Subversion Repositories Kolibri OS

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
3770 Serge 1
/**************************************************************************
2
 *
3
 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4
 * All Rights Reserved.
5
 * Copyright 2008-2010 VMware, Inc.  All rights reserved.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a
8
 * copy of this software and associated documentation files (the
9
 * "Software"), to deal in the Software without restriction, including
10
 * without limitation the rights to use, copy, modify, merge, publish,
11
 * distribute, sub license, and/or sell copies of the Software, and to
12
 * permit persons to whom the Software is furnished to do so, subject to
13
 * the following conditions:
14
 *
15
 * The above copyright notice and this permission notice (including the
16
 * next paragraph) shall be included in all copies or substantial portions
17
 * of the Software.
18
 *
19
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22
 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
 *
27
 **************************************************************************/
28
 
29
/**
30
 * Texture sampling
31
 *
32
 * Authors:
33
 *   Brian Paul
34
 *   Keith Whitwell
35
 */
36
 
37
#include "pipe/p_context.h"
38
#include "pipe/p_defines.h"
39
#include "pipe/p_shader_tokens.h"
40
#include "util/u_math.h"
41
#include "util/u_format.h"
42
#include "util/u_memory.h"
43
#include "util/u_inlines.h"
44
#include "sp_quad.h"   /* only for #define QUAD_* tokens */
45
#include "sp_tex_sample.h"
46
#include "sp_texture.h"
47
#include "sp_tex_tile_cache.h"
48
 
49
 
50
/** Set to one to help debug texture sampling */
51
#define DEBUG_TEX 0
52
 
53
 
54
/*
55
 * Return fractional part of 'f'.  Used for computing interpolation weights.
56
 * Need to be careful with negative values.
57
 * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
58
 * of improperly weighted linear-filtered textures.
59
 * The tests/texwrap.c demo is a good test.
60
 */
61
static INLINE float
62
frac(float f)
63
{
64
   return f - floorf(f);
65
}
66
 
67
 
68
 
69
/**
70
 * Linear interpolation macro
71
 */
72
static INLINE float
73
lerp(float a, float v0, float v1)
74
{
75
   return v0 + a * (v1 - v0);
76
}
77
 
78
 
79
/**
80
 * Do 2D/bilinear interpolation of float values.
81
 * v00, v10, v01 and v11 are typically four texture samples in a square/box.
82
 * a and b are the horizontal and vertical interpolants.
83
 * It's important that this function is inlined when compiled with
84
 * optimization!  If we find that's not true on some systems, convert
85
 * to a macro.
86
 */
87
static INLINE float
88
lerp_2d(float a, float b,
89
        float v00, float v10, float v01, float v11)
90
{
91
   const float temp0 = lerp(a, v00, v10);
92
   const float temp1 = lerp(a, v01, v11);
93
   return lerp(b, temp0, temp1);
94
}
95
 
96
 
97
/**
98
 * As above, but 3D interpolation of 8 values.
99
 */
100
static INLINE float
101
lerp_3d(float a, float b, float c,
102
        float v000, float v100, float v010, float v110,
103
        float v001, float v101, float v011, float v111)
104
{
105
   const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
106
   const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
107
   return lerp(c, temp0, temp1);
108
}
109
 
110
 
111
 
112
/**
113
 * Compute coord % size for repeat wrap modes.
114
 * Note that if coord is negative, coord % size doesn't give the right
115
 * value.  To avoid that problem we add a large multiple of the size
116
 * (rather than using a conditional).
117
 */
118
static INLINE int
119
repeat(int coord, unsigned size)
120
{
121
   return (coord + size * 1024) % size;
122
}
123
 
124
 
125
/**
126
 * Apply texture coord wrapping mode and return integer texture indexes
127
 * for a vector of four texcoords (S or T or P).
128
 * \param wrapMode  PIPE_TEX_WRAP_x
129
 * \param s  the incoming texcoords
130
 * \param size  the texture image size
131
 * \param icoord  returns the integer texcoords
132
 */
133
static void
134
wrap_nearest_repeat(float s, unsigned size, int *icoord)
135
{
136
   /* s limited to [0,1) */
137
   /* i limited to [0,size-1] */
138
   int i = util_ifloor(s * size);
139
   *icoord = repeat(i, size);
140
}
141
 
142
 
143
static void
144
wrap_nearest_clamp(float s, unsigned size, int *icoord)
145
{
146
   /* s limited to [0,1] */
147
   /* i limited to [0,size-1] */
148
   if (s <= 0.0F)
149
      *icoord = 0;
150
   else if (s >= 1.0F)
151
      *icoord = size - 1;
152
   else
153
      *icoord = util_ifloor(s * size);
154
}
155
 
156
 
157
static void
158
wrap_nearest_clamp_to_edge(float s, unsigned size, int *icoord)
159
{
160
   /* s limited to [min,max] */
161
   /* i limited to [0, size-1] */
162
   const float min = 1.0F / (2.0F * size);
163
   const float max = 1.0F - min;
164
   if (s < min)
165
      *icoord = 0;
166
   else if (s > max)
167
      *icoord = size - 1;
168
   else
169
      *icoord = util_ifloor(s * size);
170
}
171
 
172
 
173
static void
174
wrap_nearest_clamp_to_border(float s, unsigned size, int *icoord)
175
{
176
   /* s limited to [min,max] */
177
   /* i limited to [-1, size] */
178
   const float min = -1.0F / (2.0F * size);
179
   const float max = 1.0F - min;
180
   if (s <= min)
181
      *icoord = -1;
182
   else if (s >= max)
183
      *icoord = size;
184
   else
185
      *icoord = util_ifloor(s * size);
186
}
187
 
188
 
189
static void
190
wrap_nearest_mirror_repeat(float s, unsigned size, int *icoord)
191
{
192
   const float min = 1.0F / (2.0F * size);
193
   const float max = 1.0F - min;
194
   const int flr = util_ifloor(s);
195
   float u = frac(s);
196
   if (flr & 1)
197
      u = 1.0F - u;
198
   if (u < min)
199
      *icoord = 0;
200
   else if (u > max)
201
      *icoord = size - 1;
202
   else
203
      *icoord = util_ifloor(u * size);
204
}
205
 
206
 
207
static void
208
wrap_nearest_mirror_clamp(float s, unsigned size, int *icoord)
209
{
210
   /* s limited to [0,1] */
211
   /* i limited to [0,size-1] */
212
   const float u = fabsf(s);
213
   if (u <= 0.0F)
214
      *icoord = 0;
215
   else if (u >= 1.0F)
216
      *icoord = size - 1;
217
   else
218
      *icoord = util_ifloor(u * size);
219
}
220
 
221
 
222
static void
223
wrap_nearest_mirror_clamp_to_edge(float s, unsigned size, int *icoord)
224
{
225
   /* s limited to [min,max] */
226
   /* i limited to [0, size-1] */
227
   const float min = 1.0F / (2.0F * size);
228
   const float max = 1.0F - min;
229
   const float u = fabsf(s);
230
   if (u < min)
231
      *icoord = 0;
232
   else if (u > max)
233
      *icoord = size - 1;
234
   else
235
      *icoord = util_ifloor(u * size);
236
}
237
 
238
 
239
static void
240
wrap_nearest_mirror_clamp_to_border(float s, unsigned size, int *icoord)
241
{
242
   /* s limited to [min,max] */
243
   /* i limited to [0, size-1] */
244
   const float min = -1.0F / (2.0F * size);
245
   const float max = 1.0F - min;
246
   const float u = fabsf(s);
247
   if (u < min)
248
      *icoord = -1;
249
   else if (u > max)
250
      *icoord = size;
251
   else
252
      *icoord = util_ifloor(u * size);
253
}
254
 
255
 
256
/**
257
 * Used to compute texel locations for linear sampling
258
 * \param wrapMode  PIPE_TEX_WRAP_x
259
 * \param s  the texcoord
260
 * \param size  the texture image size
261
 * \param icoord0  returns first texture index
262
 * \param icoord1  returns second texture index (usually icoord0 + 1)
263
 * \param w  returns blend factor/weight between texture indices
264
 * \param icoord  returns the computed integer texture coord
265
 */
266
static void
267
wrap_linear_repeat(float s, unsigned size,
268
                   int *icoord0, int *icoord1, float *w)
269
{
270
   float u = s * size - 0.5F;
271
   *icoord0 = repeat(util_ifloor(u), size);
272
   *icoord1 = repeat(*icoord0 + 1, size);
273
   *w = frac(u);
274
}
275
 
276
 
277
static void
278
wrap_linear_clamp(float s, unsigned size,
279
                  int *icoord0, int *icoord1, float *w)
280
{
281
   float u = CLAMP(s, 0.0F, 1.0F);
282
   u = u * size - 0.5f;
283
   *icoord0 = util_ifloor(u);
284
   *icoord1 = *icoord0 + 1;
285
   *w = frac(u);
286
}
287
 
288
 
289
static void
290
wrap_linear_clamp_to_edge(float s, unsigned size,
291
                          int *icoord0, int *icoord1, float *w)
292
{
293
   float u = CLAMP(s, 0.0F, 1.0F);
294
   u = u * size - 0.5f;
295
   *icoord0 = util_ifloor(u);
296
   *icoord1 = *icoord0 + 1;
297
   if (*icoord0 < 0)
298
      *icoord0 = 0;
299
   if (*icoord1 >= (int) size)
300
      *icoord1 = size - 1;
301
   *w = frac(u);
302
}
303
 
304
 
305
static void
306
wrap_linear_clamp_to_border(float s, unsigned size,
307
                            int *icoord0, int *icoord1, float *w)
308
{
309
   const float min = -1.0F / (2.0F * size);
310
   const float max = 1.0F - min;
311
   float u = CLAMP(s, min, max);
312
   u = u * size - 0.5f;
313
   *icoord0 = util_ifloor(u);
314
   *icoord1 = *icoord0 + 1;
315
   *w = frac(u);
316
}
317
 
318
 
319
static void
320
wrap_linear_mirror_repeat(float s, unsigned size,
321
                          int *icoord0, int *icoord1, float *w)
322
{
323
   const int flr = util_ifloor(s);
324
   float u = frac(s);
325
   if (flr & 1)
326
      u = 1.0F - u;
327
   u = u * size - 0.5F;
328
   *icoord0 = util_ifloor(u);
329
   *icoord1 = *icoord0 + 1;
330
   if (*icoord0 < 0)
331
      *icoord0 = 0;
332
   if (*icoord1 >= (int) size)
333
      *icoord1 = size - 1;
334
   *w = frac(u);
335
}
336
 
337
 
338
static void
339
wrap_linear_mirror_clamp(float s, unsigned size,
340
                         int *icoord0, int *icoord1, float *w)
341
{
342
   float u = fabsf(s);
343
   if (u >= 1.0F)
344
      u = (float) size;
345
   else
346
      u *= size;
347
   u -= 0.5F;
348
   *icoord0 = util_ifloor(u);
349
   *icoord1 = *icoord0 + 1;
350
   *w = frac(u);
351
}
352
 
353
 
354
static void
355
wrap_linear_mirror_clamp_to_edge(float s, unsigned size,
356
                                 int *icoord0, int *icoord1, float *w)
357
{
358
   float u = fabsf(s);
359
   if (u >= 1.0F)
360
      u = (float) size;
361
   else
362
      u *= size;
363
   u -= 0.5F;
364
   *icoord0 = util_ifloor(u);
365
   *icoord1 = *icoord0 + 1;
366
   if (*icoord0 < 0)
367
      *icoord0 = 0;
368
   if (*icoord1 >= (int) size)
369
      *icoord1 = size - 1;
370
   *w = frac(u);
371
}
372
 
373
 
374
static void
375
wrap_linear_mirror_clamp_to_border(float s, unsigned size,
376
                                   int *icoord0, int *icoord1, float *w)
377
{
378
   const float min = -1.0F / (2.0F * size);
379
   const float max = 1.0F - min;
380
   float u = fabsf(s);
381
   if (u <= min)
382
      u = min * size;
383
   else if (u >= max)
384
      u = max * size;
385
   else
386
      u *= size;
387
   u -= 0.5F;
388
   *icoord0 = util_ifloor(u);
389
   *icoord1 = *icoord0 + 1;
390
   *w = frac(u);
391
}
392
 
393
 
394
/**
395
 * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
396
 */
397
static void
398
wrap_nearest_unorm_clamp(float s, unsigned size, int *icoord)
399
{
400
   int i = util_ifloor(s);
401
   *icoord = CLAMP(i, 0, (int) size-1);
402
}
403
 
404
 
405
/**
406
 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
407
 */
408
static void
409
wrap_nearest_unorm_clamp_to_border(float s, unsigned size, int *icoord)
410
{
411
   *icoord = util_ifloor( CLAMP(s, -0.5F, (float) size + 0.5F) );
412
}
413
 
414
 
415
/**
416
 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
417
 */
418
static void
419
wrap_nearest_unorm_clamp_to_edge(float s, unsigned size, int *icoord)
420
{
421
   *icoord = util_ifloor( CLAMP(s, 0.5F, (float) size - 0.5F) );
422
}
423
 
424
 
425
/**
426
 * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
427
 */
428
static void
429
wrap_linear_unorm_clamp(float s, unsigned size,
430
                        int *icoord0, int *icoord1, float *w)
431
{
432
   /* Not exactly what the spec says, but it matches NVIDIA output */
433
   float u = CLAMP(s - 0.5F, 0.0f, (float) size - 1.0f);
434
   *icoord0 = util_ifloor(u);
435
   *icoord1 = *icoord0 + 1;
436
   *w = frac(u);
437
}
438
 
439
 
440
/**
441
 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
442
 */
443
static void
444
wrap_linear_unorm_clamp_to_border(float s, unsigned size,
445
                                  int *icoord0, int *icoord1, float *w)
446
{
447
   float u = CLAMP(s, -0.5F, (float) size + 0.5F);
448
   u -= 0.5F;
449
   *icoord0 = util_ifloor(u);
450
   *icoord1 = *icoord0 + 1;
451
   if (*icoord1 > (int) size - 1)
452
      *icoord1 = size - 1;
453
   *w = frac(u);
454
}
455
 
456
 
457
/**
458
 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
459
 */
460
static void
461
wrap_linear_unorm_clamp_to_edge(float s, unsigned size,
462
                                int *icoord0, int *icoord1, float *w)
463
{
464
   float u = CLAMP(s, +0.5F, (float) size - 0.5F);
465
   u -= 0.5F;
466
   *icoord0 = util_ifloor(u);
467
   *icoord1 = *icoord0 + 1;
468
   if (*icoord1 > (int) size - 1)
469
      *icoord1 = size - 1;
470
   *w = frac(u);
471
}
472
 
