Subversion Repositories Kolibri OS

Rev

Rev 3263 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
3254 Serge 1
//#include "../bitmap.h"
2
 
3
#include 
4
#include 
5
 
6
#include "sna.h"
7
 
3263 Serge 8
#include 
9
 
10
static struct sna_fb sna_fb;
11
 
3258 Serge 12
typedef struct __attribute__((packed))
13
{
14
  unsigned      handle;
15
  unsigned      io_code;
16
  void          *input;
17
  int           inp_size;
18
  void          *output;
19
  int           out_size;
20
}ioctl_t;
3254 Serge 21
 
3258 Serge 22
 
23
static int call_service(ioctl_t *io)
24
{
25
  int retval;
26
 
27
  asm volatile("int $0x40"
28
      :"=a"(retval)
29
      :"a"(68),"b"(17),"c"(io)
30
      :"memory","cc");
31
 
32
  return retval;
33
};
34
 
3266 Serge 35
static inline void get_proc_info(char *info)
36
{
37
    __asm__ __volatile__(
38
    "int $0x40"
39
    :
40
    :"a"(9), "b"(info), "c"(-1));
41
}
42
 
3254 Serge 43
const struct intel_device_info *
44
intel_detect_chipset(struct pci_device *pci);
45
 
46
//struct kgem_bo *create_bo(bitmap_t *bitmap);
47
 
48
static bool sna_solid_cache_init(struct sna *sna);
49
 
50
struct sna *sna_device;
51
 
3258 Serge 52
static void no_render_reset(struct sna *sna)
53
{
54
	(void)sna;
55
}
56
 
3254 Serge 57
void no_render_init(struct sna *sna)
58
{
59
    struct sna_render *render = &sna->render;
60
 
61
    memset (render,0, sizeof (*render));
62
 
63
    render->prefer_gpu = PREFER_GPU_BLT;
64
 
65
    render->vertices = render->vertex_data;
66
    render->vertex_size = ARRAY_SIZE(render->vertex_data);
67
 
68
//    render->composite = no_render_composite;
69
 
70
//    render->copy_boxes = no_render_copy_boxes;
71
//    render->copy = no_render_copy;
72
 
73
//    render->fill_boxes = no_render_fill_boxes;
74
//    render->fill = no_render_fill;
75
//    render->fill_one = no_render_fill_one;
76
//    render->clear = no_render_clear;
77
 
3258 Serge 78
    render->reset = no_render_reset;
3263 Serge 79
//    render->flush = no_render_flush;
3254 Serge 80
//    render->fini = no_render_fini;
81
 
82
//    sna->kgem.context_switch = no_render_context_switch;
83
//    sna->kgem.retire = no_render_retire;
84
 
3258 Serge 85
      if (sna->kgem.gen >= 60)
3254 Serge 86
        sna->kgem.ring = KGEM_RENDER;
87
 
88
      sna_vertex_init(sna);
89
}
90
 
91
void sna_vertex_init(struct sna *sna)
92
{
93
//    pthread_mutex_init(&sna->render.lock, NULL);
94
//    pthread_cond_init(&sna->render.wait, NULL);
95
    sna->render.active = 0;
96
}
97
 
98
bool sna_accel_init(struct sna *sna)
99
{
100
    const char *backend;
101
 
102
//    list_init(&sna->deferred_free);
103
//    list_init(&sna->dirty_pixmaps);
104
//    list_init(&sna->active_pixmaps);
105
//    list_init(&sna->inactive_clock[0]);
106
//    list_init(&sna->inactive_clock[1]);
107
 
