2344 Serge 3100
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3101
		return 0;
2332 Serge 3102
 
3031 serge 3103
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3104
	if (ret)
3105
		return ret;
2332 Serge 3106
 
2344 Serge 3107
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3108
 
2344 Serge 3109
	old_write_domain = obj->base.write_domain;
3110
	old_read_domains = obj->base.read_domains;
2332 Serge 3111
 
2344 Serge 3112
	/* Flush the CPU cache if it's still invalid. */
3113
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3114
		i915_gem_clflush_object(obj);
2332 Serge 3115
 
2344 Serge 3116
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3117
	}
2332 Serge 3118
 
2344 Serge 3119
	/* It should now be out of any other write domains, and we can update
3120
	 * the domain values for our changes.
3121
	 */
3122
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3123
 
2344 Serge 3124
	/* If we're writing through the CPU, then the GPU read domains will
3125
	 * need to be invalidated at next use.
3126
	 */
3127
	if (write) {
3128
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3129
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3130
	}
2332 Serge 3131
 
2351 Serge 3132
	trace_i915_gem_object_change_domain(obj,
3133
					    old_read_domains,
3134
					    old_write_domain);
2332 Serge 3135
 
2344 Serge 3136
	return 0;
3137
}
2332 Serge 3138
 
3031 serge 3139
/* Throttle our rendering by waiting until the ring has completed our requests
3140
 * emitted over 20 msec ago.
2344 Serge 3141
 *
3031 serge 3142
 * Note that if we were to use the current jiffies each time around the loop,
3143
 * we wouldn't escape the function with any frames outstanding if the time to
3144
 * render a frame was over 20ms.
3145
 *
3146
 * This should get us reasonable parallelism between CPU and GPU but also
3147
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3148
 */
3031 serge 3149
static int
3150
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3151
{
3031 serge 3152
	struct drm_i915_private *dev_priv = dev->dev_private;
3153
	struct drm_i915_file_private *file_priv = file->driver_priv;
3263 Serge 3154
	unsigned long recent_enough = GetTimerTicks() - msecs_to_jiffies(20);
3031 serge 3155
	struct drm_i915_gem_request *request;
3156
	struct intel_ring_buffer *ring = NULL;
3157
	u32 seqno = 0;
3158
	int ret;
2332 Serge 3159
 
3031 serge 3160
	if (atomic_read(&dev_priv->mm.wedged))
3161
		return -EIO;
2332 Serge 3162
 
3031 serge 3163
	spin_lock(&file_priv->mm.lock);
3164
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3165
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3166
			break;
2332 Serge 3167
 
3031 serge 3168
		ring = request->ring;
3169
		seqno = request->seqno;
3170
	}
3171
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3172
 
3031 serge 3173
	if (seqno == 0)
3174
		return 0;
2332 Serge 3175
 
3031 serge 3176
	ret = __wait_seqno(ring, seqno, true, NULL);
3177
	if (ret == 0)
3178
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3179
 
3031 serge 3180
	return ret;
2352 Serge 3181
}
2332 Serge 3182
 
3183
int
3184
i915_gem_object_pin(struct drm_i915_gem_object *obj,
3185
		    uint32_t alignment,
3031 serge 3186
		    bool map_and_fenceable,
3187
		    bool nonblocking)
2332 Serge 3188
{
3189
	int ret;
3190
 
3031 serge 3191
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3192
		return -EBUSY;
2332 Serge 3193
 
3194
	if (obj->gtt_space != NULL) {
3195
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3196
		    (map_and_fenceable && !obj->map_and_fenceable)) {
3197
			WARN(obj->pin_count,
3198
			     "bo is already pinned with incorrect alignment:"
3199
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3200
			     " obj->map_and_fenceable=%d\n",
3201
			     obj->gtt_offset, alignment,
3202
			     map_and_fenceable,
3203
			     obj->map_and_fenceable);
3204
			ret = i915_gem_object_unbind(obj);
3205
			if (ret)
3206
				return ret;
3207
		}
3208
	}
3209
 
