Subversion Repositories Kolibri OS

Rev

Rev 3260 | Rev 3266 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2326 Serge 1
/*
2
 * Copyright © 2008 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
22
 *
23
 * Authors:
24
 *    Eric Anholt 
25
 *
26
 */
27
 
3031 serge 28
#include 
29
#include 
2326 Serge 30
#include "i915_drv.h"
2351 Serge 31
#include "i915_trace.h"
2326 Serge 32
#include "intel_drv.h"
3260 Serge 33
#include 
2330 Serge 34
#include 
2326 Serge 35
//#include 
36
#include 
37
 
2344 Serge 38
extern int x86_clflush_size;
2332 Serge 39
 
3263 Serge 40
#define PROT_READ       0x1             /* page can be read */
41
#define PROT_WRITE      0x2             /* page can be written */
42
#define MAP_SHARED      0x01            /* Share changes */
43
 
2344 Serge 44
#undef mb
45
#undef rmb
46
#undef wmb
47
#define mb() asm volatile("mfence")
48
#define rmb() asm volatile ("lfence")
49
#define wmb() asm volatile ("sfence")
50
 
3263 Serge 51
unsigned long vm_mmap(struct file *file, unsigned long addr,
52
         unsigned long len, unsigned long prot,
53
         unsigned long flag, unsigned long offset);
54
 
2344 Serge 55
static inline void clflush(volatile void *__p)
56
{
57
    asm volatile("clflush %0" : "+m" (*(volatile char*)__p));
58
}
59
 
2332 Serge 60
#define MAX_ERRNO       4095
61
 
62
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)
63
 
64
 
2326 Serge 65
#define I915_EXEC_CONSTANTS_MASK        (3<<6)
66
#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
67
#define I915_EXEC_CONSTANTS_ABSOLUTE    (1<<6)
68
#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
69
 
2332 Serge 70
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
71
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
72
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
73
						    unsigned alignment,
3031 serge 74
						    bool map_and_fenceable,
75
						    bool nonblocking);
2332 Serge 76
static int i915_gem_phys_pwrite(struct drm_device *dev,
77
				struct drm_i915_gem_object *obj,
78
				struct drm_i915_gem_pwrite *args,
79
				struct drm_file *file);
2326 Serge 80
 
3031 serge 81
static void i915_gem_write_fence(struct drm_device *dev, int reg,
82
				 struct drm_i915_gem_object *obj);
83
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
84
					 struct drm_i915_fence_reg *fence,
85
					 bool enable);
2332 Serge 86
 
3031 serge 87
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
88
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
89
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
90
 
91
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
92
{
93
	if (obj->tiling_mode)
94
		i915_gem_release_mmap(obj);
95
 
96
	/* As we do not have an associated fence register, we will force
97
	 * a tiling change if we ever need to acquire one.
98
	 */
99
	obj->fence_dirty = false;
100
	obj->fence_reg = I915_FENCE_REG_NONE;
101
}
102
 
2332 Serge 103
/* some bookkeeping */
104
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
105
				  size_t size)
106
{
107
	dev_priv->mm.object_count++;
108
	dev_priv->mm.object_memory += size;
109
}
110
 
111
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
112
				     size_t size)
113
{
114
	dev_priv->mm.object_count--;
115
	dev_priv->mm.object_memory -= size;
116
}
117
 
118
static int
119
i915_gem_wait_for_error(struct drm_device *dev)
120
{
121
	struct drm_i915_private *dev_priv = dev->dev_private;
122
	struct completion *x = &dev_priv->error_completion;
123
	unsigned long flags;
124
	int ret;
125
 
126
	if (!atomic_read(&dev_priv->mm.wedged))
127
		return 0;
3255 Serge 128
#if 0
3031 serge 129
	/*
130
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
131
	 * userspace. If it takes that long something really bad is going on and
132
	 * we should simply try to bail out and fail as gracefully as possible.
133
	 */
134
	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
135
	if (ret == 0) {
136
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
137
		return -EIO;
138
	} else if (ret < 0) {
2332 Serge 139
		return ret;
3031 serge 140
	}
2332 Serge 141
 
142
	if (atomic_read(&dev_priv->mm.wedged)) {
143
		/* GPU is hung, bump the completion count to account for
144
		 * the token we just consumed so that we never hit zero and
145
		 * end up waiting upon a subsequent completion event that
146
		 * will never happen.
147
		 */
148
		spin_lock_irqsave(&x->wait.lock, flags);
149
		x->done++;
150
		spin_unlock_irqrestore(&x->wait.lock, flags);
151
	}
3255 Serge 152
#endif
153
 
2332 Serge 154
	return 0;
155
}
156
 
157
int i915_mutex_lock_interruptible(struct drm_device *dev)
158
{
159
	int ret;
160
 
161
	ret = i915_gem_wait_for_error(dev);
162
	if (ret)
163
		return ret;
164
 
3255 Serge 165
    mutex_lock(&dev->struct_mutex);
2332 Serge 166
 
167
	WARN_ON(i915_verify_lists(dev));
168
	return 0;
169
}
170
 
171
static inline bool
172
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
173
{
3031 serge 174
	return obj->gtt_space && !obj->active;
2332 Serge 175
}
176
 
177
 
178
#if 0
179
 
180
int
181
i915_gem_init_ioctl(struct drm_device *dev, void *data,
182
		    struct drm_file *file)
183
{
184
	struct drm_i915_gem_init *args = data;
185
 
3031 serge 186
	if (drm_core_check_feature(dev, DRIVER_MODESET))
187
		return -ENODEV;
188
 
2332 Serge 189
	if (args->gtt_start >= args->gtt_end ||
190
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
191
		return -EINVAL;
192
 
3031 serge 193
	/* GEM with user mode setting was never supported on ilk and later. */
194
	if (INTEL_INFO(dev)->gen >= 5)
195
		return -ENODEV;
196
 
2332 Serge 197
	mutex_lock(&dev->struct_mutex);
3031 serge 198
	i915_gem_init_global_gtt(dev, args->gtt_start,
199
				 args->gtt_end, args->gtt_end);
2332 Serge 200
	mutex_unlock(&dev->struct_mutex);
201
 
202
	return 0;
203
}
2351 Serge 204
#endif
2332 Serge 205
 
206
int
207
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
208
			    struct drm_file *file)
209
{
210
	struct drm_i915_private *dev_priv = dev->dev_private;
211
	struct drm_i915_gem_get_aperture *args = data;
212
	struct drm_i915_gem_object *obj;
213
	size_t pinned;
214
 
215
	pinned = 0;
216
	mutex_lock(&dev->struct_mutex);
3031 serge 217
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
218
		if (obj->pin_count)
2332 Serge 219
		pinned += obj->gtt_space->size;
220
	mutex_unlock(&dev->struct_mutex);
221
 
222
	args->aper_size = dev_priv->mm.gtt_total;
2342 Serge 223
	args->aper_available_size = args->aper_size - pinned;
2332 Serge 224
 
225
	return 0;
226
}
227
 
3031 serge 228
static int
229
i915_gem_create(struct drm_file *file,
2332 Serge 230
		struct drm_device *dev,
231
		uint64_t size,
232
		uint32_t *handle_p)
233
{
234
	struct drm_i915_gem_object *obj;
235
	int ret;
236
	u32 handle;
237
 
238
	size = roundup(size, PAGE_SIZE);
2342 Serge 239
	if (size == 0)
240
		return -EINVAL;
2332 Serge 241
 
242
	/* Allocate the new object */
243
	obj = i915_gem_alloc_object(dev, size);
244
	if (obj == NULL)
245
		return -ENOMEM;
246
 
247
	ret = drm_gem_handle_create(file, &obj->base, &handle);
248
	if (ret) {
249
		drm_gem_object_release(&obj->base);
250
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
251
		kfree(obj);
252
		return ret;
253
	}
254
 
255
	/* drop reference from allocate - handle holds it now */
256
	drm_gem_object_unreference(&obj->base);
2351 Serge 257
	trace_i915_gem_object_create(obj);
2332 Serge 258
 
259
	*handle_p = handle;
260
	return 0;
261
}
262
 
263
int
264
i915_gem_dumb_create(struct drm_file *file,
265
		     struct drm_device *dev,
266
		     struct drm_mode_create_dumb *args)
267
{
268
	/* have to work out size/pitch and return them */
269
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
270
	args->size = args->pitch * args->height;
271
	return i915_gem_create(file, dev,
272
			       args->size, &args->handle);
273
}
274
 
275
int i915_gem_dumb_destroy(struct drm_file *file,
276
			  struct drm_device *dev,
277
			  uint32_t handle)
278
{
279
	return drm_gem_handle_delete(file, handle);
280
}
281
 
2326 Serge 282
/**
2332 Serge 283
 * Creates a new mm object and returns a handle to it.
284
 */
285
int
286
i915_gem_create_ioctl(struct drm_device *dev, void *data,
287
		      struct drm_file *file)
288
{
289
	struct drm_i915_gem_create *args = data;
3031 serge 290
 
2332 Serge 291
	return i915_gem_create(file, dev,
292
			       args->size, &args->handle);
293
}
294
 
295
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
296
{
297
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
298
 
299
	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
300
		obj->tiling_mode != I915_TILING_NONE;
301
}
3260 Serge 302
#if 0
2332 Serge 303
 
3031 serge 304
static inline int
305
__copy_to_user_swizzled(char __user *cpu_vaddr,
306
			const char *gpu_vaddr, int gpu_offset,
2332 Serge 307
		int length)
308
{
3031 serge 309
	int ret, cpu_offset = 0;
2332 Serge 310
 
3031 serge 311
	while (length > 0) {
312
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
313
		int this_length = min(cacheline_end - gpu_offset, length);
314
		int swizzled_gpu_offset = gpu_offset ^ 64;
2332 Serge 315
 
3031 serge 316
		ret = __copy_to_user(cpu_vaddr + cpu_offset,
317
				     gpu_vaddr + swizzled_gpu_offset,
318
				     this_length);
319
		if (ret)
320
			return ret + length;
2332 Serge 321
 
3031 serge 322
		cpu_offset += this_length;
323
		gpu_offset += this_length;
324
		length -= this_length;
325
	}
326
 
327
	return 0;
2332 Serge 328
}
329
 
3031 serge 330
static inline int
331
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
332
			  const char __user *cpu_vaddr,
333
			  int length)
2332 Serge 334
{
3031 serge 335
	int ret, cpu_offset = 0;
2332 Serge 336
 
337
	while (length > 0) {
338
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
339
		int this_length = min(cacheline_end - gpu_offset, length);
340
		int swizzled_gpu_offset = gpu_offset ^ 64;
341
 
3031 serge 342
		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
2332 Serge 343
			       cpu_vaddr + cpu_offset,
344
			       this_length);
3031 serge 345
		if (ret)
346
			return ret + length;
347
 
2332 Serge 348
		cpu_offset += this_length;
349
		gpu_offset += this_length;
350
		length -= this_length;
351
	}
352
 
3031 serge 353
	return 0;
2332 Serge 354
}
355
 
3031 serge 356
/* Per-page copy function for the shmem pread fastpath.
357
 * Flushes invalid cachelines before reading the target if
358
 * needs_clflush is set. */
2332 Serge 359
static int
3031 serge 360
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
361
		 char __user *user_data,
362
		 bool page_do_bit17_swizzling, bool needs_clflush)
363
{
364
		char *vaddr;
365
		int ret;
366
 
367
	if (unlikely(page_do_bit17_swizzling))
368
		return -EINVAL;
369
 
370
		vaddr = kmap_atomic(page);
371
	if (needs_clflush)
372
		drm_clflush_virt_range(vaddr + shmem_page_offset,
373
				       page_length);
374
		ret = __copy_to_user_inatomic(user_data,
375
				      vaddr + shmem_page_offset,
376
					      page_length);
377
		kunmap_atomic(vaddr);
378
 
379
	return ret ? -EFAULT : 0;
380
}
381
 
382
static void
383
shmem_clflush_swizzled_range(char *addr, unsigned long length,
384
			     bool swizzled)
385
{
386
	if (unlikely(swizzled)) {
387
		unsigned long start = (unsigned long) addr;
388
		unsigned long end = (unsigned long) addr + length;
389
 
390
		/* For swizzling simply ensure that we always flush both
391
		 * channels. Lame, but simple and it works. Swizzled
392
		 * pwrite/pread is far from a hotpath - current userspace
393
		 * doesn't use it at all. */
394
		start = round_down(start, 128);
395
		end = round_up(end, 128);
396
 
397
		drm_clflush_virt_range((void *)start, end - start);
398
	} else {
399
		drm_clflush_virt_range(addr, length);
400
	}
401
 
402
}
403
 
404
/* Only difference to the fast-path function is that this can handle bit17
405
 * and uses non-atomic copy and kmap functions. */
406
static int
407
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
408
		 char __user *user_data,
409
		 bool page_do_bit17_swizzling, bool needs_clflush)
410
{
411
	char *vaddr;
412
	int ret;
413
 
414
	vaddr = kmap(page);
415
	if (needs_clflush)
416
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
417
					     page_length,
418
					     page_do_bit17_swizzling);
419
 
420
	if (page_do_bit17_swizzling)
421
		ret = __copy_to_user_swizzled(user_data,
422
					      vaddr, shmem_page_offset,
423
					      page_length);
424
	else
425
		ret = __copy_to_user(user_data,
426
				     vaddr + shmem_page_offset,
427
				     page_length);
428
	kunmap(page);
429
 
430
	return ret ? - EFAULT : 0;
431
}
432
 
433
static int
434
i915_gem_shmem_pread(struct drm_device *dev,
2332 Serge 435
			  struct drm_i915_gem_object *obj,
436
			  struct drm_i915_gem_pread *args,
437
			  struct drm_file *file)
438
{
3031 serge 439
	char __user *user_data;
2332 Serge 440
	ssize_t remain;
441
	loff_t offset;
3031 serge 442
	int shmem_page_offset, page_length, ret = 0;
443
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
444
	int hit_slowpath = 0;
445
	int prefaulted = 0;
446
	int needs_clflush = 0;
447
	struct scatterlist *sg;
448
	int i;
2332 Serge 449
 
450
	user_data = (char __user *) (uintptr_t) args->data_ptr;
451
	remain = args->size;
452
 
3031 serge 453
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
454
 
455
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
456
		/* If we're not in the cpu read domain, set ourself into the gtt
457
		 * read domain and manually flush cachelines (if required). This
458
		 * optimizes for the case when the gpu will dirty the data
459
		 * anyway again before the next pread happens. */
460
		if (obj->cache_level == I915_CACHE_NONE)
461
			needs_clflush = 1;
462
		if (obj->gtt_space) {
463
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
464
			if (ret)
465
				return ret;
466
		}
467
	}
468
 
469
	ret = i915_gem_object_get_pages(obj);
470
	if (ret)
471
		return ret;
472
 
473
	i915_gem_object_pin_pages(obj);
474
 
2332 Serge 475
	offset = args->offset;
476
 
3031 serge 477
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
2332 Serge 478
		struct page *page;
479
 
3031 serge 480
		if (i < offset >> PAGE_SHIFT)
481
			continue;
482
 
483
		if (remain <= 0)
484
			break;
485
 
2332 Serge 486
		/* Operation in this page
487
		 *
3031 serge 488
		 * shmem_page_offset = offset within page in shmem file
2332 Serge 489
		 * page_length = bytes to copy for this page
490
		 */
3031 serge 491
		shmem_page_offset = offset_in_page(offset);
2332 Serge 492
		page_length = remain;
3031 serge 493
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
494
			page_length = PAGE_SIZE - shmem_page_offset;
2332 Serge 495
 
3031 serge 496
		page = sg_page(sg);
497
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
498
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 499
 
3031 serge 500
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
501
				       user_data, page_do_bit17_swizzling,
502
				       needs_clflush);
503
		if (ret == 0)
504
			goto next_page;
2332 Serge 505
 
3031 serge 506
		hit_slowpath = 1;
507
		mutex_unlock(&dev->struct_mutex);
508
 
509
		if (!prefaulted) {
510
			ret = fault_in_multipages_writeable(user_data, remain);
511
			/* Userspace is tricking us, but we've already clobbered
512
			 * its pages with the prefault and promised to write the
513
			 * data up to the first fault. Hence ignore any errors
514
			 * and just continue. */
515
			(void)ret;
516
			prefaulted = 1;
517
		}
518
 
519
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
520
				       user_data, page_do_bit17_swizzling,
521
				       needs_clflush);
522
 
523
		mutex_lock(&dev->struct_mutex);
524
 
525
next_page:
2332 Serge 526
		mark_page_accessed(page);
3031 serge 527
 
2332 Serge 528
		if (ret)
3031 serge 529
			goto out;
2332 Serge 530
 
531
		remain -= page_length;
532
		user_data += page_length;
533
		offset += page_length;
534
	}
535
 
3031 serge 536
out:
537
	i915_gem_object_unpin_pages(obj);
538
 
539
	if (hit_slowpath) {
540
		/* Fixup: Kill any reinstated backing storage pages */
541
		if (obj->madv == __I915_MADV_PURGED)
542
			i915_gem_object_truncate(obj);
543
	}
544
 
