Subversion Repositories Kolibri OS

Rev

Rev 3192 | Rev 3746 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1123 serge 1
/*
2
 * Copyright © 1997-2003 by The XFree86 Project, Inc.
3
 * Copyright © 2007 Dave Airlie
4
 * Copyright © 2007-2008 Intel Corporation
5
 *   Jesse Barnes 
1179 serge 6
 * Copyright 2005-2006 Luc Verhaegen
7
 * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
1123 serge 8
 *
9
 * Permission is hereby granted, free of charge, to any person obtaining a
10
 * copy of this software and associated documentation files (the "Software"),
11
 * to deal in the Software without restriction, including without limitation
12
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13
 * and/or sell copies of the Software, and to permit persons to whom the
14
 * Software is furnished to do so, subject to the following conditions:
15
 *
16
 * The above copyright notice and this permission notice shall be included in
17
 * all copies or substantial portions of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
23
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
24
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
25
 * OTHER DEALINGS IN THE SOFTWARE.
26
 *
27
 * Except as contained in this notice, the name of the copyright holder(s)
28
 * and author(s) shall not be used in advertising or otherwise to promote
29
 * the sale, use or other dealings in this Software without prior written
30
 * authorization from the copyright holder(s) and author(s).
31
 */
32
 
1179 serge 33
#include 
1404 serge 34
#include 
3031 serge 35
#include 
36
#include 
37
#include 
1123 serge 38
 
39
/**
40
 * drm_mode_debug_printmodeline - debug print a mode
41
 * @dev: DRM device
42
 * @mode: mode to print
43
 *
44
 * LOCKING:
45
 * None.
46
 *
47
 * Describe @mode using DRM_DEBUG.
48
 */
3192 Serge 49
void drm_mode_debug_printmodeline(const struct drm_display_mode *mode)
1123 serge 50
{
1179 serge 51
	DRM_DEBUG_KMS("Modeline %d:\"%s\" %d %d %d %d %d %d %d %d %d %d "
52
			"0x%x 0x%x\n",
1123 serge 53
		mode->base.id, mode->name, mode->vrefresh, mode->clock,
54
		mode->hdisplay, mode->hsync_start,
55
		mode->hsync_end, mode->htotal,
56
		mode->vdisplay, mode->vsync_start,
57
		mode->vsync_end, mode->vtotal, mode->type, mode->flags);
58
}
59
EXPORT_SYMBOL(drm_mode_debug_printmodeline);
60
 
61
/**
1179 serge 62
 * drm_cvt_mode -create a modeline based on CVT algorithm
63
 * @dev: DRM device
64
 * @hdisplay: hdisplay size
65
 * @vdisplay: vdisplay size
66
 * @vrefresh  : vrefresh rate
67
 * @reduced : Whether the GTF calculation is simplified
68
 * @interlaced:Whether the interlace is supported
69
 *
70
 * LOCKING:
71
 * none.
72
 *
73
 * return the modeline based on CVT algorithm
74
 *
75
 * This function is called to generate the modeline based on CVT algorithm
76
 * according to the hdisplay, vdisplay, vrefresh.
77
 * It is based from the VESA(TM) Coordinated Video Timing Generator by
78
 * Graham Loveridge April 9, 2003 available at
1963 serge 79
 * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
1179 serge 80
 *
81
 * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
82
 * What I have done is to translate it by using integer calculation.
83
 */
84
#define HV_FACTOR			1000
85
struct drm_display_mode *drm_cvt_mode(struct drm_device *dev, int hdisplay,
86
				      int vdisplay, int vrefresh,
1221 serge 87
				      bool reduced, bool interlaced, bool margins)
1179 serge 88
{
89
	/* 1) top/bottom margin size (% of height) - default: 1.8, */
90
#define	CVT_MARGIN_PERCENTAGE		18
91
	/* 2) character cell horizontal granularity (pixels) - default 8 */
92
#define	CVT_H_GRANULARITY		8
93
	/* 3) Minimum vertical porch (lines) - default 3 */
94
#define	CVT_MIN_V_PORCH			3
95
	/* 4) Minimum number of vertical back porch lines - default 6 */
96
#define	CVT_MIN_V_BPORCH		6
97
	/* Pixel Clock step (kHz) */
98
#define CVT_CLOCK_STEP			250
99
	struct drm_display_mode *drm_mode;
100
	unsigned int vfieldrate, hperiod;
101
	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
102
	int interlace;
103
 
104
	/* allocate the drm_display_mode structure. If failure, we will
105
	 * return directly
106
	 */
107
	drm_mode = drm_mode_create(dev);
108
	if (!drm_mode)
109
		return NULL;
110
 
111
	/* the CVT default refresh rate is 60Hz */
112
	if (!vrefresh)
113
		vrefresh = 60;
114
 
115
	/* the required field fresh rate */
116
	if (interlaced)
117
		vfieldrate = vrefresh * 2;
118
	else
119
		vfieldrate = vrefresh;
120
 
121
	/* horizontal pixels */
122
	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
123
 
124
	/* determine the left&right borders */
125
	hmargin = 0;
126
	if (margins) {
127
		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
128
		hmargin -= hmargin % CVT_H_GRANULARITY;
129
	}
130
	/* find the total active pixels */
131
	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
132
 
