Subversion Repositories Kolibri OS

Rev

Rev 4104 | Rev 6084 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
4104 Serge 1
/*
2
 * Copyright (C) 2011-2013 Intel Corporation
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
 * SOFTWARE.
22
 */
23
 
24
#include 
25
#include 
26
#include 
27
#include 
28
#include 
29
 
30
/**
31
 * drm_rect_intersect - intersect two rectangles
32
 * @r1: first rectangle
33
 * @r2: second rectangle
34
 *
35
 * Calculate the intersection of rectangles @r1 and @r2.
36
 * @r1 will be overwritten with the intersection.
37
 *
38
 * RETURNS:
39
 * %true if rectangle @r1 is still visible after the operation,
40
 * %false otherwise.
41
 */
42
bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2)
43
{
44
	r1->x1 = max(r1->x1, r2->x1);
45
	r1->y1 = max(r1->y1, r2->y1);
46
	r1->x2 = min(r1->x2, r2->x2);
47
	r1->y2 = min(r1->y2, r2->y2);
48
 
49
	return drm_rect_visible(r1);
50
}
51
EXPORT_SYMBOL(drm_rect_intersect);
52
 
53
/**
54
 * drm_rect_clip_scaled - perform a scaled clip operation
55
 * @src: source window rectangle
56
 * @dst: destination window rectangle
57
 * @clip: clip rectangle
58
 * @hscale: horizontal scaling factor
59
 * @vscale: vertical scaling factor
60
 *
61
 * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the
62
 * same amounts multiplied by @hscale and @vscale.
63
 *
64
 * RETURNS:
65
 * %true if rectangle @dst is still visible after being clipped,
66
 * %false otherwise
67
 */
68
bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst,
69
			  const struct drm_rect *clip,
70
			  int hscale, int vscale)
71
{
72
	int diff;
73
 
74
	diff = clip->x1 - dst->x1;
75
	if (diff > 0) {
76
		int64_t tmp = src->x1 + (int64_t) diff * hscale;
77
		src->x1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
78
	}
79
	diff = clip->y1 - dst->y1;
80
	if (diff > 0) {
81
		int64_t tmp = src->y1 + (int64_t) diff * vscale;
82
		src->y1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
83
	}
84
	diff = dst->x2 - clip->x2;
85
	if (diff > 0) {
86
		int64_t tmp = src->x2 - (int64_t) diff * hscale;
87
		src->x2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
88
	}
89
	diff = dst->y2 - clip->y2;
90
	if (diff > 0) {
91
		int64_t tmp = src->y2 - (int64_t) diff * vscale;
92
		src->y2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
93
	}
94
 
95
	return drm_rect_intersect(dst, clip);
96
}
97
EXPORT_SYMBOL(drm_rect_clip_scaled);
98
 
99
static int drm_calc_scale(int src, int dst)
100
{
101
	int scale = 0;
102
 
103
	if (src < 0 || dst < 0)
104
		return -EINVAL;
105
 
106
	if (dst == 0)
107
		return 0;
108
 
109
	scale = src / dst;
110
 
111
	return scale;
112
}
113
 
114
/**
115
 * drm_rect_calc_hscale - calculate the horizontal scaling factor
116
 * @src: source window rectangle
117
 * @dst: destination window rectangle
118
 * @min_hscale: minimum allowed horizontal scaling factor
119
 * @max_hscale: maximum allowed horizontal scaling factor
120
 *
121
 * Calculate the horizontal scaling factor as
122
 * (@src width) / (@dst width).
123
 *
124
 * RETURNS:
125
 * The horizontal scaling factor, or errno of out of limits.
126
 */
127
int drm_rect_calc_hscale(const struct drm_rect *src,
128
			 const struct drm_rect *dst,
129
			 int min_hscale, int max_hscale)
130
{
131
	int src_w = drm_rect_width(src);
132
	int dst_w = drm_rect_width(dst);
133
	int hscale = drm_calc_scale(src_w, dst_w);
134
 
135
	if (hscale < 0 || dst_w == 0)
136
		return hscale;
137
 
138
	if (hscale < min_hscale || hscale > max_hscale)
139
		return -ERANGE;
140
 
141
	return hscale;
142
}
143
EXPORT_SYMBOL(drm_rect_calc_hscale);
144
 
145
/**
146
 * drm_rect_calc_vscale - calculate the vertical scaling factor
147
 * @src: source window rectangle
148
 * @dst: destination window rectangle
149
 * @min_vscale: minimum allowed vertical scaling factor
150
 * @max_vscale: maximum allowed vertical scaling factor
151
 *
152
 * Calculate the vertical scaling factor as
153
 * (@src height) / (@dst height).
154
 *
155
 * RETURNS:
156
 * The vertical scaling factor, or errno of out of limits.
157
 */
158
int drm_rect_calc_vscale(const struct drm_rect *src,
159
			 const struct drm_rect *dst,
160
			 int min_vscale, int max_vscale)
161
{
162
	int src_h = drm_rect_height(src);
163
	int dst_h = drm_rect_height(dst);
164
	int vscale = drm_calc_scale(src_h, dst_h);
165
 