473
 
474
/**
475
 * Do coordinate to array index conversion.  For array textures.
476
 */
477
static INLINE void
478
wrap_array_layer(float coord, unsigned size, int *layer)
479
{
480
   int c = util_ifloor(coord + 0.5F);
481
   *layer = CLAMP(c, 0, (int) size - 1);
482
}
483
 
484
 
485
/**
486
 * Examine the quad's texture coordinates to compute the partial
487
 * derivatives w.r.t X and Y, then compute lambda (level of detail).
488
 */
489
static float
490
compute_lambda_1d(const struct sp_sampler_view *sview,
491
                  const float s[TGSI_QUAD_SIZE],
492
                  const float t[TGSI_QUAD_SIZE],
493
                  const float p[TGSI_QUAD_SIZE])
494
{
495
   const struct pipe_resource *texture = sview->base.texture;
496
   float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
497
   float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
498
   float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
499
 
500
   return util_fast_log2(rho);
501
}
502
 
503
 
504
static float
505
compute_lambda_2d(const struct sp_sampler_view *sview,
506
                  const float s[TGSI_QUAD_SIZE],
507
                  const float t[TGSI_QUAD_SIZE],
508
                  const float p[TGSI_QUAD_SIZE])
509
{
510
   const struct pipe_resource *texture = sview->base.texture;
511
   float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
512
   float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
513
   float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
514
   float dtdy = fabsf(t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]);
515
   float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
516
   float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
517
   float rho  = MAX2(maxx, maxy);
518
 
519
   return util_fast_log2(rho);
520
}
521
 
522
 
523
static float
524
compute_lambda_3d(const struct sp_sampler_view *sview,
525
                  const float s[TGSI_QUAD_SIZE],
526
                  const float t[TGSI_QUAD_SIZE],
527
                  const float p[TGSI_QUAD_SIZE])
528
{
529
   const struct pipe_resource *texture = sview->base.texture;
530
   float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
531
   float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
532
   float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
533
   float dtdy = fabsf(t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]);
534
   float dpdx = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
535
   float dpdy = fabsf(p[QUAD_TOP_LEFT]     - p[QUAD_BOTTOM_LEFT]);
536
   float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
537
   float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
538
   float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, sview->base.u.tex.first_level);
539
   float rho;
540
 
541
   rho = MAX2(maxx, maxy);
542
   rho = MAX2(rho, maxz);
543
 
544
   return util_fast_log2(rho);
545
}
546
 
547
 
548
/**
549
 * Compute lambda for a vertex texture sampler.
550
 * Since there aren't derivatives to use, just return 0.
551
 */
552
static float
553
compute_lambda_vert(const struct sp_sampler_view *sview,
554
                    const float s[TGSI_QUAD_SIZE],
555
                    const float t[TGSI_QUAD_SIZE],
556
                    const float p[TGSI_QUAD_SIZE])
557
{
558
   return 0.0f;
559
}
560
 
561
 
562
 
563
/**
564
 * Get a texel from a texture, using the texture tile cache.
565
 *
566
 * \param addr  the template tex address containing cube, z, face info.
567
 * \param x  the x coord of texel within 2D image
568
 * \param y  the y coord of texel within 2D image
569
 * \param rgba  the quad to put the texel/color into
570
 *
571
 * XXX maybe move this into sp_tex_tile_cache.c and merge with the
572
 * sp_get_cached_tile_tex() function.
573
 */
574
 
575
 
576
 
577
 
578
static INLINE const float *
579
get_texel_2d_no_border(const struct sp_sampler_view *sp_sview,
580
                       union tex_tile_address addr, int x, int y)
581
{
582
   const struct softpipe_tex_cached_tile *tile;
583
   addr.bits.x = x / TEX_TILE_SIZE;
584
   addr.bits.y = y / TEX_TILE_SIZE;
585
   y %= TEX_TILE_SIZE;
586
   x %= TEX_TILE_SIZE;
587
 
588
   tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
589
 
590
   return &tile->data.color[y][x][0];
591
}
592
 
593
 
594
static INLINE const float *
595
get_texel_2d(const struct sp_sampler_view *sp_sview,
596
             const struct sp_sampler *sp_samp,
597
             union tex_tile_address addr, int x, int y)
598
{
599
   const struct pipe_resource *texture = sp_sview->base.texture;
600
   unsigned level = addr.bits.level;
601
 
602
   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
603
       y < 0 || y >= (int) u_minify(texture->height0, level)) {
604
      return sp_samp->base.border_color.f;
605
   }
606
   else {
607
      return get_texel_2d_no_border( sp_sview, addr, x, y );
608
   }
609
}
610
 
611
/*
612
 * seamless cubemap neighbour array.
613
 * this array is used to find the adjacent face in each of 4 directions,
614
 * left, right, up, down. (or -x, +x, -y, +y).
615
 */
616
static const unsigned face_array[PIPE_TEX_FACE_MAX][4] = {
617
   /* pos X first then neg X is Z different, Y the same */
618
   /* PIPE_TEX_FACE_POS_X,*/
619
   { PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z,
620
     PIPE_TEX_FACE_NEG_Y, PIPE_TEX_FACE_POS_Y },
621
   /* PIPE_TEX_FACE_NEG_X */
622
   { PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z,
623
     PIPE_TEX_FACE_NEG_Y, PIPE_TEX_FACE_POS_Y },
624
 
625
   /* pos Y first then neg Y is X different, X the same */
626
   /* PIPE_TEX_FACE_POS_Y */
627
   { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
628
     PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z },
629
 
630
   /* PIPE_TEX_FACE_NEG_Y */
631
   { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
632
     PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z },
633
 
634
   /* pos Z first then neg Y is X different, X the same */
635
   /* PIPE_TEX_FACE_POS_Z */
636
   { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
637
     PIPE_TEX_FACE_NEG_Y, PIPE_TEX_FACE_POS_Y },
638
 
639
   /* PIPE_TEX_FACE_NEG_Z */
640
   { PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_X,
641
     PIPE_TEX_FACE_NEG_Y, PIPE_TEX_FACE_POS_Y }
642
};
643
 
644
static INLINE unsigned
645
get_next_face(unsigned face, int x, int y)
646
{
647
   int idx = 0;
648
 
649
   if (x == 0 && y == 0)
650
      return face;
651
   if (x == -1)
652
      idx = 0;
653
   else if (x == 1)
654
      idx = 1;
655
   else if (y == -1)
656
      idx = 2;
657
   else if (y == 1)
658
      idx = 3;
659
 
660
   return face_array[face][idx];
661
}
662
 
663
static INLINE const float *
664
get_texel_cube_seamless(const struct sp_sampler_view *sp_sview,
665
                        union tex_tile_address addr, int x, int y,
666
                        float *corner)
667
{
668
   const struct pipe_resource *texture = sp_sview->base.texture;
669
   unsigned level = addr.bits.level;
670
   unsigned face = addr.bits.face;
671
   int new_x, new_y;
672
   int max_x, max_y;
673
   int c;
674
 
675
   max_x = (int) u_minify(texture->width0, level);
676
   max_y = (int) u_minify(texture->height0, level);
677
   new_x = x;
678
   new_y = y;
679
 
680
   /* the corner case */
681
   if ((x < 0 || x >= max_x) &&
682
       (y < 0 || y >= max_y)) {
683
      const float *c1, *c2, *c3;
684
      int fx = x < 0 ? 0 : max_x - 1;
685
      int fy = y < 0 ? 0 : max_y - 1;
686
      c1 = get_texel_2d_no_border( sp_sview, addr, fx, fy);
687
      addr.bits.face = get_next_face(face, (x < 0) ? -1 : 1, 0);
688
      c2 = get_texel_2d_no_border( sp_sview, addr, (x < 0) ? max_x - 1 : 0, fy);
689
      addr.bits.face = get_next_face(face, 0, (y < 0) ? -1 : 1);
690
      c3 = get_texel_2d_no_border( sp_sview, addr, fx, (y < 0) ?  max_y - 1 : 0);
691
      for (c = 0; c < TGSI_QUAD_SIZE; c++)
692
         corner[c] = CLAMP((c1[c] + c2[c] + c3[c]), 0.0F, 1.0F) / 3;
693
 
694
      return corner;
695
   }
696
   /* change the face */
697
   if (x < 0) {
698
      new_x = max_x - 1;
699
      face = get_next_face(face, -1, 0);
700
   } else if (x >= max_x) {
701
      new_x = 0;
702
      face = get_next_face(face, 1, 0);
703
   } else if (y < 0) {
704
      new_y = max_y - 1;
705
      face = get_next_face(face, 0, -1);
706
   } else if (y >= max_y) {
707
      new_y = 0;
708
      face = get_next_face(face, 0, 1);
709
   }
710
 
711
   addr.bits.face = face;
712
   return get_texel_2d_no_border( sp_sview, addr, new_x, new_y );
713
}
714
 
715
/* Gather a quad of adjacent texels within a tile:
716
 */
717
static INLINE void
718
get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_view *sp_sview,
719
                                        union tex_tile_address addr,
720
                                        unsigned x, unsigned y,
721
                                        const float *out[4])
722
{
723
    const struct softpipe_tex_cached_tile *tile;
724
 
725
   addr.bits.x = x / TEX_TILE_SIZE;
726
   addr.bits.y = y / TEX_TILE_SIZE;
727
   y %= TEX_TILE_SIZE;
728
   x %= TEX_TILE_SIZE;
729
 
730
   tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
731
 
732
   out[0] = &tile->data.color[y  ][x  ][0];
733
   out[1] = &tile->data.color[y  ][x+1][0];
734
   out[2] = &tile->data.color[y+1][x  ][0];
735
   out[3] = &tile->data.color[y+1][x+1][0];
736
}
737
 
738
 
739
/* Gather a quad of potentially non-adjacent texels:
740
 */
741
static INLINE void
742
get_texel_quad_2d_no_border(const struct sp_sampler_view *sp_sview,
743
                            union tex_tile_address addr,
744
                            int x0, int y0,
745
                            int x1, int y1,
746
                            const float *out[4])
747
{
748
   out[0] = get_texel_2d_no_border( sp_sview, addr, x0, y0 );
749
   out[1] = get_texel_2d_no_border( sp_sview, addr, x1, y0 );
750
   out[2] = get_texel_2d_no_border( sp_sview, addr, x0, y1 );
751
   out[3] = get_texel_2d_no_border( sp_sview, addr, x1, y1 );
752
}
753
 
754
/* Can involve a lot of unnecessary checks for border color:
755
 */
756
static INLINE void
757
get_texel_quad_2d(const struct sp_sampler_view *sp_sview,
758
                  const struct sp_sampler *sp_samp,
759
                  union tex_tile_address addr,
760
                  int x0, int y0,
761
                  int x1, int y1,
762
                  const float *out[4])
763
{
764
   out[0] = get_texel_2d( sp_sview, sp_samp, addr, x0, y0 );
765
   out[1] = get_texel_2d( sp_sview, sp_samp, addr, x1, y0 );
766
   out[3] = get_texel_2d( sp_sview, sp_samp, addr, x1, y1 );
767
   out[2] = get_texel_2d( sp_sview, sp_samp, addr, x0, y1 );
768
}
769
 
770
 
771
 
772
/* 3d variants:
773
 */
774
static INLINE const float *
775
get_texel_3d_no_border(const struct sp_sampler_view *sp_sview,
776
                       union tex_tile_address addr, int x, int y, int z)
777
{
778
   const struct softpipe_tex_cached_tile *tile;
779
 
780
   addr.bits.x = x / TEX_TILE_SIZE;
781
   addr.bits.y = y / TEX_TILE_SIZE;
782
   addr.bits.z = z;
783
   y %= TEX_TILE_SIZE;
784
   x %= TEX_TILE_SIZE;
785
 
786
   tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
787
 
788
   return &tile->data.color[y][x][0];
789
}
790
 
791
 
792
static INLINE const float *
793
get_texel_3d(const struct sp_sampler_view *sp_sview,
794
             const struct sp_sampler *sp_samp,
795
             union tex_tile_address addr, int x, int y, int z)
796
{
797
   const struct pipe_resource *texture = sp_sview->base.texture;
798
   unsigned level = addr.bits.level;
799
 
800
   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
801
       y < 0 || y >= (int) u_minify(texture->height0, level) ||
802
       z < 0 || z >= (int) u_minify(texture->depth0, level)) {
803
      return sp_samp->base.border_color.f;
804
   }
805
   else {
806
      return get_texel_3d_no_border( sp_sview, addr, x, y, z );
807
   }
808
}
809
 
810
 
811
/* Get texel pointer for 1D array texture */
812
static INLINE const float *
813
get_texel_1d_array(const struct sp_sampler_view *sp_sview,
814
                   const struct sp_sampler *sp_samp,
815
                   union tex_tile_address addr, int x, int y)
816
{
817
   const struct pipe_resource *texture = sp_sview->base.texture;
818
   unsigned level = addr.bits.level;
819
 
820
   if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
821
      return sp_samp->base.border_color.f;
822
   }
823
   else {
824
      return get_texel_2d_no_border(sp_sview, addr, x, y);
825
   }
826
}
827
 
828
 
829
/* Get texel pointer for 2D array texture */
830
static INLINE const float *
831
get_texel_2d_array(const struct sp_sampler_view *sp_sview,
832
                   const struct sp_sampler *sp_samp,
833
                   union tex_tile_address addr, int x, int y, int layer)
834
{
835
   const struct pipe_resource *texture = sp_sview->base.texture;
836
   unsigned level = addr.bits.level;
837
 
838
   assert(layer < (int) texture->array_size);
839
   assert(layer >= 0);
840
 
841
   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
842
       y < 0 || y >= (int) u_minify(texture->height0, level)) {
843
      return sp_samp->base.border_color.f;
844
   }
845
   else {
846
      return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
847
   }
848
}
849
 
850
 
851
/* Get texel pointer for cube array texture */
852
static INLINE const float *
853
get_texel_cube_array(const struct sp_sampler_view *sp_sview,
854
                     const struct sp_sampler *sp_samp,
855
                     union tex_tile_address addr, int x, int y, int layer)
856
{
857
   const struct pipe_resource *texture = sp_sview->base.texture;
858
   unsigned level = addr.bits.level;
859
 