133
	/* find the number of lines per field */
134
	if (interlaced)
135
		vdisplay_rnd = vdisplay / 2;
136
	else
137
		vdisplay_rnd = vdisplay;
138
 
139
	/* find the top & bottom borders */
140
	vmargin = 0;
141
	if (margins)
142
		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
143
 
144
	drm_mode->vdisplay = vdisplay + 2 * vmargin;
145
 
146
	/* Interlaced */
147
	if (interlaced)
148
		interlace = 1;
149
	else
150
		interlace = 0;
151
 
152
	/* Determine VSync Width from aspect ratio */
153
	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
154
		vsync = 4;
155
	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
156
		vsync = 5;
157
	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
158
		vsync = 6;
159
	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
160
		vsync = 7;
161
	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
162
		vsync = 7;
163
	else /* custom */
164
		vsync = 10;
165
 
166
	if (!reduced) {
167
		/* simplify the GTF calculation */
168
		/* 4) Minimum time of vertical sync + back porch interval (µs)
169
		 * default 550.0
170
		 */
171
		int tmp1, tmp2;
172
#define CVT_MIN_VSYNC_BP	550
173
		/* 3) Nominal HSync width (% of line period) - default 8 */
174
#define CVT_HSYNC_PERCENTAGE	8
175
		unsigned int hblank_percentage;
176
		int vsyncandback_porch, vback_porch, hblank;
177
 
178
		/* estimated the horizontal period */
179
		tmp1 = HV_FACTOR * 1000000  -
180
				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
181
		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
182
				interlace;
183
		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
184
 
185
		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
186
		/* 9. Find number of lines in sync + backporch */
187
		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
188
			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
189
		else
190
			vsyncandback_porch = tmp1;
191
		/* 10. Find number of lines in back porch */
192
		vback_porch = vsyncandback_porch - vsync;
193
		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
194
				vsyncandback_porch + CVT_MIN_V_PORCH;
195
		/* 5) Definition of Horizontal blanking time limitation */
196
		/* Gradient (%/kHz) - default 600 */
197
#define CVT_M_FACTOR	600
198
		/* Offset (%) - default 40 */
199
#define CVT_C_FACTOR	40
200
		/* Blanking time scaling factor - default 128 */
201
#define CVT_K_FACTOR	128
202
		/* Scaling factor weighting - default 20 */
203
#define CVT_J_FACTOR	20
204
#define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
205
#define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
206
			 CVT_J_FACTOR)
207
		/* 12. Find ideal blanking duty cycle from formula */
208
		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
209
					hperiod / 1000;
210
		/* 13. Blanking time */
211
		if (hblank_percentage < 20 * HV_FACTOR)
212
			hblank_percentage = 20 * HV_FACTOR;
213
		hblank = drm_mode->hdisplay * hblank_percentage /
214
			 (100 * HV_FACTOR - hblank_percentage);
215
		hblank -= hblank % (2 * CVT_H_GRANULARITY);
216
		/* 14. find the total pixes per line */
217
		drm_mode->htotal = drm_mode->hdisplay + hblank;
218
		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
219
		drm_mode->hsync_start = drm_mode->hsync_end -
220
			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
221
		drm_mode->hsync_start += CVT_H_GRANULARITY -
222
			drm_mode->hsync_start % CVT_H_GRANULARITY;
223
		/* fill the Vsync values */
224
		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
225
		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
226
	} else {
227
		/* Reduced blanking */
228
		/* Minimum vertical blanking interval time (µs)- default 460 */
229
#define CVT_RB_MIN_VBLANK	460
230
		/* Fixed number of clocks for horizontal sync */
231
#define CVT_RB_H_SYNC		32
232
		/* Fixed number of clocks for horizontal blanking */
233
#define CVT_RB_H_BLANK		160
234
		/* Fixed number of lines for vertical front porch - default 3*/
235
#define CVT_RB_VFPORCH		3
236
		int vbilines;
237
		int tmp1, tmp2;
238
		/* 8. Estimate Horizontal period. */
239
		tmp1 = HV_FACTOR * 1000000 -
240
			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
241
		tmp2 = vdisplay_rnd + 2 * vmargin;
242
		hperiod = tmp1 / (tmp2 * vfieldrate);
243
		/* 9. Find number of lines in vertical blanking */
244
		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
245
		/* 10. Check if vertical blanking is sufficient */
246
		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
247
			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
248
		/* 11. Find total number of lines in vertical field */
249
		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
250
		/* 12. Find total number of pixels in a line */
251
		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
252
		/* Fill in HSync values */
253
		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
1963 serge 254
		drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
255
		/* Fill in VSync values */
256
		drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
257
		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
1179 serge 258
	}
259
	/* 15/13. Find pixel clock frequency (kHz for xf86) */
260
	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
261
	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
262
	/* 18/16. Find actual vertical frame frequency */
263
	/* ignore - just set the mode flag for interlaced */
1963 serge 264
	if (interlaced) {
1179 serge 265
		drm_mode->vtotal *= 2;
1963 serge 266
		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
267
	}
1179 serge 268
	/* Fill the mode line name */
269
	drm_mode_set_name(drm_mode);
270
	if (reduced)
271
		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
272
					DRM_MODE_FLAG_NVSYNC);
273
	else
274
		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
275
					DRM_MODE_FLAG_NHSYNC);
276
 