545
	return ret;
2332 Serge 546
}
547
 
548
/**
3031 serge 549
 * Reads data from the object referenced by handle.
550
 *
551
 * On error, the contents of *data are undefined.
2332 Serge 552
 */
3031 serge 553
int
554
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
555
		     struct drm_file *file)
556
{
557
	struct drm_i915_gem_pread *args = data;
558
	struct drm_i915_gem_object *obj;
559
	int ret = 0;
560
 
561
	if (args->size == 0)
562
		return 0;
563
 
564
	if (!access_ok(VERIFY_WRITE,
565
		       (char __user *)(uintptr_t)args->data_ptr,
566
		       args->size))
567
		return -EFAULT;
568
 
569
	ret = i915_mutex_lock_interruptible(dev);
570
	if (ret)
571
		return ret;
572
 
573
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
574
	if (&obj->base == NULL) {
575
		ret = -ENOENT;
576
		goto unlock;
577
	}
578
 
579
	/* Bounds check source.  */
580
	if (args->offset > obj->base.size ||
581
	    args->size > obj->base.size - args->offset) {
582
		ret = -EINVAL;
583
		goto out;
584
	}
585
 
586
	/* prime objects have no backing filp to GEM pread/pwrite
587
	 * pages from.
588
	 */
589
	if (!obj->base.filp) {
590
		ret = -EINVAL;
591
		goto out;
592
	}
593
 
594
	trace_i915_gem_object_pread(obj, args->offset, args->size);
595
 
596
	ret = i915_gem_shmem_pread(dev, obj, args, file);
597
 
598
out:
599
	drm_gem_object_unreference(&obj->base);
600
unlock:
601
	mutex_unlock(&dev->struct_mutex);
602
	return ret;
603
}
604
 
605
/* This is the fast write path which cannot handle
606
 * page faults in the source data
607
 */
608
 
609
static inline int
610
fast_user_write(struct io_mapping *mapping,
611
		loff_t page_base, int page_offset,
612
		char __user *user_data,
613
		int length)
614
{
615
	void __iomem *vaddr_atomic;
616
	void *vaddr;
617
	unsigned long unwritten;
618
 
619
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
620
	/* We can use the cpu mem copy function because this is X86. */
621
	vaddr = (void __force*)vaddr_atomic + page_offset;
622
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
623
						      user_data, length);
624
	io_mapping_unmap_atomic(vaddr_atomic);
625
	return unwritten;
626
}
3260 Serge 627
#endif
3031 serge 628
 
3260 Serge 629
#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
3031 serge 630
/**
631
 * This is the fast pwrite path, where we copy the data directly from the
632
 * user into the GTT, uncached.
633
 */
2332 Serge 634
static int
3031 serge 635
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
636
			 struct drm_i915_gem_object *obj,
637
			 struct drm_i915_gem_pwrite *args,
638
			 struct drm_file *file)
2332 Serge 639
{
3031 serge 640
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 641
	ssize_t remain;
3031 serge 642
	loff_t offset, page_base;
643
	char __user *user_data;
644
	int page_offset, page_length, ret;
3260 Serge 645
    char *vaddr;
2332 Serge 646
 
3031 serge 647
	ret = i915_gem_object_pin(obj, 0, true, true);
648
	if (ret)
649
		goto out;
650
 
651
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
652
	if (ret)
653
		goto out_unpin;
654
 
655
	ret = i915_gem_object_put_fence(obj);
656
	if (ret)
657
		goto out_unpin;
658
 
3260 Serge 659
    vaddr = AllocKernelSpace(4096);
660
    if(vaddr == NULL)
661
    {
662
        ret = -ENOSPC;
663
        goto out_unpin;
664
    };
665
 
3031 serge 666
	user_data = (char __user *) (uintptr_t) args->data_ptr;
2332 Serge 667
	remain = args->size;
668
 
3031 serge 669
	offset = obj->gtt_offset + args->offset;
2332 Serge 670
 
3031 serge 671
	while (remain > 0) {
672
		/* Operation in this page
673
		 *
674
		 * page_base = page offset within aperture
675
		 * page_offset = offset within page
676
		 * page_length = bytes to copy for this page
677
		 */
678
		page_base = offset & PAGE_MASK;
679
		page_offset = offset_in_page(offset);
680
		page_length = remain;
681
		if ((page_offset + remain) > PAGE_SIZE)
682
			page_length = PAGE_SIZE - page_offset;
2332 Serge 683
 
3260 Serge 684
        MapPage(vaddr, page_base, PG_SW|PG_NOCACHE);
3031 serge 685
 
3260 Serge 686
        memcpy(vaddr+page_offset, user_data, page_length);
687
 
3031 serge 688
		remain -= page_length;
689
		user_data += page_length;
690
		offset += page_length;
2332 Serge 691
	}
692
 
3260 Serge 693
    FreeKernelSpace(vaddr);
694
 
3031 serge 695
out_unpin:
696
	i915_gem_object_unpin(obj);
697
out:
3260 Serge 698
    printf("% s ret = %d\n", __FUNCTION__, ret);
699
 
3031 serge 700
	return ret;
701
}
702
 
703
/* Per-page copy function for the shmem pwrite fastpath.
704
 * Flushes invalid cachelines before writing to the target if
705
 * needs_clflush_before is set and flushes out any written cachelines after
706
 * writing if needs_clflush is set. */
707
static int
708
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
709
		  char __user *user_data,
710
		  bool page_do_bit17_swizzling,
711
		  bool needs_clflush_before,
712
		  bool needs_clflush_after)
713
{
714
	char *vaddr;
3260 Serge 715
	int ret = 0;
3031 serge 716
 
717
	if (unlikely(page_do_bit17_swizzling))
718
		return -EINVAL;
719
 
3260 Serge 720
	vaddr = (char *)MapIoMem((addr_t)page, 4096, PG_SW);
3031 serge 721
	if (needs_clflush_before)
722
		drm_clflush_virt_range(vaddr + shmem_page_offset,
723
				       page_length);
3260 Serge 724
	memcpy(vaddr + shmem_page_offset,
3031 serge 725
						user_data,
726
						page_length);
727
	if (needs_clflush_after)
728
		drm_clflush_virt_range(vaddr + shmem_page_offset,
729
				       page_length);
3260 Serge 730
	FreeKernelSpace(vaddr);
3031 serge 731
 
732
	return ret ? -EFAULT : 0;
733
}
3260 Serge 734
#if 0
3031 serge 735
 
736
/* Only difference to the fast-path function is that this can handle bit17
737
 * and uses non-atomic copy and kmap functions. */
738
static int
739
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
740
		  char __user *user_data,
741
		  bool page_do_bit17_swizzling,
742
		  bool needs_clflush_before,
743
		  bool needs_clflush_after)
744
{
745
	char *vaddr;
746
	int ret;
747
 
748
	vaddr = kmap(page);
749
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
750
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
751
					     page_length,
752
					     page_do_bit17_swizzling);
753
	if (page_do_bit17_swizzling)
754
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
755
						user_data,
756
						page_length);
757
	else
758
		ret = __copy_from_user(vaddr + shmem_page_offset,
759
				       user_data,
760
				       page_length);
761
	if (needs_clflush_after)
762
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
763
					     page_length,
764
					     page_do_bit17_swizzling);
765
	kunmap(page);
766
 
767
	return ret ? -EFAULT : 0;
768
}
3260 Serge 769
#endif
3031 serge 770
 
3260 Serge 771
 
3031 serge 772
static int
773
i915_gem_shmem_pwrite(struct drm_device *dev,
774
		      struct drm_i915_gem_object *obj,
775
		      struct drm_i915_gem_pwrite *args,
776
		      struct drm_file *file)
777
{
778
	ssize_t remain;
779
	loff_t offset;
780
	char __user *user_data;
781
	int shmem_page_offset, page_length, ret = 0;
782
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
783
	int hit_slowpath = 0;
784
	int needs_clflush_after = 0;
785
	int needs_clflush_before = 0;
786
	int i;
787
	struct scatterlist *sg;
788
 
789
	user_data = (char __user *) (uintptr_t) args->data_ptr;
790
	remain = args->size;
791
 
792
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
793
 
794
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
795
		/* If we're not in the cpu write domain, set ourself into the gtt
796
		 * write domain and manually flush cachelines (if required). This
797
		 * optimizes for the case when the gpu will use the data
798
		 * right away and we therefore have to clflush anyway. */
799
		if (obj->cache_level == I915_CACHE_NONE)
800
			needs_clflush_after = 1;
801
		if (obj->gtt_space) {
802
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
803
			if (ret)
804
				return ret;
805
		}
806
	}
807
	/* Same trick applies for invalidate partially written cachelines before
808
	 * writing.  */
809
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
810
	    && obj->cache_level == I915_CACHE_NONE)
811
		needs_clflush_before = 1;
812
 
813
	ret = i915_gem_object_get_pages(obj);
2332 Serge 814
	if (ret)
3031 serge 815
		return ret;
2332 Serge 816
 
3031 serge 817
	i915_gem_object_pin_pages(obj);
2332 Serge 818
 
819
	offset = args->offset;
3031 serge 820
	obj->dirty = 1;
2332 Serge 821
 
3031 serge 822
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
2332 Serge 823
		struct page *page;
3031 serge 824
		int partial_cacheline_write;
2332 Serge 825
 
3031 serge 826
		if (i < offset >> PAGE_SHIFT)
827
			continue;
828
 
829
		if (remain <= 0)
830
			break;
831
 
2332 Serge 832
		/* Operation in this page
833
		 *
834
		 * shmem_page_offset = offset within page in shmem file
835
		 * page_length = bytes to copy for this page
836
		 */
837
		shmem_page_offset = offset_in_page(offset);
838
 
839
		page_length = remain;
840
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
841
			page_length = PAGE_SIZE - shmem_page_offset;
842
 
3031 serge 843
		/* If we don't overwrite a cacheline completely we need to be
844
		 * careful to have up-to-date data by first clflushing. Don't
845
		 * overcomplicate things and flush the entire patch. */
846
		partial_cacheline_write = needs_clflush_before &&
847
			((shmem_page_offset | page_length)
3260 Serge 848
				& (x86_clflush_size - 1));
2332 Serge 849
 
3031 serge 850
		page = sg_page(sg);
851
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
852
			(page_to_phys(page) & (1 << 17)) != 0;
2332 Serge 853
 
3031 serge 854
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
855
					user_data, page_do_bit17_swizzling,
856
					partial_cacheline_write,
857
					needs_clflush_after);
858
		if (ret == 0)
859
			goto next_page;
860
 
861
		hit_slowpath = 1;
862
		mutex_unlock(&dev->struct_mutex);
3260 Serge 863
		dbgprintf("%s need shmem_pwrite_slow\n",__FUNCTION__);
3031 serge 864
 
3260 Serge 865
//		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
866
//					user_data, page_do_bit17_swizzling,
867
//					partial_cacheline_write,
868
//					needs_clflush_after);
869
 
3031 serge 870
		mutex_lock(&dev->struct_mutex);
871
 
872
next_page:
2332 Serge 873
 
3031 serge 874
		if (ret)
875
			goto out;
876
 
2332 Serge 877
		remain -= page_length;
3031 serge 878
		user_data += page_length;
2332 Serge 879
		offset += page_length;
880
	}
881
 
882
out:
3031 serge 883
	i915_gem_object_unpin_pages(obj);
884
 
885
	if (hit_slowpath) {
886
		/* Fixup: Kill any reinstated backing storage pages */
887
		if (obj->madv == __I915_MADV_PURGED)
888
			i915_gem_object_truncate(obj);
889
		/* and flush dirty cachelines in case the object isn't in the cpu write
890
		 * domain anymore. */
891
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
892
			i915_gem_clflush_object(obj);
3243 Serge 893
			i915_gem_chipset_flush(dev);
3031 serge 894
		}
2332 Serge 895
	}
896
 
3031 serge 897
	if (needs_clflush_after)
3243 Serge 898
		i915_gem_chipset_flush(dev);
3031 serge 899
 
2332 Serge 900
	return ret;
901
}
3031 serge 902
 
903
/**
904
 * Writes data to the object referenced by handle.
905
 *
906
 * On error, the contents of the buffer that were to be modified are undefined.
907
 */
908
int
909
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
910
		      struct drm_file *file)
911
{
912
	struct drm_i915_gem_pwrite *args = data;
913
	struct drm_i915_gem_object *obj;
914
	int ret;
915
 
916
	if (args->size == 0)
917
		return 0;
918
 
919
	ret = i915_mutex_lock_interruptible(dev);
920
	if (ret)
921
		return ret;
922
 
923
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
924
	if (&obj->base == NULL) {
925
		ret = -ENOENT;
926
		goto unlock;
927
	}
928
 
929
	/* Bounds check destination. */
930
	if (args->offset > obj->base.size ||
931
	    args->size > obj->base.size - args->offset) {
932
		ret = -EINVAL;
933
		goto out;
934
	}
935
 
936
	/* prime objects have no backing filp to GEM pread/pwrite
937
	 * pages from.
938
	 */
939
	if (!obj->base.filp) {
940
		ret = -EINVAL;
941
		goto out;
942
	}
943
 
944
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
945
 
946
	ret = -EFAULT;
947
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
948
	 * it would end up going through the fenced access, and we'll get
949
	 * different detiling behavior between reading and writing.
950
	 * pread/pwrite currently are reading and writing from the CPU
951
	 * perspective, requiring manual detiling by the client.
952
	 */
3260 Serge 953
//   if (obj->phys_obj) {
954
//       ret = i915_gem_phys_pwrite(dev, obj, args, file);
955
//       goto out;
956
//   }
3031 serge 957
 
958
	if (obj->cache_level == I915_CACHE_NONE &&
959
	    obj->tiling_mode == I915_TILING_NONE &&
960
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
961
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
962
		/* Note that the gtt paths might fail with non-page-backed user
963
		 * pointers (e.g. gtt mappings when moving data between
964
		 * textures). Fallback to the shmem path in that case. */
965
	}
966
 
967
	if (ret == -EFAULT || ret == -ENOSPC)
3260 Serge 968
       ret = i915_gem_shmem_pwrite(dev, obj, args, file);
3031 serge 969
 
970
out:
971
	drm_gem_object_unreference(&obj->base);
972
unlock:
973
	mutex_unlock(&dev->struct_mutex);
974
	return ret;
975
}
976
 
977
int
978
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
979
		     bool interruptible)
980
{
981
	if (atomic_read(&dev_priv->mm.wedged)) {
982
		struct completion *x = &dev_priv->error_completion;
983
		bool recovery_complete;
984
		unsigned long flags;
2332 Serge 985
 
3031 serge 986
		/* Give the error handler a chance to run. */
987
		spin_lock_irqsave(&x->wait.lock, flags);
988
		recovery_complete = x->done > 0;
989
		spin_unlock_irqrestore(&x->wait.lock, flags);
2332 Serge 990
 
3031 serge 991
		/* Non-interruptible callers can't handle -EAGAIN, hence return
992
		 * -EIO unconditionally for these. */
993
		if (!interruptible)
994
			return -EIO;
2332 Serge 995
 
3031 serge 996
		/* Recovery complete, but still wedged means reset failure. */
997
		if (recovery_complete)
998
			return -EIO;
2332 Serge 999
 
3031 serge 1000
		return -EAGAIN;
1001
	}
2332 Serge 1002
 
3031 serge 1003
	return 0;
1004
}
2332 Serge 1005
 
3031 serge 1006
/*
1007
 * Compare seqno against outstanding lazy request. Emit a request if they are
1008
 * equal.
1009
 */
1010
static int
1011
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1012
{
1013
	int ret;
2332 Serge 1014
 
3031 serge 1015
	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
2332 Serge 1016
 
3031 serge 1017
	ret = 0;
1018
	if (seqno == ring->outstanding_lazy_request)
1019
		ret = i915_add_request(ring, NULL, NULL);
2332 Serge 1020
 
3031 serge 1021
	return ret;
1022
}
2332 Serge 1023
 
3031 serge 1024
/**
1025
 * __wait_seqno - wait until execution of seqno has finished
1026
 * @ring: the ring expected to report seqno
1027
 * @seqno: duh!
1028
 * @interruptible: do an interruptible wait (normally yes)
1029
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1030
 *
1031
 * Returns 0 if the seqno was found within the alloted time. Else returns the
1032
 * errno with remaining time filled in timeout argument.
1033
 */
1034
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1035
			bool interruptible, struct timespec *timeout)
1036
{
1037
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1038
	struct timespec before, now, wait_time={1,0};
1039
	unsigned long timeout_jiffies;
1040
	long end;
1041
	bool wait_forever = true;
1042
	int ret;
2332 Serge 1043
 
3031 serge 1044
	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1045
		return 0;
2332 Serge 1046
 
3031 serge 1047
	trace_i915_gem_request_wait_begin(ring, seqno);
2332 Serge 1048
 
3031 serge 1049
	if (timeout != NULL) {
1050
		wait_time = *timeout;
1051
		wait_forever = false;
1052
	}
2332 Serge 1053
 
3031 serge 1054
//   timeout_jiffies = timespec_to_jiffies(&wait_time);
2332 Serge 1055
 
3031 serge 1056
	if (WARN_ON(!ring->irq_get(ring)))
1057
		return -ENODEV;
1058
#if 0
2332 Serge 1059
 
3031 serge 1060
    /* Record current time in case interrupted by signal, or wedged * */
1061
	getrawmonotonic(&before);
2332 Serge 1062
 