108
//    sna_accel_install_timers(sna);
109
 
110
 
111
    backend = "no";
112
    no_render_init(sna);
113
 
114
 	if (sna->info->gen >= 0100) {
115
/*	} else if (sna->info->gen >= 070) {
116
		if (gen7_render_init(sna))
117
			backend = "IvyBridge";  */
118
	} else if (sna->info->gen >= 060) {
119
		if (gen6_render_init(sna))
120
			backend = "SandyBridge";
121
/*	} else if (sna->info->gen >= 050) {
122
		if (gen5_render_init(sna))
123
			backend = "Ironlake";
124
	} else if (sna->info->gen >= 040) {
125
		if (gen4_render_init(sna))
126
			backend = "Broadwater/Crestline";
127
	} else if (sna->info->gen >= 030) {
128
		if (gen3_render_init(sna))
129
			backend = "gen3";
130
	} else if (sna->info->gen >= 020) {
131
		if (gen2_render_init(sna))
132
			backend = "gen2"; */
133
	}
134
 
135
	DBG(("%s(backend=%s, prefer_gpu=%x)\n",
136
	     __FUNCTION__, backend, sna->render.prefer_gpu));
137
 
138
    kgem_reset(&sna->kgem);
139
 
140
//    if (!sna_solid_cache_init(sna))
141
//        return false;
142
 
143
    sna_device = sna;
144
 
145
 
3263 Serge 146
    return kgem_init_fb(&sna->kgem, &sna_fb);
3254 Serge 147
}
148
 
149
int sna_init(uint32_t service)
150
{
151
    ioctl_t   io;
152
 
153
    static struct pci_device device;
154
    struct sna *sna;
155
 
156
    DBG(("%s\n", __FUNCTION__));
157
 
158
    sna = malloc(sizeof(struct sna));
159
    if (sna == NULL)
160
        return false;
161
 
162
    io.handle   = service;
3256 Serge 163
    io.io_code  = SRV_GET_PCI_INFO;
3254 Serge 164
    io.input    = &device;
165
    io.inp_size = sizeof(device);
166
    io.output   = NULL;
167
    io.out_size = 0;
168
 
169
    if (call_service(&io)!=0)
170
        return false;
171
 
172
    sna->PciInfo = &device;
173
 
174
  	sna->info = intel_detect_chipset(sna->PciInfo);
175
 
176
    kgem_init(&sna->kgem, service, sna->PciInfo, sna->info->gen);
177
/*
178
    if (!xf86ReturnOptValBool(sna->Options,
179
                  OPTION_RELAXED_FENCING,
180
                  sna->kgem.has_relaxed_fencing)) {
181
        xf86DrvMsg(scrn->scrnIndex,
182
               sna->kgem.has_relaxed_fencing ? X_CONFIG : X_PROBED,
183
               "Disabling use of relaxed fencing\n");
184
        sna->kgem.has_relaxed_fencing = 0;
185
    }
186
    if (!xf86ReturnOptValBool(sna->Options,
187
                  OPTION_VMAP,
188
                  sna->kgem.has_vmap)) {
189
        xf86DrvMsg(scrn->scrnIndex,
190
               sna->kgem.has_vmap ? X_CONFIG : X_PROBED,
191
               "Disabling use of vmap\n");
192
        sna->kgem.has_vmap = 0;
193
    }
194
*/
195
 
196
    /* Disable tiling by default */
197
    sna->tiling = SNA_TILING_DISABLE;
198
 
199
    /* Default fail-safe value of 75 Hz */
200
//    sna->vblank_interval = 1000 * 1000 * 1000 / 75;
201
 
202
    sna->flags = 0;
203
 
204
    return sna_accel_init(sna);
205
}
206
 
207
#if 0
208
 
209
static bool sna_solid_cache_init(struct sna *sna)
210
{
211
    struct sna_solid_cache *cache = &sna->render.solid_cache;
212
 
213
    DBG(("%s\n", __FUNCTION__));
214
 
215
    cache->cache_bo =
216
        kgem_create_linear(&sna->kgem, sizeof(cache->color));
217
    if (!cache->cache_bo)
218
        return FALSE;
219
 
220
    /*
221
     * Initialise [0] with white since it is very common and filling the
222
     * zeroth slot simplifies some of the checks.
223
     */
224
    cache->color[0] = 0xffffffff;
225
    cache->bo[0] = kgem_create_proxy(cache->cache_bo, 0, sizeof(uint32_t));
226
    cache->bo[0]->pitch = 4;
227
    cache->dirty = 1;
228
    cache->size = 1;
229
    cache->last = 0;
230
 
