Subversion Repositories Kolibri OS

Rev

Rev 6320 | Rev 6937 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2325 Serge 1
/* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2
 */
3
/*
4
 *
5
 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6
 * All Rights Reserved.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a
9
 * copy of this software and associated documentation files (the
10
 * "Software"), to deal in the Software without restriction, including
11
 * without limitation the rights to use, copy, modify, merge, publish,
12
 * distribute, sub license, and/or sell copies of the Software, and to
13
 * permit persons to whom the Software is furnished to do so, subject to
14
 * the following conditions:
15
 *
16
 * The above copyright notice and this permission notice (including the
17
 * next paragraph) shall be included in all copies or substantial portions
18
 * of the Software.
19
 *
20
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23
 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27
 *
28
 */
29
 
6084 serge 30
#include 
6660 serge 31
#include 
3031 serge 32
#include 
33
#include 
2330 Serge 34
#include "i915_drv.h"
4126 Serge 35
#include "i915_trace.h"
2330 Serge 36
#include "intel_drv.h"
2325 Serge 37
 
38
#include 
6084 serge 39
#include 
2325 Serge 40
#include 
41
#include 
6320 serge 42
#include 
2325 Serge 43
 
3031 serge 44
#include 
45
 
2325 Serge 46
#include 
47
 
5060 serge 48
static struct drm_driver driver;
2330 Serge 49
 
5060 serge 50
#define GEN_DEFAULT_PIPEOFFSETS \
51
	.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
52
			  PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
53
	.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
54
			   TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
55
	.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
3031 serge 56
 
5060 serge 57
#define GEN_CHV_PIPEOFFSETS \
58
	.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
59
			  CHV_PIPE_C_OFFSET }, \
60
	.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
61
			   CHV_TRANSCODER_C_OFFSET, }, \
62
	.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
63
			     CHV_PALETTE_C_OFFSET }
3031 serge 64
 
5060 serge 65
#define CURSOR_OFFSETS \
66
	.cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
2330 Serge 67
 
5060 serge 68
#define IVB_CURSOR_OFFSETS \
69
	.cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
2330 Serge 70
 
5060 serge 71
int init_display_kms(struct drm_device *dev);
2330 Serge 72
 
3031 serge 73
 
4104 Serge 74
extern int intel_agp_enabled;
75
 
2326 Serge 76
#define PCI_VENDOR_ID_INTEL        0x8086
77
 
2325 Serge 78
 
2339 Serge 79
static const struct intel_device_info intel_i915g_info = {
3746 Serge 80
	.gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
2339 Serge 81
	.has_overlay = 1, .overlay_needs_physical = 1,
4560 Serge 82
	.ring_mask = RENDER_RING,
5060 serge 83
	GEN_DEFAULT_PIPEOFFSETS,
84
	CURSOR_OFFSETS,
2339 Serge 85
};
86
static const struct intel_device_info intel_i915gm_info = {
3746 Serge 87
	.gen = 3, .is_mobile = 1, .num_pipes = 2,
2339 Serge 88
	.cursor_needs_physical = 1,
89
	.has_overlay = 1, .overlay_needs_physical = 1,
90
	.supports_tv = 1,
4560 Serge 91
	.has_fbc = 1,
92
	.ring_mask = RENDER_RING,
5060 serge 93
	GEN_DEFAULT_PIPEOFFSETS,
94
	CURSOR_OFFSETS,
2339 Serge 95
};
96
static const struct intel_device_info intel_i945g_info = {
3746 Serge 97
	.gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
2339 Serge 98
	.has_overlay = 1, .overlay_needs_physical = 1,
4560 Serge 99
	.ring_mask = RENDER_RING,
5060 serge 100
	GEN_DEFAULT_PIPEOFFSETS,
101
	CURSOR_OFFSETS,
2339 Serge 102
};
103
static const struct intel_device_info intel_i945gm_info = {
3746 Serge 104
	.gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
2339 Serge 105
	.has_hotplug = 1, .cursor_needs_physical = 1,
106
	.has_overlay = 1, .overlay_needs_physical = 1,
107
	.supports_tv = 1,
4560 Serge 108
	.has_fbc = 1,
109
	.ring_mask = RENDER_RING,
5060 serge 110
	GEN_DEFAULT_PIPEOFFSETS,
111
	CURSOR_OFFSETS,
2339 Serge 112
};
113
 
114
static const struct intel_device_info intel_i965g_info = {
3746 Serge 115
	.gen = 4, .is_broadwater = 1, .num_pipes = 2,
2339 Serge 116
	.has_hotplug = 1,
117
	.has_overlay = 1,
4560 Serge 118
	.ring_mask = RENDER_RING,
5060 serge 119
	GEN_DEFAULT_PIPEOFFSETS,
120
	CURSOR_OFFSETS,
2339 Serge 121
};
122
 
123
static const struct intel_device_info intel_i965gm_info = {
3746 Serge 124
	.gen = 4, .is_crestline = 1, .num_pipes = 2,
2339 Serge 125
	.is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
126
	.has_overlay = 1,
127
	.supports_tv = 1,
4560 Serge 128
	.ring_mask = RENDER_RING,
5060 serge 129
	GEN_DEFAULT_PIPEOFFSETS,
130
	CURSOR_OFFSETS,
2339 Serge 131
};
132
 
133
static const struct intel_device_info intel_g33_info = {
3746 Serge 134
	.gen = 3, .is_g33 = 1, .num_pipes = 2,
2339 Serge 135
	.need_gfx_hws = 1, .has_hotplug = 1,
136
	.has_overlay = 1,
4560 Serge 137
	.ring_mask = RENDER_RING,
5060 serge 138
	GEN_DEFAULT_PIPEOFFSETS,
139
	CURSOR_OFFSETS,
2339 Serge 140
};
141
 
142
static const struct intel_device_info intel_g45_info = {
3746 Serge 143
	.gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
2339 Serge 144
	.has_pipe_cxsr = 1, .has_hotplug = 1,
4560 Serge 145
	.ring_mask = RENDER_RING | BSD_RING,
5060 serge 146
	GEN_DEFAULT_PIPEOFFSETS,
147
	CURSOR_OFFSETS,
2339 Serge 148
};
149
 
150
static const struct intel_device_info intel_gm45_info = {
3746 Serge 151
	.gen = 4, .is_g4x = 1, .num_pipes = 2,
2339 Serge 152
	.is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
153
	.has_pipe_cxsr = 1, .has_hotplug = 1,
154
	.supports_tv = 1,
4560 Serge 155
	.ring_mask = RENDER_RING | BSD_RING,
5060 serge 156
	GEN_DEFAULT_PIPEOFFSETS,
157
	CURSOR_OFFSETS,
2339 Serge 158
};
159
 
160
static const struct intel_device_info intel_pineview_info = {
3746 Serge 161
	.gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
2339 Serge 162
	.need_gfx_hws = 1, .has_hotplug = 1,
163
	.has_overlay = 1,
5060 serge 164
	GEN_DEFAULT_PIPEOFFSETS,
165
	CURSOR_OFFSETS,
2339 Serge 166
};
167
 
168
static const struct intel_device_info intel_ironlake_d_info = {
3746 Serge 169
	.gen = 5, .num_pipes = 2,
3031 serge 170
	.need_gfx_hws = 1, .has_hotplug = 1,
4560 Serge 171
	.ring_mask = RENDER_RING | BSD_RING,
5060 serge 172
	GEN_DEFAULT_PIPEOFFSETS,
173
	CURSOR_OFFSETS,
2339 Serge 174
};
175
 
176
static const struct intel_device_info intel_ironlake_m_info = {
3746 Serge 177
	.gen = 5, .is_mobile = 1, .num_pipes = 2,
2339 Serge 178
	.need_gfx_hws = 1, .has_hotplug = 1,
179
	.has_fbc = 1,
4560 Serge 180
	.ring_mask = RENDER_RING | BSD_RING,
5060 serge 181
	GEN_DEFAULT_PIPEOFFSETS,
182
	CURSOR_OFFSETS,
2339 Serge 183
};
184
 
2325 Serge 185
static const struct intel_device_info intel_sandybridge_d_info = {
3746 Serge 186
	.gen = 6, .num_pipes = 2,
2330 Serge 187
	.need_gfx_hws = 1, .has_hotplug = 1,
4560 Serge 188
	.has_fbc = 1,
189
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
3031 serge 190
	.has_llc = 1,
5060 serge 191
	GEN_DEFAULT_PIPEOFFSETS,
192
	CURSOR_OFFSETS,
2325 Serge 193
};
194
 
195
static const struct intel_device_info intel_sandybridge_m_info = {
3746 Serge 196
	.gen = 6, .is_mobile = 1, .num_pipes = 2,
2330 Serge 197
	.need_gfx_hws = 1, .has_hotplug = 1,
6084 serge 198
	.has_fbc = 1,
4560 Serge 199
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
3031 serge 200
	.has_llc = 1,
5060 serge 201
	GEN_DEFAULT_PIPEOFFSETS,
202
	CURSOR_OFFSETS,
2325 Serge 203
};
204
 
3746 Serge 205
#define GEN7_FEATURES  \
206
	.gen = 7, .num_pipes = 3, \
207
	.need_gfx_hws = 1, .has_hotplug = 1, \
4560 Serge 208
	.has_fbc = 1, \
209
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
210
	.has_llc = 1
3746 Serge 211
 