860
   assert(layer < (int) texture->array_size);
861
   assert(layer >= 0);
862
 
863
   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
864
       y < 0 || y >= (int) u_minify(texture->height0, level)) {
865
      return sp_samp->base.border_color.f;
866
   }
867
   else {
868
      return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
869
   }
870
}
871
/**
872
 * Given the logbase2 of a mipmap's base level size and a mipmap level,
873
 * return the size (in texels) of that mipmap level.
874
 * For example, if level[0].width = 256 then base_pot will be 8.
875
 * If level = 2, then we'll return 64 (the width at level=2).
876
 * Return 1 if level > base_pot.
877
 */
878
static INLINE unsigned
879
pot_level_size(unsigned base_pot, unsigned level)
880
{
881
   return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
882
}
883
 
884
 
885
static void
886
print_sample(const char *function, const float *rgba)
887
{
888
   debug_printf("%s %g %g %g %g\n",
889
                function,
890
                rgba[0], rgba[TGSI_NUM_CHANNELS], rgba[2*TGSI_NUM_CHANNELS], rgba[3*TGSI_NUM_CHANNELS]);
891
}
892
 
893
 
894
static void
895
print_sample_4(const char *function, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
896
{
897
   debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
898
                function,
899
                rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
900
                rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
901
                rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
902
                rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
903
}
904
 
905
 
906
/* Some image-filter fastpaths:
907
 */
908
static INLINE void
909
img_filter_2d_linear_repeat_POT(struct sp_sampler_view *sp_sview,
910
                                struct sp_sampler *sp_samp,
911
                                float s,
912
                                float t,
913
                                float p,
914
                                unsigned level,
915
                                unsigned face_id,
916
                                float *rgba)
917
{
918
   unsigned xpot = pot_level_size(sp_sview->xpot, level);
919
   unsigned ypot = pot_level_size(sp_sview->ypot, level);
920
   unsigned xmax = (xpot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, xpot) - 1; */
921
   unsigned ymax = (ypot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, ypot) - 1; */
922
   union tex_tile_address addr;
923
   int c;
924
 
925
   float u = s * xpot - 0.5F;
926
   float v = t * ypot - 0.5F;
927
 
928
   int uflr = util_ifloor(u);
929
   int vflr = util_ifloor(v);
930
 
931
   float xw = u - (float)uflr;
932
   float yw = v - (float)vflr;
933
 
934
   int x0 = uflr & (xpot - 1);
935
   int y0 = vflr & (ypot - 1);
936
 
937
   const float *tx[4];
938
 
939
   addr.value = 0;
940
   addr.bits.level = level;
941
 
942
   /* Can we fetch all four at once:
943
    */
944
   if (x0 < xmax && y0 < ymax) {
945
      get_texel_quad_2d_no_border_single_tile(sp_sview, addr, x0, y0, tx);
946
   }
947
   else {
948
      unsigned x1 = (x0 + 1) & (xpot - 1);
949
      unsigned y1 = (y0 + 1) & (ypot - 1);
950
      get_texel_quad_2d_no_border(sp_sview, addr, x0, y0, x1, y1, tx);
951
   }
952
 
953
   /* interpolate R, G, B, A */
954
   for (c = 0; c < TGSI_QUAD_SIZE; c++) {
955
      rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
956
                                       tx[0][c], tx[1][c],
957
                                       tx[2][c], tx[3][c]);
958
   }
959
 
960
   if (DEBUG_TEX) {
961
      print_sample(__FUNCTION__, rgba);
962
   }
963
}
964
 
965
 
966
static INLINE void
967
img_filter_2d_nearest_repeat_POT(struct sp_sampler_view *sp_sview,
968
                                 struct sp_sampler *sp_samp,
969
                                 float s,
970
                                 float t,
971
                                 float p,
972
                                 unsigned level,
973
                                 unsigned face_id,
974
                                 float rgba[TGSI_QUAD_SIZE])
975
{
976
   unsigned xpot = pot_level_size(sp_sview->xpot, level);
977
   unsigned ypot = pot_level_size(sp_sview->ypot, level);
978
   const float *out;
979
   union tex_tile_address addr;
980
   int c;
981
 
982
   float u = s * xpot;
983
   float v = t * ypot;
984
 
985
   int uflr = util_ifloor(u);
986
   int vflr = util_ifloor(v);
987
 
988
   int x0 = uflr & (xpot - 1);
989
   int y0 = vflr & (ypot - 1);
990
 
991
   addr.value = 0;
992
   addr.bits.level = level;
993
 
994
   out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
995
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
996
      rgba[TGSI_NUM_CHANNELS*c] = out[c];
997
 
998
   if (DEBUG_TEX) {
999
      print_sample(__FUNCTION__, rgba);
1000
   }
1001
}
1002
 
1003
 
1004
static INLINE void
1005
img_filter_2d_nearest_clamp_POT(struct sp_sampler_view *sp_sview,
1006
                                struct sp_sampler *sp_samp,
1007
                                float s,
1008
                                float t,
1009
                                float p,
1010
                                unsigned level,
1011
                                unsigned face_id,
1012
                                float rgba[TGSI_QUAD_SIZE])
1013
{
1014
   unsigned xpot = pot_level_size(sp_sview->xpot, level);
1015
   unsigned ypot = pot_level_size(sp_sview->ypot, level);
1016
   union tex_tile_address addr;
1017
   int c;
1018
 
1019
   float u = s * xpot;
1020
   float v = t * ypot;
1021
 
1022
   int x0, y0;
1023
   const float *out;
1024
 
1025
   addr.value = 0;
1026
   addr.bits.level = level;
1027
 
1028
   x0 = util_ifloor(u);
1029
   if (x0 < 0)
1030
      x0 = 0;
1031
   else if (x0 > xpot - 1)
1032
      x0 = xpot - 1;
1033
 
1034
   y0 = util_ifloor(v);
1035
   if (y0 < 0)
1036
      y0 = 0;
1037
   else if (y0 > ypot - 1)
1038
      y0 = ypot - 1;
1039
 
1040
   out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1041
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1042
      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1043
 
1044
   if (DEBUG_TEX) {
1045
      print_sample(__FUNCTION__, rgba);
1046
   }
1047
}
1048
 
1049
 
1050
static void
1051
img_filter_1d_nearest(struct sp_sampler_view *sp_sview,
1052
                      struct sp_sampler *sp_samp,
1053
                      float s,
1054
                      float t,
1055
                      float p,
1056
                      unsigned level,
1057
                      unsigned face_id,
1058
                      float rgba[TGSI_QUAD_SIZE])
1059
{
1060
   const struct pipe_resource *texture = sp_sview->base.texture;
1061
   int width;
1062
   int x;
1063
   union tex_tile_address addr;
1064
   const float *out;
1065
   int c;
1066
 
1067
   width = u_minify(texture->width0, level);
1068
 
1069
   assert(width > 0);
1070
 
1071
   addr.value = 0;
1072
   addr.bits.level = level;
1073
 
1074
   sp_samp->nearest_texcoord_s(s, width, &x);
1075
 
1076
   out = get_texel_2d(sp_sview, sp_samp, addr, x, 0);
1077
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1078
      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1079
 
1080
   if (DEBUG_TEX) {
1081
      print_sample(__FUNCTION__, rgba);
1082
   }
1083
}
1084
 
1085
 
1086
static void
1087
img_filter_1d_array_nearest(struct sp_sampler_view *sp_sview,
1088
                            struct sp_sampler *sp_samp,
1089
                            float s,
1090
                            float t,
1091
                            float p,
1092
                            unsigned level,
1093
                            unsigned face_id,
1094
                            float *rgba)
1095
{
1096
   const struct pipe_resource *texture = sp_sview->base.texture;
1097
   int width;
1098
   int x, layer;
1099
   union tex_tile_address addr;
1100
   const float *out;
1101
   int c;
1102
 
1103
   width = u_minify(texture->width0, level);
1104
 
1105
   assert(width > 0);
1106
 
1107
   addr.value = 0;
1108
   addr.bits.level = level;
1109
 
1110
   sp_samp->nearest_texcoord_s(s, width, &x);
1111
   wrap_array_layer(t, texture->array_size, &layer);
1112
 
1113
   out = get_texel_1d_array(sp_sview, sp_samp, addr, x, layer);
1114
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1115
      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1116
 
1117
   if (DEBUG_TEX) {
1118
      print_sample(__FUNCTION__, rgba);
1119
   }
1120
}
1121
 
1122
 
1123
static void
1124
img_filter_2d_nearest(struct sp_sampler_view *sp_sview,
1125
                      struct sp_sampler *sp_samp,
1126
                      float s,
1127
                      float t,
1128
                      float p,
1129
                      unsigned level,
1130
                      unsigned face_id,
1131
                      float *rgba)
1132
{
1133
   const struct pipe_resource *texture = sp_sview->base.texture;
1134
   int width, height;
1135
   int x, y;
1136
   union tex_tile_address addr;
1137
   const float *out;
1138
   int c;
1139
 
1140
   width = u_minify(texture->width0, level);
1141
   height = u_minify(texture->height0, level);
1142
 
1143
   assert(width > 0);
1144
   assert(height > 0);
1145
 
1146
   addr.value = 0;
1147
   addr.bits.level = level;
1148
 
1149
   sp_samp->nearest_texcoord_s(s, width, &x);
1150
   sp_samp->nearest_texcoord_t(t, height, &y);
1151
 
1152
   out = get_texel_2d(sp_sview, sp_samp, addr, x, y);
1153
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1154
      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1155
 
1156
   if (DEBUG_TEX) {
1157
      print_sample(__FUNCTION__, rgba);
1158
   }
1159
}
1160
 
1161
 
1162
static void
1163
img_filter_2d_array_nearest(struct sp_sampler_view *sp_sview,
1164
                            struct sp_sampler *sp_samp,
1165
                            float s,
1166
                            float t,
1167
                            float p,
1168
                            unsigned level,
1169
                            unsigned face_id,
1170
                            float *rgba)
1171
{
1172
   const struct pipe_resource *texture = sp_sview->base.texture;
1173
   int width, height;
1174
   int x, y, layer;
1175
   union tex_tile_address addr;
1176
   const float *out;
1177
   int c;
1178
 
1179
   width = u_minify(texture->width0, level);
1180
   height = u_minify(texture->height0, level);
1181
 
1182
   assert(width > 0);
1183
   assert(height > 0);
1184
 
1185
   addr.value = 0;
1186
   addr.bits.level = level;
1187
 
1188
   sp_samp->nearest_texcoord_s(s, width, &x);
1189
   sp_samp->nearest_texcoord_t(t, height, &y);
1190
   wrap_array_layer(p, texture->array_size, &layer);
1191
 
1192
   out = get_texel_2d_array(sp_sview, sp_samp, addr, x, y, layer);
1193
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1194
      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1195
 
1196
   if (DEBUG_TEX) {
1197
      print_sample(__FUNCTION__, rgba);
1198
   }
1199
}
1200
 
1201
 
1202
static INLINE union tex_tile_address
1203
face(union tex_tile_address addr, unsigned face )
1204
{
1205
   addr.bits.face = face;
1206
   return addr;
1207
}
1208
 
1209
 
1210
static void
1211
img_filter_cube_nearest(struct sp_sampler_view *sp_sview,
1212
                        struct sp_sampler *sp_samp,
1213
                        float s,
1214
                        float t,
1215
                        float p,
1216
                        unsigned level,
1217
                        unsigned face_id,
1218
                        float *rgba)
1219
{
1220
   const struct pipe_resource *texture = sp_sview->base.texture;
1221
   int width, height;
1222
   int x, y;
1223
   union tex_tile_address addr;
1224
   const float *out;
1225
   int c;
1226
 
1227
   width = u_minify(texture->width0, level);
1228
   height = u_minify(texture->height0, level);
1229
 
1230
   assert(width > 0);
1231
   assert(height > 0);
1232
 
1233
   addr.value = 0;
1234
   addr.bits.level = level;
1235
 
1236
   /*
1237
    * If NEAREST filtering is done within a miplevel, always apply wrap
1238
    * mode CLAMP_TO_EDGE.
1239
    */
1240
   if (sp_samp->base.seamless_cube_map) {
1241
      wrap_nearest_clamp_to_edge(s, width, &x);
1242
      wrap_nearest_clamp_to_edge(t, height, &y);
1243
   } else {
1244
      sp_samp->nearest_texcoord_s(s, width, &x);
1245
      sp_samp->nearest_texcoord_t(t, height, &y);
1246
   }
1247
 
1248
   out = get_texel_2d(sp_sview, sp_samp, face(addr, face_id), x, y);
1249
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1250
      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1251
 
1252
   if (DEBUG_TEX) {
1253
      print_sample(__FUNCTION__, rgba);
1254
   }
1255
}
1256
 
1257
static void
1258
img_filter_cube_array_nearest(struct sp_sampler_view *sp_sview,
1259
                              struct sp_sampler *sp_samp,
1260
                              float s,
1261
                              float t,
1262
                              float p,
1263
                              unsigned level,
1264
                              unsigned face_id,
1265
                              float *rgba)
1266
{
1267
   const struct pipe_resource *texture = sp_sview->base.texture;
1268
   int width, height;
1269
   int x, y, layer;
1270
   union tex_tile_address addr;
1271
   const float *out;
1272
   int c;
1273
 
1274
   width = u_minify(texture->width0, level);
1275
   height = u_minify(texture->height0, level);
1276
 
1277
   assert(width > 0);
1278
   assert(height > 0);
1279
 
1280
   addr.value = 0;
1281
   addr.bits.level = level;
1282
 
1283
   sp_samp->nearest_texcoord_s(s, width, &x);
1284
   sp_samp->nearest_texcoord_t(t, height, &y);
1285
   wrap_array_layer(p, texture->array_size, &layer);
1286
 
1287
   out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layer * 6 + face_id);
1288
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1289
      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1290
 
1291
   if (DEBUG_TEX) {
1292
      print_sample(__FUNCTION__, rgba);
1293
   }
1294
}
1295
 
1296
static void
1297
img_filter_3d_nearest(struct sp_sampler_view *sp_sview,
1298
                      struct sp_sampler *sp_samp,
1299
                      float s,
1300
                      float t,
1301
                      float p,
1302
                      unsigned level,
1303
                      unsigned face_id,
1304
                      float *rgba)
1305
{
1306
   const struct pipe_resource *texture = sp_sview->base.texture;
1307
   int width, height, depth;
1308
   int x, y, z;
1309
   union tex_tile_address addr;
1310
   const float *out;
1311
   int c;
1312
 
1313
   width = u_minify(texture->width0, level);
1314
   height = u_minify(texture->height0, level);
1315
   depth = u_minify(texture->depth0, level);
1316
 
1317
   assert(width > 0);
1318
   assert(height > 0);
1319
   assert(depth > 0);
1320
 
1321
   sp_samp->nearest_texcoord_s(s, width,  &x);
1322
   sp_samp->nearest_texcoord_t(t, height, &y);
1323
   sp_samp->nearest_texcoord_p(p, depth,  &z);
1324
 