231
    return TRUE;
232
}
233
 
234
void
235
sna_render_flush_solid(struct sna *sna)
236
{
237
    struct sna_solid_cache *cache = &sna->render.solid_cache;
238
 
239
    DBG(("sna_render_flush_solid(size=%d)\n", cache->size));
240
    assert(cache->dirty);
241
    assert(cache->size);
242
 
243
    kgem_bo_write(&sna->kgem, cache->cache_bo,
244
              cache->color, cache->size*sizeof(uint32_t));
245
    cache->dirty = 0;
246
    cache->last = 0;
247
}
248
 
249
static void
250
sna_render_finish_solid(struct sna *sna, bool force)
251
{
252
    struct sna_solid_cache *cache = &sna->render.solid_cache;
253
    int i;
254
 
255
    DBG(("sna_render_finish_solid(force=%d, domain=%d, busy=%d, dirty=%d)\n",
256
         force, cache->cache_bo->domain, cache->cache_bo->rq != NULL, cache->dirty));
257
 
258
    if (!force && cache->cache_bo->domain != DOMAIN_GPU)
259
        return;
260
 
261
    if (cache->dirty)
262
        sna_render_flush_solid(sna);
263
 
264
    for (i = 0; i < cache->size; i++) {
265
        if (cache->bo[i] == NULL)
266
            continue;
267
 
268
        kgem_bo_destroy(&sna->kgem, cache->bo[i]);
269
        cache->bo[i] = NULL;
270
    }
271
    kgem_bo_destroy(&sna->kgem, cache->cache_bo);
272
 
273
    DBG(("sna_render_finish_solid reset\n"));
274
 
275
    cache->cache_bo = kgem_create_linear(&sna->kgem, sizeof(cache->color));
276
    cache->bo[0] = kgem_create_proxy(cache->cache_bo, 0, sizeof(uint32_t));
277
    cache->bo[0]->pitch = 4;
278
    if (force)
279
        cache->size = 1;
280
}
281
 
282
 
283
struct kgem_bo *
284
sna_render_get_solid(struct sna *sna, uint32_t color)
285
{
286
    struct sna_solid_cache *cache = &sna->render.solid_cache;
287
    int i;
288
 
289
    DBG(("%s: %08x\n", __FUNCTION__, color));
290
 
291
//    if ((color & 0xffffff) == 0) /* alpha only */
292
//        return kgem_bo_reference(sna->render.alpha_cache.bo[color>>24]);
293
 
294
    if (color == 0xffffffff) {
295
        DBG(("%s(white)\n", __FUNCTION__));
296
        return kgem_bo_reference(cache->bo[0]);
297
    }
298
 
299
    if (cache->color[cache->last] == color) {
300
        DBG(("sna_render_get_solid(%d) = %x (last)\n",
301
             cache->last, color));
302
        return kgem_bo_reference(cache->bo[cache->last]);
303
    }
304
 
305
    for (i = 1; i < cache->size; i++) {
306
        if (cache->color[i] == color) {
307
            if (cache->bo[i] == NULL) {
308
                DBG(("sna_render_get_solid(%d) = %x (recreate)\n",
309
                     i, color));
310
                goto create;
311
            } else {
312
                DBG(("sna_render_get_solid(%d) = %x (old)\n",
313
                     i, color));
314
                goto done;
315
            }
316
        }
317
    }
318
 
319
    sna_render_finish_solid(sna, i == ARRAY_SIZE(cache->color));
320
 
321
    i = cache->size++;
322
    cache->color[i] = color;
323
    cache->dirty = 1;
324
    DBG(("sna_render_get_solid(%d) = %x (new)\n", i, color));
325
 
326
create:
327
    cache->bo[i] = kgem_create_proxy(cache->cache_bo,
328
                     i*sizeof(uint32_t), sizeof(uint32_t));
329
    cache->bo[i]->pitch = 4;
330
 
331
done:
332
    cache->last = i;
333
    return kgem_bo_reference(cache->bo[i]);
334
}
335
 
