Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1029 serge 1
 
2
{
3
    link_t link;
4
    int    capndx;
5
    u32_t  maxbw;
6
    PCITAG tag;
7
};
8
9
 
10
{
11
   new->prev = old;
12
   new->next = old->next;
13
   new->next->prev = new;
14
   old->next = new;
15
}
16
17
 
18
{
19
    struct agp_3_5_dev *cur, *n = (struct agp_3_5_dev*)new;
20
    link_t *pos = head->next;
21
22
 
23
        cur = (struct agp_3_5_dev*)pos;
24
		if(cur->maxbw > n->maxbw)
25
			break;
26
	}
27
    list_insert_tail(new, pos);
28
}
29
30
 
31
{
32
	struct agp_3_5_dev *cur;
33
    link_t *pos, *tmp, *start = list->next;
34
    u32_t nistat;
35
36
 
37
38
 
39
    {
40
        PCITAG tag;
41
42
 
43
        tag = cur->tag;
44
45
 
46
		cur->maxbw = (nistat >> 16) & 0xff;
47
48
 
49
		pos = pos->next;
50
        agp_3_5_dev_list_insert(list, tmp);
51
	}
52
}
53
54
 
55
 
56
 * Initialize all isochronous transfer parameters for an AGP 3.0
57
 * node (i.e. a host bridge in combination with the adapters
58
 * lying behind it...)
59
 */
60
61
 
62
        link_t *dev_list, unsigned int ndevs)
63
{
64
	/*
65
	 * Convenience structure to make the calculations clearer
66
	 * here.  The field names come straight from the AGP 3.0 spec.
67
	 */
68
	struct isoch_data {
69
        u32_t maxbw;
70
        u32_t n;
71
        u32_t y;
72
        u32_t l;
73
        u32_t rq;
74
		struct agp_3_5_dev *dev;
75
	};
76
77
 
78
79
 
80
	struct agp_3_5_dev *cur;
81
	struct isoch_data *master, target;
82
	unsigned int cdev = 0;
83
    u32_t mnistat, tnistat, tstatus, mcmd;
84
    u16_t tnicmd, mnicmd;
85
    u8_t mcapndx;
86
    u32_t tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
87
    u32_t step, rem, rem_isoch, rem_async;
88
	int ret = 0;
89
90
 
91
	 * We'll work with an array of isoch_data's (one for each
92
	 * device in dev_list) throughout this function.
93
	 */
94
    if ((master = malloc(ndevs * sizeof(*master))) == NULL) {
95
        ret = -1;
96
		goto get_out;
97
	}
98
99
 
100
	 * Sort the device list by maxbw.  We need to do this because the
101
	 * spec suggests that the devices with the smallest requirements
102
	 * have their resources allocated first, with all remaining resources
103
	 * falling to the device with the largest requirement.
104
	 *
105
	 * We don't exactly do this, we divide target resources by ndevs
106
	 * and split them amongst the AGP 3.0 devices.  The remainder of such
107
	 * division operations are dropped on the last device, sort of like
108
	 * the spec mentions it should be done.
109
	 *
110
	 * We can't do this sort when we initially construct the dev_list
111
	 * because we don't know until this function whether isochronous
112
	 * transfers are enabled and consequently whether maxbw will mean
113
	 * anything.
114
	 */
115
    agp_3_5_dev_list_sort(dev_list, ndevs);
116
117
 
118
    tstatus = pciReadLong(td, bridge->capndx+AGPSTAT);
119
120
 
121
	target.maxbw = (tnistat >> 16) & 0xff;
122
	target.n     = (tnistat >> 8)  & 0xff;
123
	target.y     = (tnistat >> 6)  & 0x3;
124
	target.l     = (tnistat >> 3)  & 0x7;
125
	target.rq    = (tstatus >> 24) & 0xff;
126
127
 
128
129
 
130
	 * Extract power-on defaults for each device in dev_list.  Along
131
	 * the way, calculate the total isochronous bandwidth required
132
	 * by these devices and the largest requested payload size.
133
	 */
134
135
 
136
137
 
138
    {
139
        PCITAG dev;
140
141
 
142
        dev = cur->tag;
143
144
 
145
146
 
147
148
 
149
		master[cdev].n     = (mnistat >> 8)  & 0xff;
150
		master[cdev].y     = (mnistat >> 6)  & 0x3;
151
		master[cdev].dev   = cur;
152
153
 
154
		y_max = max(y_max, master[cdev].y);
155
156
 
157
	}
158
159
 
160
	if (tot_bw > target.maxbw) {
161
        dbgprintf("isochronous bandwidth required "
162
			"by AGP 3.0 devices exceeds that which is supported by "
163
			"the AGP 3.0 bridge!\n");
164
        ret = -1;
165
		goto free_and_exit;
166
	}
167
168
 