166
	if (vscale < 0 || dst_h == 0)
167
		return vscale;
168
 
169
	if (vscale < min_vscale || vscale > max_vscale)
170
		return -ERANGE;
171
 
172
	return vscale;
173
}
174
EXPORT_SYMBOL(drm_rect_calc_vscale);
175
 
176
/**
177
 * drm_calc_hscale_relaxed - calculate the horizontal scaling factor
178
 * @src: source window rectangle
179
 * @dst: destination window rectangle
180
 * @min_hscale: minimum allowed horizontal scaling factor
181
 * @max_hscale: maximum allowed horizontal scaling factor
182
 *
183
 * Calculate the horizontal scaling factor as
184
 * (@src width) / (@dst width).
185
 *
186
 * If the calculated scaling factor is below @min_vscale,
187
 * decrease the height of rectangle @dst to compensate.
188
 *
189
 * If the calculated scaling factor is above @max_vscale,
190
 * decrease the height of rectangle @src to compensate.
191
 *
192
 * RETURNS:
193
 * The horizontal scaling factor.
194
 */
195
int drm_rect_calc_hscale_relaxed(struct drm_rect *src,
196
				 struct drm_rect *dst,
197
				 int min_hscale, int max_hscale)
198
{
199
	int src_w = drm_rect_width(src);
200
	int dst_w = drm_rect_width(dst);
201
	int hscale = drm_calc_scale(src_w, dst_w);
202
 
203
	if (hscale < 0 || dst_w == 0)
204
		return hscale;
205
 
206
	if (hscale < min_hscale) {
207
		int max_dst_w = src_w / min_hscale;
208
 
209
		drm_rect_adjust_size(dst, max_dst_w - dst_w, 0);
210
 
211
		return min_hscale;
212
	}
213
 
214
	if (hscale > max_hscale) {
215
		int max_src_w = dst_w * max_hscale;
216
 
217
		drm_rect_adjust_size(src, max_src_w - src_w, 0);
218
 
219
		return max_hscale;
220
	}
221
 
222
	return hscale;
223
}
224
EXPORT_SYMBOL(drm_rect_calc_hscale_relaxed);
225
 
226
/**
227
 * drm_rect_calc_vscale_relaxed - calculate the vertical scaling factor
228
 * @src: source window rectangle
229
 * @dst: destination window rectangle
230
 * @min_vscale: minimum allowed vertical scaling factor
231
 * @max_vscale: maximum allowed vertical scaling factor
232
 *
233
 * Calculate the vertical scaling factor as
234
 * (@src height) / (@dst height).
235
 *
236
 * If the calculated scaling factor is below @min_vscale,
237
 * decrease the height of rectangle @dst to compensate.
238
 *
239
 * If the calculated scaling factor is above @max_vscale,
240
 * decrease the height of rectangle @src to compensate.
241
 *
242
 * RETURNS:
243
 * The vertical scaling factor.
244
 */
245
int drm_rect_calc_vscale_relaxed(struct drm_rect *src,
246
				 struct drm_rect *dst,
247
				 int min_vscale, int max_vscale)
248
{
249
	int src_h = drm_rect_height(src);
250
	int dst_h = drm_rect_height(dst);
251
	int vscale = drm_calc_scale(src_h, dst_h);
252
 
253
	if (vscale < 0 || dst_h == 0)
254
		return vscale;
255
 
256
	if (vscale < min_vscale) {
257
		int max_dst_h = src_h / min_vscale;
258
 
259
		drm_rect_adjust_size(dst, 0, max_dst_h - dst_h);
260
 
261
		return min_vscale;
262
	}
263
 
264
	if (vscale > max_vscale) {
265
		int max_src_h = dst_h * max_vscale;
266
 
267
		drm_rect_adjust_size(src, 0, max_src_h - src_h);
268
 
269
		return max_vscale;
270
	}
271
 
272
	return vscale;
273
}
274
EXPORT_SYMBOL(drm_rect_calc_vscale_relaxed);
275
 
276
/**
277
 * drm_rect_debug_print - print the rectangle information
278
 * @r: rectangle to print
279
 * @fixed_point: rectangle is in 16.16 fixed point format
280
 */
281
void drm_rect_debug_print(const struct drm_rect *r, bool fixed_point)
282
{
283
	int w = drm_rect_width(r);
284
	int h = drm_rect_height(r);
285
 
286
	if (fixed_point)
287
		DRM_DEBUG_KMS("%d.%06ux%d.%06u%+d.%06u%+d.%06u\n",
288
			      w >> 16, ((w & 0xffff) * 15625) >> 10,
289
			      h >> 16, ((h & 0xffff) * 15625) >> 10,
290
			      r->x1 >> 16, ((r->x1 & 0xffff) * 15625) >> 10,
291
			      r->y1 >> 16, ((r->y1 & 0xffff) * 15625) >> 10);
292
	else
293
		DRM_DEBUG_KMS("%dx%d%+d%+d\n", w, h, r->x1, r->y1);
294
}
295
EXPORT_SYMBOL(drm_rect_debug_print);
5060 serge 296
 