3210
	if (obj->gtt_space == NULL) {
3243 Serge 3211
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3212
 
2332 Serge 3213
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3031 serge 3214
						  map_and_fenceable,
3215
						  nonblocking);
2332 Serge 3216
		if (ret)
3217
			return ret;
3243 Serge 3218
 
3219
		if (!dev_priv->mm.aliasing_ppgtt)
3220
			i915_gem_gtt_bind_object(obj, obj->cache_level);
2332 Serge 3221
	}
3222
 
3031 serge 3223
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3224
		i915_gem_gtt_bind_object(obj, obj->cache_level);
3225
 
3226
	obj->pin_count++;
2332 Serge 3227
	obj->pin_mappable |= map_and_fenceable;
3228
 
3229
	return 0;
3230
}
3231
 
2344 Serge 3232
void
3233
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3234
{
3235
	BUG_ON(obj->pin_count == 0);
3236
	BUG_ON(obj->gtt_space == NULL);
2332 Serge 3237
 
3031 serge 3238
	if (--obj->pin_count == 0)
2344 Serge 3239
		obj->pin_mappable = false;
3240
}
2332 Serge 3241
 
3031 serge 3242
int
3243
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3244
		   struct drm_file *file)
3245
{
3246
	struct drm_i915_gem_pin *args = data;
3247
	struct drm_i915_gem_object *obj;
3248
	int ret;
2332 Serge 3249
 
3031 serge 3250
	ret = i915_mutex_lock_interruptible(dev);
3251
	if (ret)
3252
		return ret;
2332 Serge 3253
 
3031 serge 3254
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3255
	if (&obj->base == NULL) {
3256
		ret = -ENOENT;
3257
		goto unlock;
3258
	}
2332 Serge 3259
 
3031 serge 3260
	if (obj->madv != I915_MADV_WILLNEED) {
3261
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3262
		ret = -EINVAL;
3263
		goto out;
3264
	}
2332 Serge 3265
 
3031 serge 3266
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3267
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3268
			  args->handle);
3269
		ret = -EINVAL;
3270
		goto out;
3271
	}
2332 Serge 3272
 
3243 Serge 3273
	if (obj->user_pin_count == 0) {
3031 serge 3274
		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3275
		if (ret)
3276
			goto out;
3277
	}
2332 Serge 3278
 
3243 Serge 3279
	obj->user_pin_count++;
3280
	obj->pin_filp = file;
3281
 
3031 serge 3282
	/* XXX - flush the CPU caches for pinned objects
3283
	 * as the X server doesn't manage domains yet
3284
	 */
3285
	i915_gem_object_flush_cpu_write_domain(obj);
3286
	args->offset = obj->gtt_offset;
3287
out:
3288
	drm_gem_object_unreference(&obj->base);
3289
unlock:
3290
	mutex_unlock(&dev->struct_mutex);
3291
	return ret;
3292
}
2332 Serge 3293
 
3255 Serge 3294
#if 0
3295
 
3031 serge 3296
int
3297
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3298
		     struct drm_file *file)
3299
{
3300
	struct drm_i915_gem_pin *args = data;
3301
	struct drm_i915_gem_object *obj;
3302
	int ret;
2332 Serge 3303
 
3031 serge 3304
	ret = i915_mutex_lock_interruptible(dev);
3305
	if (ret)
3306
		return ret;
2332 Serge 3307
 
3031 serge 3308
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3309
	if (&obj->base == NULL) {
3310
		ret = -ENOENT;
3311
		goto unlock;
3312
	}
2332 Serge 3313
 
3031 serge 3314
	if (obj->pin_filp != file) {
3315
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3316
			  args->handle);
3317
		ret = -EINVAL;
3318
		goto out;
3319
	}
3320
	obj->user_pin_count--;
3321
	if (obj->user_pin_count == 0) {
3322
		obj->pin_filp = NULL;
3323
		i915_gem_object_unpin(obj);
3324
	}
2332 Serge 3325
 