277
    return drm_mode;
278
}
279
EXPORT_SYMBOL(drm_cvt_mode);
280
 
281
/**
1963 serge 282
 * drm_gtf_mode_complex - create the modeline based on full GTF algorithm
1179 serge 283
 *
284
 * @dev		:drm device
285
 * @hdisplay	:hdisplay size
286
 * @vdisplay	:vdisplay size
287
 * @vrefresh	:vrefresh rate.
288
 * @interlaced	:whether the interlace is supported
1963 serge 289
 * @margins	:desired margin size
290
 * @GTF_[MCKJ]  :extended GTF formula parameters
1179 serge 291
 *
292
 * LOCKING.
293
 * none.
294
 *
1963 serge 295
 * return the modeline based on full GTF algorithm.
1179 serge 296
 *
1963 serge 297
 * GTF feature blocks specify C and J in multiples of 0.5, so we pass them
298
 * in here multiplied by two.  For a C of 40, pass in 80.
1179 serge 299
 */
1963 serge 300
struct drm_display_mode *
301
drm_gtf_mode_complex(struct drm_device *dev, int hdisplay, int vdisplay,
302
		     int vrefresh, bool interlaced, int margins,
303
		     int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
304
{	/* 1) top/bottom margin size (% of height) - default: 1.8, */
1179 serge 305
#define	GTF_MARGIN_PERCENTAGE		18
306
	/* 2) character cell horizontal granularity (pixels) - default 8 */
307
#define	GTF_CELL_GRAN			8
308
	/* 3) Minimum vertical porch (lines) - default 3 */
309
#define	GTF_MIN_V_PORCH			1
310
	/* width of vsync in lines */
311
#define V_SYNC_RQD			3
312
	/* width of hsync as % of total line */
313
#define H_SYNC_PERCENT			8
314
	/* min time of vsync + back porch (microsec) */
315
#define MIN_VSYNC_PLUS_BP		550
316
	/* C' and M' are part of the Blanking Duty Cycle computation */
1963 serge 317
#define GTF_C_PRIME	((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
1179 serge 318
#define GTF_M_PRIME		(GTF_K * GTF_M / 256)
319
	struct drm_display_mode *drm_mode;
320
	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
321
	int top_margin, bottom_margin;
322
	int interlace;
323
	unsigned int hfreq_est;
324
	int vsync_plus_bp, vback_porch;
325
	unsigned int vtotal_lines, vfieldrate_est, hperiod;
326
	unsigned int vfield_rate, vframe_rate;
327
	int left_margin, right_margin;
328
	unsigned int total_active_pixels, ideal_duty_cycle;
329
	unsigned int hblank, total_pixels, pixel_freq;
330
	int hsync, hfront_porch, vodd_front_porch_lines;
331
	unsigned int tmp1, tmp2;
332
 
333
	drm_mode = drm_mode_create(dev);
334
	if (!drm_mode)
335
		return NULL;
336
 
337
	/* 1. In order to give correct results, the number of horizontal
338
	 * pixels requested is first processed to ensure that it is divisible
339
	 * by the character size, by rounding it to the nearest character
340
	 * cell boundary:
341
	 */
342
	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
343
	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
344
 
345
	/* 2. If interlace is requested, the number of vertical lines assumed
346
	 * by the calculation must be halved, as the computation calculates
347
	 * the number of vertical lines per field.
348
	 */
349
	if (interlaced)
350
		vdisplay_rnd = vdisplay / 2;
351
	else
352
		vdisplay_rnd = vdisplay;
353
 
354
	/* 3. Find the frame rate required: */
355
	if (interlaced)
356
		vfieldrate_rqd = vrefresh * 2;
357
	else
358
		vfieldrate_rqd = vrefresh;
359
 
360
	/* 4. Find number of lines in Top margin: */
361
	top_margin = 0;
362
	if (margins)
363
		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
364
				1000;
365
	/* 5. Find number of lines in bottom margin: */
366
	bottom_margin = top_margin;
367
 
368
	/* 6. If interlace is required, then set variable interlace: */
369
	if (interlaced)
370
		interlace = 1;
371
	else
372
		interlace = 0;
373
 
374
	/* 7. Estimate the Horizontal frequency */
375
	{
376
		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
377
		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
378
				2 + interlace;
379
		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
380
	}
381
 
382
	/* 8. Find the number of lines in V sync + back porch */
383
	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
384
	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
385
	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
386
	/*  9. Find the number of lines in V back porch alone: */
387
	vback_porch = vsync_plus_bp - V_SYNC_RQD;
388
	/*  10. Find the total number of lines in Vertical field period: */
389
	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
390
			vsync_plus_bp + GTF_MIN_V_PORCH;
391
	/*  11. Estimate the Vertical field frequency: */
392
	vfieldrate_est = hfreq_est / vtotal_lines;
393
	/*  12. Find the actual horizontal period: */
394
	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
395
 