336
#endif
337
 
338
 
3263 Serge 339
int sna_blit_copy(bitmap_t *src_bitmap, int dst_x, int dst_y,
340
                  int w, int h, int src_x, int src_y)
3254 Serge 341
 
342
{
343
    struct sna_copy_op copy;
3263 Serge 344
    struct _Pixmap src, dst;
345
    struct kgem_bo *src_bo;
3254 Serge 346
 
3266 Serge 347
    char proc_info[1024];
348
    int winx, winy;
349
 
350
    get_proc_info(proc_info);
351
 
352
    winx = *(uint32_t*)(proc_info+34);
353
    winy = *(uint32_t*)(proc_info+38);
354
 
3263 Serge 355
    memset(&src, 0, sizeof(src));
356
    memset(&dst, 0, sizeof(dst));
3254 Serge 357
 
3263 Serge 358
    src.drawable.bitsPerPixel = 32;
359
    src.drawable.width  = src_bitmap->width;
360
    src.drawable.height = src_bitmap->height;
3254 Serge 361
 
3263 Serge 362
    dst.drawable.bitsPerPixel = 32;
363
    dst.drawable.width  = sna_fb.width;
364
    dst.drawable.height = sna_fb.height;
3254 Serge 365
 
366
    memset(©, 0, sizeof(copy));
367
 
3263 Serge 368
    src_bo = (struct kgem_bo*)src_bitmap->handle;
369
 
370
    if( sna_device->render.copy(sna_device, GXcopy,
371
                                &src, src_bo,
372
                                &dst, sna_fb.fb_bo, ©) )
373
    {
3266 Serge 374
        copy.blt(sna_device, ©, src_x, src_y, w, h, winx+dst_x, winy+dst_y);
3254 Serge 375
    copy.done(sna_device, ©);
3263 Serge 376
    }
3254 Serge 377
 
3263 Serge 378
    kgem_submit(&sna_device->kgem);
3254 Serge 379
 
3263 Serge 380
//    __asm__ __volatile__("int3");
3254 Serge 381
 
382
};
383
 
3263 Serge 384
int sna_create_bitmap(bitmap_t *bitmap)
385
{
386
	struct kgem_bo *bo;
3254 Serge 387
 
3263 Serge 388
    bo = kgem_create_2d(&sna_device->kgem, bitmap->width, bitmap->height,
389
                        32,I915_TILING_NONE, CREATE_CPU_MAP);
390
 
391
    if(bo == NULL)
392
        goto err_1;
393
 
394
    void *map = kgem_bo_map(&sna_device->kgem, bo);
395
    if(map == NULL)
396
        goto err_2;
397
 
398
    bitmap->handle = (uint32_t)bo;
399
    bitmap->pitch  = bo->pitch;
400
    bitmap->data   = map;
401
 
402
    return 0;
403
 
404
err_2:
405
    kgem_bo_destroy(&sna_device->kgem, bo);
406
 
407
err_1:
408
    return -1;
3266 Serge 409
 
3263 Serge 410
};
3266 Serge 411
 
412
void sna_lock_bitmap(bitmap_t *bitmap)
413
{
414
	struct kgem_bo *bo;
415
 
416
    bo = (struct kgem_bo *)bitmap->handle;
417
 
418
    kgem_bo_sync__cpu(&sna_device->kgem, bo);
419
 
420
};
421
 
422
 
423
 
3254 Serge 424
/*
425
 
426
int sna_blit_tex(bitmap_t *dst_bitmap, int dst_x, int dst_y,
427
                  int w, int h, bitmap_t *src_bitmap, int src_x, int src_y,
428
                  bitmap_t *mask_bitmap)
429
 
430
{
431
    struct sna_composite_op cop;
432
    batchbuffer_t  execbuffer;
433
    BoxRec box;
434
 
435
    struct kgem_bo src_bo, mask_bo, dst_bo;
436
 
437
    memset(&cop, 0, sizeof(cop));
438
    memset(&execbuffer,  0, sizeof(execbuffer));
439
    memset(&src_bo, 0, sizeof(src_bo));
440
    memset(&dst_bo, 0, sizeof(dst_bo));
441
    memset(&mask_bo, 0, sizeof(mask_bo));
442
 