2339 Serge 212
static const struct intel_device_info intel_ivybridge_d_info = {
3746 Serge 213
	GEN7_FEATURES,
214
	.is_ivybridge = 1,
5060 serge 215
	GEN_DEFAULT_PIPEOFFSETS,
216
	IVB_CURSOR_OFFSETS,
2339 Serge 217
};
2325 Serge 218
 
2339 Serge 219
static const struct intel_device_info intel_ivybridge_m_info = {
3746 Serge 220
	GEN7_FEATURES,
221
	.is_ivybridge = 1,
222
	.is_mobile = 1,
5060 serge 223
	GEN_DEFAULT_PIPEOFFSETS,
224
	IVB_CURSOR_OFFSETS,
2339 Serge 225
};
226
 
3746 Serge 227
static const struct intel_device_info intel_ivybridge_q_info = {
228
	GEN7_FEATURES,
229
	.is_ivybridge = 1,
230
	.num_pipes = 0, /* legal, last one wins */
5060 serge 231
	GEN_DEFAULT_PIPEOFFSETS,
232
	IVB_CURSOR_OFFSETS,
3746 Serge 233
};
234
 
3031 serge 235
static const struct intel_device_info intel_valleyview_m_info = {
3746 Serge 236
	GEN7_FEATURES,
237
	.is_mobile = 1,
238
	.num_pipes = 2,
3031 serge 239
	.is_valleyview = 1,
3480 Serge 240
	.display_mmio_offset = VLV_DISPLAY_BASE,
4560 Serge 241
	.has_fbc = 0, /* legal, last one wins */
3746 Serge 242
	.has_llc = 0, /* legal, last one wins */
5060 serge 243
	GEN_DEFAULT_PIPEOFFSETS,
244
	CURSOR_OFFSETS,
3031 serge 245
};
246
 
247
static const struct intel_device_info intel_valleyview_d_info = {
3746 Serge 248
	GEN7_FEATURES,
249
	.num_pipes = 2,
3031 serge 250
	.is_valleyview = 1,
3480 Serge 251
	.display_mmio_offset = VLV_DISPLAY_BASE,
4560 Serge 252
	.has_fbc = 0, /* legal, last one wins */
3746 Serge 253
	.has_llc = 0, /* legal, last one wins */
5060 serge 254
	GEN_DEFAULT_PIPEOFFSETS,
255
	CURSOR_OFFSETS,
3031 serge 256
};
257
 
258
static const struct intel_device_info intel_haswell_d_info = {
3746 Serge 259
	GEN7_FEATURES,
260
	.is_haswell = 1,
4104 Serge 261
	.has_ddi = 1,
262
	.has_fpga_dbg = 1,
4560 Serge 263
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
5060 serge 264
	GEN_DEFAULT_PIPEOFFSETS,
265
	IVB_CURSOR_OFFSETS,
3031 serge 266
};
267
 
268
static const struct intel_device_info intel_haswell_m_info = {
3746 Serge 269
	GEN7_FEATURES,
270
	.is_haswell = 1,
271
	.is_mobile = 1,
4104 Serge 272
	.has_ddi = 1,
273
	.has_fpga_dbg = 1,
4560 Serge 274
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
5060 serge 275
	GEN_DEFAULT_PIPEOFFSETS,
276
	IVB_CURSOR_OFFSETS,
3031 serge 277
};
278
 
4560 Serge 279
static const struct intel_device_info intel_broadwell_d_info = {
280
	.gen = 8, .num_pipes = 3,
281
	.need_gfx_hws = 1, .has_hotplug = 1,
282
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
283
	.has_llc = 1,
284
	.has_ddi = 1,
5060 serge 285
	.has_fpga_dbg = 1,
286
	.has_fbc = 1,
287
	GEN_DEFAULT_PIPEOFFSETS,
288
	IVB_CURSOR_OFFSETS,
4560 Serge 289
};
290
 
291
static const struct intel_device_info intel_broadwell_m_info = {
292
	.gen = 8, .is_mobile = 1, .num_pipes = 3,
293
	.need_gfx_hws = 1, .has_hotplug = 1,
294
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
295
	.has_llc = 1,
296
	.has_ddi = 1,
5060 serge 297
	.has_fpga_dbg = 1,
298
	.has_fbc = 1,
299
	GEN_DEFAULT_PIPEOFFSETS,
300
	IVB_CURSOR_OFFSETS,
4560 Serge 301
};
302
 
5060 serge 303
static const struct intel_device_info intel_broadwell_gt3d_info = {
304
	.gen = 8, .num_pipes = 3,
305
	.need_gfx_hws = 1, .has_hotplug = 1,
306
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
307
	.has_llc = 1,
308
	.has_ddi = 1,
309
	.has_fpga_dbg = 1,
310
	.has_fbc = 1,
311
	GEN_DEFAULT_PIPEOFFSETS,
312
	IVB_CURSOR_OFFSETS,
313
};
314
 
315
static const struct intel_device_info intel_broadwell_gt3m_info = {
316
	.gen = 8, .is_mobile = 1, .num_pipes = 3,
317
	.need_gfx_hws = 1, .has_hotplug = 1,
318
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
319
	.has_llc = 1,
320
	.has_ddi = 1,
321
	.has_fpga_dbg = 1,
322
	.has_fbc = 1,
323
	GEN_DEFAULT_PIPEOFFSETS,
324
	IVB_CURSOR_OFFSETS,
325
};
326
 
327
static const struct intel_device_info intel_cherryview_info = {
328
	.gen = 8, .num_pipes = 3,
329
	.need_gfx_hws = 1, .has_hotplug = 1,
330
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
331
	.is_valleyview = 1,
332
	.display_mmio_offset = VLV_DISPLAY_BASE,
333
	GEN_CHV_PIPEOFFSETS,
334
	CURSOR_OFFSETS,
335
};
336
 
5354 serge 337
static const struct intel_device_info intel_skylake_info = {
338
	.is_skylake = 1,
339
	.gen = 9, .num_pipes = 3,
340
	.need_gfx_hws = 1, .has_hotplug = 1,
341
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
342
	.has_llc = 1,
343
	.has_ddi = 1,
6084 serge 344
	.has_fpga_dbg = 1,
5354 serge 345
	.has_fbc = 1,
346
	GEN_DEFAULT_PIPEOFFSETS,
347
	IVB_CURSOR_OFFSETS,
348
};
349
 
6084 serge 350
static const struct intel_device_info intel_skylake_gt3_info = {
351
	.is_skylake = 1,
352
	.gen = 9, .num_pipes = 3,
353
	.need_gfx_hws = 1, .has_hotplug = 1,
354
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
355
	.has_llc = 1,
356
	.has_ddi = 1,
357
	.has_fpga_dbg = 1,
358
	.has_fbc = 1,
359
	GEN_DEFAULT_PIPEOFFSETS,
360
	IVB_CURSOR_OFFSETS,
361
};
362
 
363
static const struct intel_device_info intel_broxton_info = {
364
	.is_preliminary = 1,
365
	.gen = 9,
366
	.need_gfx_hws = 1, .has_hotplug = 1,
367
	.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
368
	.num_pipes = 3,
369
	.has_ddi = 1,
370
	.has_fpga_dbg = 1,
371
	.has_fbc = 1,
372
	GEN_DEFAULT_PIPEOFFSETS,
373
	IVB_CURSOR_OFFSETS,
374
};
375
 
4104 Serge 376
/*
377
 * Make sure any device matches here are from most specific to most
378
 * general.  For example, since the Quanta match is based on the subsystem
379
 * and subvendor IDs, we need it to come before the more general IVB
380
 * PCI ID matches, otherwise we'll use the wrong info struct above.
381
 */
382
#define INTEL_PCI_IDS \
383
	INTEL_I915G_IDS(&intel_i915g_info),	\
384
	INTEL_I915GM_IDS(&intel_i915gm_info),	\
385
	INTEL_I945G_IDS(&intel_i945g_info),	\
386
	INTEL_I945GM_IDS(&intel_i945gm_info),	\
387
	INTEL_I965G_IDS(&intel_i965g_info),	\
388
	INTEL_G33_IDS(&intel_g33_info),		\
389
	INTEL_I965GM_IDS(&intel_i965gm_info),	\
390
	INTEL_GM45_IDS(&intel_gm45_info), 	\
391
	INTEL_G45_IDS(&intel_g45_info), 	\
392
	INTEL_PINEVIEW_IDS(&intel_pineview_info),	\
393
	INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info),	\
394
	INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info),	\
395
	INTEL_SNB_D_IDS(&intel_sandybridge_d_info),	\
396
	INTEL_SNB_M_IDS(&intel_sandybridge_m_info),	\
397
	INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */ \
398
	INTEL_IVB_M_IDS(&intel_ivybridge_m_info),	\
399
	INTEL_IVB_D_IDS(&intel_ivybridge_d_info),	\
400
	INTEL_HSW_D_IDS(&intel_haswell_d_info), \
401
	INTEL_HSW_M_IDS(&intel_haswell_m_info), \
402
	INTEL_VLV_M_IDS(&intel_valleyview_m_info),	\
4560 Serge 403
	INTEL_VLV_D_IDS(&intel_valleyview_d_info),	\
5060 serge 404
	INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info),	\
405
	INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info),	\
406
	INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info),	\
407
	INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info), \
5354 serge 408
	INTEL_CHV_IDS(&intel_cherryview_info),	\
6084 serge 409
	INTEL_SKL_GT1_IDS(&intel_skylake_info),	\
410
	INTEL_SKL_GT2_IDS(&intel_skylake_info),	\
411
	INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info),	\
412
	INTEL_BXT_IDS(&intel_broxton_info)
4104 Serge 413
 