169
170
 
171
	 * Write the calculated payload size into the target's NICMD
172
	 * register.  Doing this directly effects the ISOCH_N value
173
	 * in the target's NISTAT register, so we need to do this now
174
	 * to get an accurate value for ISOCH_N later.
175
	 */
176
    tnicmd = pciReadWord(td, bridge->capndx+AGPNICMD);
177
	tnicmd &= ~(0x3 << 6);
178
	tnicmd |= target.y << 6;
179
    pciWriteWord(td, bridge->capndx+AGPNICMD, tnicmd);
180
181
 
182
    tnistat = pciReadLong(td, bridge->capndx+AGPNISTAT);
183
	target.n = (tnistat >> 8) & 0xff;
184
185
 
186
	for (cdev=0; cdev
187
		master[cdev].y = target.y;
188
		master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
189
190
 
191
	}
192
193
 
194
	 * than the target can handle. */
195
	if (tot_n > target.n) {
196
        dbgprintf("number of isochronous "
197
			"transactions per period required by AGP 3.0 devices "
198
			"exceeds that which is supported by the AGP 3.0 "
199
			"bridge!\n");
200
        ret = -1;
201
		goto free_and_exit;
202
	}
203
204
 
205
	 * this to the hungriest device (as per the spec) */
206
	rem  = target.n - tot_n;
207
208
 
209
	 * Calculate the minimum isochronous RQ depth needed by each master.
210
	 * Along the way, distribute the extra ISOCH_N capability calculated
211
	 * above.
212
	 */
213
	for (cdev=0; cdev
214
		/*
215
		 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
216
		 * byte isochronous writes will be broken into 64B pieces.
217
		 * This means we need to budget more RQ depth to account for
218
		 * these kind of writes (each isochronous write is actually
219
		 * many writes on the AGP bus).
220
		 */
221
		master[cdev].rq = master[cdev].n;
222
		if(master[cdev].y > 0x1)
223
			master[cdev].rq *= (1 << (master[cdev].y - 1));
224
225
 
226
	}
227
	master[ndevs-1].n += rem;
228
229
 
230
	 * target is providing. */
231
	rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
232
	rq_async = target.rq - rq_isoch;
233
234
 
235
	 * can provide. */
236
	if (tot_rq > rq_isoch) {
237
        dbgprintf("number of request queue slots "
238
			"required by the isochronous bandwidth requested by "
239
			"AGP 3.0 devices exceeds the number provided by the "
240
			"AGP 3.0 bridge!\n");
241
        ret = -1;
242
		goto free_and_exit;
243
	}
244
245
 
246
	 * well as the total number of leftover isochronous RQ slots. */
247
	step      = rq_async / ndevs;
248
	rem_async = step + (rq_async % ndevs);
249
	rem_isoch = rq_isoch - tot_rq;
250
251
 
252
	 * isochronous settings out to the actual devices. */
253
    for (cdev=0; cdev
254
    {
255
        PCITAG dev;
256
257
 
258
        dev = cur->tag;
259
260
 
261
262
 
263
		              ? (rem_async + rem_isoch) : step;
264
265
 
266
        mcmd = pciReadLong(dev, cur->capndx+AGPCMD);
267
268
 
269
		mnicmd &= ~(0x3  << 6);
270
		mcmd   &= ~(0xff << 24);
271
272
 
273
		mnicmd |= master[cdev].y  << 6;
274
		mcmd   |= master[cdev].rq << 24;
275
276
 
277
        pciWriteWord(dev, cur->capndx+AGPNICMD, mnicmd);
278
	}
279
280
 
281
    free(master);
282
283
 
284
	return ret;
285
}
286
287
 
288
 
289
 * This function basically allocates request queue slots among the
290
 * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
291
 * pretty stupid, divide the total number of RQ slots provided by the
292
 * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
293
 * giving any left over slots to the last device in dev_list.
294
 */
295
static void agp_3_5_nonisochronous_node_enable(agp_t *bridge,
296
        link_t *dev_list, unsigned int ndevs)
297
{
298
	struct agp_3_5_dev *cur;
299
    u32_t tstatus, mcmd;
300
    u32_t trq, mrq, rem;
301
	unsigned int cdev = 0;
302
303
 
304
305
 
306
	mrq = trq / ndevs;
307
308
 
309
310
 
311
312
 
313
        cur = (struct agp_3_5_dev*)pos;
314
315
 
316
		mcmd &= ~(0xff << 24);
317
		mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
318
        pciWriteLong(cur->tag, cur->capndx+AGPCMD, mcmd);
319
	}
320
}
321
322
 