3031 serge 3326
out:
3327
	drm_gem_object_unreference(&obj->base);
3328
unlock:
3329
	mutex_unlock(&dev->struct_mutex);
3330
	return ret;
3331
}
2332 Serge 3332
 
3260 Serge 3333
#endif
3334
 
3031 serge 3335
int
3336
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3337
		    struct drm_file *file)
3338
{
3339
	struct drm_i915_gem_busy *args = data;
3340
	struct drm_i915_gem_object *obj;
3341
	int ret;
2332 Serge 3342
 
3031 serge 3343
	ret = i915_mutex_lock_interruptible(dev);
3344
	if (ret)
3345
		return ret;
2332 Serge 3346
 
3031 serge 3347
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3348
	if (&obj->base == NULL) {
3349
		ret = -ENOENT;
3350
		goto unlock;
3351
	}
2332 Serge 3352
 
3031 serge 3353
	/* Count all active objects as busy, even if they are currently not used
3354
	 * by the gpu. Users of this interface expect objects to eventually
3355
	 * become non-busy without any further actions, therefore emit any
3356
	 * necessary flushes here.
3357
	 */
3358
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3359
 
3031 serge 3360
	args->busy = obj->active;
3361
	if (obj->ring) {
3362
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3363
		args->busy |= intel_ring_flag(obj->ring) << 16;
3364
	}
2332 Serge 3365
 
3031 serge 3366
	drm_gem_object_unreference(&obj->base);
3367
unlock:
3368
	mutex_unlock(&dev->struct_mutex);
3369
	return ret;
3370
}
2332 Serge 3371
 
3031 serge 3372
int
3373
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3374
			struct drm_file *file_priv)
3375
{
3376
	return i915_gem_ring_throttle(dev, file_priv);
3377
}
2332 Serge 3378
 
3263 Serge 3379
#if 0
3380
 
3031 serge 3381
int
3382
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3383
		       struct drm_file *file_priv)
3384
{
3385
	struct drm_i915_gem_madvise *args = data;
3386
	struct drm_i915_gem_object *obj;
3387
	int ret;
2332 Serge 3388
 
3031 serge 3389
	switch (args->madv) {
3390
	case I915_MADV_DONTNEED:
3391
	case I915_MADV_WILLNEED:
3392
	    break;
3393
	default:
3394
	    return -EINVAL;
3395
	}
2332 Serge 3396
 
3031 serge 3397
	ret = i915_mutex_lock_interruptible(dev);
3398
	if (ret)
3399
		return ret;
2332 Serge 3400
 
3031 serge 3401
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3402
	if (&obj->base == NULL) {
3403
		ret = -ENOENT;
3404
		goto unlock;
3405
	}
2332 Serge 3406
 
3031 serge 3407
	if (obj->pin_count) {
3408
		ret = -EINVAL;
3409
		goto out;
3410
	}
2332 Serge 3411
 
3031 serge 3412
	if (obj->madv != __I915_MADV_PURGED)
3413
		obj->madv = args->madv;
2332 Serge 3414
 
3031 serge 3415
	/* if the object is no longer attached, discard its backing storage */
3416
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3417
		i915_gem_object_truncate(obj);
2332 Serge 3418
 
3031 serge 3419
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3420
 
3031 serge 3421
out:
3422
	drm_gem_object_unreference(&obj->base);
3423
unlock:
3424
	mutex_unlock(&dev->struct_mutex);
3425
	return ret;
3426
}
3427
#endif
2332 Serge 3428
 
3031 serge 3429
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3430
			  const struct drm_i915_gem_object_ops *ops)
3431
{
3432
	INIT_LIST_HEAD(&obj->mm_list);
3433
	INIT_LIST_HEAD(&obj->gtt_list);
3434
	INIT_LIST_HEAD(&obj->ring_list);
3435
	INIT_LIST_HEAD(&obj->exec_list);
2332 Serge 3436
 