6084 serge 414
static const struct pci_device_id pciidlist[] = {		/* aka */
4104 Serge 415
	INTEL_PCI_IDS,
6084 serge 416
	{0, 0, 0}
2325 Serge 417
};
418
 
2326 Serge 419
#define INTEL_PCH_DEVICE_ID_MASK        0xff00
420
#define INTEL_PCH_IBX_DEVICE_ID_TYPE    0x3b00
421
#define INTEL_PCH_CPT_DEVICE_ID_TYPE    0x1c00
422
#define INTEL_PCH_PPT_DEVICE_ID_TYPE    0x1e00
3031 serge 423
#define INTEL_PCH_LPT_DEVICE_ID_TYPE	0x8c00
6084 serge 424
static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
425
{
426
	enum intel_pch ret = PCH_NOP;
2325 Serge 427
 
6084 serge 428
	/*
429
	 * In a virtualized passthrough environment we can be in a
430
	 * setup where the ISA bridge is not able to be passed through.
431
	 * In this case, a south bridge can be emulated and we have to
432
	 * make an educated guess as to which PCH is really there.
433
	 */
434
 
435
	if (IS_GEN5(dev)) {
436
		ret = PCH_IBX;
437
		DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
438
	} else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
439
		ret = PCH_CPT;
440
		DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
441
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
442
		ret = PCH_LPT;
443
		DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
444
	} else if (IS_SKYLAKE(dev)) {
445
		ret = PCH_SPT;
446
		DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
447
	}
448
 
449
	return ret;
450
}
451
 
2342 Serge 452
void intel_detect_pch(struct drm_device *dev)
2326 Serge 453
{
6084 serge 454
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 455
	struct pci_dev *pch = NULL;
2326 Serge 456
 
3746 Serge 457
	/* In all current cases, num_pipes is equivalent to the PCH_NOP setting
458
	 * (which really amounts to a PCH but no South Display).
459
	 */
460
	if (INTEL_INFO(dev)->num_pipes == 0) {
461
		dev_priv->pch_type = PCH_NOP;
462
		return;
463
	}
464
 
6084 serge 465
	/*
466
	 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
467
	 * make graphics device passthrough work easy for VMM, that only
468
	 * need to expose ISA bridge to let driver know the real hardware
469
	 * underneath. This is a requirement from virtualization team.
4104 Serge 470
	 *
471
	 * In some virtualized environments (e.g. XEN), there is irrelevant
472
	 * ISA bridge in the system. To work reliably, we should scan trhough
473
	 * all the ISA bridge devices and check for the first match, instead
474
	 * of only checking the first one.
6084 serge 475
	 */
5060 serge 476
	while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
6084 serge 477
		if (pch->vendor == PCI_VENDOR_ID_INTEL) {
5060 serge 478
			unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
3243 Serge 479
			dev_priv->pch_id = id;
2326 Serge 480
 
6084 serge 481
			if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
482
				dev_priv->pch_type = PCH_IBX;
483
				DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
3243 Serge 484
				WARN_ON(!IS_GEN5(dev));
6084 serge 485
			} else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
486
				dev_priv->pch_type = PCH_CPT;
487
				DRM_DEBUG_KMS("Found CougarPoint PCH\n");
3243 Serge 488
				WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
6084 serge 489
			} else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
490
				/* PantherPoint is CPT compatible */
491
				dev_priv->pch_type = PCH_CPT;
4560 Serge 492
				DRM_DEBUG_KMS("Found PantherPoint PCH\n");
3243 Serge 493
				WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
3031 serge 494
			} else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
495
				dev_priv->pch_type = PCH_LPT;
496
				DRM_DEBUG_KMS("Found LynxPoint PCH\n");
6084 serge 497
				WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
498
				WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
3243 Serge 499
			} else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
500
				dev_priv->pch_type = PCH_LPT;
501
				DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
6084 serge 502
				WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
503
				WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
5354 serge 504
			} else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
505
				dev_priv->pch_type = PCH_SPT;
506
				DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
507
				WARN_ON(!IS_SKYLAKE(dev));
508
			} else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
509
				dev_priv->pch_type = PCH_SPT;
510
				DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
511
				WARN_ON(!IS_SKYLAKE(dev));
6320 serge 512
			} else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
513
				   ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
514
				    pch->subsystem_vendor == 0x1af4 &&
515
				    pch->subsystem_device == 0x1100)) {
6084 serge 516
				dev_priv->pch_type = intel_virt_detect_pch(dev);
5060 serge 517
			} else
518
				continue;
519
 
4104 Serge 520
			break;
6084 serge 521
		}
522
	}
4104 Serge 523
	if (!pch)
5060 serge 524
		DRM_DEBUG_KMS("No PCH found.\n");
525
 
526
//	pci_dev_put(pch);
2326 Serge 527
}
528
 
3031 serge 529
bool i915_semaphore_is_enabled(struct drm_device *dev)
2326 Serge 530
{
3031 serge 531
	if (INTEL_INFO(dev)->gen < 6)
4560 Serge 532
		return false;
2326 Serge 533
 
5060 serge 534
	if (i915.semaphores >= 0)
535
		return i915.semaphores;
536
 
5354 serge 537
	/* TODO: make semaphores and Execlists play nicely together */
538
	if (i915.enable_execlists)
539
		return false;
540
 
4560 Serge 541
	/* Until we get further testing... */
5060 serge 542
	if (IS_GEN8(dev))
4560 Serge 543
		return false;
544
 
3031 serge 545
#ifdef CONFIG_INTEL_IOMMU
546
	/* Enable semaphores on SNB when IO remapping is off */
547
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
548
		return false;
549
#endif
2326 Serge 550
 
4560 Serge 551
	return true;
2326 Serge 552
}
553
 
4104 Serge 554
#if 0
6084 serge 555
void i915_firmware_load_error_print(const char *fw_path, int err)
556
{
557
	DRM_ERROR("failed to load firmware %s (%d)\n", fw_path, err);
558
 
559
	/*
560
	 * If the reason is not known assume -ENOENT since that's the most
561
	 * usual failure mode.
562
	 */
563
	if (!err)
564
		err = -ENOENT;
565
 
566
	if (!(IS_BUILTIN(CONFIG_DRM_I915) && err == -ENOENT))
567
		return;
568
 
569
	DRM_ERROR(
570
	  "The driver is built-in, so to load the firmware you need to\n"
571
	  "include it either in the kernel (see CONFIG_EXTRA_FIRMWARE) or\n"
572
	  "in your initrd/initramfs image.\n");
573
}
574
 
5060 serge 575
static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
576
{
577
	struct drm_device *dev = dev_priv->dev;
578
	struct drm_encoder *encoder;
579
 
580
	drm_modeset_lock_all(dev);
581
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
582
		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
583
 
584
		if (intel_encoder->suspend)
585
			intel_encoder->suspend(intel_encoder);
586
	}
587
	drm_modeset_unlock_all(dev);
588
}
589
 
5354 serge 590
static int intel_suspend_complete(struct drm_i915_private *dev_priv);
591
static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
592
			      bool rpm_resume);
6084 serge 593
static int skl_resume_prepare(struct drm_i915_private *dev_priv);
594
static int bxt_resume_prepare(struct drm_i915_private *dev_priv);
5354 serge 595
 
6084 serge 596
 
5354 serge 597
static int i915_drm_suspend(struct drm_device *dev)
4104 Serge 598
{
599
	struct drm_i915_private *dev_priv = dev->dev_private;
5060 serge 600
	pci_power_t opregion_target_state;
6084 serge 601
	int error;
2342 Serge 602
 
4104 Serge 603
	/* ignore lid events during suspend */
604
	mutex_lock(&dev_priv->modeset_restore_lock);
605
	dev_priv->modeset_restore = MODESET_SUSPENDED;
606
	mutex_unlock(&dev_priv->modeset_restore_lock);
2342 Serge 607
 
4104 Serge 608
	/* We do a lot of poking in a lot of registers, make sure they work
609
	 * properly. */
5060 serge 610
	intel_display_set_init_power(dev_priv, true);
2342 Serge 611
 
4104 Serge 612
	drm_kms_helper_poll_disable(dev);
2342 Serge 613
 
4104 Serge 614
	pci_save_state(dev->pdev);
2325 Serge 615
 
6084 serge 616
	error = i915_gem_suspend(dev);
617
	if (error) {
618
		dev_err(&dev->pdev->dev,
619
			"GEM idle failed, resume might fail\n");
620
		return error;
621
	}
4104 Serge 622
 