3031 serge 1063
#define EXIT_COND \
1064
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1065
	atomic_read(&dev_priv->mm.wedged))
1066
	do {
1067
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1068
						 timeout_jiffies);
2332 Serge 1069
 
3031 serge 1070
		ret = i915_gem_check_wedge(dev_priv, interruptible);
1071
		if (ret)
1072
			end = ret;
1073
	} while (end == 0 && wait_forever);
2332 Serge 1074
 
3031 serge 1075
	getrawmonotonic(&now);
2332 Serge 1076
 
3031 serge 1077
	ring->irq_put(ring);
1078
	trace_i915_gem_request_wait_end(ring, seqno);
1079
#undef EXIT_COND
2332 Serge 1080
 
3031 serge 1081
	if (timeout) {
1082
//       struct timespec sleep_time = timespec_sub(now, before);
1083
//       *timeout = timespec_sub(*timeout, sleep_time);
1084
	}
2332 Serge 1085
 
3031 serge 1086
	switch (end) {
1087
	case -EIO:
1088
	case -EAGAIN: /* Wedged */
1089
	case -ERESTARTSYS: /* Signal */
1090
		return (int)end;
1091
	case 0: /* Timeout */
1092
//		if (timeout)
1093
//			set_normalized_timespec(timeout, 0, 0);
1094
		return -ETIME;
1095
	default: /* Completed */
1096
		WARN_ON(end < 0); /* We're not aware of other errors */
1097
		return 0;
1098
	}
3260 Serge 1099
 
3031 serge 1100
#endif
2332 Serge 1101
 
3031 serge 1102
#define EXIT_COND \
1103
    (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1104
    atomic_read(&dev_priv->mm.wedged))
1105
    wait_event(ring->irq_queue, EXIT_COND);
1106
#undef EXIT_COND
1107
    ring->irq_put(ring);
2332 Serge 1108
 
3031 serge 1109
    return 0;
1110
}
2332 Serge 1111
 
3031 serge 1112
/**
1113
 * Waits for a sequence number to be signaled, and cleans up the
1114
 * request and object lists appropriately for that event.
1115
 */
1116
int
1117
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118
{
1119
	struct drm_device *dev = ring->dev;
1120
	struct drm_i915_private *dev_priv = dev->dev_private;
1121
	bool interruptible = dev_priv->mm.interruptible;
1122
	int ret;
2332 Serge 1123
 
3031 serge 1124
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125
	BUG_ON(seqno == 0);
2332 Serge 1126
 
3031 serge 1127
	ret = i915_gem_check_wedge(dev_priv, interruptible);
1128
	if (ret)
1129
		return ret;
2332 Serge 1130
 
3031 serge 1131
	ret = i915_gem_check_olr(ring, seqno);
1132
	if (ret)
1133
		return ret;
2332 Serge 1134
 
3031 serge 1135
	return __wait_seqno(ring, seqno, interruptible, NULL);
1136
}
2332 Serge 1137
 
3031 serge 1138
/**
1139
 * Ensures that all rendering to the object has completed and the object is
1140
 * safe to unbind from the GTT or access from the CPU.
1141
 */
1142
static __must_check int
1143
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1144
			       bool readonly)
1145
{
1146
	struct intel_ring_buffer *ring = obj->ring;
1147
	u32 seqno;
1148
	int ret;
2332 Serge 1149
 
3031 serge 1150
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1151
	if (seqno == 0)
1152
		return 0;
2332 Serge 1153
 
3031 serge 1154
	ret = i915_wait_seqno(ring, seqno);
1155
       if (ret)
1156
           return ret;
2332 Serge 1157
 
3031 serge 1158
	i915_gem_retire_requests_ring(ring);
2332 Serge 1159
 
3031 serge 1160
	/* Manually manage the write flush as we may have not yet
1161
	 * retired the buffer.
1162
	 */
1163
	if (obj->last_write_seqno &&
1164
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1165
		obj->last_write_seqno = 0;
1166
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1167
	}
2332 Serge 1168
 
3031 serge 1169
	return 0;
1170
}
2332 Serge 1171
 
3260 Serge 1172
/* A nonblocking variant of the above wait. This is a highly dangerous routine
1173
 * as the object state may change during this call.
1174
 */
1175
static __must_check int
1176
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1177
					    bool readonly)
1178
{
1179
	struct drm_device *dev = obj->base.dev;
1180
	struct drm_i915_private *dev_priv = dev->dev_private;
1181
	struct intel_ring_buffer *ring = obj->ring;
1182
	u32 seqno;
1183
	int ret;
2332 Serge 1184
 
3260 Serge 1185
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1186
	BUG_ON(!dev_priv->mm.interruptible);
2332 Serge 1187
 
3260 Serge 1188
	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1189
	if (seqno == 0)
1190
		return 0;
2332 Serge 1191
 
3260 Serge 1192
	ret = i915_gem_check_wedge(dev_priv, true);
1193
	if (ret)
1194
		return ret;
2332 Serge 1195
 
3260 Serge 1196
	ret = i915_gem_check_olr(ring, seqno);
1197
	if (ret)
1198
		return ret;
2332 Serge 1199
 
3260 Serge 1200
	mutex_unlock(&dev->struct_mutex);
1201
	ret = __wait_seqno(ring, seqno, true, NULL);
1202
	mutex_lock(&dev->struct_mutex);
2332 Serge 1203
 
3260 Serge 1204
	i915_gem_retire_requests_ring(ring);
2332 Serge 1205
 
3260 Serge 1206
	/* Manually manage the write flush as we may have not yet
1207
	 * retired the buffer.
1208
	 */
1209
	if (obj->last_write_seqno &&
1210
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
1211
		obj->last_write_seqno = 0;
1212
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1213
	}
2332 Serge 1214
 
3260 Serge 1215
	return ret;
1216
}
2332 Serge 1217
 
3260 Serge 1218
/**
1219
 * Called when user space prepares to use an object with the CPU, either
1220
 * through the mmap ioctl's mapping or a GTT mapping.
1221
 */
1222
int
1223
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1224
			  struct drm_file *file)
1225
{
1226
	struct drm_i915_gem_set_domain *args = data;
1227
	struct drm_i915_gem_object *obj;
1228
	uint32_t read_domains = args->read_domains;
1229
	uint32_t write_domain = args->write_domain;
1230
	int ret;
2332 Serge 1231
 
3260 Serge 1232
	/* Only handle setting domains to types used by the CPU. */
1233
	if (write_domain & I915_GEM_GPU_DOMAINS)
1234
		return -EINVAL;
2332 Serge 1235
 
3260 Serge 1236
	if (read_domains & I915_GEM_GPU_DOMAINS)
1237
		return -EINVAL;
2332 Serge 1238
 
3260 Serge 1239
	/* Having something in the write domain implies it's in the read
1240
	 * domain, and only that read domain.  Enforce that in the request.
1241
	 */
1242
	if (write_domain != 0 && read_domains != write_domain)
1243
		return -EINVAL;
2332 Serge 1244
 
3260 Serge 1245
	ret = i915_mutex_lock_interruptible(dev);
1246
	if (ret)
1247
		return ret;
2332 Serge 1248
 
3260 Serge 1249
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1250
	if (&obj->base == NULL) {
1251
		ret = -ENOENT;
1252
		goto unlock;
1253
	}
2332 Serge 1254
 
3260 Serge 1255
	/* Try to flush the object off the GPU without holding the lock.
1256
	 * We will repeat the flush holding the lock in the normal manner
1257
	 * to catch cases where we are gazumped.
1258
	 */
1259
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1260
	if (ret)
1261
		goto unref;
2332 Serge 1262
 
3260 Serge 1263
	if (read_domains & I915_GEM_DOMAIN_GTT) {
1264
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
2332 Serge 1265
 
3260 Serge 1266
		/* Silently promote "you're not bound, there was nothing to do"
1267
		 * to success, since the client was just asking us to
1268
		 * make sure everything was done.
1269
		 */
1270
		if (ret == -EINVAL)
1271
			ret = 0;
1272
	} else {
1273
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1274
	}
2332 Serge 1275
 
3260 Serge 1276
unref:
1277
	drm_gem_object_unreference(&obj->base);
1278
unlock:
1279
	mutex_unlock(&dev->struct_mutex);
1280
	return ret;
1281
}
2332 Serge 1282
 
1283
 
1284
 
1285
 
1286
 
1287
 
3260 Serge 1288
/**
1289
 * Maps the contents of an object, returning the address it is mapped
1290
 * into.
1291
 *
1292
 * While the mapping holds a reference on the contents of the object, it doesn't
1293
 * imply a ref on the object itself.
1294
 */
1295
int
1296
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1297
		    struct drm_file *file)
1298
{
1299
	struct drm_i915_gem_mmap *args = data;
1300
	struct drm_gem_object *obj;
1301
	unsigned long addr = 0;
2332 Serge 1302
 
3260 Serge 1303
	obj = drm_gem_object_lookup(dev, file, args->handle);
1304
	if (obj == NULL)
1305
		return -ENOENT;
1306
 
3263 Serge 1307
    dbgprintf("%s offset %lld size %lld\n",
1308
                __FUNCTION__, args->offset, args->size);
3260 Serge 1309
	/* prime objects have no backing filp to GEM mmap
1310
	 * pages from.
1311
	 */
1312
	if (!obj->filp) {
1313
		drm_gem_object_unreference_unlocked(obj);
1314
		return -EINVAL;
1315
	}
2332 Serge 1316
 
3263 Serge 1317
    addr = vm_mmap(obj->filp, 0, args->size,
1318
              PROT_READ | PROT_WRITE, MAP_SHARED,
1319
              args->offset);
3260 Serge 1320
	drm_gem_object_unreference_unlocked(obj);
3263 Serge 1321
    if (IS_ERR((void *)addr))
1322
        return addr;
2332 Serge 1323
 
3260 Serge 1324
	args->addr_ptr = (uint64_t) addr;
2332 Serge 1325
 
3263 Serge 1326
    return 0;
3260 Serge 1327
}
2332 Serge 1328
 
1329
 
1330
 
1331
 
1332
 
1333
 
1334
 
1335
 
3031 serge 1336
 
1337
 
1338
 
1339
 
1340
 
1341
/**
1342
 * i915_gem_release_mmap - remove physical page mappings
1343
 * @obj: obj in question
1344
 *
1345
 * Preserve the reservation of the mmapping with the DRM core code, but
1346
 * relinquish ownership of the pages back to the system.
1347
 *
1348
 * It is vital that we remove the page mapping if we have mapped a tiled
1349
 * object through the GTT and then lose the fence register due to
1350
 * resource pressure. Similarly if the object has been moved out of the
1351
 * aperture, than pages mapped into userspace must be revoked. Removing the
1352
 * mapping will then trigger a page fault on the next user access, allowing
1353
 * fixup by i915_gem_fault().
1354
 */
1355
void
1356
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1357
{
1358
	if (!obj->fault_mappable)
1359
		return;
1360
 
1361
	if (obj->base.dev->dev_mapping)
1362
//		unmap_mapping_range(obj->base.dev->dev_mapping,
1363
//				    (loff_t)obj->base.map_list.hash.key<
1364
//				    obj->base.size, 1);
1365
 
1366
	obj->fault_mappable = false;
1367
}
1368
 
2332 Serge 1369
static uint32_t
1370
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1371
{
1372
	uint32_t gtt_size;
1373
 
1374
	if (INTEL_INFO(dev)->gen >= 4 ||
1375
	    tiling_mode == I915_TILING_NONE)
1376
		return size;
1377
 
1378
	/* Previous chips need a power-of-two fence region when tiling */
1379
	if (INTEL_INFO(dev)->gen == 3)
1380
		gtt_size = 1024*1024;
1381
	else
1382
		gtt_size = 512*1024;
1383
 
1384
	while (gtt_size < size)
1385
		gtt_size <<= 1;
1386
 
1387
	return gtt_size;
1388
}
1389
 
1390
/**
1391
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1392
 * @obj: object to check
1393
 *
1394
 * Return the required GTT alignment for an object, taking into account
1395
 * potential fence register mapping.
1396
 */
1397
static uint32_t
1398
i915_gem_get_gtt_alignment(struct drm_device *dev,
1399
			   uint32_t size,
1400
			   int tiling_mode)
1401
{
1402
	/*
1403
	 * Minimum alignment is 4k (GTT page size), but might be greater
1404
	 * if a fence register is needed for the object.
1405
	 */
1406
	if (INTEL_INFO(dev)->gen >= 4 ||
1407
	    tiling_mode == I915_TILING_NONE)
1408
		return 4096;
1409
 
1410
	/*
1411
	 * Previous chips need to be aligned to the size of the smallest
1412
	 * fence register that can contain the object.
1413
	 */
1414
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1415
}
1416
 
1417
/**
1418
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1419
 *					 unfenced object
1420
 * @dev: the device
1421
 * @size: size of the object
1422
 * @tiling_mode: tiling mode of the object
1423
 *
1424
 * Return the required GTT alignment for an object, only taking into account
1425
 * unfenced tiled surface requirements.
1426
 */
1427
uint32_t
1428
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1429
				    uint32_t size,
1430
				    int tiling_mode)
1431
{
1432
	/*
1433
	 * Minimum alignment is 4k (GTT page size) for sane hw.
1434
	 */
1435
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1436
	    tiling_mode == I915_TILING_NONE)
1437
		return 4096;
1438
 
1439
	/* Previous hardware however needs to be aligned to a power-of-two
1440
	 * tile height. The simplest method for determining this is to reuse
1441
	 * the power-of-tile object size.
1442
	 */
1443
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1444
}
1445
 
3031 serge 1446
/* Immediately discard the backing storage */
1447
static void
1448
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1449
{
1450
//	struct inode *inode;
2332 Serge 1451
 
3031 serge 1452
//	i915_gem_object_free_mmap_offset(obj);
2332 Serge 1453
 
3263 Serge 1454
	if (obj->base.filp == NULL)
1455
		return;
2332 Serge 1456
 
3031 serge 1457
	/* Our goal here is to return as much of the memory as
1458
	 * is possible back to the system as we are called from OOM.
1459
	 * To do this we must instruct the shmfs to drop all of its
1460
	 * backing pages, *now*.
1461
	 */
1462
//	inode = obj->base.filp->f_path.dentry->d_inode;
1463
//	shmem_truncate_range(inode, 0, (loff_t)-1);
2332 Serge 1464
 
3031 serge 1465
	obj->madv = __I915_MADV_PURGED;
1466
}
2332 Serge 1467
 
3031 serge 1468
static inline int
1469
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1470
{
1471
	return obj->madv == I915_MADV_DONTNEED;
1472
}
2332 Serge 1473
 
3031 serge 1474
static void
1475
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1476
{
3243 Serge 1477
	int page_count = obj->base.size / PAGE_SIZE;
1478
	struct scatterlist *sg;
3031 serge 1479
	int ret, i;
2332 Serge 1480
 
3031 serge 1481
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2332 Serge 1482
 
3031 serge 1483
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1484
	if (ret) {
1485
		/* In the event of a disaster, abandon all caches and
1486
		 * hope for the best.
1487
		 */
1488
		WARN_ON(ret != -EIO);
1489
		i915_gem_clflush_object(obj);
1490
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1491
	}
2332 Serge 1492
 
3031 serge 1493
	if (obj->madv == I915_MADV_DONTNEED)
1494
		obj->dirty = 0;
2332 Serge 1495
 
3243 Serge 1496
	for_each_sg(obj->pages->sgl, sg, page_count, i) {
1497
		struct page *page = sg_page(sg);
2332 Serge 1498
 
3243 Serge 1499
 
1500
 
3263 Serge 1501
//       page_cache_release(page);
3243 Serge 1502
	}
1503
    //DRM_DEBUG_KMS("%s release %d pages\n", __FUNCTION__, page_count);
3031 serge 1504
	obj->dirty = 0;
3243 Serge 1505
 
1506
	sg_free_table(obj->pages);
1507
	kfree(obj->pages);
3031 serge 1508
}
2332 Serge 1509
 
3031 serge 1510
static int
1511
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1512
{
1513
	const struct drm_i915_gem_object_ops *ops = obj->ops;
2332 Serge 1514
 
3243 Serge 1515
	if (obj->pages == NULL)
3031 serge 1516
		return 0;
2332 Serge 1517
 
3031 serge 1518
	BUG_ON(obj->gtt_space);
1519
 
1520
	if (obj->pages_pin_count)
1521
		return -EBUSY;
1522
 
3243 Serge 1523
	/* ->put_pages might need to allocate memory for the bit17 swizzle
1524
	 * array, hence protect them from being reaped by removing them from gtt
1525
	 * lists early. */
1526
	list_del(&obj->gtt_list);
1527
 
3031 serge 1528
	ops->put_pages(obj);
3243 Serge 1529
	obj->pages = NULL;
3031 serge 1530
 
1531
	if (i915_gem_object_is_purgeable(obj))
1532
		i915_gem_object_truncate(obj);
1533
 
1534
	return 0;
1535
}
1536
 
1537
 
1538
 
1539
 
1540
 
1541
 
1542
 
1543
 
2332 Serge 1544
static int
3031 serge 1545
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 Serge 1546
{
3260 Serge 1547
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 Serge 1548
    int page_count, i;
3260 Serge 1549
	struct address_space *mapping;
3243 Serge 1550
	struct sg_table *st;
1551
	struct scatterlist *sg;
1552
	struct page *page;
1553
	gfp_t gfp;
2332 Serge 1554
 