1325
   addr.value = 0;
1326
   addr.bits.level = level;
1327
 
1328
   out = get_texel_3d(sp_sview, sp_samp, addr, x, y, z);
1329
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1330
      rgba[TGSI_NUM_CHANNELS*c] = out[c];
1331
}
1332
 
1333
 
1334
static void
1335
img_filter_1d_linear(struct sp_sampler_view *sp_sview,
1336
                     struct sp_sampler *sp_samp,
1337
                     float s,
1338
                     float t,
1339
                     float p,
1340
                     unsigned level,
1341
                     unsigned face_id,
1342
                     float *rgba)
1343
{
1344
   const struct pipe_resource *texture = sp_sview->base.texture;
1345
   int width;
1346
   int x0, x1;
1347
   float xw; /* weights */
1348
   union tex_tile_address addr;
1349
   const float *tx0, *tx1;
1350
   int c;
1351
 
1352
   width = u_minify(texture->width0, level);
1353
 
1354
   assert(width > 0);
1355
 
1356
   addr.value = 0;
1357
   addr.bits.level = level;
1358
 
1359
   sp_samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
1360
 
1361
   tx0 = get_texel_2d(sp_sview, sp_samp, addr, x0, 0);
1362
   tx1 = get_texel_2d(sp_sview, sp_samp, addr, x1, 0);
1363
 
1364
   /* interpolate R, G, B, A */
1365
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1366
      rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1367
}
1368
 
1369
 
1370
static void
1371
img_filter_1d_array_linear(struct sp_sampler_view *sp_sview,
1372
                           struct sp_sampler *sp_samp,
1373
                           float s,
1374
                           float t,
1375
                           float p,
1376
                           unsigned level,
1377
                           unsigned face_id,
1378
                           float *rgba)
1379
{
1380
   const struct pipe_resource *texture = sp_sview->base.texture;
1381
   int width;
1382
   int x0, x1, layer;
1383
   float xw; /* weights */
1384
   union tex_tile_address addr;
1385
   const float *tx0, *tx1;
1386
   int c;
1387
 
1388
   width = u_minify(texture->width0, level);
1389
 
1390
   assert(width > 0);
1391
 
1392
   addr.value = 0;
1393
   addr.bits.level = level;
1394
 
1395
   sp_samp->linear_texcoord_s(s, width, &x0, &x1, &xw);
1396
   wrap_array_layer(t, texture->array_size, &layer);
1397
 
1398
   tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0, layer);
1399
   tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1, layer);
1400
 
1401
   /* interpolate R, G, B, A */
1402
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1403
      rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1404
}
1405
 
1406
 
1407
static void
1408
img_filter_2d_linear(struct sp_sampler_view *sp_sview,
1409
                     struct sp_sampler *sp_samp,
1410
                     float s,
1411
                     float t,
1412
                     float p,
1413
                     unsigned level,
1414
                     unsigned face_id,
1415
                     float *rgba)
1416
{
1417
   const struct pipe_resource *texture = sp_sview->base.texture;
1418
   int width, height;
1419
   int x0, y0, x1, y1;
1420
   float xw, yw; /* weights */
1421
   union tex_tile_address addr;
1422
   const float *tx0, *tx1, *tx2, *tx3;
1423
   int c;
1424
 
1425
   width = u_minify(texture->width0, level);
1426
   height = u_minify(texture->height0, level);
1427
 
1428
   assert(width > 0);
1429
   assert(height > 0);
1430
 
1431
   addr.value = 0;
1432
   addr.bits.level = level;
1433
 
1434
   sp_samp->linear_texcoord_s(s, width,  &x0, &x1, &xw);
1435
   sp_samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
1436
 
1437
   tx0 = get_texel_2d(sp_sview, sp_samp, addr, x0, y0);
1438
   tx1 = get_texel_2d(sp_sview, sp_samp, addr, x1, y0);
1439
   tx2 = get_texel_2d(sp_sview, sp_samp, addr, x0, y1);
1440
   tx3 = get_texel_2d(sp_sview, sp_samp, addr, x1, y1);
1441
 
1442
   /* interpolate R, G, B, A */
1443
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1444
      rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1445
                                          tx0[c], tx1[c],
1446
                                          tx2[c], tx3[c]);
1447
}
1448
 
1449
 
1450
static void
1451
img_filter_2d_array_linear(struct sp_sampler_view *sp_sview,
1452
                           struct sp_sampler *sp_samp,
1453
                           float s,
1454
                           float t,
1455
                           float p,
1456
                           unsigned level,
1457
                           unsigned face_id,
1458
                           float *rgba)
1459
{
1460
   const struct pipe_resource *texture = sp_sview->base.texture;
1461
   int width, height;
1462
   int x0, y0, x1, y1, layer;
1463
   float xw, yw; /* weights */
1464
   union tex_tile_address addr;
1465
   const float *tx0, *tx1, *tx2, *tx3;
1466
   int c;
1467
 
1468
   width = u_minify(texture->width0, level);
1469
   height = u_minify(texture->height0, level);
1470
 
1471
   assert(width > 0);
1472
   assert(height > 0);
1473
 
1474
   addr.value = 0;
1475
   addr.bits.level = level;
1476
 
1477
   sp_samp->linear_texcoord_s(s, width,  &x0, &x1, &xw);
1478
   sp_samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
1479
   wrap_array_layer(p, texture->array_size, &layer);
1480
 
1481
   tx0 = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y0, layer);
1482
   tx1 = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y0, layer);
1483
   tx2 = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y1, layer);
1484
   tx3 = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y1, layer);
1485
 
1486
   /* interpolate R, G, B, A */
1487
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1488
      rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1489
                                          tx0[c], tx1[c],
1490
                                          tx2[c], tx3[c]);
1491
}
1492
 
1493
 
1494
static void
1495
img_filter_cube_linear(struct sp_sampler_view *sp_sview,
1496
                       struct sp_sampler *sp_samp,
1497
                       float s,
1498
                       float t,
1499
                       float p,
1500
                       unsigned level,
1501
                       unsigned face_id,
1502
                       float *rgba)
1503
{
1504
   const struct pipe_resource *texture = sp_sview->base.texture;
1505
   int width, height;
1506
   int x0, y0, x1, y1;
1507
   float xw, yw; /* weights */
1508
   union tex_tile_address addr, addrj;
1509
   const float *tx0, *tx1, *tx2, *tx3;
1510
   float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1511
         corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1512
   int c;
1513
 
1514
   width = u_minify(texture->width0, level);
1515
   height = u_minify(texture->height0, level);
1516
 
1517
   assert(width > 0);
1518
   assert(height > 0);
1519
 
1520
   addr.value = 0;
1521
   addr.bits.level = level;
1522
 
1523
   /*
1524
    * For seamless if LINEAR filtering is done within a miplevel,
1525
    * always apply wrap mode CLAMP_TO_BORDER.
1526
    */
1527
   if (sp_samp->base.seamless_cube_map) {
1528
      wrap_linear_clamp_to_border(s, width, &x0, &x1, &xw);
1529
      wrap_linear_clamp_to_border(t, height, &y0, &y1, &yw);
1530
   } else {
1531
      sp_samp->linear_texcoord_s(s, width,  &x0, &x1, &xw);
1532
      sp_samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
1533
   }
1534
 
1535
   addrj = face(addr, face_id);
1536
 
1537
   if (sp_samp->base.seamless_cube_map) {
1538
      tx0 = get_texel_cube_seamless(sp_sview, addrj, x0, y0, corner0);
1539
      tx1 = get_texel_cube_seamless(sp_sview, addrj, x1, y0, corner1);
1540
      tx2 = get_texel_cube_seamless(sp_sview, addrj, x0, y1, corner2);
1541
      tx3 = get_texel_cube_seamless(sp_sview, addrj, x1, y1, corner3);
1542
   } else {
1543
      tx0 = get_texel_2d(sp_sview, sp_samp, addrj, x0, y0);
1544
      tx1 = get_texel_2d(sp_sview, sp_samp, addrj, x1, y0);
1545
      tx2 = get_texel_2d(sp_sview, sp_samp, addrj, x0, y1);
1546
      tx3 = get_texel_2d(sp_sview, sp_samp, addrj, x1, y1);
1547
   }
1548
   /* interpolate R, G, B, A */
1549
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1550
      rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1551
                                          tx0[c], tx1[c],
1552
                                          tx2[c], tx3[c]);
1553
}
1554
 
1555
 
1556
static void
1557
img_filter_cube_array_linear(struct sp_sampler_view *sp_sview,
1558
                             struct sp_sampler *sp_samp,
1559
                             float s,
1560
                             float t,
1561
                             float p,
1562
                             unsigned level,
1563
                             unsigned face_id,
1564
                             float *rgba)
1565
{
1566
   const struct pipe_resource *texture = sp_sview->base.texture;
1567
   int width, height;
1568
   int x0, y0, x1, y1, layer;
1569
   float xw, yw; /* weights */
1570
   union tex_tile_address addr;
1571
   const float *tx0, *tx1, *tx2, *tx3;
1572
   int c;
1573
 
1574
   width = u_minify(texture->width0, level);
1575
   height = u_minify(texture->height0, level);
1576
 
1577
   assert(width > 0);
1578
   assert(height > 0);
1579
 
1580
   addr.value = 0;
1581
   addr.bits.level = level;
1582
 
1583
   sp_samp->linear_texcoord_s(s, width,  &x0, &x1, &xw);
1584
   sp_samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
1585
   wrap_array_layer(p, texture->array_size, &layer);
1586
 
1587
   tx0 = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer * 6 + face_id);
1588
   tx1 = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer * 6 + face_id);
1589
   tx2 = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer * 6 + face_id);
1590
   tx3 = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer * 6 + face_id);
1591
 
1592
   /* interpolate R, G, B, A */
1593
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1594
      rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1595
                                          tx0[c], tx1[c],
1596
                                          tx2[c], tx3[c]);
1597
}
1598
 
1599
static void
1600
img_filter_3d_linear(struct sp_sampler_view *sp_sview,
1601
                     struct sp_sampler *sp_samp,
1602
                     float s,
1603
                     float t,
1604
                     float p,
1605
                     unsigned level,
1606
                     unsigned face_id,
1607
                     float *rgba)
1608
{
1609
   const struct pipe_resource *texture = sp_sview->base.texture;
1610
   int width, height, depth;
1611
   int x0, x1, y0, y1, z0, z1;
1612
   float xw, yw, zw; /* interpolation weights */
1613
   union tex_tile_address addr;
1614
   const float *tx00, *tx01, *tx02, *tx03, *tx10, *tx11, *tx12, *tx13;
1615
   int c;
1616
 
1617
   width = u_minify(texture->width0, level);
1618
   height = u_minify(texture->height0, level);
1619
   depth = u_minify(texture->depth0, level);
1620
 
1621
   addr.value = 0;
1622
   addr.bits.level = level;
1623
 
1624
   assert(width > 0);
1625
   assert(height > 0);
1626
   assert(depth > 0);
1627
 
1628
   sp_samp->linear_texcoord_s(s, width,  &x0, &x1, &xw);
1629
   sp_samp->linear_texcoord_t(t, height, &y0, &y1, &yw);
1630
   sp_samp->linear_texcoord_p(p, depth,  &z0, &z1, &zw);
1631
 
1632
 
1633
   tx00 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z0);
1634
   tx01 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z0);
1635
   tx02 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z0);
1636
   tx03 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z0);
1637
 
1638
   tx10 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z1);
1639
   tx11 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z1);
1640
   tx12 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z1);
1641
   tx13 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z1);
1642
 
1643
      /* interpolate R, G, B, A */
1644
   for (c = 0; c < TGSI_QUAD_SIZE; c++)
1645
      rgba[TGSI_NUM_CHANNELS*c] =  lerp_3d(xw, yw, zw,
1646
                                           tx00[c], tx01[c],
1647
                                           tx02[c], tx03[c],
1648
                                           tx10[c], tx11[c],
1649
                                           tx12[c], tx13[c]);
1650
}
1651
 
1652
 
1653
/* Calculate level of detail for every fragment,
1654
 * with lambda already computed.
1655
 * Note that lambda has already been biased by global LOD bias.
1656
 * \param biased_lambda per-quad lambda.
1657
 * \param lod_in per-fragment lod_bias or explicit_lod.
1658
 * \param lod returns the per-fragment lod.
1659
 */
1660
static INLINE void
1661
compute_lod(const struct pipe_sampler_state *sampler,
1662
            enum tgsi_sampler_control control,
1663
            const float biased_lambda,
1664
            const float lod_in[TGSI_QUAD_SIZE],
1665
            float lod[TGSI_QUAD_SIZE])
1666
{
1667
   float min_lod = sampler->min_lod;
1668
   float max_lod = sampler->max_lod;
1669
   uint i;
1670
 
1671
   switch (control) {
1672
   case tgsi_sampler_lod_none:
1673
   case tgsi_sampler_lod_zero:
1674
   /* XXX FIXME */
1675
   case tgsi_sampler_derivs_explicit:
1676
      lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(biased_lambda, min_lod, max_lod);
1677
      break;
1678
   case tgsi_sampler_lod_bias:
1679
      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1680
         lod[i] = biased_lambda + lod_in[i];
1681
         lod[i] = CLAMP(lod[i], min_lod, max_lod);
1682
      }
1683
      break;
1684
   case tgsi_sampler_lod_explicit:
1685
      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1686
         lod[i] = CLAMP(lod_in[i], min_lod, max_lod);
1687
      }
1688
      break;
1689
   default:
1690
      assert(0);
1691
      lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1692
   }
1693
}
1694
 
1695
 
1696
/* Calculate level of detail for every fragment.
1697
 * \param lod_in per-fragment lod_bias or explicit_lod.
1698
 * \param lod results per-fragment lod.
1699
 */
1700
static INLINE void
1701
compute_lambda_lod(struct sp_sampler_view *sp_sview,
1702
                   struct sp_sampler *sp_samp,
1703
                   const float s[TGSI_QUAD_SIZE],
1704
                   const float t[TGSI_QUAD_SIZE],
1705
                   const float p[TGSI_QUAD_SIZE],
1706
                   const float lod_in[TGSI_QUAD_SIZE],
1707
                   enum tgsi_sampler_control control,
1708
                   float lod[TGSI_QUAD_SIZE])
1709
{
1710
   const struct pipe_sampler_state *sampler = &sp_samp->base;
1711
   float lod_bias = sampler->lod_bias;
1712
   float min_lod = sampler->min_lod;
1713
   float max_lod = sampler->max_lod;
1714
   float lambda;
1715
   uint i;
1716
 