6084 serge 623
	intel_guc_suspend(dev);
4104 Serge 624
 
6084 serge 625
	intel_suspend_gt_powersave(dev);
5354 serge 626
 
6084 serge 627
	/*
628
	 * Disable CRTCs directly since we want to preserve sw state
629
	 * for _thaw. Also, power gate the CRTC power wells.
630
	 */
631
	drm_modeset_lock_all(dev);
632
	intel_display_suspend(dev);
633
	drm_modeset_unlock_all(dev);
4104 Serge 634
 
6084 serge 635
	intel_dp_mst_suspend(dev);
5060 serge 636
 
6084 serge 637
	intel_runtime_pm_disable_interrupts(dev_priv);
638
	intel_hpd_cancel_work(dev_priv);
5060 serge 639
 
6084 serge 640
	intel_suspend_encoders(dev_priv);
5060 serge 641
 
6084 serge 642
	intel_suspend_hw(dev);
4104 Serge 643
 
4560 Serge 644
	i915_gem_suspend_gtt_mappings(dev);
645
 
4104 Serge 646
	i915_save_state(dev);
647
 
5060 serge 648
	opregion_target_state = PCI_D3cold;
649
#if IS_ENABLED(CONFIG_ACPI_SLEEP)
650
	if (acpi_target_system_state() < ACPI_STATE_S3)
651
		opregion_target_state = PCI_D1;
652
#endif
653
	intel_opregion_notify_adapter(dev, opregion_target_state);
654
 
655
	intel_uncore_forcewake_reset(dev, false);
4104 Serge 656
	intel_opregion_fini(dev);
657
 
5354 serge 658
	intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
4104 Serge 659
 
5060 serge 660
	dev_priv->suspend_count++;
661
 
662
	intel_display_set_init_power(dev_priv, false);
663
 
4104 Serge 664
	return 0;
665
}
666
 
6084 serge 667
static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
2325 Serge 668
{
5354 serge 669
	struct drm_i915_private *dev_priv = drm_dev->dev_private;
670
	int ret;
671
 
672
	ret = intel_suspend_complete(dev_priv);
673
 
674
	if (ret) {
675
		DRM_ERROR("Suspend complete failed: %d\n", ret);
676
 
677
		return ret;
678
	}
679
 
680
	pci_disable_device(drm_dev->pdev);
6084 serge 681
	/*
682
	 * During hibernation on some platforms the BIOS may try to access
683
	 * the device even though it's already in D3 and hang the machine. So
684
	 * leave the device in D0 on those platforms and hope the BIOS will
685
	 * power down the device properly. The issue was seen on multiple old
686
	 * GENs with different BIOS vendors, so having an explicit blacklist
687
	 * is inpractical; apply the workaround on everything pre GEN6. The
688
	 * platforms where the issue was seen:
689
	 * Lenovo Thinkpad X301, X61s, X60, T60, X41
690
	 * Fujitsu FSC S7110
691
	 * Acer Aspire 1830T
692
	 */
693
	if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
694
		pci_set_power_state(drm_dev->pdev, PCI_D3hot);
5354 serge 695
 
696
	return 0;
697
}
698
 
6084 serge 699
int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
5354 serge 700
{
4104 Serge 701
	int error;
2325 Serge 702
 
4104 Serge 703
	if (!dev || !dev->dev_private) {
704
		DRM_ERROR("dev: %p\n", dev);
705
		DRM_ERROR("DRM not initialized, aborting suspend.\n");
706
		return -ENODEV;
707
	}
2325 Serge 708
 
5354 serge 709
	if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
710
			 state.event != PM_EVENT_FREEZE))
711
		return -EINVAL;
3031 serge 712
 
4104 Serge 713
	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
714
		return 0;
2325 Serge 715
 
5354 serge 716
	error = i915_drm_suspend(dev);
4104 Serge 717
	if (error)
718
		return error;
3031 serge 719
 
6084 serge 720
	return i915_drm_suspend_late(dev, false);
4104 Serge 721
}
2325 Serge 722
 
5354 serge 723
static int i915_drm_resume(struct drm_device *dev)
4104 Serge 724
{
5060 serge 725
	struct drm_i915_private *dev_priv = dev->dev_private;
3260 Serge 726
 
6084 serge 727
	mutex_lock(&dev->struct_mutex);
728
	i915_gem_restore_gtt_mappings(dev);
729
	mutex_unlock(&dev->struct_mutex);
4560 Serge 730
 
4104 Serge 731
	i915_restore_state(dev);
732
	intel_opregion_setup(dev);
733
 
6084 serge 734
	intel_init_pch_refclk(dev);
735
	drm_mode_config_reset(dev);
4104 Serge 736
 
6084 serge 737
	/*
738
	 * Interrupts have to be enabled before any batches are run. If not the
739
	 * GPU will hang. i915_gem_init_hw() will initiate batches to
740
	 * update/restore the context.
741
	 *
742
	 * Modeset enabling in intel_modeset_init_hw() also needs working
743
	 * interrupts.
744
	 */
745
	intel_runtime_pm_enable_interrupts(dev_priv);
4104 Serge 746
 
6084 serge 747
	mutex_lock(&dev->struct_mutex);
748
	if (i915_gem_init_hw(dev)) {
749
		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
750
			atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
751
	}
752
	mutex_unlock(&dev->struct_mutex);
4104 Serge 753
 
6084 serge 754
	intel_guc_resume(dev);
4104 Serge 755
 
6084 serge 756
	intel_modeset_init_hw(dev);
5060 serge 757
 
6084 serge 758
	spin_lock_irq(&dev_priv->irq_lock);
759
	if (dev_priv->display.hpd_irq_setup)
760
		dev_priv->display.hpd_irq_setup(dev);
761
	spin_unlock_irq(&dev_priv->irq_lock);
4104 Serge 762
 
6084 serge 763
	drm_modeset_lock_all(dev);
764
	intel_display_resume(dev);
765
	drm_modeset_unlock_all(dev);
5354 serge 766
 
6084 serge 767
	intel_dp_mst_resume(dev);
4104 Serge 768
 
6084 serge 769
	/*
770
	 * ... but also need to make sure that hotplug processing
771
	 * doesn't cause havoc. Like in the driver load code we don't
772
	 * bother with the tiny race here where we might loose hotplug
773
	 * notifications.
774
	 * */
775
	intel_hpd_init(dev_priv);
776
	/* Config may have changed between suspend and resume */
777
	drm_helper_hpd_irq_event(dev);
778
 
4104 Serge 779
	intel_opregion_init(dev);
780
 
5354 serge 781
	intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
4104 Serge 782
 
783
	mutex_lock(&dev_priv->modeset_restore_lock);
784
	dev_priv->modeset_restore = MODESET_DONE;
785
	mutex_unlock(&dev_priv->modeset_restore_lock);
4560 Serge 786
 
5060 serge 787
	intel_opregion_notify_adapter(dev, PCI_D0);
788
 
5354 serge 789
	drm_kms_helper_poll_enable(dev);
790
 
5060 serge 791
	return 0;
4104 Serge 792
}
793
 
5354 serge 794
static int i915_drm_resume_early(struct drm_device *dev)
4104 Serge 795
{
5354 serge 796
	struct drm_i915_private *dev_priv = dev->dev_private;
797
	int ret = 0;
4104 Serge 798
 
5060 serge 799
	/*
800
	 * We have a resume ordering issue with the snd-hda driver also
801
	 * requiring our device to be power up. Due to the lack of a
802
	 * parent/child relationship we currently solve this with an early
803
	 * resume hook.
804
	 *
805
	 * FIXME: This should be solved with a special hdmi sink device or
806
	 * similar so that power domains can be employed.
807
	 */
4104 Serge 808
	if (pci_enable_device(dev->pdev))
809
		return -EIO;
810
 
811
	pci_set_master(dev->pdev);
812
 
5354 serge 813
	if (IS_VALLEYVIEW(dev_priv))
814
		ret = vlv_resume_prepare(dev_priv, false);
815
	if (ret)
6084 serge 816
		DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
817
			  ret);
5354 serge 818
 
819
	intel_uncore_early_sanitize(dev, true);
820
 
6084 serge 821
	if (IS_BROXTON(dev))
822
		ret = bxt_resume_prepare(dev_priv);
823
	else if (IS_SKYLAKE(dev_priv))
824
		ret = skl_resume_prepare(dev_priv);
825
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5354 serge 826
		hsw_disable_pc8(dev_priv);
827
 
828
	intel_uncore_sanitize(dev);
829
	intel_power_domains_init_hw(dev_priv);
830
 
831
	return ret;
5060 serge 832
}
833
 
6084 serge 834
int i915_resume_switcheroo(struct drm_device *dev)
5060 serge 835
{
836
	int ret;
837
 
5354 serge 838
	if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
839
		return 0;
840
 
841
	ret = i915_drm_resume_early(dev);
4104 Serge 842
	if (ret)
843
		return ret;
844
 
5354 serge 845
	return i915_drm_resume(dev);
4104 Serge 846
}
847
 
848
/**
849
 * i915_reset - reset chip after a hang
850
 * @dev: drm device to reset
851
 *
852
 * Reset the chip.  Useful if a hang is detected. Returns zero on successful
853
 * reset or otherwise an error code.
854
 *
855
 * Procedure is fairly simple:
856
 *   - reset the chip using the reset reg
857
 *   - re-init context state
858
 *   - re-init hardware status page
859
 *   - re-init ring buffer
860
 *   - re-init interrupt state
861
 *   - re-init display
862
 */
863
int i915_reset(struct drm_device *dev)
864
{
5060 serge 865
	struct drm_i915_private *dev_priv = dev->dev_private;
4104 Serge 866
	bool simulated;
867
	int ret;
868
 