3243 Serge 1555
	/* Assert that the object is not currently in any GPU domain. As it
1556
	 * wasn't in the GTT, there shouldn't be any way it could have been in
1557
	 * a GPU cache
2332 Serge 1558
	 */
3243 Serge 1559
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1560
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1561
 
1562
	st = kmalloc(sizeof(*st), GFP_KERNEL);
1563
	if (st == NULL)
1564
		return -ENOMEM;
1565
 
2332 Serge 1566
	page_count = obj->base.size / PAGE_SIZE;
3243 Serge 1567
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1568
		sg_free_table(st);
1569
		kfree(st);
2332 Serge 1570
		return -ENOMEM;
3243 Serge 1571
	}
2332 Serge 1572
 
3243 Serge 1573
	/* Get the list of pages out of our struct file.  They'll be pinned
1574
	 * at this point until we release them.
1575
	 *
1576
	 * Fail silently without starting the shrinker
1577
	 */
1578
	for_each_sg(st->sgl, sg, page_count, i) {
3260 Serge 1579
		page = shmem_read_mapping_page_gfp(obj->base.filp, i, gfp);
1580
		if (IS_ERR(page)) {
1581
            dbgprintf("%s invalid page %p\n", __FUNCTION__, page);
2332 Serge 1582
			goto err_pages;
1583
 
3260 Serge 1584
		}
3243 Serge 1585
		sg_set_page(sg, page, PAGE_SIZE, 0);
1586
	}
3031 serge 1587
 
3243 Serge 1588
	obj->pages = st;
3031 serge 1589
 
3260 Serge 1590
    DRM_DEBUG_KMS("%s alloc %d pages\n", __FUNCTION__, page_count);
2332 Serge 1591
 
1592
	return 0;
1593
 
1594
err_pages:
3243 Serge 1595
	for_each_sg(st->sgl, sg, i, page_count)
1596
		page_cache_release(sg_page(sg));
1597
	sg_free_table(st);
1598
	kfree(st);
1599
	return PTR_ERR(page);
2332 Serge 1600
}
1601
 
3031 serge 1602
/* Ensure that the associated pages are gathered from the backing storage
1603
 * and pinned into our object. i915_gem_object_get_pages() may be called
1604
 * multiple times before they are released by a single call to
1605
 * i915_gem_object_put_pages() - once the pages are no longer referenced
1606
 * either as a result of memory pressure (reaping pages under the shrinker)
1607
 * or as the object is itself released.
1608
 */
1609
int
1610
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2332 Serge 1611
{
3031 serge 1612
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1613
	const struct drm_i915_gem_object_ops *ops = obj->ops;
1614
	int ret;
2332 Serge 1615
 
3243 Serge 1616
	if (obj->pages)
3031 serge 1617
		return 0;
2332 Serge 1618
 
3031 serge 1619
	BUG_ON(obj->pages_pin_count);
2332 Serge 1620
 
3031 serge 1621
	ret = ops->get_pages(obj);
1622
	if (ret)
1623
		return ret;
2344 Serge 1624
 
3031 serge 1625
	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
3243 Serge 1626
    return 0;
2332 Serge 1627
}
1628
 
1629
void
1630
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
3243 Serge 1631
			       struct intel_ring_buffer *ring)
2332 Serge 1632
{
1633
	struct drm_device *dev = obj->base.dev;
1634
	struct drm_i915_private *dev_priv = dev->dev_private;
3243 Serge 1635
	u32 seqno = intel_ring_get_seqno(ring);
2332 Serge 1636
 
1637
	BUG_ON(ring == NULL);
1638
	obj->ring = ring;
1639
 
1640
	/* Add a reference if we're newly entering the active list. */
1641
	if (!obj->active) {
2344 Serge 1642
		drm_gem_object_reference(&obj->base);
2332 Serge 1643
		obj->active = 1;
1644
	}
1645
 
1646
	/* Move from whatever list we were on to the tail of execution. */
1647
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1648
	list_move_tail(&obj->ring_list, &ring->active_list);
1649
 
3031 serge 1650
	obj->last_read_seqno = seqno;
1651
 
2332 Serge 1652
	if (obj->fenced_gpu_access) {
3031 serge 1653
		obj->last_fenced_seqno = seqno;
1654
 
1655
		/* Bump MRU to take account of the delayed flush */
1656
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2332 Serge 1657
		struct drm_i915_fence_reg *reg;
1658
 
1659
		reg = &dev_priv->fence_regs[obj->fence_reg];
3031 serge 1660
			list_move_tail(®->lru_list,
1661
				       &dev_priv->mm.fence_list);
1662
		}
2332 Serge 1663
	}
1664
}
1665
 
2344 Serge 1666
static void
3031 serge 1667
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2344 Serge 1668
{
1669
	struct drm_device *dev = obj->base.dev;
3031 serge 1670
	struct drm_i915_private *dev_priv = dev->dev_private;
2332 Serge 1671
 
3031 serge 1672
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2344 Serge 1673
	BUG_ON(!obj->active);
2332 Serge 1674
 
3031 serge 1675
	if (obj->pin_count) /* are we a framebuffer? */
1676
		intel_mark_fb_idle(obj);
2344 Serge 1677
 
2352 Serge 1678
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2344 Serge 1679
 
3031 serge 1680
	list_del_init(&obj->ring_list);
2352 Serge 1681
	obj->ring = NULL;
2344 Serge 1682
 
3031 serge 1683
	obj->last_read_seqno = 0;
1684
	obj->last_write_seqno = 0;
1685
	obj->base.write_domain = 0;
1686
 
1687
	obj->last_fenced_seqno = 0;
2352 Serge 1688
	obj->fenced_gpu_access = false;
2344 Serge 1689
 
2352 Serge 1690
	obj->active = 0;
1691
	drm_gem_object_unreference(&obj->base);
1692
 
1693
	WARN_ON(i915_verify_lists(dev));
1694
}
1695
 
3243 Serge 1696
static int
1697
i915_gem_handle_seqno_wrap(struct drm_device *dev)
2344 Serge 1698
{
3243 Serge 1699
	struct drm_i915_private *dev_priv = dev->dev_private;
1700
	struct intel_ring_buffer *ring;
1701
	int ret, i, j;
2344 Serge 1702
 
3243 Serge 1703
	/* The hardware uses various monotonic 32-bit counters, if we
1704
	 * detect that they will wraparound we need to idle the GPU
1705
	 * and reset those counters.
1706
	 */
1707
	ret = 0;
1708
	for_each_ring(ring, dev_priv, i) {
1709
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1710
			ret |= ring->sync_seqno[j] != 0;
1711
	}
1712
	if (ret == 0)
1713
		return ret;
2344 Serge 1714
 
3243 Serge 1715
	ret = i915_gpu_idle(dev);
1716
	if (ret)
1717
		return ret;
1718
 
1719
	i915_gem_retire_requests(dev);
1720
	for_each_ring(ring, dev_priv, i) {
1721
		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1722
			ring->sync_seqno[j] = 0;
1723
	}
1724
 
1725
	return 0;
2344 Serge 1726
}
1727
 
3243 Serge 1728
int
1729
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2344 Serge 1730
{
3243 Serge 1731
	struct drm_i915_private *dev_priv = dev->dev_private;
2344 Serge 1732
 
3243 Serge 1733
	/* reserve 0 for non-seqno */
1734
	if (dev_priv->next_seqno == 0) {
1735
		int ret = i915_gem_handle_seqno_wrap(dev);
1736
		if (ret)
1737
			return ret;
1738
 
1739
		dev_priv->next_seqno = 1;
1740
	}
1741
 
1742
	*seqno = dev_priv->next_seqno++;
1743
	return 0;
2332 Serge 1744
}
1745
 
2352 Serge 1746
int
1747
i915_add_request(struct intel_ring_buffer *ring,
1748
		 struct drm_file *file,
3031 serge 1749
		 u32 *out_seqno)
2352 Serge 1750
{
1751
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
3031 serge 1752
	struct drm_i915_gem_request *request;
1753
	u32 request_ring_position;
2352 Serge 1754
	int was_empty;
1755
	int ret;
2332 Serge 1756
 
3031 serge 1757
	/*
1758
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1759
	 * after having emitted the batchbuffer command. Hence we need to fix
1760
	 * things up similar to emitting the lazy request. The difference here
1761
	 * is that the flush _must_ happen before the next request, no matter
1762
	 * what.
1763
	 */
1764
	ret = intel_ring_flush_all_caches(ring);
1765
	if (ret)
1766
		return ret;
2332 Serge 1767
 
3031 serge 1768
	request = kmalloc(sizeof(*request), GFP_KERNEL);
1769
	if (request == NULL)
1770
		return -ENOMEM;
1771
 
1772
 
1773
	/* Record the position of the start of the request so that
1774
	 * should we detect the updated seqno part-way through the
1775
	 * GPU processing the request, we never over-estimate the
1776
	 * position of the head.
1777
	 */
1778
	request_ring_position = intel_ring_get_tail(ring);
1779
 
3243 Serge 1780
	ret = ring->add_request(ring);
3031 serge 1781
	if (ret) {
1782
		kfree(request);
2352 Serge 1783
	    return ret;
3031 serge 1784
	}
2332 Serge 1785
 
3243 Serge 1786
	request->seqno = intel_ring_get_seqno(ring);
2352 Serge 1787
	request->ring = ring;
3031 serge 1788
	request->tail = request_ring_position;
1789
    request->emitted_jiffies = GetTimerTicks();
2352 Serge 1790
	was_empty = list_empty(&ring->request_list);
1791
	list_add_tail(&request->list, &ring->request_list);
3031 serge 1792
	request->file_priv = NULL;
2332 Serge 1793
 
3263 Serge 1794
	if (file) {
1795
		struct drm_i915_file_private *file_priv = file->driver_priv;
2332 Serge 1796
 
3263 Serge 1797
		spin_lock(&file_priv->mm.lock);
1798
		request->file_priv = file_priv;
1799
		list_add_tail(&request->client_list,
1800
			      &file_priv->mm.request_list);
1801
		spin_unlock(&file_priv->mm.lock);
1802
	}
1803
 
1804
	trace_i915_gem_request_add(ring, request->seqno);
3031 serge 1805
	ring->outstanding_lazy_request = 0;
2332 Serge 1806
 
2360 Serge 1807
	if (!dev_priv->mm.suspended) {
1808
		if (i915_enable_hangcheck) {
2352 Serge 1809
//			mod_timer(&dev_priv->hangcheck_timer,
1810
//				  jiffies +
1811
//				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2360 Serge 1812
		}
3031 serge 1813
		if (was_empty) {
2360 Serge 1814
           queue_delayed_work(dev_priv->wq,
1815
                      &dev_priv->mm.retire_work, HZ);
3031 serge 1816
			intel_mark_busy(dev_priv->dev);
1817
		}
2360 Serge 1818
	}
3031 serge 1819
 
1820
	if (out_seqno)
3243 Serge 1821
		*out_seqno = request->seqno;
2352 Serge 1822
	return 0;
1823
}
2332 Serge 1824
 
3263 Serge 1825
static inline void
1826
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1827
{
1828
	struct drm_i915_file_private *file_priv = request->file_priv;
2332 Serge 1829
 
3263 Serge 1830
	if (!file_priv)
1831
		return;
2332 Serge 1832
 
3263 Serge 1833
	spin_lock(&file_priv->mm.lock);
1834
	if (request->file_priv) {
1835
		list_del(&request->client_list);
1836
		request->file_priv = NULL;
1837
	}
1838
	spin_unlock(&file_priv->mm.lock);
1839
}
2332 Serge 1840
 
3031 serge 1841
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1842
				      struct intel_ring_buffer *ring)
1843
{
1844
	while (!list_empty(&ring->request_list)) {
1845
		struct drm_i915_gem_request *request;
2332 Serge 1846
 
3031 serge 1847
		request = list_first_entry(&ring->request_list,
1848
					   struct drm_i915_gem_request,
1849
					   list);
2332 Serge 1850
 
3031 serge 1851
		list_del(&request->list);
3263 Serge 1852
		i915_gem_request_remove_from_client(request);
3031 serge 1853
		kfree(request);
1854
	}
2332 Serge 1855
 
3031 serge 1856
	while (!list_empty(&ring->active_list)) {
1857
		struct drm_i915_gem_object *obj;
2332 Serge 1858
 
3031 serge 1859
		obj = list_first_entry(&ring->active_list,
1860
				       struct drm_i915_gem_object,
1861
				       ring_list);
2332 Serge 1862
 
3031 serge 1863
		i915_gem_object_move_to_inactive(obj);
1864
	}
1865
}
2332 Serge 1866
 
3031 serge 1867
static void i915_gem_reset_fences(struct drm_device *dev)
1868
{
1869
	struct drm_i915_private *dev_priv = dev->dev_private;
1870
	int i;
2332 Serge 1871
 
3031 serge 1872
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1873
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2332 Serge 1874
 
3031 serge 1875
		i915_gem_write_fence(dev, i, NULL);
2360 Serge 1876
 
3031 serge 1877
		if (reg->obj)
1878
			i915_gem_object_fence_lost(reg->obj);
2360 Serge 1879
 
3031 serge 1880
		reg->pin_count = 0;
1881
		reg->obj = NULL;
1882
		INIT_LIST_HEAD(®->lru_list);
1883
	}
2360 Serge 1884
 
3031 serge 1885
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1886
}
2360 Serge 1887
 
3031 serge 1888
void i915_gem_reset(struct drm_device *dev)
1889
{
1890
	struct drm_i915_private *dev_priv = dev->dev_private;
1891
	struct drm_i915_gem_object *obj;
1892
	struct intel_ring_buffer *ring;
1893
	int i;
2360 Serge 1894
 
3031 serge 1895
	for_each_ring(ring, dev_priv, i)
1896
		i915_gem_reset_ring_lists(dev_priv, ring);
2360 Serge 1897
 
3031 serge 1898
	/* Move everything out of the GPU domains to ensure we do any
1899
	 * necessary invalidation upon reuse.
1900
	 */
1901
	list_for_each_entry(obj,
1902
			    &dev_priv->mm.inactive_list,
1903
			    mm_list)
1904
	{
1905
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1906
	}
2360 Serge 1907
 
3031 serge 1908
	/* The fence registers are invalidated so clear them out */
1909
	i915_gem_reset_fences(dev);
1910
}
2360 Serge 1911
 
2352 Serge 1912
/**
1913
 * This function clears the request list as sequence numbers are passed.
1914
 */
3031 serge 1915
void
2352 Serge 1916
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1917
{
1918
	uint32_t seqno;
2332 Serge 1919
 
3263 Serge 1920
    ENTER();
1921
 
2352 Serge 1922
	if (list_empty(&ring->request_list))
1923
		return;
2332 Serge 1924
 
2352 Serge 1925
	WARN_ON(i915_verify_lists(ring->dev));
2332 Serge 1926
 
3031 serge 1927
	seqno = ring->get_seqno(ring, true);
2332 Serge 1928
 
2352 Serge 1929
	while (!list_empty(&ring->request_list)) {
1930
		struct drm_i915_gem_request *request;
2332 Serge 1931
 
2352 Serge 1932
		request = list_first_entry(&ring->request_list,
1933
					   struct drm_i915_gem_request,
1934
					   list);
2332 Serge 1935
 
2352 Serge 1936
		if (!i915_seqno_passed(seqno, request->seqno))
1937
			break;
2332 Serge 1938
 
2352 Serge 1939
		trace_i915_gem_request_retire(ring, request->seqno);
3031 serge 1940
		/* We know the GPU must have read the request to have
1941
		 * sent us the seqno + interrupt, so use the position
1942
		 * of tail of the request to update the last known position
1943
		 * of the GPU head.
1944
		 */
1945
		ring->last_retired_head = request->tail;
2332 Serge 1946
 
2352 Serge 1947
		list_del(&request->list);
3263 Serge 1948
		i915_gem_request_remove_from_client(request);
2352 Serge 1949
		kfree(request);
1950
	}
2332 Serge 1951
 
2352 Serge 1952
	/* Move any buffers on the active list that are no longer referenced
1953
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
1954
	 */
1955
	while (!list_empty(&ring->active_list)) {
1956
		struct drm_i915_gem_object *obj;
2332 Serge 1957
 
2352 Serge 1958
		obj = list_first_entry(&ring->active_list,
1959
				      struct drm_i915_gem_object,
1960
				      ring_list);
2332 Serge 1961
 
3031 serge 1962
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2352 Serge 1963
			break;
2332 Serge 1964
 
2352 Serge 1965
			i915_gem_object_move_to_inactive(obj);
1966
	}
2332 Serge 1967
 
2352 Serge 1968
	if (unlikely(ring->trace_irq_seqno &&
1969
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1970
		ring->irq_put(ring);
1971
		ring->trace_irq_seqno = 0;
1972
	}
2332 Serge 1973
 
2352 Serge 1974
	WARN_ON(i915_verify_lists(ring->dev));
3263 Serge 1975
    LEAVE();
2352 Serge 1976
}
2332 Serge 1977
 
2352 Serge 1978
void
1979
i915_gem_retire_requests(struct drm_device *dev)
1980
{
1981
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 1982
	struct intel_ring_buffer *ring;
2352 Serge 1983
	int i;
2332 Serge 1984
 