1717
   switch (control) {
1718
   case tgsi_sampler_lod_none:
1719
      /* XXX FIXME */
1720
   case tgsi_sampler_derivs_explicit:
1721
      lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1722
      lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(lambda, min_lod, max_lod);
1723
      break;
1724
   case tgsi_sampler_lod_bias:
1725
      lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1726
      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1727
         lod[i] = lambda + lod_in[i];
1728
         lod[i] = CLAMP(lod[i], min_lod, max_lod);
1729
      }
1730
      break;
1731
   case tgsi_sampler_lod_explicit:
1732
      for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1733
         lod[i] = CLAMP(lod_in[i], min_lod, max_lod);
1734
      }
1735
      break;
1736
   case tgsi_sampler_lod_zero:
1737
      /* this is all static state in the sampler really need clamp here? */
1738
      lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(lod_bias, min_lod, max_lod);
1739
      break;
1740
   default:
1741
      assert(0);
1742
      lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1743
   }
1744
}
1745
 
1746
 
1747
static void
1748
mip_filter_linear(struct sp_sampler_view *sp_sview,
1749
                  struct sp_sampler *sp_samp,
1750
                  img_filter_func min_filter,
1751
                  img_filter_func mag_filter,
1752
                  const float s[TGSI_QUAD_SIZE],
1753
                  const float t[TGSI_QUAD_SIZE],
1754
                  const float p[TGSI_QUAD_SIZE],
1755
                  const float c0[TGSI_QUAD_SIZE],
1756
                  const float lod_in[TGSI_QUAD_SIZE],
1757
                  enum tgsi_sampler_control control,
1758
                  float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1759
{
1760
   const struct pipe_resource *texture = sp_sview->base.texture;
1761
   int j;
1762
   float lod[TGSI_QUAD_SIZE];
1763
 
1764
   compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, control, lod);
1765
 
1766
   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
1767
      int level0 = sp_sview->base.u.tex.first_level + (int)lod[j];
1768
 
1769
      if (lod[j] < 0.0)
1770
         mag_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1771
                    sp_sview->base.u.tex.first_level,
1772
                    sp_sview->faces[j], &rgba[0][j]);
1773
 
1774
      else if (level0 >= texture->last_level)
1775
         min_filter(sp_sview, sp_samp, s[j], t[j], p[j], texture->last_level,
1776
                    sp_sview->faces[j], &rgba[0][j]);
1777
 
1778
      else {
1779
         float levelBlend = frac(lod[j]);
1780
         float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1781
         int c;
1782
 
1783
         min_filter(sp_sview, sp_samp, s[j], t[j], p[j], level0,
1784
                    sp_sview->faces[j], &rgbax[0][0]);
1785
         min_filter(sp_sview, sp_samp, s[j], t[j], p[j], level0+1,
1786
                    sp_sview->faces[j], &rgbax[0][1]);
1787
 
1788
         for (c = 0; c < 4; c++) {
1789
            rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
1790
         }
1791
      }
1792
   }
1793
 
1794
   if (DEBUG_TEX) {
1795
      print_sample_4(__FUNCTION__, rgba);
1796
   }
1797
}
1798
 
1799
 
1800
/**
1801
 * Compute nearest mipmap level from texcoords.
1802
 * Then sample the texture level for four elements of a quad.
1803
 * \param c0  the LOD bias factors, or absolute LODs (depending on control)
1804
 */
1805
static void
1806
mip_filter_nearest(struct sp_sampler_view *sp_sview,
1807
                   struct sp_sampler *sp_samp,
1808
                   img_filter_func min_filter,
1809
                   img_filter_func mag_filter,
1810
                   const float s[TGSI_QUAD_SIZE],
1811
                   const float t[TGSI_QUAD_SIZE],
1812
                   const float p[TGSI_QUAD_SIZE],
1813
                   const float c0[TGSI_QUAD_SIZE],
1814
                   const float lod_in[TGSI_QUAD_SIZE],
1815
                   enum tgsi_sampler_control control,
1816
                   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1817
{
1818
   const struct pipe_resource *texture = sp_sview->base.texture;
1819
   float lod[TGSI_QUAD_SIZE];
1820
   int j;
1821
 
1822
   compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, control, lod);
1823
 
1824
   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
1825
      if (lod[j] < 0.0)
1826
         mag_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1827
                    sp_sview->base.u.tex.first_level,
1828
                    sp_sview->faces[j], &rgba[0][j]);
1829
      else {
1830
         float level = sp_sview->base.u.tex.first_level + (int)(lod[j] + 0.5F) ;
1831
         level = MIN2(level, (int)texture->last_level);
1832
         min_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1833
                    level, sp_sview->faces[j], &rgba[0][j]);
1834
      }
1835
   }
1836
 
1837
   if (DEBUG_TEX) {
1838
      print_sample_4(__FUNCTION__, rgba);
1839
   }
1840
}
1841
 
1842
 
1843
static void
1844
mip_filter_none(struct sp_sampler_view *sp_sview,
1845
                struct sp_sampler *sp_samp,
1846
                img_filter_func min_filter,
1847
                img_filter_func mag_filter,
1848
                const float s[TGSI_QUAD_SIZE],
1849
                const float t[TGSI_QUAD_SIZE],
1850
                const float p[TGSI_QUAD_SIZE],
1851
                const float c0[TGSI_QUAD_SIZE],
1852
                const float lod_in[TGSI_QUAD_SIZE],
1853
                enum tgsi_sampler_control control,
1854
                float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1855
{
1856
   float lod[TGSI_QUAD_SIZE];
1857
   int j;
1858
 
1859
   compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, control, lod);
1860
 
1861
   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
1862
      if (lod[j] < 0.0) {
1863
         mag_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1864
                    sp_sview->base.u.tex.first_level,
1865
                    sp_sview->faces[j], &rgba[0][j]);
1866
      }
1867
      else {
1868
         min_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1869
                    sp_sview->base.u.tex.first_level,
1870
                    sp_sview->faces[j], &rgba[0][j]);
1871
      }
1872
   }
1873
}
1874
 
1875
 
1876
static void
1877
mip_filter_none_no_filter_select(struct sp_sampler_view *sp_sview,
1878
                                 struct sp_sampler *sp_samp,
1879
                                 img_filter_func min_filter,
1880
                                 img_filter_func mag_filter,
1881
                                 const float s[TGSI_QUAD_SIZE],
1882
                                 const float t[TGSI_QUAD_SIZE],
1883
                                 const float p[TGSI_QUAD_SIZE],
1884
                                 const float c0[TGSI_QUAD_SIZE],
1885
                                 const float lod_in[TGSI_QUAD_SIZE],
1886
                                 enum tgsi_sampler_control control,
1887
                                 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1888
{
1889
   int j;
1890
 
1891
   for (j = 0; j < TGSI_QUAD_SIZE; j++)
1892
      mag_filter(sp_sview, sp_samp, s[j], t[j], p[j],
1893
                 sp_sview->base.u.tex.first_level,
1894
                 sp_sview->faces[j], &rgba[0][j]);
1895
}
1896
 
1897
 
1898
/* For anisotropic filtering */
1899
#define WEIGHT_LUT_SIZE 1024
1900
 
1901
static float *weightLut = NULL;
1902
 
1903
/**
1904
 * Creates the look-up table used to speed-up EWA sampling
1905
 */
1906
static void
1907
create_filter_table(void)
1908
{
1909
   unsigned i;
1910
   if (!weightLut) {
1911
      weightLut = (float *) MALLOC(WEIGHT_LUT_SIZE * sizeof(float));
1912
 
1913
      for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
1914
         float alpha = 2;
1915
         float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
1916
         float weight = (float) exp(-alpha * r2);
1917
         weightLut[i] = weight;
1918
      }
1919
   }
1920
}
1921
 
1922
 
1923
/**
1924
 * Elliptical weighted average (EWA) filter for producing high quality
1925
 * anisotropic filtered results.
1926
 * Based on the Higher Quality Elliptical Weighted Average Filter
1927
 * published by Paul S. Heckbert in his Master's Thesis
1928
 * "Fundamentals of Texture Mapping and Image Warping" (1989)
1929
 */
1930
static void
1931
img_filter_2d_ewa(struct sp_sampler_view *sp_sview,
1932
                  struct sp_sampler *sp_samp,
1933
                  img_filter_func min_filter,
1934
                  img_filter_func mag_filter,
1935
                  const float s[TGSI_QUAD_SIZE],
1936
                  const float t[TGSI_QUAD_SIZE],
1937
                  const float p[TGSI_QUAD_SIZE],
1938
                  unsigned level,
1939
                  const float dudx, const float dvdx,
1940
                  const float dudy, const float dvdy,
1941
                  float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1942
{
1943
   const struct pipe_resource *texture = sp_sview->base.texture;
1944
 
1945
   // ??? Won't the image filters blow up if level is negative?
1946
   unsigned level0 = level > 0 ? level : 0;
1947
   float scaling = 1.0f / (1 << level0);
1948
   int width = u_minify(texture->width0, level0);
1949
   int height = u_minify(texture->height0, level0);
1950
 
1951
   float ux = dudx * scaling;
1952
   float vx = dvdx * scaling;
1953
   float uy = dudy * scaling;
1954
   float vy = dvdy * scaling;
1955
 
1956
   /* compute ellipse coefficients to bound the region:
1957
    * A*x*x + B*x*y + C*y*y = F.
1958
    */
1959
   float A = vx*vx+vy*vy+1;
1960
   float B = -2*(ux*vx+uy*vy);
1961
   float C = ux*ux+uy*uy+1;
1962
   float F = A*C-B*B/4.0f;
1963
 
1964
   /* check if it is an ellipse */
1965
   /* ASSERT(F > 0.0); */
1966
 
1967
   /* Compute the ellipse's (u,v) bounding box in texture space */
1968
   float d = -B*B+4.0f*C*A;
1969
   float box_u = 2.0f / d * sqrt(d*C*F); /* box_u -> half of bbox with   */
1970
   float box_v = 2.0f / d * sqrt(A*d*F); /* box_v -> half of bbox height */
1971
 
1972
   float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1973
   float s_buffer[TGSI_QUAD_SIZE];
1974
   float t_buffer[TGSI_QUAD_SIZE];
1975
   float weight_buffer[TGSI_QUAD_SIZE];
1976
   unsigned buffer_next;
1977
   int j;
1978
   float den; /* = 0.0F; */
1979
   float ddq;
1980
   float U; /* = u0 - tex_u; */
1981
   int v;
1982
 
1983
   /* Scale ellipse formula to directly index the Filter Lookup Table.
1984
    * i.e. scale so that F = WEIGHT_LUT_SIZE-1
1985
    */
1986
   double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
1987
   A *= formScale;
1988
   B *= formScale;
1989
   C *= formScale;
1990
   /* F *= formScale; */ /* no need to scale F as we don't use it below here */
1991
 
1992
   /* For each quad, the du and dx values are the same and so the ellipse is
1993
    * also the same. Note that texel/image access can only be performed using
1994
    * a quad, i.e. it is not possible to get the pixel value for a single
1995
    * tex coord. In order to have a better performance, the access is buffered
1996
    * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is
1997
    * full, then the pixel values are read from the image.
1998
    */
1999
   ddq = 2 * A;
2000
 
2001
   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2002
      /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
2003
       * and incrementally update the value of Ax^2+Bxy*Cy^2; when this
2004
       * value, q, is less than F, we're inside the ellipse
2005
       */
2006
      float tex_u = -0.5F + s[j] * texture->width0 * scaling;
2007
      float tex_v = -0.5F + t[j] * texture->height0 * scaling;
2008
 
2009
      int u0 = (int) floorf(tex_u - box_u);
2010
      int u1 = (int) ceilf(tex_u + box_u);
2011
      int v0 = (int) floorf(tex_v - box_v);
2012
      int v1 = (int) ceilf(tex_v + box_v);
2013
 
2014
      float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
2015
      buffer_next = 0;
2016
      den = 0;
2017
      U = u0 - tex_u;
2018
      for (v = v0; v <= v1; ++v) {
2019
         float V = v - tex_v;
2020
         float dq = A * (2 * U + 1) + B * V;
2021
         float q = (C * V + B * U) * V + A * U * U;
2022
 
2023
         int u;
2024
         for (u = u0; u <= u1; ++u) {
2025
            /* Note that the ellipse has been pre-scaled so F =
2026
             * WEIGHT_LUT_SIZE - 1
2027
             */
2028
            if (q < WEIGHT_LUT_SIZE) {
2029
               /* as a LUT is used, q must never be negative;
2030
                * should not happen, though
2031
                */
2032
               const int qClamped = q >= 0.0F ? q : 0;
2033
               float weight = weightLut[qClamped];
2034
 
2035
               weight_buffer[buffer_next] = weight;
2036
               s_buffer[buffer_next] = u / ((float) width);
2037
               t_buffer[buffer_next] = v / ((float) height);
2038
 
2039
               buffer_next++;
2040
               if (buffer_next == TGSI_QUAD_SIZE) {
2041
                  /* 4 texel coords are in the buffer -> read it now */
2042
                  unsigned jj;
2043
                  /* it is assumed that samp->min_img_filter is set to
2044
                   * img_filter_2d_nearest or one of the
2045
                   * accelerated img_filter_2d_nearest_XXX functions.
2046
                   */
2047
                  for (jj = 0; jj < buffer_next; jj++) {
2048
                     min_filter(sp_sview, sp_samp, s_buffer[jj], t_buffer[jj], p[jj],
2049
                                level, sp_sview->faces[j], &rgba_temp[0][jj]);
2050
                     num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2051
                     num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2052
                     num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2053
                     num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2054
                  }
2055
 
2056
                  buffer_next = 0;
2057
               }
2058
 
2059
               den += weight;
2060
            }
2061
            q += dq;
2062
            dq += ddq;
2063
         }
2064
      }
2065
 
2066
      /* if the tex coord buffer contains unread values, we will read
2067
       * them now.
2068
       */
2069
      if (buffer_next > 0) {
2070
         unsigned jj;
2071
         /* it is assumed that samp->min_img_filter is set to
2072
          * img_filter_2d_nearest or one of the
2073
          * accelerated img_filter_2d_nearest_XXX functions.
2074
          */
2075
         for (jj = 0; jj < buffer_next; jj++) {
2076
            min_filter(sp_sview, sp_samp, s_buffer[jj], t_buffer[jj], p[jj],
2077
                       level, sp_sview->faces[j], &rgba_temp[0][jj]);
2078
            num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2079
            num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2080
            num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2081
            num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2082
         }
2083
      }
2084
 