6084 serge 869
	intel_reset_gt_powersave(dev);
4104 Serge 870
 
871
	mutex_lock(&dev->struct_mutex);
872
 
873
	i915_gem_reset(dev);
874
 
875
	simulated = dev_priv->gpu_error.stop_rings != 0;
876
 
6084 serge 877
	ret = intel_gpu_reset(dev);
4104 Serge 878
 
6084 serge 879
	/* Also reset the gpu hangman. */
880
	if (simulated) {
881
		DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
882
		dev_priv->gpu_error.stop_rings = 0;
883
		if (ret == -ENODEV) {
4560 Serge 884
			DRM_INFO("Reset not implemented, but ignoring "
6084 serge 885
				 "error for simulated gpu hangs\n");
886
			ret = 0;
887
		}
4104 Serge 888
	}
4560 Serge 889
 
5354 serge 890
	if (i915_stop_ring_allow_warn(dev_priv))
891
		pr_notice("drm/i915: Resetting chip after gpu hang\n");
892
 
4104 Serge 893
	if (ret) {
4560 Serge 894
		DRM_ERROR("Failed to reset chip: %i\n", ret);
4104 Serge 895
		mutex_unlock(&dev->struct_mutex);
896
		return ret;
897
	}
898
 
899
	/* Ok, now get things going again... */
900
 
901
	/*
902
	 * Everything depends on having the GTT running, so we need to start
903
	 * there.  Fortunately we don't need to do this unless we reset the
904
	 * chip at a PCI level.
905
	 *
906
	 * Next we need to restore the context, but we don't use those
907
	 * yet either...
908
	 *
909
	 * Ring buffer needs to be re-initialized in the KMS case, or if X
910
	 * was running at the time of the reset (i.e. we weren't VT
911
	 * switched away).
912
	 */
913
 
6084 serge 914
	/* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */
915
	dev_priv->gpu_error.reload_in_reset = true;
5354 serge 916
 
6084 serge 917
	ret = i915_gem_init_hw(dev);
5354 serge 918
 
6084 serge 919
	dev_priv->gpu_error.reload_in_reset = false;
4104 Serge 920
 
6084 serge 921
	mutex_unlock(&dev->struct_mutex);
922
	if (ret) {
923
		DRM_ERROR("Failed hw init on reset %d\n", ret);
924
		return ret;
4104 Serge 925
	}
926
 
6084 serge 927
	/*
928
	 * rps/rc6 re-init is necessary to restore state lost after the
929
	 * reset and the re-install of gt irqs. Skip for ironlake per
930
	 * previous concerns that it doesn't respond well to some forms
931
	 * of re-init after reset.
932
	 */
933
	if (INTEL_INFO(dev)->gen > 5)
934
		intel_enable_gt_powersave(dev);
935
 
4104 Serge 936
	return 0;
937
}
938
 
939
static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
940
{
941
	struct intel_device_info *intel_info =
942
		(struct intel_device_info *) ent->driver_data;
943
 
5060 serge 944
	if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
4560 Serge 945
		DRM_INFO("This hardware requires preliminary hardware support.\n"
946
			 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
947
		return -ENODEV;
948
	}
949
 
4104 Serge 950
	/* Only bind to function 0 of the device. Early generations
951
	 * used function 1 as a placeholder for multi-head. This causes
952
	 * us confusion instead, especially on the systems where both
953
	 * functions have the same PCI-ID!
954
	 */
955
	if (PCI_FUNC(pdev->devfn))
956
		return -ENODEV;
957
 
958
	return drm_get_pci_dev(pdev, ent, &driver);
959
}
960
 
961
static void
962
i915_pci_remove(struct pci_dev *pdev)
963
{
964
	struct drm_device *dev = pci_get_drvdata(pdev);
965
 
966
	drm_put_dev(dev);
967
}
968
 
969
static int i915_pm_suspend(struct device *dev)
970
{
971
	struct pci_dev *pdev = to_pci_dev(dev);
972
	struct drm_device *drm_dev = pci_get_drvdata(pdev);
973
 
974
	if (!drm_dev || !drm_dev->dev_private) {
975
		dev_err(dev, "DRM not initialized, aborting suspend.\n");
976
		return -ENODEV;
977
	}
978
 
979
	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
980
		return 0;
981
 
5354 serge 982
	return i915_drm_suspend(drm_dev);
5060 serge 983
}
4104 Serge 984
 
5060 serge 985
static int i915_pm_suspend_late(struct device *dev)
986
{
6084 serge 987
	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
5060 serge 988
 
989
	/*
6084 serge 990
	 * We have a suspend ordering issue with the snd-hda driver also
5060 serge 991
	 * requiring our device to be power up. Due to the lack of a
992
	 * parent/child relationship we currently solve this with an late
993
	 * suspend hook.
994
	 *
995
	 * FIXME: This should be solved with a special hdmi sink device or
996
	 * similar so that power domains can be employed.
997
	 */
998
	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
999
		return 0;
1000
 
6084 serge 1001
	return i915_drm_suspend_late(drm_dev, false);
4104 Serge 1002
}
1003
 
6084 serge 1004
static int i915_pm_poweroff_late(struct device *dev)
1005
{
1006
	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1007
 
1008
	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1009
		return 0;
1010
 
1011
	return i915_drm_suspend_late(drm_dev, true);
1012
}
1013
 
5060 serge 1014
static int i915_pm_resume_early(struct device *dev)
1015
{
6084 serge 1016
	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
5060 serge 1017
 
5354 serge 1018
	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1019
		return 0;
1020
 
1021
	return i915_drm_resume_early(drm_dev);
5060 serge 1022
}
1023
 
4104 Serge 1024
static int i915_pm_resume(struct device *dev)
1025
{
6084 serge 1026
	struct drm_device *drm_dev = dev_to_i915(dev)->dev;
4104 Serge 1027
 
5354 serge 1028
	if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1029
		return 0;
4104 Serge 1030
 
5354 serge 1031
	return i915_drm_resume(drm_dev);
4104 Serge 1032
}
1033
 
6084 serge 1034
static int skl_suspend_complete(struct drm_i915_private *dev_priv)
1035
{
1036
	/* Enabling DC6 is not a hard requirement to enter runtime D3 */
1037
 
1038
	skl_uninit_cdclk(dev_priv);
1039
 
1040
	return 0;
1041
}
1042
 
5354 serge 1043
static int hsw_suspend_complete(struct drm_i915_private *dev_priv)
5060 serge 1044
{
1045
	hsw_enable_pc8(dev_priv);
4560 Serge 1046
 
5060 serge 1047
	return 0;
1048
}
1049
 
6084 serge 1050
static int bxt_suspend_complete(struct drm_i915_private *dev_priv)
1051
{
1052
	struct drm_device *dev = dev_priv->dev;
1053
 
1054
	/* TODO: when DC5 support is added disable DC5 here. */
1055
 
1056
	broxton_ddi_phy_uninit(dev);
1057
	broxton_uninit_cdclk(dev);
1058
	bxt_enable_dc9(dev_priv);
1059
 
1060
	return 0;
1061
}
1062
 
1063
static int bxt_resume_prepare(struct drm_i915_private *dev_priv)
1064
{
1065
	struct drm_device *dev = dev_priv->dev;
1066
 
1067
	/* TODO: when CSR FW support is added make sure the FW is loaded */
1068
 
1069
	bxt_disable_dc9(dev_priv);
1070
 
1071
	/*
1072
	 * TODO: when DC5 support is added enable DC5 here if the CSR FW
1073
	 * is available.
1074
	 */
1075
	broxton_init_cdclk(dev);
1076
	broxton_ddi_phy_init(dev);
1077
	intel_prepare_ddi(dev);
1078
 
1079
	return 0;
1080
}
1081
 
1082
static int skl_resume_prepare(struct drm_i915_private *dev_priv)
1083
{
1084
	struct drm_device *dev = dev_priv->dev;
1085
 
1086
	skl_init_cdclk(dev_priv);
1087
	intel_csr_load_program(dev);
1088
 
1089
	return 0;
1090
}
1091
 
5060 serge 1092
/*
1093
 * Save all Gunit registers that may be lost after a D3 and a subsequent
1094
 * S0i[R123] transition. The list of registers needing a save/restore is
1095
 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1096
 * registers in the following way:
1097
 * - Driver: saved/restored by the driver
1098
 * - Punit : saved/restored by the Punit firmware
1099
 * - No, w/o marking: no need to save/restore, since the register is R/O or
1100
 *                    used internally by the HW in a way that doesn't depend
1101
 *                    keeping the content across a suspend/resume.
1102
 * - Debug : used for debugging
1103
 *
1104
 * We save/restore all registers marked with 'Driver', with the following
1105
 * exceptions:
1106
 * - Registers out of use, including also registers marked with 'Debug'.
1107
 *   These have no effect on the driver's operation, so we don't save/restore
1108
 *   them to reduce the overhead.
1109
 * - Registers that are fully setup by an initialization function called from
1110
 *   the resume path. For example many clock gating and RPS/RC6 registers.
1111
 * - Registers that provide the right functionality with their reset defaults.
1112
 *
1113
 * TODO: Except for registers that based on the above 3 criteria can be safely
1114
 * ignored, we save/restore all others, practically treating the HW context as
1115
 * a black-box for the driver. Further investigation is needed to reduce the
1116
 * saved/restored registers even further, by following the same 3 criteria.
1117
 */
1118
static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1119
{
1120
	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1121
	int i;
1122
 