3031 serge 1985
	for_each_ring(ring, dev_priv, i)
1986
		i915_gem_retire_requests_ring(ring);
2352 Serge 1987
}
1988
 
2360 Serge 1989
static void
1990
i915_gem_retire_work_handler(struct work_struct *work)
1991
{
1992
	drm_i915_private_t *dev_priv;
1993
	struct drm_device *dev;
3031 serge 1994
	struct intel_ring_buffer *ring;
2360 Serge 1995
	bool idle;
1996
	int i;
2352 Serge 1997
 
3263 Serge 1998
    ENTER();
1999
 
2360 Serge 2000
	dev_priv = container_of(work, drm_i915_private_t,
2001
				mm.retire_work.work);
2002
	dev = dev_priv->dev;
2352 Serge 2003
 
2360 Serge 2004
	/* Come back later if the device is busy... */
2005
	if (!mutex_trylock(&dev->struct_mutex)) {
2006
        queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
3243 Serge 2007
        return;
2360 Serge 2008
	}
2352 Serge 2009
 
2360 Serge 2010
	i915_gem_retire_requests(dev);
2352 Serge 2011
 
2360 Serge 2012
	/* Send a periodic flush down the ring so we don't hold onto GEM
2013
	 * objects indefinitely.
2014
	 */
2015
	idle = true;
3031 serge 2016
	for_each_ring(ring, dev_priv, i) {
2017
		if (ring->gpu_caches_dirty)
2018
			i915_add_request(ring, NULL, NULL);
2352 Serge 2019
 
2360 Serge 2020
		idle &= list_empty(&ring->request_list);
2021
	}
2352 Serge 2022
 
2360 Serge 2023
   if (!dev_priv->mm.suspended && !idle)
2024
       queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
3031 serge 2025
	if (idle)
2026
		intel_mark_idle(dev);
2360 Serge 2027
 
2028
	mutex_unlock(&dev->struct_mutex);
3263 Serge 2029
 
2030
    LEAVE();
2360 Serge 2031
}
2032
 
2344 Serge 2033
/**
3031 serge 2034
 * Ensures that an object will eventually get non-busy by flushing any required
2035
 * write domains, emitting any outstanding lazy request and retiring and
2036
 * completed requests.
2352 Serge 2037
 */
3031 serge 2038
static int
2039
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2352 Serge 2040
{
3031 serge 2041
	int ret;
2352 Serge 2042
 
3031 serge 2043
	if (obj->active) {
2044
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2045
		if (ret)
2046
			return ret;
2352 Serge 2047
 
3031 serge 2048
		i915_gem_retire_requests_ring(obj->ring);
2049
	}
2352 Serge 2050
 
3031 serge 2051
	return 0;
2052
}
2352 Serge 2053
 
3243 Serge 2054
/**
2055
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2056
 * @DRM_IOCTL_ARGS: standard ioctl arguments
2057
 *
2058
 * Returns 0 if successful, else an error is returned with the remaining time in
2059
 * the timeout parameter.
2060
 *  -ETIME: object is still busy after timeout
2061
 *  -ERESTARTSYS: signal interrupted the wait
2062
 *  -ENONENT: object doesn't exist
2063
 * Also possible, but rare:
2064
 *  -EAGAIN: GPU wedged
2065
 *  -ENOMEM: damn
2066
 *  -ENODEV: Internal IRQ fail
2067
 *  -E?: The add request failed
2068
 *
2069
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2070
 * non-zero timeout parameter the wait ioctl will wait for the given number of
2071
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2072
 * without holding struct_mutex the object may become re-busied before this
2073
 * function completes. A similar but shorter * race condition exists in the busy
2074
 * ioctl
2075
 */
2352 Serge 2076
 
2077
 
2078
 
2079
 
2080
 
2081
 
2082
 
2083
 
2084
 
3243 Serge 2085
 
2086
 
2087
 
2352 Serge 2088
/**
3031 serge 2089
 * i915_gem_object_sync - sync an object to a ring.
2090
 *
2091
 * @obj: object which may be in use on another ring.
2092
 * @to: ring we wish to use the object on. May be NULL.
2093
 *
2094
 * This code is meant to abstract object synchronization with the GPU.
2095
 * Calling with NULL implies synchronizing the object with the CPU
2096
 * rather than a particular GPU ring.
2097
 *
2098
 * Returns 0 if successful, else propagates up the lower layer error.
2344 Serge 2099
 */
2100
int
3031 serge 2101
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2102
		     struct intel_ring_buffer *to)
2344 Serge 2103
{
3031 serge 2104
	struct intel_ring_buffer *from = obj->ring;
2105
	u32 seqno;
2106
	int ret, idx;
2332 Serge 2107
 
3031 serge 2108
	if (from == NULL || to == from)
2109
		return 0;
2332 Serge 2110
 
3031 serge 2111
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2112
		return i915_gem_object_wait_rendering(obj, false);
2332 Serge 2113
 
3031 serge 2114
	idx = intel_ring_sync_index(from, to);
2115
 
2116
	seqno = obj->last_read_seqno;
2117
	if (seqno <= from->sync_seqno[idx])
2118
		return 0;
2119
 
2120
	ret = i915_gem_check_olr(obj->ring, seqno);
2121
	if (ret)
2122
		return ret;
2123
 
2124
	ret = to->sync_to(to, from, seqno);
2125
	if (!ret)
3243 Serge 2126
		/* We use last_read_seqno because sync_to()
2127
		 * might have just caused seqno wrap under
2128
		 * the radar.
2129
		 */
2130
		from->sync_seqno[idx] = obj->last_read_seqno;
3031 serge 2131
 
2132
	return ret;
2344 Serge 2133
}
2332 Serge 2134
 
2344 Serge 2135
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2136
{
2137
	u32 old_write_domain, old_read_domains;
2332 Serge 2138
 
2344 Serge 2139
	/* Act a barrier for all accesses through the GTT */
2140
	mb();
2332 Serge 2141
 
2344 Serge 2142
	/* Force a pagefault for domain tracking on next user access */
2143
//	i915_gem_release_mmap(obj);
2332 Serge 2144
 
2344 Serge 2145
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2146
		return;
2332 Serge 2147
 
2344 Serge 2148
	old_read_domains = obj->base.read_domains;
2149
	old_write_domain = obj->base.write_domain;
2351 Serge 2150
 
2344 Serge 2151
	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2152
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2332 Serge 2153
 
2351 Serge 2154
	trace_i915_gem_object_change_domain(obj,
2155
					    old_read_domains,
2156
					    old_write_domain);
2344 Serge 2157
}
2332 Serge 2158
 
2344 Serge 2159
/**
2160
 * Unbinds an object from the GTT aperture.
2161
 */
2162
int
2163
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2164
{
3031 serge 2165
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2344 Serge 2166
	int ret = 0;
2332 Serge 2167
 
3263 Serge 2168
    if(obj == get_fb_obj())
2169
        return 0;
2170
 
2344 Serge 2171
	if (obj->gtt_space == NULL)
2172
		return 0;
2332 Serge 2173
 
3031 serge 2174
	if (obj->pin_count)
2175
		return -EBUSY;
2332 Serge 2176
 
3243 Serge 2177
	BUG_ON(obj->pages == NULL);
3031 serge 2178
 
2344 Serge 2179
	ret = i915_gem_object_finish_gpu(obj);
3031 serge 2180
	if (ret)
2344 Serge 2181
		return ret;
2182
	/* Continue on if we fail due to EIO, the GPU is hung so we
2183
	 * should be safe and we need to cleanup or else we might
2184
	 * cause memory corruption through use-after-free.
2185
	 */
2332 Serge 2186
 
2344 Serge 2187
	i915_gem_object_finish_gtt(obj);
2332 Serge 2188
 
2344 Serge 2189
	/* release the fence reg _after_ flushing */
2190
	ret = i915_gem_object_put_fence(obj);
3031 serge 2191
	if (ret)
2344 Serge 2192
		return ret;
2332 Serge 2193
 
2351 Serge 2194
	trace_i915_gem_object_unbind(obj);
2332 Serge 2195
 
3031 serge 2196
	if (obj->has_global_gtt_mapping)
3243 Serge 2197
        i915_gem_gtt_unbind_object(obj);
3031 serge 2198
	if (obj->has_aliasing_ppgtt_mapping) {
2199
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2200
		obj->has_aliasing_ppgtt_mapping = 0;
2201
	}
2202
	i915_gem_gtt_finish_object(obj);
2332 Serge 2203
 
3031 serge 2204
	list_del(&obj->mm_list);
2205
	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2344 Serge 2206
	/* Avoid an unnecessary call to unbind on rebind. */
2207
	obj->map_and_fenceable = true;
2332 Serge 2208
 
2344 Serge 2209
	drm_mm_put_block(obj->gtt_space);
2210
	obj->gtt_space = NULL;
2211
	obj->gtt_offset = 0;
2332 Serge 2212
 
2344 Serge 2213
	return 0;
2214
}
2332 Serge 2215
 
3031 serge 2216
int i915_gpu_idle(struct drm_device *dev)
2344 Serge 2217
{
2218
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 2219
	struct intel_ring_buffer *ring;
2344 Serge 2220
	int ret, i;
2332 Serge 2221
 
2344 Serge 2222
	/* Flush everything onto the inactive list. */
3031 serge 2223
	for_each_ring(ring, dev_priv, i) {
2224
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2344 Serge 2225
		if (ret)
2226
			return ret;
3031 serge 2227
 
3243 Serge 2228
		ret = intel_ring_idle(ring);
3031 serge 2229
		if (ret)
2230
			return ret;
2344 Serge 2231
	}
2332 Serge 2232
 
2344 Serge 2233
	return 0;
2234
}
2332 Serge 2235
 
3031 serge 2236
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2237
					struct drm_i915_gem_object *obj)
2238
{
2239
	drm_i915_private_t *dev_priv = dev->dev_private;
2240
	uint64_t val;
2332 Serge 2241
 
3031 serge 2242
	if (obj) {
2243
		u32 size = obj->gtt_space->size;
2332 Serge 2244
 
3031 serge 2245
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2246
				 0xfffff000) << 32;
2247
		val |= obj->gtt_offset & 0xfffff000;
2248
		val |= (uint64_t)((obj->stride / 128) - 1) <<
2249
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2332 Serge 2250
 
3031 serge 2251
		if (obj->tiling_mode == I915_TILING_Y)
2252
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2253
		val |= I965_FENCE_REG_VALID;
2254
	} else
2255
		val = 0;
2332 Serge 2256
 
3031 serge 2257
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2258
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2259
}
2332 Serge 2260
 
3031 serge 2261
static void i965_write_fence_reg(struct drm_device *dev, int reg,
2262
				 struct drm_i915_gem_object *obj)
2263
{
2264
	drm_i915_private_t *dev_priv = dev->dev_private;
2265
	uint64_t val;
2332 Serge 2266
 
3031 serge 2267
	if (obj) {
2268
		u32 size = obj->gtt_space->size;
2332 Serge 2269
 
3031 serge 2270
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
2271
				 0xfffff000) << 32;
2272
		val |= obj->gtt_offset & 0xfffff000;
2273
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2274
		if (obj->tiling_mode == I915_TILING_Y)
2275
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2276
		val |= I965_FENCE_REG_VALID;
2277
	} else
2278
		val = 0;
2332 Serge 2279
 
3031 serge 2280
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2281
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2282
}
2332 Serge 2283
 
3031 serge 2284
static void i915_write_fence_reg(struct drm_device *dev, int reg,
2285
				 struct drm_i915_gem_object *obj)
2286
{
2287
	drm_i915_private_t *dev_priv = dev->dev_private;
2288
	u32 val;
2332 Serge 2289
 
3031 serge 2290
	if (obj) {
2291
		u32 size = obj->gtt_space->size;
2292
		int pitch_val;
2293
		int tile_width;
2332 Serge 2294
 
3031 serge 2295
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2296
		     (size & -size) != size ||
2297
		     (obj->gtt_offset & (size - 1)),
2298
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2299
		     obj->gtt_offset, obj->map_and_fenceable, size);
2332 Serge 2300
 
3031 serge 2301
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2302
			tile_width = 128;
2303
		else
2304
			tile_width = 512;
2332 Serge 2305
 
3031 serge 2306
		/* Note: pitch better be a power of two tile widths */
2307
		pitch_val = obj->stride / tile_width;
2308
		pitch_val = ffs(pitch_val) - 1;
2332 Serge 2309
 
3031 serge 2310
		val = obj->gtt_offset;
2311
		if (obj->tiling_mode == I915_TILING_Y)
2312
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2313
		val |= I915_FENCE_SIZE_BITS(size);
2314
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2315
		val |= I830_FENCE_REG_VALID;
2316
	} else
2317
		val = 0;
2332 Serge 2318
 
3031 serge 2319
	if (reg < 8)
2320
		reg = FENCE_REG_830_0 + reg * 4;
2321
	else
2322
		reg = FENCE_REG_945_8 + (reg - 8) * 4;
2332 Serge 2323
 
3031 serge 2324
	I915_WRITE(reg, val);
2325
	POSTING_READ(reg);
2326
}
2332 Serge 2327
 
3031 serge 2328
static void i830_write_fence_reg(struct drm_device *dev, int reg,
2329
				struct drm_i915_gem_object *obj)
2330
{
2331
	drm_i915_private_t *dev_priv = dev->dev_private;
2332
	uint32_t val;
2344 Serge 2333
 
3031 serge 2334
	if (obj) {
2335
		u32 size = obj->gtt_space->size;
2336
		uint32_t pitch_val;
2344 Serge 2337
 
3031 serge 2338
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2339
		     (size & -size) != size ||
2340
		     (obj->gtt_offset & (size - 1)),
2341
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2342
		     obj->gtt_offset, size);
2344 Serge 2343
 
3031 serge 2344
		pitch_val = obj->stride / 128;
2345
		pitch_val = ffs(pitch_val) - 1;
2344 Serge 2346
 
3031 serge 2347
		val = obj->gtt_offset;
2348
		if (obj->tiling_mode == I915_TILING_Y)
2349
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2350
		val |= I830_FENCE_SIZE_BITS(size);
2351
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2352
		val |= I830_FENCE_REG_VALID;
2353
	} else
2354
		val = 0;
2355
 
2356
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2357
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
2358
}
2359
 
2360
static void i915_gem_write_fence(struct drm_device *dev, int reg,
2361
				 struct drm_i915_gem_object *obj)
2332 Serge 2362
{
3031 serge 2363
	switch (INTEL_INFO(dev)->gen) {
2364
	case 7:
2365
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2366
	case 5:
2367
	case 4: i965_write_fence_reg(dev, reg, obj); break;
2368
	case 3: i915_write_fence_reg(dev, reg, obj); break;
2369
	case 2: i830_write_fence_reg(dev, reg, obj); break;
2370
	default: break;
2371
	}
2344 Serge 2372
}
2373
 
3031 serge 2374
static inline int fence_number(struct drm_i915_private *dev_priv,
2375
			       struct drm_i915_fence_reg *fence)
2344 Serge 2376
{
3031 serge 2377
	return fence - dev_priv->fence_regs;
2378
}
2332 Serge 2379
 
3031 serge 2380
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2381
					 struct drm_i915_fence_reg *fence,
2382
					 bool enable)
2383
{
2384
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2385
	int reg = fence_number(dev_priv, fence);
2332 Serge 2386
 
3031 serge 2387
	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2388
 
2389
	if (enable) {
2390
		obj->fence_reg = reg;
2391
		fence->obj = obj;
2392
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2393
	} else {
2394
		obj->fence_reg = I915_FENCE_REG_NONE;
2395
		fence->obj = NULL;
2396
		list_del_init(&fence->lru_list);
2344 Serge 2397
	}
3031 serge 2398
}
2344 Serge 2399
 
3031 serge 2400
static int
2401
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2402
{
2403
	if (obj->last_fenced_seqno) {
2404
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2352 Serge 2405
			if (ret)
2406
				return ret;
2344 Serge 2407
 
2408
		obj->last_fenced_seqno = 0;
2409
	}
2410
 
2411
	/* Ensure that all CPU reads are completed before installing a fence
2412
	 * and all writes before removing the fence.
2332 Serge 2413
	 */
2344 Serge 2414
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2415
		mb();
2332 Serge 2416
 
3031 serge 2417
	obj->fenced_gpu_access = false;
2332 Serge 2418
	return 0;
2419
}
2420
 
2421
int
2344 Serge 2422
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 Serge 2423
{
3031 serge 2424
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2332 Serge 2425
	int ret;
2426
 
3031 serge 2427
	ret = i915_gem_object_flush_fence(obj);
2332 Serge 2428
	if (ret)
2429
		return ret;
2430
 
3031 serge 2431
	if (obj->fence_reg == I915_FENCE_REG_NONE)
2432
		return 0;
2332 Serge 2433
 
3031 serge 2434
	i915_gem_object_update_fence(obj,
2435
				     &dev_priv->fence_regs[obj->fence_reg],
2436
				     false);
2437
	i915_gem_object_fence_lost(obj);
2344 Serge 2438
 