3031 serge 3437
	obj->ops = ops;
3438
 
3439
	obj->fence_reg = I915_FENCE_REG_NONE;
3440
	obj->madv = I915_MADV_WILLNEED;
3441
	/* Avoid an unnecessary call to unbind on the first bind. */
3442
	obj->map_and_fenceable = true;
3443
 
3444
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3445
}
3446
 
3447
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3448
	.get_pages = i915_gem_object_get_pages_gtt,
3449
	.put_pages = i915_gem_object_put_pages_gtt,
3450
};
3451
 
2332 Serge 3452
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3453
						  size_t size)
3454
{
3455
	struct drm_i915_gem_object *obj;
3031 serge 3456
	struct address_space *mapping;
3457
	u32 mask;
2340 Serge 3458
 
2332 Serge 3459
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3460
	if (obj == NULL)
3461
		return NULL;
3462
 
3463
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3464
		kfree(obj);
3465
		return NULL;
3466
	}
3467
 
3468
 
3031 serge 3469
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3470
 
3471
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3472
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3473
 
3031 serge 3474
	if (HAS_LLC(dev)) {
3475
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3476
		 * cache) for about a 10% performance improvement
3477
		 * compared to uncached.  Graphics requests other than
3478
		 * display scanout are coherent with the CPU in
3479
		 * accessing this cache.  This means in this mode we
3480
		 * don't need to clflush on the CPU side, and on the
3481
		 * GPU side we only need to flush internal caches to
3482
		 * get data visible to the CPU.
3483
		 *
3484
		 * However, we maintain the display planes as UC, and so
3485
		 * need to rebind when first used as such.
3486
		 */
3487
		obj->cache_level = I915_CACHE_LLC;
3488
	} else
3489
		obj->cache_level = I915_CACHE_NONE;
3490
 
3491
	return obj;
3492
}
3493
 
2344 Serge 3494
int i915_gem_init_object(struct drm_gem_object *obj)
3495
{
3496
	BUG();
2332 Serge 3497
 
2344 Serge 3498
	return 0;
3499
}
2332 Serge 3500
 
3031 serge 3501
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 3502
{
3031 serge 3503
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 3504
	struct drm_device *dev = obj->base.dev;
3505
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 3506
 
3031 serge 3507
	trace_i915_gem_object_destroy(obj);
3508
 
3509
//   if (obj->phys_obj)
3510
//       i915_gem_detach_phys_object(dev, obj);
3298 Serge 3511
//    printf("%s obj %p\n", __FUNCTION__, obj);
3031 serge 3512
 
3513
	obj->pin_count = 0;
3514
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3515
		bool was_interruptible;
3516
 
3517
		was_interruptible = dev_priv->mm.interruptible;
3518
		dev_priv->mm.interruptible = false;
3519
 
3520
		WARN_ON(i915_gem_object_unbind(obj));
3521
 
3522
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 3523
	}
2332 Serge 3524
 
3031 serge 3525
	obj->pages_pin_count = 0;
3526
	i915_gem_object_put_pages(obj);
3527
//   i915_gem_object_free_mmap_offset(obj);
2332 Serge 3528
 
3243 Serge 3529
	BUG_ON(obj->pages);
2332 Serge 3530
 
3031 serge 3531
//   if (obj->base.import_attach)
3532
//       drm_prime_gem_destroy(&obj->base, NULL);
3533
 
3290 Serge 3534
    if(obj->base.filp != NULL)
3535
    {
3298 Serge 3536
//        printf("filp %p\n", obj->base.filp);
3290 Serge 3537
        shmem_file_delete(obj->base.filp);
3538
    }
3539
 