396
	/*  13. Find the actual Vertical field frequency: */
397
	vfield_rate = hfreq_est / vtotal_lines;
398
	/*  14. Find the Vertical frame frequency: */
399
	if (interlaced)
400
		vframe_rate = vfield_rate / 2;
401
	else
402
		vframe_rate = vfield_rate;
403
	/*  15. Find number of pixels in left margin: */
404
	if (margins)
405
		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
406
				1000;
407
	else
408
		left_margin = 0;
409
 
410
	/* 16.Find number of pixels in right margin: */
411
	right_margin = left_margin;
412
	/* 17.Find total number of active pixels in image and left and right */
413
	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
414
	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
415
	ideal_duty_cycle = GTF_C_PRIME * 1000 -
416
				(GTF_M_PRIME * 1000000 / hfreq_est);
417
	/* 19.Find the number of pixels in the blanking time to the nearest
418
	 * double character cell: */
419
	hblank = total_active_pixels * ideal_duty_cycle /
420
			(100000 - ideal_duty_cycle);
421
	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
422
	hblank = hblank * 2 * GTF_CELL_GRAN;
423
	/* 20.Find total number of pixels: */
424
	total_pixels = total_active_pixels + hblank;
425
	/* 21.Find pixel clock frequency: */
426
	pixel_freq = total_pixels * hfreq_est / 1000;
427
	/* Stage 1 computations are now complete; I should really pass
428
	 * the results to another function and do the Stage 2 computations,
429
	 * but I only need a few more values so I'll just append the
430
	 * computations here for now */
431
	/* 17. Find the number of pixels in the horizontal sync period: */
432
	hsync = H_SYNC_PERCENT * total_pixels / 100;
433
	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
434
	hsync = hsync * GTF_CELL_GRAN;
435
	/* 18. Find the number of pixels in horizontal front porch period */
436
	hfront_porch = hblank / 2 - hsync;
437
	/*  36. Find the number of lines in the odd front porch period: */
438
	vodd_front_porch_lines = GTF_MIN_V_PORCH ;
439
 
440
	/* finally, pack the results in the mode struct */
441
	drm_mode->hdisplay = hdisplay_rnd;
442
	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
443
	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
444
	drm_mode->htotal = total_pixels;
445
	drm_mode->vdisplay = vdisplay_rnd;
446
	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
447
	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
448
	drm_mode->vtotal = vtotal_lines;
449
 
450
	drm_mode->clock = pixel_freq;
451
 
452
	if (interlaced) {
453
		drm_mode->vtotal *= 2;
454
		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
455
	}
456
 
1963 serge 457
	drm_mode_set_name(drm_mode);
458
	if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
459
		drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
460
	else
461
		drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
462
 
1179 serge 463
	return drm_mode;
464
}
1963 serge 465
EXPORT_SYMBOL(drm_gtf_mode_complex);
466
 
467
/**
468
 * drm_gtf_mode - create the modeline based on GTF algorithm
469
 *
470
 * @dev		:drm device
471
 * @hdisplay	:hdisplay size
472
 * @vdisplay	:vdisplay size
473
 * @vrefresh	:vrefresh rate.
474
 * @interlaced	:whether the interlace is supported
475
 * @margins	:whether the margin is supported
476
 *
477
 * LOCKING.
478
 * none.
479
 *
480
 * return the modeline based on GTF algorithm
481
 *
482
 * This function is to create the modeline based on the GTF algorithm.
483
 * Generalized Timing Formula is derived from:
484
 *	GTF Spreadsheet by Andy Morrish (1/5/97)
485
 *	available at http://www.vesa.org
486
 *
487
 * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
488
 * What I have done is to translate it by using integer calculation.
489
 * I also refer to the function of fb_get_mode in the file of
490
 * drivers/video/fbmon.c
491
 *
492
 * Standard GTF parameters:
493
 * M = 600
494
 * C = 40
495
 * K = 128
496
 * J = 20
497
 */
498
struct drm_display_mode *
499
drm_gtf_mode(struct drm_device *dev, int hdisplay, int vdisplay, int vrefresh,
500
	     bool lace, int margins)
501
{
502
	return drm_gtf_mode_complex(dev, hdisplay, vdisplay, vrefresh, lace,
503
				    margins, 600, 40 * 2, 128, 20 * 2);
504
}
1179 serge 505
EXPORT_SYMBOL(drm_gtf_mode);
1963 serge 506
 
3480 Serge 507
#if IS_ENABLED(CONFIG_VIDEOMODE)
508
int drm_display_mode_from_videomode(const struct videomode *vm,
509
				    struct drm_display_mode *dmode)
510
{
511
	dmode->hdisplay = vm->hactive;
512
	dmode->hsync_start = dmode->hdisplay + vm->hfront_porch;
513
	dmode->hsync_end = dmode->hsync_start + vm->hsync_len;
514
	dmode->htotal = dmode->hsync_end + vm->hback_porch;
515
 
516
	dmode->vdisplay = vm->vactive;
517
	dmode->vsync_start = dmode->vdisplay + vm->vfront_porch;
518
	dmode->vsync_end = dmode->vsync_start + vm->vsync_len;
519
	dmode->vtotal = dmode->vsync_end + vm->vback_porch;
520
 