2085
      if (den <= 0.0F) {
2086
         /* Reaching this place would mean that no pixels intersected
2087
          * the ellipse.  This should never happen because the filter
2088
          * we use always intersects at least one pixel.
2089
          */
2090
 
2091
         /*rgba[0]=0;
2092
         rgba[1]=0;
2093
         rgba[2]=0;
2094
         rgba[3]=0;*/
2095
         /* not enough pixels in resampling, resort to direct interpolation */
2096
         min_filter(sp_sview, sp_samp, s[j], t[j], p[j], level,
2097
                    sp_sview->faces[j], &rgba_temp[0][j]);
2098
         den = 1;
2099
         num[0] = rgba_temp[0][j];
2100
         num[1] = rgba_temp[1][j];
2101
         num[2] = rgba_temp[2][j];
2102
         num[3] = rgba_temp[3][j];
2103
      }
2104
 
2105
      rgba[0][j] = num[0] / den;
2106
      rgba[1][j] = num[1] / den;
2107
      rgba[2][j] = num[2] / den;
2108
      rgba[3][j] = num[3] / den;
2109
   }
2110
}
2111
 
2112
 
2113
/**
2114
 * Sample 2D texture using an anisotropic filter.
2115
 */
2116
static void
2117
mip_filter_linear_aniso(struct sp_sampler_view *sp_sview,
2118
                        struct sp_sampler *sp_samp,
2119
                        img_filter_func min_filter,
2120
                        img_filter_func mag_filter,
2121
                        const float s[TGSI_QUAD_SIZE],
2122
                        const float t[TGSI_QUAD_SIZE],
2123
                        const float p[TGSI_QUAD_SIZE],
2124
                        const float c0[TGSI_QUAD_SIZE],
2125
                        const float lod_in[TGSI_QUAD_SIZE],
2126
                        enum tgsi_sampler_control control,
2127
                        float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2128
{
2129
   const struct pipe_resource *texture = sp_sview->base.texture;
2130
   int level0;
2131
   float lambda;
2132
   float lod[TGSI_QUAD_SIZE];
2133
 
2134
   float s_to_u = u_minify(texture->width0, sp_sview->base.u.tex.first_level);
2135
   float t_to_v = u_minify(texture->height0, sp_sview->base.u.tex.first_level);
2136
   float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2137
   float dudy = (s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2138
   float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2139
   float dvdy = (t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2140
 
2141
   if (control == tgsi_sampler_lod_bias ||
2142
       control == tgsi_sampler_lod_none ||
2143
       /* XXX FIXME */
2144
       control == tgsi_sampler_derivs_explicit) {
2145
      /* note: instead of working with Px and Py, we will use the
2146
       * squared length instead, to avoid sqrt.
2147
       */
2148
      float Px2 = dudx * dudx + dvdx * dvdx;
2149
      float Py2 = dudy * dudy + dvdy * dvdy;
2150
 
2151
      float Pmax2;
2152
      float Pmin2;
2153
      float e;
2154
      const float maxEccentricity = sp_samp->base.max_anisotropy * sp_samp->base.max_anisotropy;
2155
 
2156
      if (Px2 < Py2) {
2157
         Pmax2 = Py2;
2158
         Pmin2 = Px2;
2159
      }
2160
      else {
2161
         Pmax2 = Px2;
2162
         Pmin2 = Py2;
2163
      }
2164
 
2165
      /* if the eccentricity of the ellipse is too big, scale up the shorter
2166
       * of the two vectors to limit the maximum amount of work per pixel
2167
       */
2168
      e = Pmax2 / Pmin2;
2169
      if (e > maxEccentricity) {
2170
         /* float s=e / maxEccentricity;
2171
            minor[0] *= s;
2172
            minor[1] *= s;
2173
            Pmin2 *= s; */
2174
         Pmin2 = Pmax2 / maxEccentricity;
2175
      }
2176
 
2177
      /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
2178
       * this since 0.5*log(x) = log(sqrt(x))
2179
       */
2180
      lambda = 0.5F * util_fast_log2(Pmin2) + sp_samp->base.lod_bias;
2181
      compute_lod(&sp_samp->base, control, lambda, lod_in, lod);
2182
   }
2183
   else {
2184
      assert(control == tgsi_sampler_lod_explicit ||
2185
             control == tgsi_sampler_lod_zero);
2186
      compute_lod(&sp_samp->base, control, sp_samp->base.lod_bias, lod_in, lod);
2187
   }
2188
 
2189
   /* XXX: Take into account all lod values.
2190
    */
2191
   lambda = lod[0];
2192
   level0 = sp_sview->base.u.tex.first_level + (int)lambda;
2193
 
2194
   /* If the ellipse covers the whole image, we can
2195
    * simply return the average of the whole image.
2196
    */
2197
   if (level0 >= (int) texture->last_level) {
2198
      int j;
2199
      for (j = 0; j < TGSI_QUAD_SIZE; j++)
2200
         min_filter(sp_sview, sp_samp, s[j], t[j], p[j], texture->last_level,
2201
                    sp_sview->faces[j], &rgba[0][j]);
2202
   }
2203
   else {
2204
      /* don't bother interpolating between multiple LODs; it doesn't
2205
       * seem to be worth the extra running time.
2206
       */
2207
      img_filter_2d_ewa(sp_sview, sp_samp, min_filter, mag_filter,
2208
                        s, t, p, level0,
2209
                        dudx, dvdx, dudy, dvdy, rgba);
2210
   }
2211
 
2212
   if (DEBUG_TEX) {
2213
      print_sample_4(__FUNCTION__, rgba);
2214
   }
2215
}
2216
 
2217
 
2218
/**
2219
 * Specialized version of mip_filter_linear with hard-wired calls to
2220
 * 2d lambda calculation and 2d_linear_repeat_POT img filters.
2221
 */
2222
static void
2223
mip_filter_linear_2d_linear_repeat_POT(
2224
   struct sp_sampler_view *sp_sview,
2225
   struct sp_sampler *sp_samp,
2226
   img_filter_func min_filter,
2227
   img_filter_func mag_filter,
2228
   const float s[TGSI_QUAD_SIZE],
2229
   const float t[TGSI_QUAD_SIZE],
2230
   const float p[TGSI_QUAD_SIZE],
2231
   const float c0[TGSI_QUAD_SIZE],
2232
   const float lod_in[TGSI_QUAD_SIZE],
2233
   enum tgsi_sampler_control control,
2234
   float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2235
{
2236
   const struct pipe_resource *texture = sp_sview->base.texture;
2237
   int j;
2238
   float lod[TGSI_QUAD_SIZE];
2239
 
2240
   compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, control, lod);
2241
 
2242
   for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2243
      int level0 = sp_sview->base.u.tex.first_level + (int)lod[j];
2244
 
2245
      /* Catches both negative and large values of level0:
2246
       */
2247
      if ((unsigned)level0 >= texture->last_level) {
2248
         if (level0 < 0)
2249
            img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, s[j], t[j], p[j],
2250
                                            sp_sview->base.u.tex.first_level,
2251
                                            sp_sview->faces[j], &rgba[0][j]);
2252
         else
2253
            img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, s[j], t[j], p[j],
2254
                                            sp_sview->base.texture->last_level,
2255
                                            sp_sview->faces[j], &rgba[0][j]);
2256
 
2257
      }
2258
      else {
2259
         float levelBlend = frac(lod[j]);
2260
         float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2261
         int c;
2262
 
2263
         img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, s[j], t[j], p[j], level0,
2264
                                         sp_sview->faces[j], &rgbax[0][0]);
2265
         img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, s[j], t[j], p[j], level0+1,
2266
                                         sp_sview->faces[j], &rgbax[0][1]);
2267
 
2268
         for (c = 0; c < TGSI_NUM_CHANNELS; c++)
2269
            rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2270
      }
2271
   }
2272
 
2273
   if (DEBUG_TEX) {
2274
      print_sample_4(__FUNCTION__, rgba);
2275
   }
2276
}
2277
 
2278
 
2279
/**
2280
 * Do shadow/depth comparisons.
2281
 */
2282
static void
2283
sample_compare(struct sp_sampler_view *sp_sview,
2284
               struct sp_sampler *sp_samp,
2285
               const float s[TGSI_QUAD_SIZE],
2286
               const float t[TGSI_QUAD_SIZE],
2287
               const float p[TGSI_QUAD_SIZE],
2288
               const float c0[TGSI_QUAD_SIZE],
2289
               const float c1[TGSI_QUAD_SIZE],
2290
               enum tgsi_sampler_control control,
2291
               float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2292
{
2293
   const struct pipe_sampler_state *sampler = &sp_samp->base;
2294
   int j, k0, k1, k2, k3;
2295
   float val;
2296
   float pc0, pc1, pc2, pc3;
2297
 
2298
   /**
2299
    * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
2300
    * for 2D Array texture we need to use the 'c0' (aka Q).
2301
    * When we sampled the depth texture, the depth value was put into all
2302
    * RGBA channels.  We look at the red channel here.
2303
    */
2304
 
2305
   if (sp_sview->base.texture->target == PIPE_TEXTURE_2D_ARRAY ||
2306
       sp_sview->base.texture->target == PIPE_TEXTURE_CUBE) {
2307
      pc0 = CLAMP(c0[0], 0.0F, 1.0F);
2308
      pc1 = CLAMP(c0[1], 0.0F, 1.0F);
2309
      pc2 = CLAMP(c0[2], 0.0F, 1.0F);
2310
      pc3 = CLAMP(c0[3], 0.0F, 1.0F);
2311
   } else if (sp_sview->base.texture->target == PIPE_TEXTURE_CUBE_ARRAY) {
2312
      pc0 = CLAMP(c1[0], 0.0F, 1.0F);
2313
      pc1 = CLAMP(c1[1], 0.0F, 1.0F);
2314
      pc2 = CLAMP(c1[2], 0.0F, 1.0F);
2315
      pc3 = CLAMP(c1[3], 0.0F, 1.0F);
2316
   } else {
2317
      pc0 = CLAMP(p[0], 0.0F, 1.0F);
2318
      pc1 = CLAMP(p[1], 0.0F, 1.0F);
2319
      pc2 = CLAMP(p[2], 0.0F, 1.0F);
2320
      pc3 = CLAMP(p[3], 0.0F, 1.0F);
2321
   }
2322
   /* compare four texcoords vs. four texture samples */
2323
   switch (sampler->compare_func) {
2324
   case PIPE_FUNC_LESS:
2325
      k0 = pc0 < rgba[0][0];
2326
      k1 = pc1 < rgba[0][1];
2327
      k2 = pc2 < rgba[0][2];
2328
      k3 = pc3 < rgba[0][3];
2329
      break;
2330
   case PIPE_FUNC_LEQUAL:
2331
      k0 = pc0 <= rgba[0][0];
2332
      k1 = pc1 <= rgba[0][1];
2333
      k2 = pc2 <= rgba[0][2];
2334
      k3 = pc3 <= rgba[0][3];
2335
      break;
2336
   case PIPE_FUNC_GREATER:
2337
      k0 = pc0 > rgba[0][0];
2338
      k1 = pc1 > rgba[0][1];
2339
      k2 = pc2 > rgba[0][2];
2340
      k3 = pc3 > rgba[0][3];
2341
      break;
2342
   case PIPE_FUNC_GEQUAL:
2343
      k0 = pc0 >= rgba[0][0];
2344
      k1 = pc1 >= rgba[0][1];
2345
      k2 = pc2 >= rgba[0][2];
2346
      k3 = pc3 >= rgba[0][3];
2347
      break;
2348
   case PIPE_FUNC_EQUAL:
2349
      k0 = pc0 == rgba[0][0];
2350
      k1 = pc1 == rgba[0][1];
2351
      k2 = pc2 == rgba[0][2];
2352
      k3 = pc3 == rgba[0][3];
2353
      break;
2354
   case PIPE_FUNC_NOTEQUAL:
2355
      k0 = pc0 != rgba[0][0];
2356
      k1 = pc1 != rgba[0][1];
2357
      k2 = pc2 != rgba[0][2];
2358
      k3 = pc3 != rgba[0][3];
2359
      break;
2360
   case PIPE_FUNC_ALWAYS:
2361
      k0 = k1 = k2 = k3 = 1;
2362
      break;
2363
   case PIPE_FUNC_NEVER:
2364
      k0 = k1 = k2 = k3 = 0;
2365
      break;
2366
   default:
2367
      k0 = k1 = k2 = k3 = 0;
2368
      assert(0);
2369
      break;
2370
   }
2371
 
2372
   if (sampler->mag_img_filter == PIPE_TEX_FILTER_LINEAR) {
2373
      /* convert four pass/fail values to an intensity in [0,1] */
2374
      /*
2375
       * XXX this doesn't actually make much sense.
2376
       * We just average the result of four _pixels_ and output the same
2377
       * value for all of the four pixels of the quad.
2378
       * This really needs to work on the _samples_ i.e. inside the img filter.
2379
       */
2380
      val = 0.25F * (k0 + k1 + k2 + k3);
2381
 
2382
      /* XXX returning result for default GL_DEPTH_TEXTURE_MODE = GL_LUMINANCE */
2383
      for (j = 0; j < 4; j++) {
2384
         rgba[0][j] = rgba[1][j] = rgba[2][j] = val;
2385
         rgba[3][j] = 1.0F;
2386
      }
2387
   } else {
2388
      for (j = 0; j < 4; j++) {
2389
         rgba[0][j] = k0;
2390
         rgba[1][j] = k1;
2391
         rgba[2][j] = k2;
2392
         rgba[3][j] = 1.0F;
2393
      }
2394
   }
2395
}
2396
 
2397
 
2398
static void
2399
do_swizzling(const struct pipe_sampler_view *sview,
2400
             float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE],
2401
             float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2402
{
2403
   int j;
2404
   const unsigned swizzle_r = sview->swizzle_r;
2405
   const unsigned swizzle_g = sview->swizzle_g;
2406
   const unsigned swizzle_b = sview->swizzle_b;
2407
   const unsigned swizzle_a = sview->swizzle_a;
2408
 
2409
   switch (swizzle_r) {
2410
   case PIPE_SWIZZLE_ZERO:
2411
      for (j = 0; j < 4; j++)
2412
         out[0][j] = 0.0f;
2413
      break;
2414
   case PIPE_SWIZZLE_ONE:
2415
      for (j = 0; j < 4; j++)
2416
         out[0][j] = 1.0f;
2417
      break;
2418
   default:
2419
      assert(swizzle_r < 4);
2420
      for (j = 0; j < 4; j++)
2421
         out[0][j] = in[swizzle_r][j];
2422
   }
2423
 