2332 Serge 2439
	return 0;
2440
}
2441
 
3031 serge 2442
static struct drm_i915_fence_reg *
2443
i915_find_fence_reg(struct drm_device *dev)
2444
{
2445
	struct drm_i915_private *dev_priv = dev->dev_private;
2446
	struct drm_i915_fence_reg *reg, *avail;
2447
	int i;
2332 Serge 2448
 
3031 serge 2449
	/* First try to find a free reg */
2450
	avail = NULL;
2451
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2452
		reg = &dev_priv->fence_regs[i];
2453
		if (!reg->obj)
2454
			return reg;
2332 Serge 2455
 
3031 serge 2456
		if (!reg->pin_count)
2457
			avail = reg;
2458
	}
2332 Serge 2459
 
3031 serge 2460
	if (avail == NULL)
2461
		return NULL;
2332 Serge 2462
 
3031 serge 2463
	/* None available, try to steal one or wait for a user to finish */
2464
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2465
		if (reg->pin_count)
2466
			continue;
2332 Serge 2467
 
3031 serge 2468
		return reg;
2469
	}
2332 Serge 2470
 
3031 serge 2471
	return NULL;
2472
}
2332 Serge 2473
 
3031 serge 2474
/**
2475
 * i915_gem_object_get_fence - set up fencing for an object
2476
 * @obj: object to map through a fence reg
2477
 *
2478
 * When mapping objects through the GTT, userspace wants to be able to write
2479
 * to them without having to worry about swizzling if the object is tiled.
2480
 * This function walks the fence regs looking for a free one for @obj,
2481
 * stealing one if it can't find any.
2482
 *
2483
 * It then sets up the reg based on the object's properties: address, pitch
2484
 * and tiling format.
2485
 *
2486
 * For an untiled surface, this removes any existing fence.
2487
 */
2488
int
2489
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2490
{
2491
	struct drm_device *dev = obj->base.dev;
2492
	struct drm_i915_private *dev_priv = dev->dev_private;
2493
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2494
	struct drm_i915_fence_reg *reg;
2495
	int ret;
2332 Serge 2496
 
3031 serge 2497
	/* Have we updated the tiling parameters upon the object and so
2498
	 * will need to serialise the write to the associated fence register?
2499
	 */
2500
	if (obj->fence_dirty) {
2501
		ret = i915_gem_object_flush_fence(obj);
2502
		if (ret)
2503
			return ret;
2504
	}
2332 Serge 2505
 
3031 serge 2506
	/* Just update our place in the LRU if our fence is getting reused. */
2507
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
2508
		reg = &dev_priv->fence_regs[obj->fence_reg];
2509
		if (!obj->fence_dirty) {
2510
			list_move_tail(®->lru_list,
2511
				       &dev_priv->mm.fence_list);
2512
			return 0;
2513
		}
2514
	} else if (enable) {
2515
		reg = i915_find_fence_reg(dev);
2516
		if (reg == NULL)
2517
			return -EDEADLK;
2332 Serge 2518
 
3031 serge 2519
		if (reg->obj) {
2520
			struct drm_i915_gem_object *old = reg->obj;
2332 Serge 2521
 
3031 serge 2522
			ret = i915_gem_object_flush_fence(old);
2523
			if (ret)
2524
				return ret;
2332 Serge 2525
 
3031 serge 2526
			i915_gem_object_fence_lost(old);
2527
		}
2528
	} else
2529
		return 0;
2332 Serge 2530
 
3031 serge 2531
	i915_gem_object_update_fence(obj, reg, enable);
2532
	obj->fence_dirty = false;
2332 Serge 2533
 
3031 serge 2534
	return 0;
2535
}
2332 Serge 2536
 
3031 serge 2537
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2538
				     struct drm_mm_node *gtt_space,
2539
				     unsigned long cache_level)
2540
{
2541
	struct drm_mm_node *other;
2332 Serge 2542
 
3031 serge 2543
	/* On non-LLC machines we have to be careful when putting differing
2544
	 * types of snoopable memory together to avoid the prefetcher
2545
	 * crossing memory domains and dieing.
2546
	 */
2547
	if (HAS_LLC(dev))
2548
		return true;
2332 Serge 2549
 
3031 serge 2550
	if (gtt_space == NULL)
2551
		return true;
2332 Serge 2552
 
3031 serge 2553
	if (list_empty(>t_space->node_list))
2554
		return true;
2332 Serge 2555
 
3031 serge 2556
	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2557
	if (other->allocated && !other->hole_follows && other->color != cache_level)
2558
		return false;
2344 Serge 2559
 
3031 serge 2560
	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2561
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2562
		return false;
2344 Serge 2563
 
3031 serge 2564
	return true;
2565
}
2344 Serge 2566
 
3031 serge 2567
static void i915_gem_verify_gtt(struct drm_device *dev)
2568
{
2569
#if WATCH_GTT
2570
	struct drm_i915_private *dev_priv = dev->dev_private;
2571
	struct drm_i915_gem_object *obj;
2572
	int err = 0;
2344 Serge 2573
 
3031 serge 2574
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2575
		if (obj->gtt_space == NULL) {
2576
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
2577
			err++;
2578
			continue;
2579
		}
2344 Serge 2580
 
3031 serge 2581
		if (obj->cache_level != obj->gtt_space->color) {
2582
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2583
			       obj->gtt_space->start,
2584
			       obj->gtt_space->start + obj->gtt_space->size,
2585
			       obj->cache_level,
2586
			       obj->gtt_space->color);
2587
			err++;
2588
			continue;
2589
		}
2344 Serge 2590
 
3031 serge 2591
		if (!i915_gem_valid_gtt_space(dev,
2592
					      obj->gtt_space,
2593
					      obj->cache_level)) {
2594
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2595
			       obj->gtt_space->start,
2596
			       obj->gtt_space->start + obj->gtt_space->size,
2597
			       obj->cache_level);
2598
			err++;
2599
			continue;
2600
		}
2601
	}
2344 Serge 2602
 
3031 serge 2603
	WARN_ON(err);
2604
#endif
2326 Serge 2605
}
2606
 
2332 Serge 2607
/**
2608
 * Finds free space in the GTT aperture and binds the object there.
2609
 */
2610
static int
2611
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2612
			    unsigned alignment,
3031 serge 2613
			    bool map_and_fenceable,
2614
			    bool nonblocking)
2332 Serge 2615
{
2616
	struct drm_device *dev = obj->base.dev;
2617
	drm_i915_private_t *dev_priv = dev->dev_private;
3243 Serge 2618
	struct drm_mm_node *node;
2332 Serge 2619
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2620
	bool mappable, fenceable;
2621
	int ret;
2326 Serge 2622
 
2332 Serge 2623
	if (obj->madv != I915_MADV_WILLNEED) {
3243 Serge 2624
        DRM_ERROR("Attempting to bind a purgeable object\n");
2332 Serge 2625
		return -EINVAL;
2626
	}
2627
 
2628
	fence_size = i915_gem_get_gtt_size(dev,
2629
					   obj->base.size,
2630
					   obj->tiling_mode);
2631
	fence_alignment = i915_gem_get_gtt_alignment(dev,
2632
						     obj->base.size,
2633
						     obj->tiling_mode);
2634
	unfenced_alignment =
2635
		i915_gem_get_unfenced_gtt_alignment(dev,
2636
						    obj->base.size,
2637
						    obj->tiling_mode);
2638
 
2639
	if (alignment == 0)
2640
		alignment = map_and_fenceable ? fence_alignment :
2641
						unfenced_alignment;
2642
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2643
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2644
		return -EINVAL;
2645
	}
2646
 
2647
	size = map_and_fenceable ? fence_size : obj->base.size;
2648
 
2649
	/* If the object is bigger than the entire aperture, reject it early
2650
	 * before evicting everything in a vain attempt to find space.
2651
	 */
2652
	if (obj->base.size >
2653
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2654
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2655
		return -E2BIG;
2656
	}
2657
 
3031 serge 2658
	ret = i915_gem_object_get_pages(obj);
2659
	if (ret)
2660
		return ret;
2661
 
3243 Serge 2662
	i915_gem_object_pin_pages(obj);
2663
 
2664
	node = kzalloc(sizeof(*node), GFP_KERNEL);
2665
	if (node == NULL) {
2666
		i915_gem_object_unpin_pages(obj);
2667
		return -ENOMEM;
2668
	}
2669
 
2332 Serge 2670
 search_free:
2671
	if (map_and_fenceable)
3243 Serge 2672
		ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3031 serge 2673
							  size, alignment, obj->cache_level,
3243 Serge 2674
							  0, dev_priv->mm.gtt_mappable_end);
2332 Serge 2675
	else
3243 Serge 2676
		ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2677
						 size, alignment, obj->cache_level);
2678
	if (ret) {
2332 Serge 2679
 
3243 Serge 2680
		i915_gem_object_unpin_pages(obj);
2681
		kfree(node);
2332 Serge 2682
			return ret;
2683
	}
3243 Serge 2684
	if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2685
		i915_gem_object_unpin_pages(obj);
2686
		drm_mm_put_block(node);
3031 serge 2687
		return -EINVAL;
2688
	}
2332 Serge 2689
 
3031 serge 2690
	ret = i915_gem_gtt_prepare_object(obj);
2332 Serge 2691
	if (ret) {
3243 Serge 2692
		i915_gem_object_unpin_pages(obj);
2693
		drm_mm_put_block(node);
2332 Serge 2694
			return ret;
2695
	}
2696
 
3031 serge 2697
	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2332 Serge 2698
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2699
 
3243 Serge 2700
	obj->gtt_space = node;
2701
	obj->gtt_offset = node->start;
2332 Serge 2702
 
2703
	fenceable =
3243 Serge 2704
		node->size == fence_size &&
2705
		(node->start & (fence_alignment - 1)) == 0;
2332 Serge 2706
 
2707
	mappable =
2708
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2709
 
2710
	obj->map_and_fenceable = mappable && fenceable;
2711
 
3243 Serge 2712
	i915_gem_object_unpin_pages(obj);
2351 Serge 2713
	trace_i915_gem_object_bind(obj, map_and_fenceable);
3031 serge 2714
	i915_gem_verify_gtt(dev);
2332 Serge 2715
	return 0;
2716
}
2717
 
2718
void
2719
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2720
{
2721
	/* If we don't have a page list set up, then we're not pinned
2722
	 * to GPU, and we can ignore the cache flush because it'll happen
2723
	 * again at bind time.
2724
	 */
3243 Serge 2725
	if (obj->pages == NULL)
2332 Serge 2726
		return;
2727
 
2728
	/* If the GPU is snooping the contents of the CPU cache,
2729
	 * we do not need to manually clear the CPU cache lines.  However,
2730
	 * the caches are only snooped when the render cache is
2731
	 * flushed/invalidated.  As we always have to emit invalidations
2732
	 * and flushes when moving into and out of the RENDER domain, correct
2733
	 * snooping behaviour occurs naturally as the result of our domain
2734
	 * tracking.
2735
	 */
2736
	if (obj->cache_level != I915_CACHE_NONE)
2737
		return;
3243 Serge 2738
#if 0
2344 Serge 2739
     if(obj->mapped != NULL)
2740
     {
2741
        uint8_t *page_virtual;
2742
        unsigned int i;
2332 Serge 2743
 
2344 Serge 2744
        page_virtual = obj->mapped;
2745
        asm volatile("mfence");
2746
        for (i = 0; i < obj->base.size; i += x86_clflush_size)
2747
            clflush(page_virtual + i);
2748
        asm volatile("mfence");
2749
     }
2750
     else
2751
     {
2752
        uint8_t *page_virtual;
2753
        unsigned int i;
2754
        page_virtual = AllocKernelSpace(obj->base.size);
2755
        if(page_virtual != NULL)
2756
        {
3031 serge 2757
            dma_addr_t *src, *dst;
2344 Serge 2758
            u32 count;
2759
 
2760
#define page_tabs  0xFDC00000      /* really dirty hack */
2761
 
3031 serge 2762
            src =  obj->pages.page;
2763
            dst =  &((dma_addr_t*)page_tabs)[(u32_t)page_virtual >> 12];
2344 Serge 2764
            count = obj->base.size/4096;
2765
 
2766
            while(count--)
2767
            {
2768
                *dst++ = (0xFFFFF000 & *src++) | 0x001 ;
2769
            };
2770
 
2771
            asm volatile("mfence");
2772
            for (i = 0; i < obj->base.size; i += x86_clflush_size)
2773
                clflush(page_virtual + i);
2774
            asm volatile("mfence");
2775
            FreeKernelSpace(page_virtual);
2776
        }
2777
        else
2778
        {
2779
            asm volatile (
2780
            "mfence         \n"
2781
            "wbinvd         \n"                 /* this is really ugly  */
2782
            "mfence");
2783
        }
2784
     }
3243 Serge 2785
#endif
2786
 
2332 Serge 2787
}
2788
 
2344 Serge 2789
/** Flushes the GTT write domain for the object if it's dirty. */
2790
static void
2791
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2792
{
2793
	uint32_t old_write_domain;
2332 Serge 2794
 
2344 Serge 2795
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2796
		return;
2332 Serge 2797
 
2344 Serge 2798
	/* No actual flushing is required for the GTT write domain.  Writes
2799
	 * to it immediately go to main memory as far as we know, so there's
2800
	 * no chipset flush.  It also doesn't land in render cache.
2801
	 *
2802
	 * However, we do have to enforce the order so that all writes through
2803
	 * the GTT land before any writes to the device, such as updates to
2804
	 * the GATT itself.
2805
	 */
2806
	wmb();
2332 Serge 2807
 
2344 Serge 2808
	old_write_domain = obj->base.write_domain;
2809
	obj->base.write_domain = 0;
2332 Serge 2810
 
2351 Serge 2811
	trace_i915_gem_object_change_domain(obj,
2812
					    obj->base.read_domains,
2813
					    old_write_domain);
2344 Serge 2814
}
2332 Serge 2815
 
2816
/** Flushes the CPU write domain for the object if it's dirty. */
2326 Serge 2817
static void
2332 Serge 2818
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2819
{
2820
	uint32_t old_write_domain;
2821
 
2822
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2823
		return;
2824
 
2825
	i915_gem_clflush_object(obj);
3243 Serge 2826
	i915_gem_chipset_flush(obj->base.dev);
2332 Serge 2827
	old_write_domain = obj->base.write_domain;
2828
	obj->base.write_domain = 0;
2829
 
2351 Serge 2830
	trace_i915_gem_object_change_domain(obj,
2831
					    obj->base.read_domains,
2832
					    old_write_domain);
2332 Serge 2833
}
2834
 
2835
/**
2836
 * Moves a single object to the GTT read, and possibly write domain.
2837
 *
2838
 * This function returns when the move is complete, including waiting on
2839
 * flushes to occur.
2840
 */
2841
int
2842
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2843
{
3031 serge 2844
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2332 Serge 2845
	uint32_t old_write_domain, old_read_domains;
2846
	int ret;
2847
 
2848
	/* Not valid to be called on unbound objects. */
2849
	if (obj->gtt_space == NULL)
2850
		return -EINVAL;
2851
 
2852
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2853
		return 0;
2854
 
3031 serge 2855
	ret = i915_gem_object_wait_rendering(obj, !write);
2332 Serge 2856
		if (ret)
2857
			return ret;
2858
 
2859
	i915_gem_object_flush_cpu_write_domain(obj);
2860
 
2861
	old_write_domain = obj->base.write_domain;
2862
	old_read_domains = obj->base.read_domains;
2863
 
2864
	/* It should now be out of any other write domains, and we can update
2865
	 * the domain values for our changes.
2866
	 */
2867
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2868
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2869
	if (write) {
2870
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2871
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2872
		obj->dirty = 1;
2873
	}
2874
 
2351 Serge 2875
	trace_i915_gem_object_change_domain(obj,
2876
					    old_read_domains,
2877
					    old_write_domain);
2878
 
3031 serge 2879
	/* And bump the LRU for this access */
2880
	if (i915_gem_object_is_inactive(obj))
2881
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2882
 
2332 Serge 2883
	return 0;
2884
}
2885
 
2335 Serge 2886
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2887
				    enum i915_cache_level cache_level)
2888
{
3031 serge 2889
	struct drm_device *dev = obj->base.dev;
2890
	drm_i915_private_t *dev_priv = dev->dev_private;
2335 Serge 2891
	int ret;
2332 Serge 2892
 
2335 Serge 2893
	if (obj->cache_level == cache_level)
2894
		return 0;
2332 Serge 2895
 
2335 Serge 2896
	if (obj->pin_count) {
2897
		DRM_DEBUG("can not change the cache level of pinned objects\n");
2898
		return -EBUSY;
2899
	}
2332 Serge 2900
 
3031 serge 2901
	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
2902
		ret = i915_gem_object_unbind(obj);
2903
		if (ret)
2904
			return ret;
2905
	}
2906
 
2335 Serge 2907
	if (obj->gtt_space) {
2908
		ret = i915_gem_object_finish_gpu(obj);
2909
		if (ret)
2910
			return ret;
2332 Serge 2911
 
2335 Serge 2912
		i915_gem_object_finish_gtt(obj);
2332 Serge 2913
 
2335 Serge 2914
		/* Before SandyBridge, you could not use tiling or fence
2915
		 * registers with snooped memory, so relinquish any fences
2916
		 * currently pointing to our region in the aperture.
2917
		 */
3031 serge 2918
		if (INTEL_INFO(dev)->gen < 6) {
2335 Serge 2919
			ret = i915_gem_object_put_fence(obj);
2920
			if (ret)
2921
				return ret;
2922
		}
2332 Serge 2923
 