297
/**
298
 * drm_rect_rotate - Rotate the rectangle
299
 * @r: rectangle to be rotated
300
 * @width: Width of the coordinate space
301
 * @height: Height of the coordinate space
302
 * @rotation: Transformation to be applied
303
 *
304
 * Apply @rotation to the coordinates of rectangle @r.
305
 *
306
 * @width and @height combined with @rotation define
307
 * the location of the new origin.
308
 *
309
 * @width correcsponds to the horizontal and @height
310
 * to the vertical axis of the untransformed coordinate
311
 * space.
312
 */
313
void drm_rect_rotate(struct drm_rect *r,
314
		     int width, int height,
315
		     unsigned int rotation)
316
{
317
	struct drm_rect tmp;
318
 
319
	if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) {
320
		tmp = *r;
321
 
322
		if (rotation & BIT(DRM_REFLECT_X)) {
323
			r->x1 = width - tmp.x2;
324
			r->x2 = width - tmp.x1;
325
		}
326
 
327
		if (rotation & BIT(DRM_REFLECT_Y)) {
328
			r->y1 = height - tmp.y2;
329
			r->y2 = height - tmp.y1;
330
		}
331
	}
332
 
333
	switch (rotation & 0xf) {
334
	case BIT(DRM_ROTATE_0):
335
		break;
336
	case BIT(DRM_ROTATE_90):
337
		tmp = *r;
338
		r->x1 = tmp.y1;
339
		r->x2 = tmp.y2;
340
		r->y1 = width - tmp.x2;
341
		r->y2 = width - tmp.x1;
342
		break;
343
	case BIT(DRM_ROTATE_180):
344
		tmp = *r;
345
		r->x1 = width - tmp.x2;
346
		r->x2 = width - tmp.x1;
347
		r->y1 = height - tmp.y2;
348
		r->y2 = height - tmp.y1;
349
		break;
350
	case BIT(DRM_ROTATE_270):
351
		tmp = *r;
352
		r->x1 = height - tmp.y2;
353
		r->x2 = height - tmp.y1;
354
		r->y1 = tmp.x1;
355
		r->y2 = tmp.x2;
356
		break;
357
	default:
358
		break;
359
	}
360
}
361
EXPORT_SYMBOL(drm_rect_rotate);
362
 
363
/**
364
 * drm_rect_rotate_inv - Inverse rotate the rectangle
365
 * @r: rectangle to be rotated
366
 * @width: Width of the coordinate space
367
 * @height: Height of the coordinate space
368
 * @rotation: Transformation whose inverse is to be applied
369
 *
370
 * Apply the inverse of @rotation to the coordinates
371
 * of rectangle @r.
372
 *
373
 * @width and @height combined with @rotation define
374
 * the location of the new origin.
375
 *
376
 * @width correcsponds to the horizontal and @height
377
 * to the vertical axis of the original untransformed
378
 * coordinate space, so that you never have to flip
379
 * them when doing a rotatation and its inverse.
380
 * That is, if you do:
381
 *
382
 * drm_rotate(&r, width, height, rotation);
383
 * drm_rotate_inv(&r, width, height, rotation);
384
 *
385
 * you will always get back the original rectangle.
386
 */
387
void drm_rect_rotate_inv(struct drm_rect *r,
388
			 int width, int height,
389
			 unsigned int rotation)
390
{
391
	struct drm_rect tmp;
392
 
393
	switch (rotation & 0xf) {
394
	case BIT(DRM_ROTATE_0):
395
		break;
396
	case BIT(DRM_ROTATE_90):
397
		tmp = *r;
398
		r->x1 = width - tmp.y2;
399
		r->x2 = width - tmp.y1;
400
		r->y1 = tmp.x1;
401
		r->y2 = tmp.x2;
402
		break;
403
	case BIT(DRM_ROTATE_180):
404
		tmp = *r;
405
		r->x1 = width - tmp.x2;
406
		r->x2 = width - tmp.x1;
407
		r->y1 = height - tmp.y2;
408
		r->y2 = height - tmp.y1;
409
		break;
410
	case BIT(DRM_ROTATE_270):
411
		tmp = *r;
412
		r->x1 = tmp.y1;
413
		r->x2 = tmp.y2;
414
		r->y1 = height - tmp.x2;
415
		r->y2 = height - tmp.x1;
416
		break;
417
	default:
418
		break;
419
	}
420
 
421
	if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) {
422
		tmp = *r;
423
 
424
		if (rotation & BIT(DRM_REFLECT_X)) {
425
			r->x1 = width - tmp.x2;
426
			r->x2 = width - tmp.x1;
427
		}
428
 
429
		if (rotation & BIT(DRM_REFLECT_Y)) {
430
			r->y1 = height - tmp.y2;
431
			r->y2 = height - tmp.y1;
432
		}
433
	}
434
}
435
EXPORT_SYMBOL(drm_rect_rotate_inv);