2344 Serge 3540
	drm_gem_object_release(&obj->base);
3541
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 3542
 
2344 Serge 3543
	kfree(obj->bit_17);
3544
	kfree(obj);
3545
}
2332 Serge 3546
 
3031 serge 3547
#if 0
3548
int
3549
i915_gem_idle(struct drm_device *dev)
2344 Serge 3550
{
3031 serge 3551
	drm_i915_private_t *dev_priv = dev->dev_private;
3552
	int ret;
2332 Serge 3553
 
3031 serge 3554
	mutex_lock(&dev->struct_mutex);
2332 Serge 3555
 
3031 serge 3556
	if (dev_priv->mm.suspended) {
3557
		mutex_unlock(&dev->struct_mutex);
3558
		return 0;
3559
	}
2332 Serge 3560
 
3031 serge 3561
	ret = i915_gpu_idle(dev);
3562
	if (ret) {
3563
		mutex_unlock(&dev->struct_mutex);
3564
		return ret;
3565
	}
3566
	i915_gem_retire_requests(dev);
3567
 
3568
	i915_gem_reset_fences(dev);
3569
 
3570
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3571
	 * We need to replace this with a semaphore, or something.
3572
	 * And not confound mm.suspended!
3573
	 */
3574
	dev_priv->mm.suspended = 1;
3575
	del_timer_sync(&dev_priv->hangcheck_timer);
3576
 
3577
	i915_kernel_lost_context(dev);
3578
	i915_gem_cleanup_ringbuffer(dev);
3579
 
3580
	mutex_unlock(&dev->struct_mutex);
3581
 
3582
	/* Cancel the retire work handler, which should be idle now. */
3263 Serge 3583
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3031 serge 3584
 
3585
	return 0;
2344 Serge 3586
}
3031 serge 3587
#endif
2332 Serge 3588
 
3031 serge 3589
void i915_gem_l3_remap(struct drm_device *dev)
3590
{
3591
	drm_i915_private_t *dev_priv = dev->dev_private;
3592
	u32 misccpctl;
3593
	int i;
2332 Serge 3594
 
3031 serge 3595
	if (!IS_IVYBRIDGE(dev))
3596
		return;
2332 Serge 3597
 
3243 Serge 3598
	if (!dev_priv->l3_parity.remap_info)
3031 serge 3599
		return;
2332 Serge 3600
 
3031 serge 3601
	misccpctl = I915_READ(GEN7_MISCCPCTL);
3602
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3603
	POSTING_READ(GEN7_MISCCPCTL);
2332 Serge 3604
 
3031 serge 3605
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3606
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3243 Serge 3607
		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3031 serge 3608
			DRM_DEBUG("0x%x was already programmed to %x\n",
3609
				  GEN7_L3LOG_BASE + i, remap);
3243 Serge 3610
		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3031 serge 3611
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3243 Serge 3612
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3031 serge 3613
	}
2332 Serge 3614
 
3031 serge 3615
	/* Make sure all the writes land before disabling dop clock gating */
3616
	POSTING_READ(GEN7_L3LOG_BASE);
2332 Serge 3617
 
3031 serge 3618
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3619
}
2332 Serge 3620
 
3031 serge 3621
void i915_gem_init_swizzling(struct drm_device *dev)
3622
{
3623
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 3624
 
3031 serge 3625
	if (INTEL_INFO(dev)->gen < 5 ||
3626
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3627
		return;
2332 Serge 3628
 
3031 serge 3629
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3630
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 3631
 
3031 serge 3632
	if (IS_GEN5(dev))
3633
		return;
2344 Serge 3634
 
3031 serge 3635
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3636
	if (IS_GEN6(dev))
3637
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3638
	else
3639
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3640
}
3641
 
3642
static bool
3643
intel_enable_blt(struct drm_device *dev)
3644
{
3645
	if (!HAS_BLT(dev))
3646
		return false;
3647
 
3648
	/* The blitter was dysfunctional on early prototypes */
3649
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3650
		DRM_INFO("BLT not supported on this pre-production hardware;"
3651
			 " graphics performance will be degraded.\n");
3652
		return false;
3653
	}
3654
 