2424
   switch (swizzle_g) {
2425
   case PIPE_SWIZZLE_ZERO:
2426
      for (j = 0; j < 4; j++)
2427
         out[1][j] = 0.0f;
2428
      break;
2429
   case PIPE_SWIZZLE_ONE:
2430
      for (j = 0; j < 4; j++)
2431
         out[1][j] = 1.0f;
2432
      break;
2433
   default:
2434
      assert(swizzle_g < 4);
2435
      for (j = 0; j < 4; j++)
2436
         out[1][j] = in[swizzle_g][j];
2437
   }
2438
 
2439
   switch (swizzle_b) {
2440
   case PIPE_SWIZZLE_ZERO:
2441
      for (j = 0; j < 4; j++)
2442
         out[2][j] = 0.0f;
2443
      break;
2444
   case PIPE_SWIZZLE_ONE:
2445
      for (j = 0; j < 4; j++)
2446
         out[2][j] = 1.0f;
2447
      break;
2448
   default:
2449
      assert(swizzle_b < 4);
2450
      for (j = 0; j < 4; j++)
2451
         out[2][j] = in[swizzle_b][j];
2452
   }
2453
 
2454
   switch (swizzle_a) {
2455
   case PIPE_SWIZZLE_ZERO:
2456
      for (j = 0; j < 4; j++)
2457
         out[3][j] = 0.0f;
2458
      break;
2459
   case PIPE_SWIZZLE_ONE:
2460
      for (j = 0; j < 4; j++)
2461
         out[3][j] = 1.0f;
2462
      break;
2463
   default:
2464
      assert(swizzle_a < 4);
2465
      for (j = 0; j < 4; j++)
2466
         out[3][j] = in[swizzle_a][j];
2467
   }
2468
}
2469
 
2470
 
2471
static wrap_nearest_func
2472
get_nearest_unorm_wrap(unsigned mode)
2473
{
2474
   switch (mode) {
2475
   case PIPE_TEX_WRAP_CLAMP:
2476
      return wrap_nearest_unorm_clamp;
2477
   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2478
      return wrap_nearest_unorm_clamp_to_edge;
2479
   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2480
      return wrap_nearest_unorm_clamp_to_border;
2481
   default:
2482
      assert(0);
2483
      return wrap_nearest_unorm_clamp;
2484
   }
2485
}
2486
 
2487
 
2488
static wrap_nearest_func
2489
get_nearest_wrap(unsigned mode)
2490
{
2491
   switch (mode) {
2492
   case PIPE_TEX_WRAP_REPEAT:
2493
      return wrap_nearest_repeat;
2494
   case PIPE_TEX_WRAP_CLAMP:
2495
      return wrap_nearest_clamp;
2496
   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2497
      return wrap_nearest_clamp_to_edge;
2498
   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2499
      return wrap_nearest_clamp_to_border;
2500
   case PIPE_TEX_WRAP_MIRROR_REPEAT:
2501
      return wrap_nearest_mirror_repeat;
2502
   case PIPE_TEX_WRAP_MIRROR_CLAMP:
2503
      return wrap_nearest_mirror_clamp;
2504
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2505
      return wrap_nearest_mirror_clamp_to_edge;
2506
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2507
      return wrap_nearest_mirror_clamp_to_border;
2508
   default:
2509
      assert(0);
2510
      return wrap_nearest_repeat;
2511
   }
2512
}
2513
 
2514
 
2515
static wrap_linear_func
2516
get_linear_unorm_wrap(unsigned mode)
2517
{
2518
   switch (mode) {
2519
   case PIPE_TEX_WRAP_CLAMP:
2520
      return wrap_linear_unorm_clamp;
2521
   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2522
      return wrap_linear_unorm_clamp_to_edge;
2523
   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2524
      return wrap_linear_unorm_clamp_to_border;
2525
   default:
2526
      assert(0);
2527
      return wrap_linear_unorm_clamp;
2528
   }
2529
}
2530
 
2531
 
2532
static wrap_linear_func
2533
get_linear_wrap(unsigned mode)
2534
{
2535
   switch (mode) {
2536
   case PIPE_TEX_WRAP_REPEAT:
2537
      return wrap_linear_repeat;
2538
   case PIPE_TEX_WRAP_CLAMP:
2539
      return wrap_linear_clamp;
2540
   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2541
      return wrap_linear_clamp_to_edge;
2542
   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2543
      return wrap_linear_clamp_to_border;
2544
   case PIPE_TEX_WRAP_MIRROR_REPEAT:
2545
      return wrap_linear_mirror_repeat;
2546
   case PIPE_TEX_WRAP_MIRROR_CLAMP:
2547
      return wrap_linear_mirror_clamp;
2548
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2549
      return wrap_linear_mirror_clamp_to_edge;
2550
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2551
      return wrap_linear_mirror_clamp_to_border;
2552
   default:
2553
      assert(0);
2554
      return wrap_linear_repeat;
2555
   }
2556
}
2557
 
2558
 
2559
/**
2560
 * Is swizzling needed for the given state key?
2561
 */
2562
static INLINE bool
2563
any_swizzle(const struct pipe_sampler_view *view)
2564
{
2565
   return (view->swizzle_r != PIPE_SWIZZLE_RED ||
2566
           view->swizzle_g != PIPE_SWIZZLE_GREEN ||
2567
           view->swizzle_b != PIPE_SWIZZLE_BLUE ||
2568
           view->swizzle_a != PIPE_SWIZZLE_ALPHA);
2569
}
2570
 
2571
 
2572
static img_filter_func
2573
get_img_filter(const struct sp_sampler_view *sp_sview,
2574
               const struct pipe_sampler_state *sampler,
2575
               unsigned filter)
2576
{
2577
   switch (sp_sview->base.texture->target) {
2578
   case PIPE_BUFFER:
2579
   case PIPE_TEXTURE_1D:
2580
      if (filter == PIPE_TEX_FILTER_NEAREST)
2581
         return img_filter_1d_nearest;
2582
      else
2583
         return img_filter_1d_linear;
2584
      break;
2585
   case PIPE_TEXTURE_1D_ARRAY:
2586
      if (filter == PIPE_TEX_FILTER_NEAREST)
2587
         return img_filter_1d_array_nearest;
2588
      else
2589
         return img_filter_1d_array_linear;
2590
      break;
2591
   case PIPE_TEXTURE_2D:
2592
   case PIPE_TEXTURE_RECT:
2593
      /* Try for fast path:
2594
       */
2595
      if (sp_sview->pot2d &&
2596
          sampler->wrap_s == sampler->wrap_t &&
2597
          sampler->normalized_coords)
2598
      {
2599
         switch (sampler->wrap_s) {
2600
         case PIPE_TEX_WRAP_REPEAT:
2601
            switch (filter) {
2602
            case PIPE_TEX_FILTER_NEAREST:
2603
               return img_filter_2d_nearest_repeat_POT;
2604
            case PIPE_TEX_FILTER_LINEAR:
2605
               return img_filter_2d_linear_repeat_POT;
2606
            default:
2607
               break;
2608
            }
2609
            break;
2610
         case PIPE_TEX_WRAP_CLAMP:
2611
            switch (filter) {
2612
            case PIPE_TEX_FILTER_NEAREST:
2613
               return img_filter_2d_nearest_clamp_POT;
2614
            default:
2615
               break;
2616
            }
2617
         }
2618
      }
2619
      /* Otherwise use default versions:
2620
       */
2621
      if (filter == PIPE_TEX_FILTER_NEAREST)
2622
         return img_filter_2d_nearest;
2623
      else
2624
         return img_filter_2d_linear;
2625
      break;
2626
   case PIPE_TEXTURE_2D_ARRAY:
2627
      if (filter == PIPE_TEX_FILTER_NEAREST)
2628
         return img_filter_2d_array_nearest;
2629
      else
2630
         return img_filter_2d_array_linear;
2631
      break;
2632
   case PIPE_TEXTURE_CUBE:
2633
      if (filter == PIPE_TEX_FILTER_NEAREST)
2634
         return img_filter_cube_nearest;
2635
      else
2636
         return img_filter_cube_linear;
2637
      break;
2638
   case PIPE_TEXTURE_CUBE_ARRAY:
2639
      if (filter == PIPE_TEX_FILTER_NEAREST)
2640
         return img_filter_cube_array_nearest;
2641
      else
2642
         return img_filter_cube_array_linear;
2643
      break;
2644
   case PIPE_TEXTURE_3D:
2645
      if (filter == PIPE_TEX_FILTER_NEAREST)
2646
         return img_filter_3d_nearest;
2647
      else
2648
         return img_filter_3d_linear;
2649
      break;
2650
   default:
2651
      assert(0);
2652
      return img_filter_1d_nearest;
2653
   }
2654
}
2655
 
2656
 
2657
static void
2658
sample_mip(struct sp_sampler_view *sp_sview,
2659
           struct sp_sampler *sp_samp,
2660
           const float s[TGSI_QUAD_SIZE],
2661
           const float t[TGSI_QUAD_SIZE],
2662
           const float p[TGSI_QUAD_SIZE],
2663
           const float c0[TGSI_QUAD_SIZE],
2664
           const float lod[TGSI_QUAD_SIZE],
2665
           enum tgsi_sampler_control control,
2666
           float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2667
{
2668
   mip_filter_func mip_filter;
2669
   img_filter_func min_img_filter = NULL;
2670
   img_filter_func mag_img_filter = NULL;
2671
 
2672
   if (sp_sview->pot2d & sp_samp->min_mag_equal_repeat_linear) {
2673
      mip_filter = mip_filter_linear_2d_linear_repeat_POT;
2674
   }
2675
   else {
2676
      mip_filter = sp_samp->mip_filter;
2677
      min_img_filter = get_img_filter(sp_sview, &sp_samp->base, sp_samp->min_img_filter);
2678
      if (sp_samp->min_mag_equal) {
2679
         mag_img_filter = min_img_filter;
2680
      }
2681
      else {
2682
         mag_img_filter = get_img_filter(sp_sview, &sp_samp->base, sp_samp->base.mag_img_filter);
2683
      }
2684
   }
2685
 
2686
   mip_filter(sp_sview, sp_samp, min_img_filter, mag_img_filter,
2687
              s, t, p, c0, lod, control, rgba);
2688
 
2689
   if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE) {
2690
      sample_compare(sp_sview, sp_samp, s, t, p, c0, lod, control, rgba);
2691
   }
2692
 
2693
   if (sp_sview->need_swizzle) {
2694
      float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2695
      memcpy(rgba_temp, rgba, sizeof(rgba_temp));
2696
      do_swizzling(&sp_sview->base, rgba_temp, rgba);
2697
   }
2698
 
2699
}
2700
 
2701
 
2702
/**
2703
 * Use 3D texcoords to choose a cube face, then sample the 2D cube faces.
2704
 * Put face info into the sampler faces[] array.
2705
 */
2706
static void
2707
sample_cube(struct sp_sampler_view *sp_sview,
2708
            struct sp_sampler *sp_samp,
2709
            const float s[TGSI_QUAD_SIZE],
2710
            const float t[TGSI_QUAD_SIZE],
2711
            const float p[TGSI_QUAD_SIZE],
2712
            const float c0[TGSI_QUAD_SIZE],
2713
            const float c1[TGSI_QUAD_SIZE],
2714
            enum tgsi_sampler_control control,
2715
            float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2716
{
2717
   unsigned j;
2718
   float ssss[4], tttt[4];
2719
 
2720
   /* Not actually used, but the intermediate steps that do the
2721
    * dereferencing don't know it.
2722
    */
2723
   static float pppp[4] = { 0, 0, 0, 0 };
2724
 
2725
   pppp[0] = c0[0];
2726
   pppp[1] = c0[1];
2727
   pppp[2] = c0[2];
2728
   pppp[3] = c0[3];
2729
   /*
2730
     major axis
2731
     direction    target                             sc     tc    ma
2732
     ----------   -------------------------------    ---    ---   ---
2733
     +rx          TEXTURE_CUBE_MAP_POSITIVE_X_EXT    -rz    -ry   rx
2734
     -rx          TEXTURE_CUBE_MAP_NEGATIVE_X_EXT    +rz    -ry   rx
2735
     +ry          TEXTURE_CUBE_MAP_POSITIVE_Y_EXT    +rx    +rz   ry
2736
     -ry          TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT    +rx    -rz   ry
2737
     +rz          TEXTURE_CUBE_MAP_POSITIVE_Z_EXT    +rx    -ry   rz
2738
     -rz          TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT    -rx    -ry   rz
2739
   */
2740
 
2741
   /* Choose the cube face and compute new s/t coords for the 2D face.
2742
    *
2743
    * Use the same cube face for all four pixels in the quad.
2744
    *
2745
    * This isn't ideal, but if we want to use a different cube face
2746
    * per pixel in the quad, we'd have to also compute the per-face
2747
    * LOD here too.  That's because the four post-face-selection
2748
    * texcoords are no longer related to each other (they're
2749
    * per-face!)  so we can't use subtraction to compute the partial
2750
    * deriviates to compute the LOD.  Doing so (near cube edges
2751
    * anyway) gives us pretty much random values.
2752
    */
2753
   {
2754
      /* use the average of the four pixel's texcoords to choose the face */
2755
      const float rx = 0.25F * (s[0] + s[1] + s[2] + s[3]);
2756
      const float ry = 0.25F * (t[0] + t[1] + t[2] + t[3]);
2757
      const float rz = 0.25F * (p[0] + p[1] + p[2] + p[3]);
2758
      const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
2759
 
2760
      if (arx >= ary && arx >= arz) {
2761
         float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
2762
         uint face = (rx >= 0.0F) ? PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
2763
         for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2764
            const float ima = -0.5F / fabsf(s[j]);
2765
            ssss[j] = sign *  p[j] * ima + 0.5F;
2766
            tttt[j] =         t[j] * ima + 0.5F;
2767
            sp_sview->faces[j] = face;
2768
         }
2769
      }
2770
      else if (ary >= arx && ary >= arz) {
2771
         float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
2772
         uint face = (ry >= 0.0F) ? PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
2773
         for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2774
            const float ima = -0.5F / fabsf(t[j]);
2775
            ssss[j] =        -s[j] * ima + 0.5F;
2776
            tttt[j] = sign * -p[j] * ima + 0.5F;
2777
            sp_sview->faces[j] = face;
2778
         }
2779
      }
2780
      else {
2781
         float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
2782
         uint face = (rz >= 0.0F) ? PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
2783
         for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2784
            const float ima = -0.5F / fabsf(p[j]);
2785
            ssss[j] = sign * -s[j] * ima + 0.5F;
2786
            tttt[j] =         t[j] * ima + 0.5F;
2787
            sp_sview->faces[j] = face;
2788
         }
2789
      }
2790
   }
2791
 