443
    src_bo.gaddr  = src_bitmap->gaddr;
444
    src_bo.pitch  = src_bitmap->pitch;
445
    src_bo.tiling = 0;
446
 
447
    dst_bo.gaddr  = dst_bitmap->gaddr;
448
    dst_bo.pitch  = dst_bitmap->pitch;
449
    dst_bo.tiling = 0;
450
 
451
    mask_bo.gaddr  = mask_bitmap->gaddr;
452
    mask_bo.pitch  = mask_bitmap->pitch;
453
    mask_bo.tiling = 0;
454
 
455
    box.x1 = dst_x;
456
    box.y1 = dst_y;
457
    box.x2 = dst_x+w;
458
    box.y2 = dst_y+h;
459
 
460
    sna_device->render.composite(sna_device, 0,
461
                                 src_bitmap, &src_bo,
462
                                 mask_bitmap, &mask_bo,
463
                                 dst_bitmap, &dst_bo,
464
                                 src_x, src_y,
465
                                 src_x, src_y,
466
                                 dst_x, dst_y,
467
                                 w, h, &cop);
468
 
469
    cop.box(sna_device, &cop, &box);
470
    cop.done(sna_device, &cop);
471
 
472
    INIT_LIST_HEAD(&execbuffer.objects);
473
    list_add_tail(&src_bitmap->obj->exec_list, &execbuffer.objects);
474
    list_add_tail(&mask_bitmap->obj->exec_list, &execbuffer.objects);
475
 
476
    _kgem_submit(&sna_device->kgem, &execbuffer);
477
 
478
};
479
 
480
*/
481
 
482
static const struct intel_device_info intel_generic_info = {
483
	.gen = -1,
484
};
485
 
486
static const struct intel_device_info intel_i915_info = {
487
	.gen = 030,
488
};
489
static const struct intel_device_info intel_i945_info = {
490
	.gen = 031,
491
};
492
 
493
static const struct intel_device_info intel_g33_info = {
494
	.gen = 033,
495
};
496
 
497
static const struct intel_device_info intel_i965_info = {
498
	.gen = 040,
499
};
500
 
501
static const struct intel_device_info intel_g4x_info = {
502
	.gen = 045,
503
};
504
 
505
static const struct intel_device_info intel_ironlake_info = {
506
	.gen = 050,
507
};
508
 
509
static const struct intel_device_info intel_sandybridge_info = {
510
	.gen = 060,
511
};
512
 
513
static const struct intel_device_info intel_ivybridge_info = {
514
	.gen = 070,
515
};
516
 
517
static const struct intel_device_info intel_valleyview_info = {
518
	.gen = 071,
519
};
520
 
521
static const struct intel_device_info intel_haswell_info = {
522
	.gen = 075,
523
};
524
 
525
#define INTEL_DEVICE_MATCH(d,i) \
526
    { 0x8086, (d), PCI_MATCH_ANY, PCI_MATCH_ANY, 0x3 << 16, 0xff << 16, (intptr_t)(i) }
527
 
528
 
529
static const struct pci_id_match intel_device_match[] = {
530
 
531
 
532
	INTEL_DEVICE_MATCH (PCI_CHIP_I915_G, &intel_i915_info ),
533
	INTEL_DEVICE_MATCH (PCI_CHIP_E7221_G, &intel_i915_info ),
534
	INTEL_DEVICE_MATCH (PCI_CHIP_I915_GM, &intel_i915_info ),
535
	INTEL_DEVICE_MATCH (PCI_CHIP_I945_G, &intel_i945_info ),
536
	INTEL_DEVICE_MATCH (PCI_CHIP_I945_GM, &intel_i945_info ),
537
	INTEL_DEVICE_MATCH (PCI_CHIP_I945_GME, &intel_i945_info ),
538
 