3655
	return true;
3656
}
3657
 
2332 Serge 3658
int
3031 serge 3659
i915_gem_init_hw(struct drm_device *dev)
2332 Serge 3660
{
3661
	drm_i915_private_t *dev_priv = dev->dev_private;
3662
	int ret;
2351 Serge 3663
 
3243 Serge 3664
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3031 serge 3665
		return -EIO;
3666
 
3667
	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3668
		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3669
 
3670
	i915_gem_l3_remap(dev);
3671
 
3672
	i915_gem_init_swizzling(dev);
3673
 
2332 Serge 3674
	ret = intel_init_render_ring_buffer(dev);
3675
	if (ret)
3676
		return ret;
3677
 
3678
    if (HAS_BSD(dev)) {
3679
		ret = intel_init_bsd_ring_buffer(dev);
3680
		if (ret)
3681
			goto cleanup_render_ring;
3682
	}
3683
 
3031 serge 3684
	if (intel_enable_blt(dev)) {
2332 Serge 3685
		ret = intel_init_blt_ring_buffer(dev);
3686
		if (ret)
3687
			goto cleanup_bsd_ring;
3688
	}
3689
 
3690
	dev_priv->next_seqno = 1;
2351 Serge 3691
 
3031 serge 3692
	/*
3693
	 * XXX: There was some w/a described somewhere suggesting loading
3694
	 * contexts before PPGTT.
3695
	 */
3696
	i915_gem_context_init(dev);
3697
	i915_gem_init_ppgtt(dev);
3698
 
2332 Serge 3699
	return 0;
3700
 
3701
cleanup_bsd_ring:
3702
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3703
cleanup_render_ring:
3704
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3705
	return ret;
3706
}
3707
 
3031 serge 3708
static bool
3709
intel_enable_ppgtt(struct drm_device *dev)
3710
{
3711
	if (i915_enable_ppgtt >= 0)
3712
		return i915_enable_ppgtt;
3713
 
3714
#ifdef CONFIG_INTEL_IOMMU
3715
	/* Disable ppgtt on SNB if VT-d is on. */
3716
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3717
		return false;
3718
#endif
3719
 
3720
	return true;
3721
}
3722
 
3723
#define LFB_SIZE 0xC00000
3724
 
3725
int i915_gem_init(struct drm_device *dev)
3726
{
3727
	struct drm_i915_private *dev_priv = dev->dev_private;
3728
	unsigned long gtt_size, mappable_size;
3729
	int ret;
3730
 
3731
	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3732
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3733
 
3734
	mutex_lock(&dev->struct_mutex);
3735
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3736
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
3737
		 * aperture accordingly when using aliasing ppgtt. */
3738
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3739
 
3740
        i915_gem_init_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size - LFB_SIZE);
3741
 
3742
		ret = i915_gem_init_aliasing_ppgtt(dev);
3743
		if (ret) {
3744
			mutex_unlock(&dev->struct_mutex);
3745
			return ret;
3746
		}
3747
	} else {
3748
		/* Let GEM Manage all of the aperture.
3749
		 *
3750
		 * However, leave one page at the end still bound to the scratch
3751
		 * page.  There are a number of places where the hardware
3752
		 * apparently prefetches past the end of the object, and we've
3753
		 * seen multiple hangs with the GPU head pointer stuck in a
3754
		 * batchbuffer bound at the last page of the aperture.  One page
3755
		 * should be enough to keep any prefetching inside of the
3756
		 * aperture.
3757
		 */
3758
        i915_gem_init_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size - LFB_SIZE);
3759
	}
3760
 
3761
	ret = i915_gem_init_hw(dev);
3762
	mutex_unlock(&dev->struct_mutex);
3763
	if (ret) {
3764
		i915_gem_cleanup_aliasing_ppgtt(dev);
3765
		return ret;
3766
	}
3767
 