1123
	/* GAM 0x4000-0x4770 */
1124
	s->wr_watermark		= I915_READ(GEN7_WR_WATERMARK);
1125
	s->gfx_prio_ctrl	= I915_READ(GEN7_GFX_PRIO_CTRL);
1126
	s->arb_mode		= I915_READ(ARB_MODE);
1127
	s->gfx_pend_tlb0	= I915_READ(GEN7_GFX_PEND_TLB0);
1128
	s->gfx_pend_tlb1	= I915_READ(GEN7_GFX_PEND_TLB1);
1129
 
1130
	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
6084 serge 1131
		s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
5060 serge 1132
 
1133
	s->media_max_req_count	= I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
6084 serge 1134
	s->gfx_max_req_count	= I915_READ(GEN7_GFX_MAX_REQ_COUNT);
5060 serge 1135
 
1136
	s->render_hwsp		= I915_READ(RENDER_HWS_PGA_GEN7);
1137
	s->ecochk		= I915_READ(GAM_ECOCHK);
1138
	s->bsd_hwsp		= I915_READ(BSD_HWS_PGA_GEN7);
1139
	s->blt_hwsp		= I915_READ(BLT_HWS_PGA_GEN7);
1140
 
1141
	s->tlb_rd_addr		= I915_READ(GEN7_TLB_RD_ADDR);
1142
 
1143
	/* MBC 0x9024-0x91D0, 0x8500 */
1144
	s->g3dctl		= I915_READ(VLV_G3DCTL);
1145
	s->gsckgctl		= I915_READ(VLV_GSCKGCTL);
1146
	s->mbctl		= I915_READ(GEN6_MBCTL);
1147
 
1148
	/* GCP 0x9400-0x9424, 0x8100-0x810C */
1149
	s->ucgctl1		= I915_READ(GEN6_UCGCTL1);
1150
	s->ucgctl3		= I915_READ(GEN6_UCGCTL3);
1151
	s->rcgctl1		= I915_READ(GEN6_RCGCTL1);
1152
	s->rcgctl2		= I915_READ(GEN6_RCGCTL2);
1153
	s->rstctl		= I915_READ(GEN6_RSTCTL);
1154
	s->misccpctl		= I915_READ(GEN7_MISCCPCTL);
1155
 
1156
	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1157
	s->gfxpause		= I915_READ(GEN6_GFXPAUSE);
1158
	s->rpdeuhwtc		= I915_READ(GEN6_RPDEUHWTC);
1159
	s->rpdeuc		= I915_READ(GEN6_RPDEUC);
1160
	s->ecobus		= I915_READ(ECOBUS);
1161
	s->pwrdwnupctl		= I915_READ(VLV_PWRDWNUPCTL);
1162
	s->rp_down_timeout	= I915_READ(GEN6_RP_DOWN_TIMEOUT);
1163
	s->rp_deucsw		= I915_READ(GEN6_RPDEUCSW);
1164
	s->rcubmabdtmr		= I915_READ(GEN6_RCUBMABDTMR);
1165
	s->rcedata		= I915_READ(VLV_RCEDATA);
1166
	s->spare2gh		= I915_READ(VLV_SPAREG2H);
1167
 
1168
	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1169
	s->gt_imr		= I915_READ(GTIMR);
1170
	s->gt_ier		= I915_READ(GTIER);
1171
	s->pm_imr		= I915_READ(GEN6_PMIMR);
1172
	s->pm_ier		= I915_READ(GEN6_PMIER);
1173
 
1174
	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
6084 serge 1175
		s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
5060 serge 1176
 
1177
	/* GT SA CZ domain, 0x100000-0x138124 */
1178
	s->tilectl		= I915_READ(TILECTL);
1179
	s->gt_fifoctl		= I915_READ(GTFIFOCTL);
1180
	s->gtlc_wake_ctrl	= I915_READ(VLV_GTLC_WAKE_CTRL);
1181
	s->gtlc_survive		= I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1182
	s->pmwgicz		= I915_READ(VLV_PMWGICZ);
1183
 
1184
	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
1185
	s->gu_ctl0		= I915_READ(VLV_GU_CTL0);
1186
	s->gu_ctl1		= I915_READ(VLV_GU_CTL1);
6084 serge 1187
	s->pcbr			= I915_READ(VLV_PCBR);
5060 serge 1188
	s->clock_gate_dis2	= I915_READ(VLV_GUNIT_CLOCK_GATE2);
1189
 
1190
	/*
1191
	 * Not saving any of:
1192
	 * DFT,		0x9800-0x9EC0
1193
	 * SARB,	0xB000-0xB1FC
1194
	 * GAC,		0x5208-0x524C, 0x14000-0x14C000
1195
	 * PCI CFG
1196
	 */
1197
}
1198
 
1199
static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1200
{
1201
	struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1202
	u32 val;
1203
	int i;
1204
 
1205
	/* GAM 0x4000-0x4770 */
1206
	I915_WRITE(GEN7_WR_WATERMARK,	s->wr_watermark);
1207
	I915_WRITE(GEN7_GFX_PRIO_CTRL,	s->gfx_prio_ctrl);
1208
	I915_WRITE(ARB_MODE,		s->arb_mode | (0xffff << 16));
1209
	I915_WRITE(GEN7_GFX_PEND_TLB0,	s->gfx_pend_tlb0);
1210
	I915_WRITE(GEN7_GFX_PEND_TLB1,	s->gfx_pend_tlb1);
1211
 
1212
	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
6084 serge 1213
		I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
5060 serge 1214
 
1215
	I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
6084 serge 1216
	I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
5060 serge 1217
 
1218
	I915_WRITE(RENDER_HWS_PGA_GEN7,	s->render_hwsp);
1219
	I915_WRITE(GAM_ECOCHK,		s->ecochk);
1220
	I915_WRITE(BSD_HWS_PGA_GEN7,	s->bsd_hwsp);
1221
	I915_WRITE(BLT_HWS_PGA_GEN7,	s->blt_hwsp);
1222
 
1223
	I915_WRITE(GEN7_TLB_RD_ADDR,	s->tlb_rd_addr);
1224
 
1225
	/* MBC 0x9024-0x91D0, 0x8500 */
1226
	I915_WRITE(VLV_G3DCTL,		s->g3dctl);
1227
	I915_WRITE(VLV_GSCKGCTL,	s->gsckgctl);
1228
	I915_WRITE(GEN6_MBCTL,		s->mbctl);
1229
 
1230
	/* GCP 0x9400-0x9424, 0x8100-0x810C */
1231
	I915_WRITE(GEN6_UCGCTL1,	s->ucgctl1);
1232
	I915_WRITE(GEN6_UCGCTL3,	s->ucgctl3);
1233
	I915_WRITE(GEN6_RCGCTL1,	s->rcgctl1);
1234
	I915_WRITE(GEN6_RCGCTL2,	s->rcgctl2);
1235
	I915_WRITE(GEN6_RSTCTL,		s->rstctl);
1236
	I915_WRITE(GEN7_MISCCPCTL,	s->misccpctl);
1237
 
1238
	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1239
	I915_WRITE(GEN6_GFXPAUSE,	s->gfxpause);
1240
	I915_WRITE(GEN6_RPDEUHWTC,	s->rpdeuhwtc);
1241
	I915_WRITE(GEN6_RPDEUC,		s->rpdeuc);
1242
	I915_WRITE(ECOBUS,		s->ecobus);
1243
	I915_WRITE(VLV_PWRDWNUPCTL,	s->pwrdwnupctl);
1244
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1245
	I915_WRITE(GEN6_RPDEUCSW,	s->rp_deucsw);
1246
	I915_WRITE(GEN6_RCUBMABDTMR,	s->rcubmabdtmr);
1247
	I915_WRITE(VLV_RCEDATA,		s->rcedata);
1248
	I915_WRITE(VLV_SPAREG2H,	s->spare2gh);
1249
 
1250
	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1251
	I915_WRITE(GTIMR,		s->gt_imr);
1252
	I915_WRITE(GTIER,		s->gt_ier);
1253
	I915_WRITE(GEN6_PMIMR,		s->pm_imr);
1254
	I915_WRITE(GEN6_PMIER,		s->pm_ier);
1255
 
1256
	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
6084 serge 1257
		I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
5060 serge 1258
 
1259
	/* GT SA CZ domain, 0x100000-0x138124 */
1260
	I915_WRITE(TILECTL,			s->tilectl);
1261
	I915_WRITE(GTFIFOCTL,			s->gt_fifoctl);
1262
	/*
1263
	 * Preserve the GT allow wake and GFX force clock bit, they are not
1264
	 * be restored, as they are used to control the s0ix suspend/resume
1265
	 * sequence by the caller.
1266
	 */
1267
	val = I915_READ(VLV_GTLC_WAKE_CTRL);
1268
	val &= VLV_GTLC_ALLOWWAKEREQ;
1269
	val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1270
	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1271
 