521
	dmode->clock = vm->pixelclock / 1000;
522
 
523
	dmode->flags = 0;
524
	if (vm->dmt_flags & VESA_DMT_HSYNC_HIGH)
525
		dmode->flags |= DRM_MODE_FLAG_PHSYNC;
526
	else if (vm->dmt_flags & VESA_DMT_HSYNC_LOW)
527
		dmode->flags |= DRM_MODE_FLAG_NHSYNC;
528
	if (vm->dmt_flags & VESA_DMT_VSYNC_HIGH)
529
		dmode->flags |= DRM_MODE_FLAG_PVSYNC;
530
	else if (vm->dmt_flags & VESA_DMT_VSYNC_LOW)
531
		dmode->flags |= DRM_MODE_FLAG_NVSYNC;
532
	if (vm->data_flags & DISPLAY_FLAGS_INTERLACED)
533
		dmode->flags |= DRM_MODE_FLAG_INTERLACE;
534
	if (vm->data_flags & DISPLAY_FLAGS_DOUBLESCAN)
535
		dmode->flags |= DRM_MODE_FLAG_DBLSCAN;
536
	drm_mode_set_name(dmode);
537
 
538
	return 0;
539
}
540
EXPORT_SYMBOL_GPL(drm_display_mode_from_videomode);
541
#endif
542
 
543
#if IS_ENABLED(CONFIG_OF_VIDEOMODE)
1179 serge 544
/**
3480 Serge 545
 * of_get_drm_display_mode - get a drm_display_mode from devicetree
546
 * @np: device_node with the timing specification
547
 * @dmode: will be set to the return value
548
 * @index: index into the list of display timings in devicetree
549
 *
550
 * This function is expensive and should only be used, if only one mode is to be
551
 * read from DT. To get multiple modes start with of_get_display_timings and
552
 * work with that instead.
553
 */
554
int of_get_drm_display_mode(struct device_node *np,
555
			    struct drm_display_mode *dmode, int index)
556
{
557
	struct videomode vm;
558
	int ret;
559
 
560
	ret = of_get_videomode(np, &vm, index);
561
	if (ret)
562
		return ret;
563
 
564
	drm_display_mode_from_videomode(&vm, dmode);
565
 
566
	pr_debug("%s: got %dx%d display mode from %s\n",
567
		of_node_full_name(np), vm.hactive, vm.vactive, np->name);
568
	drm_mode_debug_printmodeline(dmode);
569
 
570
	return 0;
571
}
572
EXPORT_SYMBOL_GPL(of_get_drm_display_mode);
573
#endif
574
 
575
/**
1123 serge 576
 * drm_mode_set_name - set the name on a mode
577
 * @mode: name will be set in this mode
578
 *
579
 * LOCKING:
580
 * None.
581
 *
582
 * Set the name of @mode to a standard format.
583
 */
584
void drm_mode_set_name(struct drm_display_mode *mode)
585
{
1963 serge 586
	bool interlaced = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
587
 
588
	snprintf(mode->name, DRM_DISPLAY_MODE_LEN, "%dx%d%s",
589
		 mode->hdisplay, mode->vdisplay,
590
		 interlaced ? "i" : "");
1123 serge 591
}
592
EXPORT_SYMBOL(drm_mode_set_name);
593
 
594
/**
595
 * drm_mode_list_concat - move modes from one list to another
596
 * @head: source list
597
 * @new: dst list
598
 *
599
 * LOCKING:
600
 * Caller must ensure both lists are locked.
601
 *
602
 * Move all the modes from @head to @new.
603
 */
604
void drm_mode_list_concat(struct list_head *head, struct list_head *new)
605
{
606
 
607
	struct list_head *entry, *tmp;
608
 
609
	list_for_each_safe(entry, tmp, head) {
610
		list_move_tail(entry, new);
611
	}
612
}
613
EXPORT_SYMBOL(drm_mode_list_concat);
614
 
615
/**
616
 * drm_mode_width - get the width of a mode
617
 * @mode: mode
618
 *
619
 * LOCKING:
620
 * None.
621
 *
622
 * Return @mode's width (hdisplay) value.
623
 *
624
 * FIXME: is this needed?
625
 *
626
 * RETURNS:
627
 * @mode->hdisplay
628
 */
3192 Serge 629
int drm_mode_width(const struct drm_display_mode *mode)
1123 serge 630
{
631
	return mode->hdisplay;
632
 
633
}
634
EXPORT_SYMBOL(drm_mode_width);
635
 
636
/**
637
 * drm_mode_height - get the height of a mode
638
 * @mode: mode
639
 *
640
 * LOCKING:
641
 * None.
642
 *
643
 * Return @mode's height (vdisplay) value.
644
 *
645
 * FIXME: is this needed?
646
 *
647
 * RETURNS:
648
 * @mode->vdisplay
649
 */
3192 Serge 650
int drm_mode_height(const struct drm_display_mode *mode)
1123 serge 651
{
652
	return mode->vdisplay;
653
}
654
EXPORT_SYMBOL(drm_mode_height);
655
 
1321 serge 656
/** drm_mode_hsync - get the hsync of a mode
657
 * @mode: mode
658
 *
659
 * LOCKING:
660
 * None.
661
 *
662
 * Return @modes's hsync rate in kHz, rounded to the nearest int.
663
 */
1963 serge 664
int drm_mode_hsync(const struct drm_display_mode *mode)
1321 serge 665
{
666
	unsigned int calc_val;
667
 