539
	INTEL_DEVICE_MATCH (PCI_CHIP_PINEVIEW_M, &intel_g33_info ),
540
	INTEL_DEVICE_MATCH (PCI_CHIP_PINEVIEW_G, &intel_g33_info ),
541
	INTEL_DEVICE_MATCH (PCI_CHIP_G33_G, &intel_g33_info ),
542
	INTEL_DEVICE_MATCH (PCI_CHIP_Q33_G, &intel_g33_info ),
543
	/* Another marketing win: Q35 is another g33 device not a gen4 part
544
	 * like its G35 brethren.
545
	 */
546
	INTEL_DEVICE_MATCH (PCI_CHIP_Q35_G, &intel_g33_info ),
547
 
548
	INTEL_DEVICE_MATCH (PCI_CHIP_I965_G, &intel_i965_info ),
549
	INTEL_DEVICE_MATCH (PCI_CHIP_G35_G, &intel_i965_info ),
550
	INTEL_DEVICE_MATCH (PCI_CHIP_I965_Q, &intel_i965_info ),
551
	INTEL_DEVICE_MATCH (PCI_CHIP_I946_GZ, &intel_i965_info ),
552
	INTEL_DEVICE_MATCH (PCI_CHIP_I965_GM, &intel_i965_info ),
553
	INTEL_DEVICE_MATCH (PCI_CHIP_I965_GME, &intel_i965_info ),
554
 
555
	INTEL_DEVICE_MATCH (PCI_CHIP_GM45_GM, &intel_g4x_info ),
556
	INTEL_DEVICE_MATCH (PCI_CHIP_G45_E_G, &intel_g4x_info ),
557
	INTEL_DEVICE_MATCH (PCI_CHIP_G45_G, &intel_g4x_info ),
558
	INTEL_DEVICE_MATCH (PCI_CHIP_Q45_G, &intel_g4x_info ),
559
	INTEL_DEVICE_MATCH (PCI_CHIP_G41_G, &intel_g4x_info ),
560
	INTEL_DEVICE_MATCH (PCI_CHIP_B43_G, &intel_g4x_info ),
561
	INTEL_DEVICE_MATCH (PCI_CHIP_B43_G1, &intel_g4x_info ),
562
 
563
	INTEL_DEVICE_MATCH (PCI_CHIP_IRONLAKE_D_G, &intel_ironlake_info ),
564
	INTEL_DEVICE_MATCH (PCI_CHIP_IRONLAKE_M_G, &intel_ironlake_info ),
565
 
566
	INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_GT1, &intel_sandybridge_info ),
567
	INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_GT2, &intel_sandybridge_info ),
568
	INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_GT2_PLUS, &intel_sandybridge_info ),
569
	INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_M_GT1, &intel_sandybridge_info ),
570
	INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_M_GT2, &intel_sandybridge_info ),
571
	INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS, &intel_sandybridge_info ),
572
	INTEL_DEVICE_MATCH (PCI_CHIP_SANDYBRIDGE_S_GT, &intel_sandybridge_info ),
573
 
574
	INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_M_GT1, &intel_ivybridge_info ),
575
	INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_M_GT2, &intel_ivybridge_info ),
576
	INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_D_GT1, &intel_ivybridge_info ),
577
	INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_D_GT2, &intel_ivybridge_info ),
578
	INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_S_GT1, &intel_ivybridge_info ),
579
	INTEL_DEVICE_MATCH (PCI_CHIP_IVYBRIDGE_S_GT2, &intel_ivybridge_info ),
580
 