1272
	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1273
	val &= VLV_GFX_CLK_FORCE_ON_BIT;
1274
	val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1275
	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1276
 
1277
	I915_WRITE(VLV_PMWGICZ,			s->pmwgicz);
1278
 
1279
	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
1280
	I915_WRITE(VLV_GU_CTL0,			s->gu_ctl0);
1281
	I915_WRITE(VLV_GU_CTL1,			s->gu_ctl1);
6084 serge 1282
	I915_WRITE(VLV_PCBR,			s->pcbr);
5060 serge 1283
	I915_WRITE(VLV_GUNIT_CLOCK_GATE2,	s->clock_gate_dis2);
1284
}
4104 Serge 1285
#endif
1286
 
5060 serge 1287
int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1288
{
1289
	u32 val;
1290
	int err;
1291
 
1292
#define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1293
 
1294
	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1295
	val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1296
	if (force_on)
1297
		val |= VLV_GFX_CLK_FORCE_ON_BIT;
1298
	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1299
 
1300
	if (!force_on)
1301
		return 0;
1302
 
1303
	err = wait_for(COND, 20);
1304
	if (err)
1305
		DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1306
			  I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1307
 
1308
	return err;
1309
#undef COND
1310
}
1311
#if 0
1312
static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1313
{
1314
	u32 val;
1315
	int err = 0;
1316
 
1317
	val = I915_READ(VLV_GTLC_WAKE_CTRL);
1318
	val &= ~VLV_GTLC_ALLOWWAKEREQ;
1319
	if (allow)
1320
		val |= VLV_GTLC_ALLOWWAKEREQ;
1321
	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1322
	POSTING_READ(VLV_GTLC_WAKE_CTRL);
1323
 
1324
#define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1325
	      allow)
1326
	err = wait_for(COND, 1);
1327
	if (err)
1328
		DRM_ERROR("timeout disabling GT waking\n");
1329
	return err;
1330
#undef COND
1331
}
1332
 
1333
static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1334
				 bool wait_for_on)
1335
{
1336
	u32 mask;
1337
	u32 val;
1338
	int err;
1339
 
1340
	mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1341
	val = wait_for_on ? mask : 0;
1342
#define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1343
	if (COND)
1344
		return 0;
1345
 
1346
	DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1347
			wait_for_on ? "on" : "off",
1348
			I915_READ(VLV_GTLC_PW_STATUS));
1349
 
1350
	/*
1351
	 * RC6 transitioning can be delayed up to 2 msec (see
1352
	 * valleyview_enable_rps), use 3 msec for safety.
1353
	 */
1354
	err = wait_for(COND, 3);
1355
	if (err)
1356
		DRM_ERROR("timeout waiting for GT wells to go %s\n",
1357
			  wait_for_on ? "on" : "off");
1358
 
1359
	return err;
1360
#undef COND
1361
}
1362
 
1363
static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1364
{
1365
	if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1366
		return;
1367
 
1368
	DRM_ERROR("GT register access while GT waking disabled\n");
1369
	I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1370
}
1371
 
5354 serge 1372
static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
5060 serge 1373
{
1374
	u32 mask;
1375
	int err;
1376
 
1377
	/*
1378
	 * Bspec defines the following GT well on flags as debug only, so
1379
	 * don't treat them as hard failures.
1380
	 */
1381
	(void)vlv_wait_for_gt_wells(dev_priv, false);
1382
 
1383
	mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1384
	WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1385
 
1386
	vlv_check_no_gt_access(dev_priv);
1387
 
1388
	err = vlv_force_gfx_clock(dev_priv, true);
1389
	if (err)
1390
		goto err1;
1391
 
1392
	err = vlv_allow_gt_wake(dev_priv, false);
1393
	if (err)
1394
		goto err2;
1395
 
6084 serge 1396
	if (!IS_CHERRYVIEW(dev_priv->dev))
1397
		vlv_save_gunit_s0ix_state(dev_priv);
1398
 
5060 serge 1399
	err = vlv_force_gfx_clock(dev_priv, false);
1400
	if (err)
1401
		goto err2;
1402
 
1403
	return 0;
1404
 
1405
err2:
1406
	/* For safety always re-enable waking and disable gfx clock forcing */
1407
	vlv_allow_gt_wake(dev_priv, true);
1408
err1:
1409
	vlv_force_gfx_clock(dev_priv, false);
1410
 
1411
	return err;
1412
}
1413
 
5354 serge 1414
static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1415
				bool rpm_resume)
5060 serge 1416
{
1417
	struct drm_device *dev = dev_priv->dev;
1418
	int err;
1419
	int ret;
1420
 
1421
	/*
1422
	 * If any of the steps fail just try to continue, that's the best we
1423
	 * can do at this point. Return the first error code (which will also
1424
	 * leave RPM permanently disabled).
1425
	 */
1426
	ret = vlv_force_gfx_clock(dev_priv, true);
1427
 
6084 serge 1428
	if (!IS_CHERRYVIEW(dev_priv->dev))
1429
		vlv_restore_gunit_s0ix_state(dev_priv);
5060 serge 1430
 
1431
	err = vlv_allow_gt_wake(dev_priv, true);
1432
	if (!ret)
1433
		ret = err;
1434
 
1435
	err = vlv_force_gfx_clock(dev_priv, false);
1436
	if (!ret)
1437
		ret = err;
1438
 
1439
	vlv_check_no_gt_access(dev_priv);
1440
 
5354 serge 1441
	if (rpm_resume) {
6084 serge 1442
		intel_init_clock_gating(dev);
1443
		i915_gem_restore_fences(dev);
5354 serge 1444
	}
5060 serge 1445
 
1446
	return ret;
1447
}
1448
 
1449
static int intel_runtime_suspend(struct device *device)
1450
{
1451
	struct pci_dev *pdev = to_pci_dev(device);
1452
	struct drm_device *dev = pci_get_drvdata(pdev);
1453
	struct drm_i915_private *dev_priv = dev->dev_private;
1454
	int ret;
1455
 
1456
	if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1457
		return -ENODEV;
1458
 
5354 serge 1459
	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1460
		return -ENODEV;
1461
 
5060 serge 1462
	DRM_DEBUG_KMS("Suspending device\n");
1463
 
1464
	/*
1465
	 * We could deadlock here in case another thread holding struct_mutex
1466
	 * calls RPM suspend concurrently, since the RPM suspend will wait
1467
	 * first for this RPM suspend to finish. In this case the concurrent
1468
	 * RPM resume will be followed by its RPM suspend counterpart. Still
1469
	 * for consistency return -EAGAIN, which will reschedule this suspend.
1470
	 */
1471
	if (!mutex_trylock(&dev->struct_mutex)) {
1472
		DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1473
		/*
1474
		 * Bump the expiration timestamp, otherwise the suspend won't
1475
		 * be rescheduled.
1476
		 */
1477
		pm_runtime_mark_last_busy(device);
1478
 
1479
		return -EAGAIN;
1480
	}
1481
	/*
1482
	 * We are safe here against re-faults, since the fault handler takes
1483
	 * an RPM reference.
1484
	 */
1485
	i915_gem_release_all_mmaps(dev_priv);
1486
	mutex_unlock(&dev->struct_mutex);
1487
 
6084 serge 1488
	intel_guc_suspend(dev);
1489
 
5354 serge 1490
	intel_suspend_gt_powersave(dev);
1491
	intel_runtime_pm_disable_interrupts(dev_priv);
5060 serge 1492
 
5354 serge 1493
	ret = intel_suspend_complete(dev_priv);
5060 serge 1494
	if (ret) {
1495
		DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
5354 serge 1496
		intel_runtime_pm_enable_interrupts(dev_priv);
5060 serge 1497
 
1498
		return ret;
1499
	}
1500
 
6084 serge 1501
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1502
	intel_uncore_forcewake_reset(dev, false);
5060 serge 1503
	dev_priv->pm.suspended = true;
1504
 
1505
	/*
5354 serge 1506
	 * FIXME: We really should find a document that references the arguments
1507
	 * used below!
1508
	 */
6084 serge 1509
	if (IS_BROADWELL(dev)) {
5354 serge 1510
		/*
1511
		 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
1512
		 * being detected, and the call we do at intel_runtime_resume()
1513
		 * won't be able to restore them. Since PCI_D3hot matches the
6084 serge 1514
		 * actual specification and appears to be working, use it.
5354 serge 1515
		 */
1516
		intel_opregion_notify_adapter(dev, PCI_D3hot);
6084 serge 1517
	} else {
1518
		/*
1519
		 * current versions of firmware which depend on this opregion
1520
		 * notification have repurposed the D1 definition to mean
1521
		 * "runtime suspended" vs. what you would normally expect (D3)
1522
		 * to distinguish it from notifications that might be sent via
1523
		 * the suspend path.
1524
		 */
1525
		intel_opregion_notify_adapter(dev, PCI_D1);
5354 serge 1526
	}
5060 serge 1527
 
6084 serge 1528
	assert_forcewakes_inactive(dev_priv);
1529
 
5060 serge 1530
	DRM_DEBUG_KMS("Device suspended\n");
1531
	return 0;
1532
}
1533
 