3768
    return 0;
3769
}
3770
 
2332 Serge 3771
void
3772
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3773
{
3774
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 3775
	struct intel_ring_buffer *ring;
2332 Serge 3776
	int i;
3777
 
3031 serge 3778
	for_each_ring(ring, dev_priv, i)
3779
		intel_cleanup_ring_buffer(ring);
2332 Serge 3780
}
3781
 
3031 serge 3782
#if 0
3783
 
2332 Serge 3784
int
3785
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3786
		       struct drm_file *file_priv)
3787
{
3788
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 3789
	int ret;
2332 Serge 3790
 
3791
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3792
		return 0;
3793
 
3794
	if (atomic_read(&dev_priv->mm.wedged)) {
3795
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3796
		atomic_set(&dev_priv->mm.wedged, 0);
3797
	}
3798
 
3799
	mutex_lock(&dev->struct_mutex);
3800
	dev_priv->mm.suspended = 0;
3801
 
3031 serge 3802
	ret = i915_gem_init_hw(dev);
2332 Serge 3803
	if (ret != 0) {
3804
		mutex_unlock(&dev->struct_mutex);
3805
		return ret;
3806
	}
3807
 
3808
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3809
	mutex_unlock(&dev->struct_mutex);
3810
 
3811
	ret = drm_irq_install(dev);
3812
	if (ret)
3813
		goto cleanup_ringbuffer;
3814
 
3815
	return 0;
3816
 
3817
cleanup_ringbuffer:
3818
	mutex_lock(&dev->struct_mutex);
3819
	i915_gem_cleanup_ringbuffer(dev);
3820
	dev_priv->mm.suspended = 1;
3821
	mutex_unlock(&dev->struct_mutex);
3822
 
3823
	return ret;
3824
}
3825
 
3826
int
3827
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3828
		       struct drm_file *file_priv)
3829
{
3830
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3831
		return 0;
3832
 
3833
	drm_irq_uninstall(dev);
3834
	return i915_gem_idle(dev);
3835
}
3836
 
3837
void
3838
i915_gem_lastclose(struct drm_device *dev)
3839
{
3840
	int ret;
3841
 
3842
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3843
		return;
3844
 
3845
	ret = i915_gem_idle(dev);
3846
	if (ret)
3847
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3848
}
3849
#endif
3850
 
3851
static void
2326 Serge 3852
init_ring_lists(struct intel_ring_buffer *ring)
3853
{
3854
    INIT_LIST_HEAD(&ring->active_list);
3855
    INIT_LIST_HEAD(&ring->request_list);
3856
}
3857
 
3858
void
3859
i915_gem_load(struct drm_device *dev)
3860
{
3861
    int i;
3862
    drm_i915_private_t *dev_priv = dev->dev_private;
3863
 
3864
    INIT_LIST_HEAD(&dev_priv->mm.active_list);
3865
    INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3031 serge 3866
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
3867
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 3868
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3869
    for (i = 0; i < I915_NUM_RINGS; i++)
3870
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 3871
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 3872
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 3873
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3874
			  i915_gem_retire_work_handler);
2326 Serge 3875
 
3876
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3877
    if (IS_GEN3(dev)) {
3031 serge 3878
		I915_WRITE(MI_ARB_STATE,
3879
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 3880
    }
3881
 
3882
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3883
 
3884
    if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3885
        dev_priv->num_fence_regs = 16;
3886
    else
3887
        dev_priv->num_fence_regs = 8;
3888
 
3889
    /* Initialize fence registers to zero */
3031 serge 3890
	i915_gem_reset_fences(dev);
2326 Serge 3891
 
3892
    i915_gem_detect_bit_6_swizzle(dev);
3893
 
3894
    dev_priv->mm.interruptible = true;
3895
 
3896
//    dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3897
//    dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3898
//    register_shrinker(&dev_priv->mm.inactive_shrinker);
3899
}
3900
 
3901