3031 serge 2924
		if (obj->has_global_gtt_mapping)
2925
			i915_gem_gtt_bind_object(obj, cache_level);
2926
		if (obj->has_aliasing_ppgtt_mapping)
2927
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2928
					       obj, cache_level);
2929
 
2930
		obj->gtt_space->color = cache_level;
2335 Serge 2931
	}
2332 Serge 2932
 
2335 Serge 2933
	if (cache_level == I915_CACHE_NONE) {
2934
		u32 old_read_domains, old_write_domain;
2332 Serge 2935
 
2335 Serge 2936
		/* If we're coming from LLC cached, then we haven't
2937
		 * actually been tracking whether the data is in the
2938
		 * CPU cache or not, since we only allow one bit set
2939
		 * in obj->write_domain and have been skipping the clflushes.
2940
		 * Just set it to the CPU cache for now.
2941
		 */
2942
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2943
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2332 Serge 2944
 
2335 Serge 2945
		old_read_domains = obj->base.read_domains;
2946
		old_write_domain = obj->base.write_domain;
2332 Serge 2947
 
2335 Serge 2948
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2949
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2332 Serge 2950
 
2351 Serge 2951
		trace_i915_gem_object_change_domain(obj,
2952
						    old_read_domains,
2953
						    old_write_domain);
2344 Serge 2954
    }
2332 Serge 2955
 
2335 Serge 2956
	obj->cache_level = cache_level;
3031 serge 2957
	i915_gem_verify_gtt(dev);
2335 Serge 2958
	return 0;
2959
}
2332 Serge 2960
 
3260 Serge 2961
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2962
			       struct drm_file *file)
2963
{
2964
	struct drm_i915_gem_caching *args = data;
2965
	struct drm_i915_gem_object *obj;
2966
	int ret;
2967
 
2968
	ret = i915_mutex_lock_interruptible(dev);
2969
	if (ret)
2970
		return ret;
2971
 
2972
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
2973
	if (&obj->base == NULL) {
2974
		ret = -ENOENT;
2975
		goto unlock;
2976
	}
2977
 
2978
	args->caching = obj->cache_level != I915_CACHE_NONE;
2979
 
2980
	drm_gem_object_unreference(&obj->base);
2981
unlock:
2982
	mutex_unlock(&dev->struct_mutex);
2983
	return ret;
2984
}
2985
 
2986
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2987
			       struct drm_file *file)
2988
{
2989
	struct drm_i915_gem_caching *args = data;
2990
	struct drm_i915_gem_object *obj;
2991
	enum i915_cache_level level;
2992
	int ret;
2993
 
2994
	switch (args->caching) {
2995
	case I915_CACHING_NONE:
2996
		level = I915_CACHE_NONE;
2997
		break;
2998
	case I915_CACHING_CACHED:
2999
		level = I915_CACHE_LLC;
3000
		break;
3001
	default:
3002
		return -EINVAL;
3003
	}
3004
 
3005
	ret = i915_mutex_lock_interruptible(dev);
3006
	if (ret)
3007
		return ret;
3008
 
3009
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3010
	if (&obj->base == NULL) {
3011
		ret = -ENOENT;
3012
		goto unlock;
3013
	}
3014
 
3015
	ret = i915_gem_object_set_cache_level(obj, level);
3016
 
3017
	drm_gem_object_unreference(&obj->base);
3018
unlock:
3019
	mutex_unlock(&dev->struct_mutex);
3020
	return ret;
3021
}
3022
 
2335 Serge 3023
/*
3024
 * Prepare buffer for display plane (scanout, cursors, etc).
3025
 * Can be called from an uninterruptible phase (modesetting) and allows
3026
 * any flushes to be pipelined (for pageflips).
3027
 */
3028
int
3029
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3030
				     u32 alignment,
3031
				     struct intel_ring_buffer *pipelined)
3032
{
3033
	u32 old_read_domains, old_write_domain;
3034
	int ret;
2332 Serge 3035
 
3031 serge 3036
	if (pipelined != obj->ring) {
3037
		ret = i915_gem_object_sync(obj, pipelined);
2335 Serge 3038
	if (ret)
3039
		return ret;
3040
	}
2332 Serge 3041
 
2335 Serge 3042
	/* The display engine is not coherent with the LLC cache on gen6.  As
3043
	 * a result, we make sure that the pinning that is about to occur is
3044
	 * done with uncached PTEs. This is lowest common denominator for all
3045
	 * chipsets.
3046
	 *
3047
	 * However for gen6+, we could do better by using the GFDT bit instead
3048
	 * of uncaching, which would allow us to flush all the LLC-cached data
3049
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3050
	 */
2360 Serge 3051
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3052
	if (ret)
3053
		return ret;
2332 Serge 3054
 
2335 Serge 3055
	/* As the user may map the buffer once pinned in the display plane
3056
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3057
	 * always use map_and_fenceable for all scanout buffers.
3058
	 */
3031 serge 3059
	ret = i915_gem_object_pin(obj, alignment, true, false);
2335 Serge 3060
	if (ret)
3061
		return ret;
2332 Serge 3062
 
2335 Serge 3063
	i915_gem_object_flush_cpu_write_domain(obj);
2332 Serge 3064
 
2335 Serge 3065
	old_write_domain = obj->base.write_domain;
3066
	old_read_domains = obj->base.read_domains;
2332 Serge 3067
 
2335 Serge 3068
	/* It should now be out of any other write domains, and we can update
3069
	 * the domain values for our changes.
3070
	 */
3031 serge 3071
	obj->base.write_domain = 0;
2335 Serge 3072
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2332 Serge 3073
 
2351 Serge 3074
	trace_i915_gem_object_change_domain(obj,
3075
					    old_read_domains,
3076
					    old_write_domain);
2332 Serge 3077
 
2335 Serge 3078
	return 0;
3079
}
2332 Serge 3080
 
2344 Serge 3081
int
3082
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3083
{
3084
	int ret;
2332 Serge 3085
 
2344 Serge 3086
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3087
		return 0;
2332 Serge 3088
 
3031 serge 3089
	ret = i915_gem_object_wait_rendering(obj, false);
3243 Serge 3090
    if (ret)
3091
        return ret;
2332 Serge 3092
 
2344 Serge 3093
	/* Ensure that we invalidate the GPU's caches and TLBs. */
3094
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3031 serge 3095
	return 0;
2344 Serge 3096
}
2332 Serge 3097
 
2344 Serge 3098
/**
3099
 * Moves a single object to the CPU read, and possibly write domain.
3100
 *
3101
 * This function returns when the move is complete, including waiting on
3102
 * flushes to occur.
3103
 */
3031 serge 3104
int
2344 Serge 3105
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3106
{
3107
	uint32_t old_write_domain, old_read_domains;
3108
	int ret;
2332 Serge 3109
 
2344 Serge 3110
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3111
		return 0;
2332 Serge 3112
 
3031 serge 3113
	ret = i915_gem_object_wait_rendering(obj, !write);
2344 Serge 3114
	if (ret)
3115
		return ret;
2332 Serge 3116
 
2344 Serge 3117
	i915_gem_object_flush_gtt_write_domain(obj);
2332 Serge 3118
 
2344 Serge 3119
	old_write_domain = obj->base.write_domain;
3120
	old_read_domains = obj->base.read_domains;
2332 Serge 3121
 
2344 Serge 3122
	/* Flush the CPU cache if it's still invalid. */
3123
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3124
		i915_gem_clflush_object(obj);
2332 Serge 3125
 
2344 Serge 3126
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3127
	}
2332 Serge 3128
 
2344 Serge 3129
	/* It should now be out of any other write domains, and we can update
3130
	 * the domain values for our changes.
3131
	 */
3132
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2332 Serge 3133
 
2344 Serge 3134
	/* If we're writing through the CPU, then the GPU read domains will
3135
	 * need to be invalidated at next use.
3136
	 */
3137
	if (write) {
3138
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3139
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3140
	}
2332 Serge 3141
 
2351 Serge 3142
	trace_i915_gem_object_change_domain(obj,
3143
					    old_read_domains,
3144
					    old_write_domain);
2332 Serge 3145
 
2344 Serge 3146
	return 0;
3147
}
2332 Serge 3148
 
3031 serge 3149
/* Throttle our rendering by waiting until the ring has completed our requests
3150
 * emitted over 20 msec ago.
2344 Serge 3151
 *
3031 serge 3152
 * Note that if we were to use the current jiffies each time around the loop,
3153
 * we wouldn't escape the function with any frames outstanding if the time to
3154
 * render a frame was over 20ms.
3155
 *
3156
 * This should get us reasonable parallelism between CPU and GPU but also
3157
 * relatively low latency when blocking on a particular request to finish.
2344 Serge 3158
 */
3031 serge 3159
static int
3160
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2344 Serge 3161
{
3031 serge 3162
	struct drm_i915_private *dev_priv = dev->dev_private;
3163
	struct drm_i915_file_private *file_priv = file->driver_priv;
3263 Serge 3164
	unsigned long recent_enough = GetTimerTicks() - msecs_to_jiffies(20);
3031 serge 3165
	struct drm_i915_gem_request *request;
3166
	struct intel_ring_buffer *ring = NULL;
3167
	u32 seqno = 0;
3168
	int ret;
2332 Serge 3169
 
3031 serge 3170
	if (atomic_read(&dev_priv->mm.wedged))
3171
		return -EIO;
2332 Serge 3172
 
3031 serge 3173
	spin_lock(&file_priv->mm.lock);
3174
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3175
		if (time_after_eq(request->emitted_jiffies, recent_enough))
3176
			break;
2332 Serge 3177
 
3031 serge 3178
		ring = request->ring;
3179
		seqno = request->seqno;
3180
	}
3181
	spin_unlock(&file_priv->mm.lock);
2332 Serge 3182
 
3031 serge 3183
	if (seqno == 0)
3184
		return 0;
2332 Serge 3185
 
3031 serge 3186
	ret = __wait_seqno(ring, seqno, true, NULL);
3187
	if (ret == 0)
3188
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2332 Serge 3189
 
3031 serge 3190
	return ret;
2352 Serge 3191
}
2332 Serge 3192
 
3193
int
3194
i915_gem_object_pin(struct drm_i915_gem_object *obj,
3195
		    uint32_t alignment,
3031 serge 3196
		    bool map_and_fenceable,
3197
		    bool nonblocking)
2332 Serge 3198
{
3199
	int ret;
3200
 
3031 serge 3201
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3202
		return -EBUSY;
2332 Serge 3203
 
3204
	if (obj->gtt_space != NULL) {
3205
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3206
		    (map_and_fenceable && !obj->map_and_fenceable)) {
3207
			WARN(obj->pin_count,
3208
			     "bo is already pinned with incorrect alignment:"
3209
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3210
			     " obj->map_and_fenceable=%d\n",
3211
			     obj->gtt_offset, alignment,
3212
			     map_and_fenceable,
3213
			     obj->map_and_fenceable);
3214
			ret = i915_gem_object_unbind(obj);
3215
			if (ret)
3216
				return ret;
3217
		}
3218
	}
3219
 
3220
	if (obj->gtt_space == NULL) {
3243 Serge 3221
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3222
 
2332 Serge 3223
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3031 serge 3224
						  map_and_fenceable,
3225
						  nonblocking);
2332 Serge 3226
		if (ret)
3227
			return ret;
3243 Serge 3228
 
3229
		if (!dev_priv->mm.aliasing_ppgtt)
3230
			i915_gem_gtt_bind_object(obj, obj->cache_level);
2332 Serge 3231
	}
3232
 
3031 serge 3233
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
3234
		i915_gem_gtt_bind_object(obj, obj->cache_level);
3235
 
3236
	obj->pin_count++;
2332 Serge 3237
	obj->pin_mappable |= map_and_fenceable;
3238
 
3239
	return 0;
3240
}
3241
 
2344 Serge 3242
void
3243
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3244
{
3245
	BUG_ON(obj->pin_count == 0);
3246
	BUG_ON(obj->gtt_space == NULL);
2332 Serge 3247
 
3031 serge 3248
	if (--obj->pin_count == 0)
2344 Serge 3249
		obj->pin_mappable = false;
3250
}
2332 Serge 3251
 
3031 serge 3252
int
3253
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3254
		   struct drm_file *file)
3255
{
3256
	struct drm_i915_gem_pin *args = data;
3257
	struct drm_i915_gem_object *obj;
3258
	int ret;
2332 Serge 3259
 
3031 serge 3260
	ret = i915_mutex_lock_interruptible(dev);
3261
	if (ret)
3262
		return ret;
2332 Serge 3263
 
3031 serge 3264
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3265
	if (&obj->base == NULL) {
3266
		ret = -ENOENT;
3267
		goto unlock;
3268
	}
2332 Serge 3269
 
3031 serge 3270
	if (obj->madv != I915_MADV_WILLNEED) {
3271
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3272
		ret = -EINVAL;
3273
		goto out;
3274
	}
2332 Serge 3275
 
3031 serge 3276
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
3277
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3278
			  args->handle);
3279
		ret = -EINVAL;
3280
		goto out;
3281
	}
2332 Serge 3282
 
3243 Serge 3283
	if (obj->user_pin_count == 0) {
3031 serge 3284
		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3285
		if (ret)
3286
			goto out;
3287
	}
2332 Serge 3288
 
3243 Serge 3289
	obj->user_pin_count++;
3290
	obj->pin_filp = file;
3291
 
3031 serge 3292
	/* XXX - flush the CPU caches for pinned objects
3293
	 * as the X server doesn't manage domains yet
3294
	 */
3295
	i915_gem_object_flush_cpu_write_domain(obj);
3296
	args->offset = obj->gtt_offset;
3297
out:
3298
	drm_gem_object_unreference(&obj->base);
3299
unlock:
3300
	mutex_unlock(&dev->struct_mutex);
3301
	return ret;
3302
}
2332 Serge 3303
 
3255 Serge 3304
#if 0
3305
 
3031 serge 3306
int
3307
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3308
		     struct drm_file *file)
3309
{
3310
	struct drm_i915_gem_pin *args = data;
3311
	struct drm_i915_gem_object *obj;
3312
	int ret;
2332 Serge 3313
 
3031 serge 3314
	ret = i915_mutex_lock_interruptible(dev);
3315
	if (ret)
3316
		return ret;
2332 Serge 3317
 
3031 serge 3318
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3319
	if (&obj->base == NULL) {
3320
		ret = -ENOENT;
3321
		goto unlock;
3322
	}
2332 Serge 3323
 
3031 serge 3324
	if (obj->pin_filp != file) {
3325
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3326
			  args->handle);
3327
		ret = -EINVAL;
3328
		goto out;
3329
	}
3330
	obj->user_pin_count--;
3331
	if (obj->user_pin_count == 0) {
3332
		obj->pin_filp = NULL;
3333
		i915_gem_object_unpin(obj);
3334
	}
2332 Serge 3335
 
3031 serge 3336
out:
3337
	drm_gem_object_unreference(&obj->base);
3338
unlock:
3339
	mutex_unlock(&dev->struct_mutex);
3340
	return ret;
3341
}
2332 Serge 3342
 
3260 Serge 3343
#endif
3344
 
3031 serge 3345
int
3346
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3347
		    struct drm_file *file)
3348
{
3349
	struct drm_i915_gem_busy *args = data;
3350
	struct drm_i915_gem_object *obj;
3351
	int ret;
2332 Serge 3352
 
3031 serge 3353
	ret = i915_mutex_lock_interruptible(dev);
3354
	if (ret)
3355
		return ret;
2332 Serge 3356
 
3031 serge 3357
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3358
	if (&obj->base == NULL) {
3359
		ret = -ENOENT;
3360
		goto unlock;
3361
	}
2332 Serge 3362
 
3031 serge 3363
	/* Count all active objects as busy, even if they are currently not used
3364
	 * by the gpu. Users of this interface expect objects to eventually
3365
	 * become non-busy without any further actions, therefore emit any
3366
	 * necessary flushes here.
3367
	 */
3368
	ret = i915_gem_object_flush_active(obj);
2332 Serge 3369
 
3031 serge 3370
	args->busy = obj->active;
3371
	if (obj->ring) {
3372
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
3373
		args->busy |= intel_ring_flag(obj->ring) << 16;
3374
	}
2332 Serge 3375
 
3031 serge 3376
	drm_gem_object_unreference(&obj->base);
3377
unlock:
3378
	mutex_unlock(&dev->struct_mutex);
3379
	return ret;
3380
}
2332 Serge 3381
 
3031 serge 3382
int
3383
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3384
			struct drm_file *file_priv)
3385
{
3386
	return i915_gem_ring_throttle(dev, file_priv);
3387
}
2332 Serge 3388
 
3263 Serge 3389
#if 0
3390
 
3031 serge 3391
int
3392
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3393
		       struct drm_file *file_priv)
3394
{
3395
	struct drm_i915_gem_madvise *args = data;
3396
	struct drm_i915_gem_object *obj;
3397
	int ret;
2332 Serge 3398
 
3031 serge 3399
	switch (args->madv) {
3400
	case I915_MADV_DONTNEED:
3401
	case I915_MADV_WILLNEED:
3402
	    break;
3403
	default:
3404
	    return -EINVAL;
3405
	}
2332 Serge 3406
 