668
	if (mode->hsync)
669
		return mode->hsync;
670
 
671
	if (mode->htotal < 0)
672
		return 0;
673
 
674
	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
675
	calc_val += 500;				/* round to 1000Hz */
676
	calc_val /= 1000;				/* truncate to kHz */
677
 
678
	return calc_val;
679
}
680
EXPORT_SYMBOL(drm_mode_hsync);
681
 
1123 serge 682
/**
683
 * drm_mode_vrefresh - get the vrefresh of a mode
684
 * @mode: mode
685
 *
686
 * LOCKING:
687
 * None.
688
 *
1321 serge 689
 * Return @mode's vrefresh rate in Hz or calculate it if necessary.
1123 serge 690
 *
691
 * FIXME: why is this needed?  shouldn't vrefresh be set already?
692
 *
693
 * RETURNS:
1179 serge 694
 * Vertical refresh rate. It will be the result of actual value plus 0.5.
695
 * If it is 70.288, it will return 70Hz.
696
 * If it is 59.6, it will return 60Hz.
1123 serge 697
 */
1963 serge 698
int drm_mode_vrefresh(const struct drm_display_mode *mode)
1123 serge 699
{
700
	int refresh = 0;
701
	unsigned int calc_val;
702
 
703
	if (mode->vrefresh > 0)
704
		refresh = mode->vrefresh;
705
	else if (mode->htotal > 0 && mode->vtotal > 0) {
1179 serge 706
		int vtotal;
707
		vtotal = mode->vtotal;
1123 serge 708
		/* work out vrefresh the value will be x1000 */
709
		calc_val = (mode->clock * 1000);
710
		calc_val /= mode->htotal;
1179 serge 711
		refresh = (calc_val + vtotal / 2) / vtotal;
1123 serge 712
 
713
		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
714
			refresh *= 2;
715
		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
716
			refresh /= 2;
717
		if (mode->vscan > 1)
718
			refresh /= mode->vscan;
719
	}
720
	return refresh;
721
}
722
EXPORT_SYMBOL(drm_mode_vrefresh);
723
 
724
/**
725
 * drm_mode_set_crtcinfo - set CRTC modesetting parameters
726
 * @p: mode
727
 * @adjust_flags: unused? (FIXME)
728
 *
729
 * LOCKING:
730
 * None.
731
 *
732
 * Setup the CRTC modesetting parameters for @p, adjusting if necessary.
733
 */
734
void drm_mode_set_crtcinfo(struct drm_display_mode *p, int adjust_flags)
735
{
736
	if ((p == NULL) || ((p->type & DRM_MODE_TYPE_CRTC_C) == DRM_MODE_TYPE_BUILTIN))
737
		return;
738
 
739
	p->crtc_hdisplay = p->hdisplay;
740
	p->crtc_hsync_start = p->hsync_start;
741
	p->crtc_hsync_end = p->hsync_end;
742
	p->crtc_htotal = p->htotal;
743
	p->crtc_hskew = p->hskew;
744
	p->crtc_vdisplay = p->vdisplay;
745
	p->crtc_vsync_start = p->vsync_start;
746
	p->crtc_vsync_end = p->vsync_end;
747
	p->crtc_vtotal = p->vtotal;
748
 
749
	if (p->flags & DRM_MODE_FLAG_INTERLACE) {
750
		if (adjust_flags & CRTC_INTERLACE_HALVE_V) {
751
			p->crtc_vdisplay /= 2;
752
			p->crtc_vsync_start /= 2;
753
			p->crtc_vsync_end /= 2;
754
			p->crtc_vtotal /= 2;
755
		}
756
	}
757
 
758
	if (p->flags & DRM_MODE_FLAG_DBLSCAN) {
759
		p->crtc_vdisplay *= 2;
760
		p->crtc_vsync_start *= 2;
761
		p->crtc_vsync_end *= 2;
762
		p->crtc_vtotal *= 2;
763
	}
764
 
765
	if (p->vscan > 1) {
766
		p->crtc_vdisplay *= p->vscan;
767
		p->crtc_vsync_start *= p->vscan;
768
		p->crtc_vsync_end *= p->vscan;
769
		p->crtc_vtotal *= p->vscan;
770
	}
771
 
772
	p->crtc_vblank_start = min(p->crtc_vsync_start, p->crtc_vdisplay);
773
	p->crtc_vblank_end = max(p->crtc_vsync_end, p->crtc_vtotal);
774
	p->crtc_hblank_start = min(p->crtc_hsync_start, p->crtc_hdisplay);
775
	p->crtc_hblank_end = max(p->crtc_hsync_end, p->crtc_htotal);
776
}
777
EXPORT_SYMBOL(drm_mode_set_crtcinfo);
778
 
779
 
780
/**
3031 serge 781
 * drm_mode_copy - copy the mode
782
 * @dst: mode to overwrite
783
 * @src: mode to copy
784
 *
785
 * LOCKING:
786
 * None.
787
 *
788
 * Copy an existing mode into another mode, preserving the object id
789
 * of the destination mode.
790
 */
791
void drm_mode_copy(struct drm_display_mode *dst, const struct drm_display_mode *src)
792
{
793
	int id = dst->base.id;
794
 