581
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_D_GT1, &intel_haswell_info ),
582
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_D_GT2, &intel_haswell_info ),
583
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_D_GT2_PLUS, &intel_haswell_info ),
584
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_M_GT1, &intel_haswell_info ),
585
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_M_GT2, &intel_haswell_info ),
586
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_M_GT2_PLUS, &intel_haswell_info ),
587
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_S_GT1, &intel_haswell_info ),
588
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_S_GT2, &intel_haswell_info ),
589
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_S_GT2_PLUS, &intel_haswell_info ),
590
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_D_GT1, &intel_haswell_info ),
591
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_D_GT2, &intel_haswell_info ),
592
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_D_GT2_PLUS, &intel_haswell_info ),
593
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_M_GT1, &intel_haswell_info ),
594
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_M_GT2, &intel_haswell_info ),
595
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_M_GT2_PLUS, &intel_haswell_info ),
596
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_S_GT1, &intel_haswell_info ),
597
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_S_GT2, &intel_haswell_info ),
598
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_SDV_S_GT2_PLUS, &intel_haswell_info ),
599
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_D_GT1, &intel_haswell_info ),
600
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_D_GT2, &intel_haswell_info ),
601
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_D_GT2_PLUS, &intel_haswell_info ),
602
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_M_GT1, &intel_haswell_info ),
603
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_M_GT2, &intel_haswell_info ),
604
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_M_GT2_PLUS, &intel_haswell_info ),
605
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_S_GT1, &intel_haswell_info ),
606
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_S_GT2, &intel_haswell_info ),
607
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_ULT_S_GT2_PLUS, &intel_haswell_info ),
608
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_D_GT1, &intel_haswell_info ),
609
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_D_GT2, &intel_haswell_info ),
610
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_D_GT2_PLUS, &intel_haswell_info ),
611
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_M_GT1, &intel_haswell_info ),
612
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_M_GT2, &intel_haswell_info ),
613
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_M_GT2_PLUS, &intel_haswell_info ),
614
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_S_GT1, &intel_haswell_info ),
615
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_S_GT2, &intel_haswell_info ),
616
	INTEL_DEVICE_MATCH (PCI_CHIP_HASWELL_CRW_S_GT2_PLUS, &intel_haswell_info ),
617
 
618
	INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_PO, &intel_valleyview_info ),
619
	INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_1, &intel_valleyview_info ),
620
	INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_2, &intel_valleyview_info ),
621
	INTEL_DEVICE_MATCH (PCI_CHIP_VALLEYVIEW_3, &intel_valleyview_info ),
622
 
623
	INTEL_DEVICE_MATCH (PCI_MATCH_ANY, &intel_generic_info ),
624
 
625
	{ 0, 0, 0 },
626
};
627
 
628
const struct pci_id_match *PciDevMatch(uint16_t dev,const struct pci_id_match *list)
629
{
630
    while(list->device_id)
631
    {
632
        if(dev==list->device_id)
633
            return list;
634
        list++;
635
    }
636
    return NULL;
637
}
638
 
639
const struct intel_device_info *
640
intel_detect_chipset(struct pci_device *pci)
641
{
642
    const struct pci_id_match *ent = NULL;
643
	const char *name = NULL;
644
	int i;
645
 
646
    ent = PciDevMatch(pci->device_id, intel_device_match);
647
 
648
    if(ent != NULL)
649
        return (const struct intel_device_info*)ent->match_data;
650
    else
651
        return &intel_generic_info;
652
 
653
#if 0
654
	for (i = 0; intel_chipsets[i].name != NULL; i++) {
655
		if (DEVICE_ID(pci) == intel_chipsets[i].token) {
656
			name = intel_chipsets[i].name;
657
			break;
658
		}
659
	}
660
	if (name == NULL) {
661
		xf86DrvMsg(scrn->scrnIndex, X_WARNING, "unknown chipset\n");
662
		name = "unknown";
663
	} else {
664
		xf86DrvMsg(scrn->scrnIndex, from,
665
			   "Integrated Graphics Chipset: Intel(R) %s\n",
666
			   name);
667
	}
668
 
669
	scrn->chipset = name;
670
#endif
671
 
672
}
673
 
674
 
3258 Serge 675
int drmIoctl(int fd, unsigned long request, void *arg)
676
{
677
    ioctl_t  io;
3254 Serge 678
 
3258 Serge 679
    io.handle   = fd;
680
    io.io_code  = request;
681
    io.input    = arg;
682
    io.inp_size = 64;
683
    io.output   = NULL;
684
    io.out_size = 0;
3254 Serge 685
 
3258 Serge 686
    return call_service(&io);
687
}
688