3031 serge 3407
	ret = i915_mutex_lock_interruptible(dev);
3408
	if (ret)
3409
		return ret;
2332 Serge 3410
 
3031 serge 3411
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3412
	if (&obj->base == NULL) {
3413
		ret = -ENOENT;
3414
		goto unlock;
3415
	}
2332 Serge 3416
 
3031 serge 3417
	if (obj->pin_count) {
3418
		ret = -EINVAL;
3419
		goto out;
3420
	}
2332 Serge 3421
 
3031 serge 3422
	if (obj->madv != __I915_MADV_PURGED)
3423
		obj->madv = args->madv;
2332 Serge 3424
 
3031 serge 3425
	/* if the object is no longer attached, discard its backing storage */
3426
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3427
		i915_gem_object_truncate(obj);
2332 Serge 3428
 
3031 serge 3429
	args->retained = obj->madv != __I915_MADV_PURGED;
2332 Serge 3430
 
3031 serge 3431
out:
3432
	drm_gem_object_unreference(&obj->base);
3433
unlock:
3434
	mutex_unlock(&dev->struct_mutex);
3435
	return ret;
3436
}
3437
#endif
2332 Serge 3438
 
3031 serge 3439
void i915_gem_object_init(struct drm_i915_gem_object *obj,
3440
			  const struct drm_i915_gem_object_ops *ops)
3441
{
3442
	INIT_LIST_HEAD(&obj->mm_list);
3443
	INIT_LIST_HEAD(&obj->gtt_list);
3444
	INIT_LIST_HEAD(&obj->ring_list);
3445
	INIT_LIST_HEAD(&obj->exec_list);
2332 Serge 3446
 
3031 serge 3447
	obj->ops = ops;
3448
 
3449
	obj->fence_reg = I915_FENCE_REG_NONE;
3450
	obj->madv = I915_MADV_WILLNEED;
3451
	/* Avoid an unnecessary call to unbind on the first bind. */
3452
	obj->map_and_fenceable = true;
3453
 
3454
	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3455
}
3456
 
3457
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3458
	.get_pages = i915_gem_object_get_pages_gtt,
3459
	.put_pages = i915_gem_object_put_pages_gtt,
3460
};
3461
 
2332 Serge 3462
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3463
						  size_t size)
3464
{
3465
	struct drm_i915_gem_object *obj;
3031 serge 3466
	struct address_space *mapping;
3467
	u32 mask;
2340 Serge 3468
 
2332 Serge 3469
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3470
	if (obj == NULL)
3471
		return NULL;
3472
 
3473
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3474
		kfree(obj);
3475
		return NULL;
3476
	}
3477
 
3478
 
3031 serge 3479
	i915_gem_object_init(obj, &i915_gem_object_ops);
2332 Serge 3480
 
3481
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3482
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3483
 
3031 serge 3484
	if (HAS_LLC(dev)) {
3485
		/* On some devices, we can have the GPU use the LLC (the CPU
2332 Serge 3486
		 * cache) for about a 10% performance improvement
3487
		 * compared to uncached.  Graphics requests other than
3488
		 * display scanout are coherent with the CPU in
3489
		 * accessing this cache.  This means in this mode we
3490
		 * don't need to clflush on the CPU side, and on the
3491
		 * GPU side we only need to flush internal caches to
3492
		 * get data visible to the CPU.
3493
		 *
3494
		 * However, we maintain the display planes as UC, and so
3495
		 * need to rebind when first used as such.
3496
		 */
3497
		obj->cache_level = I915_CACHE_LLC;
3498
	} else
3499
		obj->cache_level = I915_CACHE_NONE;
3500
 
3501
	return obj;
3502
}
3503
 
2344 Serge 3504
int i915_gem_init_object(struct drm_gem_object *obj)
3505
{
3506
	BUG();
2332 Serge 3507
 
2344 Serge 3508
	return 0;
3509
}
2332 Serge 3510
 
3031 serge 3511
void i915_gem_free_object(struct drm_gem_object *gem_obj)
2344 Serge 3512
{
3031 serge 3513
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
2344 Serge 3514
	struct drm_device *dev = obj->base.dev;
3515
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 3516
 
3031 serge 3517
	trace_i915_gem_object_destroy(obj);
3518
 
3519
//   if (obj->phys_obj)
3520
//       i915_gem_detach_phys_object(dev, obj);
3521
 
3522
	obj->pin_count = 0;
3523
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3524
		bool was_interruptible;
3525
 
3526
		was_interruptible = dev_priv->mm.interruptible;
3527
		dev_priv->mm.interruptible = false;
3528
 
3529
		WARN_ON(i915_gem_object_unbind(obj));
3530
 
3531
		dev_priv->mm.interruptible = was_interruptible;
2344 Serge 3532
	}
2332 Serge 3533
 
3031 serge 3534
	obj->pages_pin_count = 0;
3535
	i915_gem_object_put_pages(obj);
3536
//   i915_gem_object_free_mmap_offset(obj);
2332 Serge 3537
 
3243 Serge 3538
	BUG_ON(obj->pages);
2332 Serge 3539
 
3031 serge 3540
//   if (obj->base.import_attach)
3541
//       drm_prime_gem_destroy(&obj->base, NULL);
3542
 
2344 Serge 3543
	drm_gem_object_release(&obj->base);
3544
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
2332 Serge 3545
 
2344 Serge 3546
	kfree(obj->bit_17);
3547
	kfree(obj);
3548
}
2332 Serge 3549
 
3031 serge 3550
#if 0
3551
int
3552
i915_gem_idle(struct drm_device *dev)
2344 Serge 3553
{
3031 serge 3554
	drm_i915_private_t *dev_priv = dev->dev_private;
3555
	int ret;
2332 Serge 3556
 
3031 serge 3557
	mutex_lock(&dev->struct_mutex);
2332 Serge 3558
 
3031 serge 3559
	if (dev_priv->mm.suspended) {
3560
		mutex_unlock(&dev->struct_mutex);
3561
		return 0;
3562
	}
2332 Serge 3563
 
3031 serge 3564
	ret = i915_gpu_idle(dev);
3565
	if (ret) {
3566
		mutex_unlock(&dev->struct_mutex);
3567
		return ret;
3568
	}
3569
	i915_gem_retire_requests(dev);
3570
 
3571
	i915_gem_reset_fences(dev);
3572
 
3573
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
3574
	 * We need to replace this with a semaphore, or something.
3575
	 * And not confound mm.suspended!
3576
	 */
3577
	dev_priv->mm.suspended = 1;
3578
	del_timer_sync(&dev_priv->hangcheck_timer);
3579
 
3580
	i915_kernel_lost_context(dev);
3581
	i915_gem_cleanup_ringbuffer(dev);
3582
 
3583
	mutex_unlock(&dev->struct_mutex);
3584
 
3585
	/* Cancel the retire work handler, which should be idle now. */
3263 Serge 3586
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3031 serge 3587
 
3588
	return 0;
2344 Serge 3589
}
3031 serge 3590
#endif
2332 Serge 3591
 
3031 serge 3592
void i915_gem_l3_remap(struct drm_device *dev)
3593
{
3594
	drm_i915_private_t *dev_priv = dev->dev_private;
3595
	u32 misccpctl;
3596
	int i;
2332 Serge 3597
 
3031 serge 3598
	if (!IS_IVYBRIDGE(dev))
3599
		return;
2332 Serge 3600
 
3243 Serge 3601
	if (!dev_priv->l3_parity.remap_info)
3031 serge 3602
		return;
2332 Serge 3603
 
3031 serge 3604
	misccpctl = I915_READ(GEN7_MISCCPCTL);
3605
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3606
	POSTING_READ(GEN7_MISCCPCTL);
2332 Serge 3607
 
3031 serge 3608
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3609
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3243 Serge 3610
		if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3031 serge 3611
			DRM_DEBUG("0x%x was already programmed to %x\n",
3612
				  GEN7_L3LOG_BASE + i, remap);
3243 Serge 3613
		if (remap && !dev_priv->l3_parity.remap_info[i/4])
3031 serge 3614
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
3243 Serge 3615
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3031 serge 3616
	}
2332 Serge 3617
 
3031 serge 3618
	/* Make sure all the writes land before disabling dop clock gating */
3619
	POSTING_READ(GEN7_L3LOG_BASE);
2332 Serge 3620
 
3031 serge 3621
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3622
}
2332 Serge 3623
 
3031 serge 3624
void i915_gem_init_swizzling(struct drm_device *dev)
3625
{
3626
	drm_i915_private_t *dev_priv = dev->dev_private;
2332 Serge 3627
 
3031 serge 3628
	if (INTEL_INFO(dev)->gen < 5 ||
3629
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3630
		return;
2332 Serge 3631
 
3031 serge 3632
	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3633
				 DISP_TILE_SURFACE_SWIZZLING);
2332 Serge 3634
 
3031 serge 3635
	if (IS_GEN5(dev))
3636
		return;
2344 Serge 3637
 
3031 serge 3638
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3639
	if (IS_GEN6(dev))
3640
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3641
	else
3642
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3643
}
3644
 
3645
static bool
3646
intel_enable_blt(struct drm_device *dev)
3647
{
3648
	if (!HAS_BLT(dev))
3649
		return false;
3650
 
3651
	/* The blitter was dysfunctional on early prototypes */
3652
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3653
		DRM_INFO("BLT not supported on this pre-production hardware;"
3654
			 " graphics performance will be degraded.\n");
3655
		return false;
3656
	}
3657
 
3658
	return true;
3659
}
3660
 
2332 Serge 3661
int
3031 serge 3662
i915_gem_init_hw(struct drm_device *dev)
2332 Serge 3663
{
3664
	drm_i915_private_t *dev_priv = dev->dev_private;
3665
	int ret;
2351 Serge 3666
 
3243 Serge 3667
	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3031 serge 3668
		return -EIO;
3669
 
3670
	if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3671
		I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3672
 
3673
	i915_gem_l3_remap(dev);
3674
 
3675
	i915_gem_init_swizzling(dev);
3676
 
2332 Serge 3677
	ret = intel_init_render_ring_buffer(dev);
3678
	if (ret)
3679
		return ret;
3680
 
3681
    if (HAS_BSD(dev)) {
3682
		ret = intel_init_bsd_ring_buffer(dev);
3683
		if (ret)
3684
			goto cleanup_render_ring;
3685
	}
3686
 
3031 serge 3687
	if (intel_enable_blt(dev)) {
2332 Serge 3688
		ret = intel_init_blt_ring_buffer(dev);
3689
		if (ret)
3690
			goto cleanup_bsd_ring;
3691
	}
3692
 
3693
	dev_priv->next_seqno = 1;
2351 Serge 3694
 
3031 serge 3695
	/*
3696
	 * XXX: There was some w/a described somewhere suggesting loading
3697
	 * contexts before PPGTT.
3698
	 */
3699
	i915_gem_context_init(dev);
3700
	i915_gem_init_ppgtt(dev);
3701
 
2332 Serge 3702
	return 0;
3703
 
3704
cleanup_bsd_ring:
3705
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3706
cleanup_render_ring:
3707
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3708
	return ret;
3709
}
3710
 
3031 serge 3711
static bool
3712
intel_enable_ppgtt(struct drm_device *dev)
3713
{
3714
	if (i915_enable_ppgtt >= 0)
3715
		return i915_enable_ppgtt;
3716
 
3717
#ifdef CONFIG_INTEL_IOMMU
3718
	/* Disable ppgtt on SNB if VT-d is on. */
3719
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3720
		return false;
3721
#endif
3722
 
3723
	return true;
3724
}
3725
 
3726
#define LFB_SIZE 0xC00000
3727
 
3728
int i915_gem_init(struct drm_device *dev)
3729
{
3730
	struct drm_i915_private *dev_priv = dev->dev_private;
3731
	unsigned long gtt_size, mappable_size;
3732
	int ret;
3733
 
3734
	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3735
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3736
 
3737
	mutex_lock(&dev->struct_mutex);
3738
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3739
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
3740
		 * aperture accordingly when using aliasing ppgtt. */
3741
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3742
 
3743
        i915_gem_init_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size - LFB_SIZE);
3744
 
3745
		ret = i915_gem_init_aliasing_ppgtt(dev);
3746
		if (ret) {
3747
			mutex_unlock(&dev->struct_mutex);
3748
			return ret;
3749
		}
3750
	} else {
3751
		/* Let GEM Manage all of the aperture.
3752
		 *
3753
		 * However, leave one page at the end still bound to the scratch
3754
		 * page.  There are a number of places where the hardware
3755
		 * apparently prefetches past the end of the object, and we've
3756
		 * seen multiple hangs with the GPU head pointer stuck in a
3757
		 * batchbuffer bound at the last page of the aperture.  One page
3758
		 * should be enough to keep any prefetching inside of the
3759
		 * aperture.
3760
		 */
3761
        i915_gem_init_global_gtt(dev, LFB_SIZE, mappable_size, gtt_size - LFB_SIZE);
3762
	}
3763
 
3764
	ret = i915_gem_init_hw(dev);
3765
	mutex_unlock(&dev->struct_mutex);
3766
	if (ret) {
3767
		i915_gem_cleanup_aliasing_ppgtt(dev);
3768
		return ret;
3769
	}
3770
 
3771
    return 0;
3772
}
3773
 
2332 Serge 3774
void
3775
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3776
{
3777
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 3778
	struct intel_ring_buffer *ring;
2332 Serge 3779
	int i;
3780
 
3031 serge 3781
	for_each_ring(ring, dev_priv, i)
3782
		intel_cleanup_ring_buffer(ring);
2332 Serge 3783
}
3784
 
3031 serge 3785
#if 0
3786
 
2332 Serge 3787
int
3788
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3789
		       struct drm_file *file_priv)
3790
{
3791
	drm_i915_private_t *dev_priv = dev->dev_private;
3031 serge 3792
	int ret;
2332 Serge 3793
 
3794
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3795
		return 0;
3796
 
3797
	if (atomic_read(&dev_priv->mm.wedged)) {
3798
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3799
		atomic_set(&dev_priv->mm.wedged, 0);
3800
	}
3801
 
3802
	mutex_lock(&dev->struct_mutex);
3803
	dev_priv->mm.suspended = 0;
3804
 
3031 serge 3805
	ret = i915_gem_init_hw(dev);
2332 Serge 3806
	if (ret != 0) {
3807
		mutex_unlock(&dev->struct_mutex);
3808
		return ret;
3809
	}
3810
 
3811
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3812
	mutex_unlock(&dev->struct_mutex);
3813
 
3814
	ret = drm_irq_install(dev);
3815
	if (ret)
3816
		goto cleanup_ringbuffer;
3817
 
3818
	return 0;
3819
 
3820
cleanup_ringbuffer:
3821
	mutex_lock(&dev->struct_mutex);
3822
	i915_gem_cleanup_ringbuffer(dev);
3823
	dev_priv->mm.suspended = 1;
3824
	mutex_unlock(&dev->struct_mutex);
3825
 
3826
	return ret;
3827
}
3828
 
3829
int
3830
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3831
		       struct drm_file *file_priv)
3832
{
3833
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3834
		return 0;
3835
 
3836
	drm_irq_uninstall(dev);
3837
	return i915_gem_idle(dev);
3838
}
3839
 
3840
void
3841
i915_gem_lastclose(struct drm_device *dev)
3842
{
3843
	int ret;
3844
 
3845
	if (drm_core_check_feature(dev, DRIVER_MODESET))
3846
		return;
3847
 
3848
	ret = i915_gem_idle(dev);
3849
	if (ret)
3850
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3851
}
3852
#endif
3853
 
3854
static void
2326 Serge 3855
init_ring_lists(struct intel_ring_buffer *ring)
3856
{
3857
    INIT_LIST_HEAD(&ring->active_list);
3858
    INIT_LIST_HEAD(&ring->request_list);
3859
}
3860
 
3861
void
3862
i915_gem_load(struct drm_device *dev)
3863
{
3864
    int i;
3865
    drm_i915_private_t *dev_priv = dev->dev_private;
3866
 
3867
    INIT_LIST_HEAD(&dev_priv->mm.active_list);
3868
    INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3031 serge 3869
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
3870
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
2326 Serge 3871
    INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3872
    for (i = 0; i < I915_NUM_RINGS; i++)
3873
        init_ring_lists(&dev_priv->ring[i]);
2342 Serge 3874
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
2326 Serge 3875
        INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
2360 Serge 3876
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3877
			  i915_gem_retire_work_handler);
2326 Serge 3878
 
3879
    /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3880
    if (IS_GEN3(dev)) {
3031 serge 3881
		I915_WRITE(MI_ARB_STATE,
3882
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
2326 Serge 3883
    }
3884
 
3885
    dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3886
 
3887
    if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3888
        dev_priv->num_fence_regs = 16;
3889
    else
3890
        dev_priv->num_fence_regs = 8;
3891
 
3892
    /* Initialize fence registers to zero */
3031 serge 3893
	i915_gem_reset_fences(dev);
2326 Serge 3894
 
3895
    i915_gem_detect_bit_6_swizzle(dev);
3896
 
3897
    dev_priv->mm.interruptible = true;
3898
 
3899
//    dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3900
//    dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3901
//    register_shrinker(&dev_priv->mm.inactive_shrinker);
3902
}
3903
 
3904