795
	*dst = *src;
796
	dst->base.id = id;
797
	INIT_LIST_HEAD(&dst->head);
798
}
799
EXPORT_SYMBOL(drm_mode_copy);
800
 
801
/**
1123 serge 802
 * drm_mode_duplicate - allocate and duplicate an existing mode
803
 * @m: mode to duplicate
804
 *
805
 * LOCKING:
806
 * None.
807
 *
808
 * Just allocate a new mode, copy the existing mode into it, and return
809
 * a pointer to it.  Used to create new instances of established modes.
810
 */
811
struct drm_display_mode *drm_mode_duplicate(struct drm_device *dev,
1963 serge 812
					    const struct drm_display_mode *mode)
1123 serge 813
{
814
	struct drm_display_mode *nmode;
815
 
816
	nmode = drm_mode_create(dev);
817
	if (!nmode)
818
		return NULL;
819
 
3031 serge 820
	drm_mode_copy(nmode, mode);
821
 
1123 serge 822
	return nmode;
823
}
824
EXPORT_SYMBOL(drm_mode_duplicate);
825
 
826
/**
827
 * drm_mode_equal - test modes for equality
828
 * @mode1: first mode
829
 * @mode2: second mode
830
 *
831
 * LOCKING:
832
 * None.
833
 *
834
 * Check to see if @mode1 and @mode2 are equivalent.
835
 *
836
 * RETURNS:
837
 * True if the modes are equal, false otherwise.
838
 */
3192 Serge 839
bool drm_mode_equal(const struct drm_display_mode *mode1, const struct drm_display_mode *mode2)
1123 serge 840
{
841
	/* do clock check convert to PICOS so fb modes get matched
842
	 * the same */
843
	if (mode1->clock && mode2->clock) {
844
		if (KHZ2PICOS(mode1->clock) != KHZ2PICOS(mode2->clock))
845
			return false;
846
	} else if (mode1->clock != mode2->clock)
847
		return false;
848
 
849
	if (mode1->hdisplay == mode2->hdisplay &&
850
	    mode1->hsync_start == mode2->hsync_start &&
851
	    mode1->hsync_end == mode2->hsync_end &&
852
	    mode1->htotal == mode2->htotal &&
853
	    mode1->hskew == mode2->hskew &&
854
	    mode1->vdisplay == mode2->vdisplay &&
855
	    mode1->vsync_start == mode2->vsync_start &&
856
	    mode1->vsync_end == mode2->vsync_end &&
857
	    mode1->vtotal == mode2->vtotal &&
858
	    mode1->vscan == mode2->vscan &&
859
	    mode1->flags == mode2->flags)
860
		return true;
861
 
862
	return false;
863
}
864
EXPORT_SYMBOL(drm_mode_equal);
865
 
866
/**
867
 * drm_mode_validate_size - make sure modes adhere to size constraints
868
 * @dev: DRM device
869
 * @mode_list: list of modes to check
870
 * @maxX: maximum width
871
 * @maxY: maximum height
872
 * @maxPitch: max pitch
873
 *
874
 * LOCKING:
875
 * Caller must hold a lock protecting @mode_list.
876
 *
877
 * The DRM device (@dev) has size and pitch limits.  Here we validate the
878
 * modes we probed for @dev against those limits and set their status as
879
 * necessary.
880
 */
881
void drm_mode_validate_size(struct drm_device *dev,
882
			    struct list_head *mode_list,
883
			    int maxX, int maxY, int maxPitch)
884
{
885
	struct drm_display_mode *mode;
886
 
887
	list_for_each_entry(mode, mode_list, head) {
888
		if (maxPitch > 0 && mode->hdisplay > maxPitch)
889
			mode->status = MODE_BAD_WIDTH;
890
 
891
		if (maxX > 0 && mode->hdisplay > maxX)
892
			mode->status = MODE_VIRTUAL_X;
893
 
894
		if (maxY > 0 && mode->vdisplay > maxY)
895
			mode->status = MODE_VIRTUAL_Y;
896
	}
897
}
898
EXPORT_SYMBOL(drm_mode_validate_size);
899
 
900
/**
901
 * drm_mode_validate_clocks - validate modes against clock limits
902
 * @dev: DRM device
903
 * @mode_list: list of modes to check
904
 * @min: minimum clock rate array
905
 * @max: maximum clock rate array
906
 * @n_ranges: number of clock ranges (size of arrays)
907
 *
908
 * LOCKING:
909
 * Caller must hold a lock protecting @mode_list.
910
 *
911
 * Some code may need to check a mode list against the clock limits of the
912
 * device in question.  This function walks the mode list, testing to make
913
 * sure each mode falls within a given range (defined by @min and @max
914
 * arrays) and sets @mode->status as needed.
915
 */
916
void drm_mode_validate_clocks(struct drm_device *dev,
917
			      struct list_head *mode_list,
918
			      int *min, int *max, int n_ranges)
919
{
920
	struct drm_display_mode *mode;
921
	int i;
922
 