2792
   sample_mip(sp_sview, sp_samp, ssss, tttt, pppp, c0, c1, control, rgba);
2793
}
2794
 
2795
 
2796
static void
2797
sp_get_dims(struct sp_sampler_view *sp_sview, int level,
2798
            int dims[4])
2799
{
2800
   const struct pipe_sampler_view *view = &sp_sview->base;
2801
   const struct pipe_resource *texture = view->texture;
2802
 
2803
   /* undefined according to EXT_gpu_program */
2804
   level += view->u.tex.first_level;
2805
   if (level > view->u.tex.last_level)
2806
      return;
2807
 
2808
   dims[0] = u_minify(texture->width0, level);
2809
 
2810
   switch(texture->target) {
2811
   case PIPE_TEXTURE_1D_ARRAY:
2812
      dims[1] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
2813
      /* fallthrough */
2814
   case PIPE_TEXTURE_1D:
2815
      return;
2816
   case PIPE_TEXTURE_2D_ARRAY:
2817
      dims[2] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
2818
      /* fallthrough */
2819
   case PIPE_TEXTURE_2D:
2820
   case PIPE_TEXTURE_CUBE:
2821
   case PIPE_TEXTURE_RECT:
2822
      dims[1] = u_minify(texture->height0, level);
2823
      return;
2824
   case PIPE_TEXTURE_3D:
2825
      dims[1] = u_minify(texture->height0, level);
2826
      dims[2] = u_minify(texture->depth0, level);
2827
      return;
2828
   case PIPE_TEXTURE_CUBE_ARRAY:
2829
      dims[1] = u_minify(texture->height0, level);
2830
      dims[2] = (view->u.tex.last_layer - view->u.tex.first_layer + 1) / 6;
2831
      break;
2832
   case PIPE_BUFFER:
2833
      dims[0] /= util_format_get_blocksize(view->format);
2834
      return;
2835
   default:
2836
      assert(!"unexpected texture target in sp_get_dims()");
2837
      return;
2838
   }
2839
}
2840
 
2841
/**
2842
 * This function is only used for getting unfiltered texels via the
2843
 * TXF opcode.  The GL spec says that out-of-bounds texel fetches
2844
 * produce undefined results.  Instead of crashing, lets just clamp
2845
 * coords to the texture image size.
2846
 */
2847
static void
2848
sp_get_texels(struct sp_sampler_view *sp_sview,
2849
              const int v_i[TGSI_QUAD_SIZE],
2850
              const int v_j[TGSI_QUAD_SIZE],
2851
              const int v_k[TGSI_QUAD_SIZE],
2852
              const int lod[TGSI_QUAD_SIZE],
2853
              const int8_t offset[3],
2854
              float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2855
{
2856
   union tex_tile_address addr;
2857
   const struct pipe_resource *texture = sp_sview->base.texture;
2858
   int j, c;
2859
   const float *tx;
2860
   int width, height, depth;
2861
 
2862
   addr.value = 0;
2863
   /* TODO write a better test for LOD */
2864
   addr.bits.level = lod[0];
2865
 
2866
   width = u_minify(texture->width0, addr.bits.level);
2867
   height = u_minify(texture->height0, addr.bits.level);
2868
   depth = u_minify(texture->depth0, addr.bits.level);
2869
 
2870
   switch(texture->target) {
2871
   case PIPE_BUFFER:
2872
   case PIPE_TEXTURE_1D:
2873
      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2874
         int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
2875
         tx = get_texel_2d_no_border(sp_sview, addr, x, 0);
2876
         for (c = 0; c < 4; c++) {
2877
            rgba[c][j] = tx[c];
2878
         }
2879
      }
2880
      break;
2881
   case PIPE_TEXTURE_1D_ARRAY:
2882
      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2883
         int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
2884
         int y = CLAMP(v_j[j], sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer);
2885
         tx = get_texel_2d_no_border(sp_sview, addr, x, y);
2886
         for (c = 0; c < 4; c++) {
2887
            rgba[c][j] = tx[c];
2888
         }
2889
      }
2890
      break;
2891
   case PIPE_TEXTURE_2D:
2892
   case PIPE_TEXTURE_RECT:
2893
      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2894
         int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
2895
         int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
2896
         tx = get_texel_2d_no_border(sp_sview, addr, x, y);
2897
         for (c = 0; c < 4; c++) {
2898
            rgba[c][j] = tx[c];
2899
         }
2900
      }
2901
      break;
2902
   case PIPE_TEXTURE_2D_ARRAY:
2903
      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2904
         int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
2905
         int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
2906
         int layer = CLAMP(v_k[j], sp_sview->base.u.tex.first_layer, sp_sview->base.u.tex.last_layer);
2907
         tx = get_texel_3d_no_border(sp_sview, addr, x, y, layer);
2908
         for (c = 0; c < 4; c++) {
2909
            rgba[c][j] = tx[c];
2910
         }
2911
      }
2912
      break;
2913
   case PIPE_TEXTURE_3D:
2914
      for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2915
         int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
2916
         int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
2917
         int z = CLAMP(v_k[j] + offset[2], 0, depth - 1);
2918
         tx = get_texel_3d_no_border(sp_sview, addr, x, y, z);
2919
         for (c = 0; c < 4; c++) {
2920
            rgba[c][j] = tx[c];
2921
         }
2922
      }
2923
      break;
2924
   case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */
2925
   default:
2926
      assert(!"Unknown or CUBE texture type in TXF processing\n");
2927
      break;
2928
   }
2929
 
2930
   if (sp_sview->need_swizzle) {
2931
      float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2932
      memcpy(rgba_temp, rgba, sizeof(rgba_temp));
2933
      do_swizzling(&sp_sview->base, rgba_temp, rgba);
2934
   }
2935
}
2936
 
2937
 
2938
void *
2939
softpipe_create_sampler_state(struct pipe_context *pipe,
2940
                              const struct pipe_sampler_state *sampler)
2941
{
2942
   struct sp_sampler *samp = CALLOC_STRUCT(sp_sampler);
2943
 
2944
   samp->base = *sampler;
2945
 
2946
   /* Note that (for instance) linear_texcoord_s and
2947
    * nearest_texcoord_s may be active at the same time, if the
2948
    * sampler min_img_filter differs from its mag_img_filter.
2949
    */
2950
   if (sampler->normalized_coords) {
2951
      samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
2952
      samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
2953
      samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
2954
 
2955
      samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
2956
      samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
2957
      samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
2958
   }
2959
   else {
2960
      samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
2961
      samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
2962
      samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
2963
 
2964
      samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
2965
      samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
2966
      samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
2967
   }
2968
 
2969
   samp->min_img_filter = sampler->min_img_filter;
2970
 
2971
   switch (sampler->min_mip_filter) {
2972
   case PIPE_TEX_MIPFILTER_NONE:
2973
      if (sampler->min_img_filter == sampler->mag_img_filter)
2974
         samp->mip_filter = mip_filter_none_no_filter_select;
2975
      else
2976
         samp->mip_filter = mip_filter_none;
2977
      break;
2978
 
2979
   case PIPE_TEX_MIPFILTER_NEAREST:
2980
      samp->mip_filter = mip_filter_nearest;
2981
      break;
2982
 
2983
   case PIPE_TEX_MIPFILTER_LINEAR:
2984
      if (sampler->min_img_filter == sampler->mag_img_filter &&
2985
          sampler->normalized_coords &&
2986
          sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
2987
          sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
2988
          sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR &&
2989
          sampler->max_anisotropy <= 1) {
2990
         samp->min_mag_equal_repeat_linear = TRUE;
2991
      }
2992
      samp->mip_filter = mip_filter_linear;
2993
 
2994
      /* Anisotropic filtering extension. */
2995
      if (sampler->max_anisotropy > 1) {
2996
         samp->mip_filter = mip_filter_linear_aniso;
2997
 
2998
         /* Override min_img_filter:
2999
          * min_img_filter needs to be set to NEAREST since we need to access
3000
          * each texture pixel as it is and weight it later; using linear
3001
          * filters will have incorrect results.
3002
          * By setting the filter to NEAREST here, we can avoid calling the
3003
          * generic img_filter_2d_nearest in the anisotropic filter function,
3004
          * making it possible to use one of the accelerated implementations
3005
          */
3006
         samp->min_img_filter = PIPE_TEX_FILTER_NEAREST;
3007
 
3008
         /* on first access create the lookup table containing the filter weights. */
3009
        if (!weightLut) {
3010
           create_filter_table();
3011
        }
3012
      }
3013
      break;
3014
   }
3015
   if (samp->min_img_filter == sampler->mag_img_filter) {
3016
      samp->min_mag_equal = TRUE;
3017
   }
3018
 
3019
   return (void *)samp;
3020
}
3021
 
3022
 
3023
compute_lambda_func
3024
softpipe_get_lambda_func(const struct pipe_sampler_view *view, unsigned shader)
3025
{
3026
   if (shader != PIPE_SHADER_FRAGMENT)
3027
      return compute_lambda_vert;
3028
 
3029
   switch (view->texture->target) {
3030
   case PIPE_BUFFER:
3031
   case PIPE_TEXTURE_1D:
3032
   case PIPE_TEXTURE_1D_ARRAY:
3033
      return compute_lambda_1d;
3034
   case PIPE_TEXTURE_2D:
3035
   case PIPE_TEXTURE_2D_ARRAY:
3036
   case PIPE_TEXTURE_RECT:
3037
   case PIPE_TEXTURE_CUBE:
3038
   case PIPE_TEXTURE_CUBE_ARRAY:
3039
      return compute_lambda_2d;
3040
   case PIPE_TEXTURE_3D:
3041
      return compute_lambda_3d;
3042
   default:
3043
      assert(0);
3044
      return compute_lambda_1d;
3045
   }
3046
}
3047
 
3048
 
3049
struct pipe_sampler_view *
3050
softpipe_create_sampler_view(struct pipe_context *pipe,
3051
                             struct pipe_resource *resource,
3052
                             const struct pipe_sampler_view *templ)
3053
{
3054
   struct sp_sampler_view *sview = CALLOC_STRUCT(sp_sampler_view);
3055
   struct softpipe_resource *spr = (struct softpipe_resource *)resource;
3056
 
3057
   if (sview) {
3058
      struct pipe_sampler_view *view = &sview->base;
3059
      *view = *templ;
3060
      view->reference.count = 1;
3061
      view->texture = NULL;
3062
      pipe_resource_reference(&view->texture, resource);
3063
      view->context = pipe;
3064
 
3065
      if (any_swizzle(view)) {
3066
         sview->need_swizzle = TRUE;
3067
      }
3068
 
3069
      if (resource->target == PIPE_TEXTURE_CUBE ||
3070
          resource->target == PIPE_TEXTURE_CUBE_ARRAY)
3071
         sview->get_samples = sample_cube;
3072
      else {
3073
         sview->get_samples = sample_mip;
3074
      }
3075
      sview->pot2d = spr->pot &&
3076
                     (resource->target == PIPE_TEXTURE_2D ||
3077
                      resource->target == PIPE_TEXTURE_RECT);
3078
 
3079
      sview->xpot = util_logbase2( resource->width0 );
3080
      sview->ypot = util_logbase2( resource->height0 );
3081
   }
3082
 
3083
   return (struct pipe_sampler_view *) sview;
3084
}
3085
 
3086
 
3087
static void
3088
sp_tgsi_get_dims(struct tgsi_sampler *tgsi_sampler,
3089
                 const unsigned sview_index,
3090
                 int level, int dims[4])
3091
{
3092
   struct sp_tgsi_sampler *sp_samp = (struct sp_tgsi_sampler *)tgsi_sampler;
3093
 
3094
   assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3095
   /* TODO should have defined behavior if no texture is bound. */
3096
   sp_get_dims(&sp_samp->sp_sview[sview_index], level, dims);
3097
}
3098
 
3099
 
3100
static void
3101
sp_tgsi_get_samples(struct tgsi_sampler *tgsi_sampler,
3102
                    const unsigned sview_index,
3103
                    const unsigned sampler_index,
3104
                    const float s[TGSI_QUAD_SIZE],
3105
                    const float t[TGSI_QUAD_SIZE],
3106
                    const float p[TGSI_QUAD_SIZE],
3107
                    const float c0[TGSI_QUAD_SIZE],
3108
                    const float lod[TGSI_QUAD_SIZE],
3109
                    float derivs[3][2][TGSI_QUAD_SIZE],
3110
                    const int8_t offset[3],
3111
                    enum tgsi_sampler_control control,
3112
                    float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3113
{
3114
   struct sp_tgsi_sampler *sp_samp = (struct sp_tgsi_sampler *)tgsi_sampler;
3115
 
3116
   assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3117
   assert(sampler_index < PIPE_MAX_SAMPLERS);
3118
   assert(sp_samp->sp_sampler[sampler_index]);
3119
   /* FIXME should have defined behavior if no texture is bound. */
3120
   assert(sp_samp->sp_sview[sview_index].get_samples);
3121
   sp_samp->sp_sview[sview_index].get_samples(&sp_samp->sp_sview[sview_index],
3122
                                              sp_samp->sp_sampler[sampler_index],
3123
                                              s, t, p, c0, lod, control, rgba);
3124
}
3125
 
3126
 
3127
static void
3128
sp_tgsi_get_texel(struct tgsi_sampler *tgsi_sampler,
3129
                  const unsigned sview_index,
3130
                  const int i[TGSI_QUAD_SIZE],
3131
                  const int j[TGSI_QUAD_SIZE], const int k[TGSI_QUAD_SIZE],
3132
                  const int lod[TGSI_QUAD_SIZE], const int8_t offset[3],
3133
                  float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3134
{
3135
   struct sp_tgsi_sampler *sp_samp = (struct sp_tgsi_sampler *)tgsi_sampler;
3136
 
3137
   assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3138
   /* FIXME should have defined behavior if no texture is bound. */
3139
   assert(sp_samp->sp_sview[sview_index].base.texture);
3140
   sp_get_texels(&sp_samp->sp_sview[sview_index], i, j, k, lod, offset, rgba);
3141
}
3142
 
3143
 
3144
struct sp_tgsi_sampler *
3145
sp_create_tgsi_sampler(void)
3146
{
3147
   struct sp_tgsi_sampler *samp = CALLOC_STRUCT(sp_tgsi_sampler);
3148
   if (!samp)
3149
      return NULL;
3150
 
3151
   samp->base.get_dims = sp_tgsi_get_dims;
3152
   samp->base.get_samples = sp_tgsi_get_samples;
3153
   samp->base.get_texel = sp_tgsi_get_texel;
3154
 
3155
   return samp;
3156
}
3157