1534
static int intel_runtime_resume(struct device *device)
1535
{
1536
	struct pci_dev *pdev = to_pci_dev(device);
1537
	struct drm_device *dev = pci_get_drvdata(pdev);
1538
	struct drm_i915_private *dev_priv = dev->dev_private;
5354 serge 1539
	int ret = 0;
5060 serge 1540
 
5354 serge 1541
	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1542
		return -ENODEV;
5060 serge 1543
 
1544
	DRM_DEBUG_KMS("Resuming device\n");
1545
 
1546
	intel_opregion_notify_adapter(dev, PCI_D0);
1547
	dev_priv->pm.suspended = false;
1548
 
6084 serge 1549
	intel_guc_resume(dev);
1550
 
5354 serge 1551
	if (IS_GEN6(dev_priv))
1552
		intel_init_pch_refclk(dev);
6084 serge 1553
 
1554
	if (IS_BROXTON(dev))
1555
		ret = bxt_resume_prepare(dev_priv);
1556
	else if (IS_SKYLAKE(dev))
1557
		ret = skl_resume_prepare(dev_priv);
5354 serge 1558
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1559
		hsw_disable_pc8(dev_priv);
1560
	else if (IS_VALLEYVIEW(dev_priv))
1561
		ret = vlv_resume_prepare(dev_priv, true);
5060 serge 1562
 
1563
	/*
1564
	 * No point of rolling back things in case of an error, as the best
1565
	 * we can do is to hope that things will still work (and disable RPM).
1566
	 */
1567
	i915_gem_init_swizzling(dev);
1568
	gen6_update_ring_freq(dev);
1569
 
5354 serge 1570
	intel_runtime_pm_enable_interrupts(dev_priv);
6084 serge 1571
 
1572
	/*
1573
	 * On VLV/CHV display interrupts are part of the display
1574
	 * power well, so hpd is reinitialized from there. For
1575
	 * everyone else do it here.
1576
	 */
1577
	if (!IS_VALLEYVIEW(dev_priv))
1578
		intel_hpd_init(dev_priv);
1579
 
5354 serge 1580
	intel_enable_gt_powersave(dev);
5060 serge 1581
 
1582
	if (ret)
1583
		DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1584
	else
1585
		DRM_DEBUG_KMS("Device resumed\n");
1586
 
1587
	return ret;
1588
}
1589
 
5354 serge 1590
/*
1591
 * This function implements common functionality of runtime and system
1592
 * suspend sequence.
1593
 */
1594
static int intel_suspend_complete(struct drm_i915_private *dev_priv)
1595
{
1596
	int ret;
1597
 
6084 serge 1598
	if (IS_BROXTON(dev_priv))
1599
		ret = bxt_suspend_complete(dev_priv);
1600
	else if (IS_SKYLAKE(dev_priv))
1601
		ret = skl_suspend_complete(dev_priv);
1602
	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5354 serge 1603
		ret = hsw_suspend_complete(dev_priv);
6084 serge 1604
	else if (IS_VALLEYVIEW(dev_priv))
5354 serge 1605
		ret = vlv_suspend_complete(dev_priv);
1606
	else
1607
		ret = 0;
1608
 
1609
	return ret;
1610
}
1611
 
5060 serge 1612
static const struct dev_pm_ops i915_pm_ops = {
5354 serge 1613
	/*
1614
	 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
1615
	 * PMSG_RESUME]
1616
	 */
5060 serge 1617
	.suspend = i915_pm_suspend,
1618
	.suspend_late = i915_pm_suspend_late,
1619
	.resume_early = i915_pm_resume_early,
1620
	.resume = i915_pm_resume,
5354 serge 1621
 
1622
	/*
1623
	 * S4 event handlers
1624
	 * @freeze, @freeze_late    : called (1) before creating the
1625
	 *                            hibernation image [PMSG_FREEZE] and
1626
	 *                            (2) after rebooting, before restoring
1627
	 *                            the image [PMSG_QUIESCE]
1628
	 * @thaw, @thaw_early       : called (1) after creating the hibernation
1629
	 *                            image, before writing it [PMSG_THAW]
1630
	 *                            and (2) after failing to create or
1631
	 *                            restore the image [PMSG_RECOVER]
1632
	 * @poweroff, @poweroff_late: called after writing the hibernation
1633
	 *                            image, before rebooting [PMSG_HIBERNATE]
1634
	 * @restore, @restore_early : called after rebooting and restoring the
1635
	 *                            hibernation image [PMSG_RESTORE]
1636
	 */
1637
	.freeze = i915_pm_suspend,
1638
	.freeze_late = i915_pm_suspend_late,
1639
	.thaw_early = i915_pm_resume_early,
1640
	.thaw = i915_pm_resume,
1641
	.poweroff = i915_pm_suspend,
6084 serge 1642
	.poweroff_late = i915_pm_poweroff_late,
5060 serge 1643
	.restore_early = i915_pm_resume_early,
1644
	.restore = i915_pm_resume,
5354 serge 1645
 
1646
	/* S0ix (via runtime suspend) event handlers */
5060 serge 1647
	.runtime_suspend = intel_runtime_suspend,
1648
	.runtime_resume = intel_runtime_resume,
1649
};
1650
 
1651
static const struct vm_operations_struct i915_gem_vm_ops = {
1652
	.fault = i915_gem_fault,
1653
	.open = drm_gem_vm_open,
1654
	.close = drm_gem_vm_close,
1655
};
1656
 
1657
static const struct file_operations i915_driver_fops = {
1658
	.owner = THIS_MODULE,
1659
	.open = drm_open,
1660
	.release = drm_release,
1661
	.unlocked_ioctl = drm_ioctl,
1662
	.mmap = drm_gem_mmap,
1663
	.poll = drm_poll,
1664
	.read = drm_read,
1665
#ifdef CONFIG_COMPAT
1666
	.compat_ioctl = i915_compat_ioctl,
1667
#endif
1668
	.llseek = noop_llseek,
1669
};
1670
#endif
1671
 
3260 Serge 1672
static struct drm_driver driver = {
6084 serge 1673
	/* Don't use MTRRs here; the Xserver or userspace app should
1674
	 * deal with them for Intel hardware.
1675
	 */
1676
	.driver_features =
4104 Serge 1677
	    DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
6084 serge 1678
	    DRIVER_RENDER | DRIVER_MODESET,
1679
	.load = i915_driver_load,
3260 Serge 1680
//    .unload = i915_driver_unload,
3263 Serge 1681
      .open = i915_driver_open,
3260 Serge 1682
//    .lastclose = i915_driver_lastclose,
1683
//    .preclose = i915_driver_preclose,
1684
//    .postclose = i915_driver_postclose,
6084 serge 1685
//	.set_busid = drm_pci_set_busid,
3260 Serge 1686
 
4104 Serge 1687
#if defined(CONFIG_DEBUG_FS)
1688
	.debugfs_init = i915_debugfs_init,
1689
	.debugfs_cleanup = i915_debugfs_cleanup,
1690
#endif
3260 Serge 1691
    .gem_free_object = i915_gem_free_object,
1692
 
1693
//    .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1694
//    .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1695
//    .gem_prime_export = i915_gem_prime_export,
1696
//    .gem_prime_import = i915_gem_prime_import,
1697
 
1698
//    .dumb_create = i915_gem_dumb_create,
1699
//    .dumb_map_offset = i915_gem_mmap_gtt,
1700
//    .dumb_destroy = i915_gem_dumb_destroy,
1701
//    .ioctls = i915_ioctls,
1702
//    .fops = &i915_driver_fops,
1703
//    .name = DRIVER_NAME,
1704
//    .desc = DRIVER_DESC,
1705
//    .date = DRIVER_DATE,
1706
//    .major = DRIVER_MAJOR,
1707
//    .minor = DRIVER_MINOR,
1708
//    .patchlevel = DRIVER_PATCHLEVEL,
1709
};
1710
 
1711
 
3243 Serge 1712
 
3255 Serge 1713
 
4104 Serge 1714
int i915_init(void)
1715
{
1716
    static pci_dev_t device;
1717
    const struct pci_device_id  *ent;
1718
    int  err;
2325 Serge 1719
 
4104 Serge 1720
    ent = find_pci_device(&device, pciidlist);
1721
    if( unlikely(ent == NULL) )
1722
    {
1723
        dbgprintf("device not found\n");
1724
        return -ENODEV;
1725
    };
2325 Serge 1726
 
4104 Serge 1727
    drm_core_init();
3255 Serge 1728
 
4104 Serge 1729
    DRM_INFO("device %x:%x\n", device.pci_dev.vendor,
1730
                                device.pci_dev.device);
2325 Serge 1731
 
4293 Serge 1732
    driver.driver_features |= DRIVER_MODESET;
1733
 
4104 Serge 1734
    err = drm_get_pci_dev(&device.pci_dev, ent, &driver);
3263 Serge 1735
 
4104 Serge 1736
    return err;
1737
}
2325 Serge 1738
 
2330 Serge 1739
 
6084 serge 1740
MODULE_AUTHOR("Tungsten Graphics, Inc.");
1741
MODULE_AUTHOR("Intel Corporation");
2325 Serge 1742
 
6084 serge 1743
MODULE_DESCRIPTION(DRIVER_DESC);
1744
MODULE_LICENSE("GPL and additional rights");