923
	list_for_each_entry(mode, mode_list, head) {
924
		bool good = false;
925
		for (i = 0; i < n_ranges; i++) {
926
			if (mode->clock >= min[i] && mode->clock <= max[i]) {
927
				good = true;
928
				break;
929
			}
930
		}
931
		if (!good)
932
			mode->status = MODE_CLOCK_RANGE;
933
	}
934
}
935
EXPORT_SYMBOL(drm_mode_validate_clocks);
936
 
937
/**
938
 * drm_mode_prune_invalid - remove invalid modes from mode list
939
 * @dev: DRM device
940
 * @mode_list: list of modes to check
941
 * @verbose: be verbose about it
942
 *
943
 * LOCKING:
944
 * Caller must hold a lock protecting @mode_list.
945
 *
946
 * Once mode list generation is complete, a caller can use this routine to
947
 * remove invalid modes from a mode list.  If any of the modes have a
948
 * status other than %MODE_OK, they are removed from @mode_list and freed.
949
 */
950
void drm_mode_prune_invalid(struct drm_device *dev,
951
			    struct list_head *mode_list, bool verbose)
952
{
953
	struct drm_display_mode *mode, *t;
954
 
955
	list_for_each_entry_safe(mode, t, mode_list, head) {
956
		if (mode->status != MODE_OK) {
957
			list_del(&mode->head);
958
			if (verbose) {
959
				drm_mode_debug_printmodeline(mode);
1179 serge 960
				DRM_DEBUG_KMS("Not using %s mode %d\n",
1123 serge 961
					mode->name, mode->status);
962
			}
963
			drm_mode_destroy(dev, mode);
964
		}
965
	}
966
}
967
EXPORT_SYMBOL(drm_mode_prune_invalid);
968
 
969
/**
970
 * drm_mode_compare - compare modes for favorability
1404 serge 971
 * @priv: unused
1123 serge 972
 * @lh_a: list_head for first mode
973
 * @lh_b: list_head for second mode
974
 *
975
 * LOCKING:
976
 * None.
977
 *
978
 * Compare two modes, given by @lh_a and @lh_b, returning a value indicating
979
 * which is better.
980
 *
981
 * RETURNS:
982
 * Negative if @lh_a is better than @lh_b, zero if they're equivalent, or
983
 * positive if @lh_b is better than @lh_a.
984
 */
1404 serge 985
static int drm_mode_compare(void *priv, struct list_head *lh_a, struct list_head *lh_b)
1123 serge 986
{
987
	struct drm_display_mode *a = list_entry(lh_a, struct drm_display_mode, head);
988
	struct drm_display_mode *b = list_entry(lh_b, struct drm_display_mode, head);
989
	int diff;
990
 
991
	diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
992
		((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
993
	if (diff)
994
		return diff;
995
	diff = b->hdisplay * b->vdisplay - a->hdisplay * a->vdisplay;
996
	if (diff)
997
		return diff;
998
	diff = b->clock - a->clock;
999
	return diff;
1000
}
1001
 
1002
/**
1003
 * drm_mode_sort - sort mode list
1004
 * @mode_list: list to sort
1005
 *
1006
 * LOCKING:
1007
 * Caller must hold a lock protecting @mode_list.
1008
 *
1009
 * Sort @mode_list by favorability, putting good modes first.
1010
 */
1011
void drm_mode_sort(struct list_head *mode_list)
1012
{
1404 serge 1013
	list_sort(NULL, mode_list, drm_mode_compare);
1123 serge 1014
}
1015
EXPORT_SYMBOL(drm_mode_sort);
1016
 
1017
/**
1018
 * drm_mode_connector_list_update - update the mode list for the connector
1019
 * @connector: the connector to update
1020
 *
1021
 * LOCKING:
1022
 * Caller must hold a lock protecting @mode_list.
1023
 *
1024
 * This moves the modes from the @connector probed_modes list
1025
 * to the actual mode list. It compares the probed mode against the current
1026
 * list and only adds different modes. All modes unverified after this point
1027
 * will be removed by the prune invalid modes.
1028
 */
1029
void drm_mode_connector_list_update(struct drm_connector *connector)
1030
{
1031
	struct drm_display_mode *mode;
1032
	struct drm_display_mode *pmode, *pt;
1033
	int found_it;
1034
 
1035
	list_for_each_entry_safe(pmode, pt, &connector->probed_modes,
1036
				 head) {
1037
		found_it = 0;
1038
		/* go through current modes checking for the new probed mode */
1039
		list_for_each_entry(mode, &connector->modes, head) {
1040
			if (drm_mode_equal(pmode, mode)) {
1041
				found_it = 1;
1042
				/* if equal delete the probed mode */
1043
				mode->status = pmode->status;
1179 serge 1044
				/* Merge type bits together */
1045
				mode->type |= pmode->type;
1123 serge 1046
				list_del(&pmode->head);
1047
				drm_mode_destroy(connector->dev, pmode);
1048
				break;
1049
			}
1050
		}
1051
 
1052
		if (!found_it) {
1053
			list_move_tail(&pmode->head, &connector->modes);
1054
		}
1055
	}
1056
}
1057
EXPORT_SYMBOL(drm_mode_connector_list_update);