323
 
324
 
325
 * Fully configure and enable an AGP 3.0 host bridge and all the devices
326
 * lying behind it.
327
 */
328
int agp_3_5_enable(agp_t *bridge)
329
{
330
    u8_t   mcapndx;
331
    u32_t  isoch, arqsz;
332
    u32_t  tstatus, mstatus, ncapid;
333
    u32_t  mmajor;
334
    u16_t  mpstat;
335
336
 
337
338
 
339
340
 
341
    PCITAG dev = 0;
342
	int ret = 0;
343
344
 
345
    tstatus = pciReadLong(bridge->PciTag, bridge->capndx+AGPSTAT);
346
	isoch     = (tstatus >> 17) & 0x1;
347
	if (isoch == 0)	/* isoch xfers not available, bail out. */
348
        return -1;
349
350
 
351
352
 
353
354
 
355
    for_each_pci_dev(dev)
356
    {
357
        u16_t devclass;
358
359
 
360
		if (mcapndx == 0)
361
			continue;
362
363
 
364
365
 
366
        {
367
			case 0x0600:    /* Bridge */
368
				/* Skip bridges. We should call this function for each one. */
369
				continue;
370
371
 
372
				/* Don't know what this is, but log it for investigation. */
373
				if (mcapndx != 0) {
374
                    dbgprintf("Wacky, found unclassified AGP device.\n");
375
				}
376
				continue;
377
378
 
379
			case 0x0400:    /* Multimedia controller */
380
                if((cur = malloc(sizeof(*cur))) == NULL)
381
                {
382
                    ret = -1;
383
					goto free_and_exit;
384
				}
385
                cur->tag = dev;
386
                list_prepend(&cur->link, &dev_list);
387
				ndevs++;
388
				continue;
389
390
 
391
				continue;
392
		}
393
	}
394
395
 
396
	 * Take an initial pass through the devices lying behind our host
397
	 * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
398
	 * exit with an error message.  Along the way store the AGP 3.0
399
	 * cap_ptr for each device
400
	 */
401
402
 
403
404
 
405
    {
406
        dev = cur->tag;
407
408
 
409
		if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
410
			continue;
411
412
 
413
		if (mcapndx != 0) {
414
			do {
415
                ncapid = pciReadLong(dev, mcapndx);
416
				if ((ncapid & 0xff) != 2)
417
					mcapndx = (ncapid >> 8) & 0xff;
418
			}
419
			while (((ncapid & 0xff) != 2) && (mcapndx != 0));
420
		}
421
422
 
423
            dbgprintf("woah!  Non-AGP device "
424
				"found on the secondary bus of an AGP 3.5 bridge!\n");
425
            ret = -1;
426
			goto free_and_exit;
427
		}
428
429
 
430
		if (mmajor < 3) {
431
            dbgprintf("woah!  AGP 2.0 device "
432
				"found on the secondary bus of an AGP 3.5 "
433
				"bridge operating with AGP 3.0 electricals!\n");
434
            ret = -1;
435
			goto free_and_exit;
436
		}
437
438
 
439
440
 
441
442
 
443
            dbgprintf("woah!  AGP 3.x device "
444
				"not operating in AGP 3.x mode found on the "
445
				"secondary bus of an AGP 3.5 bridge operating "
446
				"with AGP 3.0 electricals!\n");
447
            ret = -1;
448
			goto free_and_exit;
449
		}
450
        cur = (struct agp_3_5_dev*)cur->link.next;
451
	}
452
453
 
454
	 * Call functions to divide target resources amongst the AGP 3.0
455
	 * masters.  This process is dramatically different depending on
456
	 * whether isochronous transfers are supported.
457
	 */
458
	if (isoch) {
459
        ret = agp_3_5_isochronous_node_enable(bridge, &dev_list, ndevs);
460
		if (ret) {
461
            dbgprintf("Something bad happened setting "
462
                      "up isochronous xfers.  Falling back to "
463
                      "non-isochronous xfer mode.\n");
464
		} else {
465
			goto free_and_exit;
466
		}
467
	}
468
    agp_3_5_nonisochronous_node_enable(bridge, &dev_list, ndevs);
469
470
 
471
	/* Be sure to free the dev_list */
472
    for (pos = (struct agp_3_5_dev*)dev_list.next; &pos->link != &dev_list; )
473
    {
474
        cur = pos;
475
476
 
477
        free(cur);
478
	}
479
480
 
481
	return ret;
482
}
483