Subversion Repositories Kolibri OS

Rev

Rev 6934 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
5270 serge 1
#ifndef __LINUX_SEQLOCK_H
2
#define __LINUX_SEQLOCK_H
3
/*
4
 * Reader/writer consistent mechanism without starving writers. This type of
5
 * lock for data where the reader wants a consistent set of information
6
 * and is willing to retry if the information changes. There are two types
7
 * of readers:
8
 * 1. Sequence readers which never block a writer but they may have to retry
9
 *    if a writer is in progress by detecting change in sequence number.
10
 *    Writers do not wait for a sequence reader.
11
 * 2. Locking readers which will wait if a writer or another locking reader
12
 *    is in progress. A locking reader in progress will also block a writer
13
 *    from going forward. Unlike the regular rwlock, the read lock here is
14
 *    exclusive so that only one locking reader can get it.
15
 *
16
 * This is not as cache friendly as brlock. Also, this may not work well
17
 * for data that contains pointers, because any writer could
18
 * invalidate a pointer that a reader was following.
19
 *
20
 * Expected non-blocking reader usage:
21
 * 	do {
22
 *	    seq = read_seqbegin(&foo);
23
 * 	...
24
 *      } while (read_seqretry(&foo, seq));
25
 *
26
 *
27
 * On non-SMP the spin locks disappear but the writer still needs
28
 * to increment the sequence variables because an interrupt routine could
29
 * change the state of the data.
30
 *
6082 serge 31
 * Based on x86_64 vsyscall gettimeofday
5270 serge 32
 * by Keith Owens and Andrea Arcangeli
33
 */
34
 
35
#include 
6934 serge 36
#include 
5270 serge 37
#include 
6082 serge 38
#include 
5270 serge 39
#include 
40
 
41
/*
42
 * Version using sequence counter only.
43
 * This can be used when code has its own mutex protecting the
44
 * updating starting before the write_seqcountbeqin() and ending
45
 * after the write_seqcount_end().
46
 */
47
typedef struct seqcount {
48
	unsigned sequence;
49
#ifdef CONFIG_DEBUG_LOCK_ALLOC
50
	struct lockdep_map dep_map;
51
#endif
52
} seqcount_t;
53
 
54
static inline void __seqcount_init(seqcount_t *s, const char *name,
55
					  struct lock_class_key *key)
56
{
57
	/*
58
	 * Make sure we are not reinitializing a held lock:
59
	 */
60
	lockdep_init_map(&s->dep_map, name, key, 0);
61
	s->sequence = 0;
62
}
63
 
64
#ifdef CONFIG_DEBUG_LOCK_ALLOC
65
# define SEQCOUNT_DEP_MAP_INIT(lockname) \
66
		.dep_map = { .name = #lockname } \
67
 
68
# define seqcount_init(s)				\
69
	do {						\
70
		static struct lock_class_key __key;	\
71
		__seqcount_init((s), #s, &__key);	\
72
	} while (0)
73
 
74
static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
75
{
76
	seqcount_t *l = (seqcount_t *)s;
77
	unsigned long flags;
78
 
79
	local_irq_save(flags);
80
	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
81
	seqcount_release(&l->dep_map, 1, _RET_IP_);
82
	local_irq_restore(flags);
83
}
84
 
85
#else
86
# define SEQCOUNT_DEP_MAP_INIT(lockname)
87
# define seqcount_init(s) __seqcount_init(s, NULL, NULL)
88
# define seqcount_lockdep_reader_access(x)
89
#endif
90
 
91
#define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
92
 
93
 
94
/**
95
 * __read_seqcount_begin - begin a seq-read critical section (without barrier)
96
 * @s: pointer to seqcount_t
97
 * Returns: count to be passed to read_seqcount_retry
98
 *
99
 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
100
 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
101
 * provided before actually loading any of the variables that are to be
102
 * protected in this critical section.
103
 *
104
 * Use carefully, only in critical code, and comment how the barrier is
105
 * provided.
106
 */
107
static inline unsigned __read_seqcount_begin(const seqcount_t *s)
108
{
109
	unsigned ret;
110
 
111
repeat:
6082 serge 112
	ret = READ_ONCE(s->sequence);
5270 serge 113
	if (unlikely(ret & 1)) {
114
		cpu_relax();
115
		goto repeat;
116
	}
117
	return ret;
118
}
119
 
120
/**
121
 * raw_read_seqcount - Read the raw seqcount
122
 * @s: pointer to seqcount_t
123
 * Returns: count to be passed to read_seqcount_retry
124
 *
125
 * raw_read_seqcount opens a read critical section of the given
126
 * seqcount without any lockdep checking and without checking or
127
 * masking the LSB. Calling code is responsible for handling that.
128
 */
129
static inline unsigned raw_read_seqcount(const seqcount_t *s)
130
{
6082 serge 131
	unsigned ret = READ_ONCE(s->sequence);
5270 serge 132
	smp_rmb();
133
	return ret;
134
}
135
 
136
/**
137
 * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
138
 * @s: pointer to seqcount_t
139
 * Returns: count to be passed to read_seqcount_retry
140
 *
141
 * raw_read_seqcount_begin opens a read critical section of the given
142
 * seqcount, but without any lockdep checking. Validity of the critical
143
 * section is tested by checking read_seqcount_retry function.
144
 */
145
static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
146
{
147
	unsigned ret = __read_seqcount_begin(s);
148
	smp_rmb();
149
	return ret;
150
}
151
 
152
/**
153
 * read_seqcount_begin - begin a seq-read critical section
154
 * @s: pointer to seqcount_t
155
 * Returns: count to be passed to read_seqcount_retry
156
 *
157
 * read_seqcount_begin opens a read critical section of the given seqcount.
158
 * Validity of the critical section is tested by checking read_seqcount_retry
159
 * function.
160
 */
161
static inline unsigned read_seqcount_begin(const seqcount_t *s)
162
{
163
	seqcount_lockdep_reader_access(s);
164
	return raw_read_seqcount_begin(s);
165
}
166
 
167
/**
168
 * raw_seqcount_begin - begin a seq-read critical section
169
 * @s: pointer to seqcount_t
170
 * Returns: count to be passed to read_seqcount_retry
171
 *
172
 * raw_seqcount_begin opens a read critical section of the given seqcount.
173
 * Validity of the critical section is tested by checking read_seqcount_retry
174
 * function.
175
 *
176
 * Unlike read_seqcount_begin(), this function will not wait for the count
177
 * to stabilize. If a writer is active when we begin, we will fail the
178
 * read_seqcount_retry() instead of stabilizing at the beginning of the
179
 * critical section.
180
 */
181
static inline unsigned raw_seqcount_begin(const seqcount_t *s)
182
{
6082 serge 183
	unsigned ret = READ_ONCE(s->sequence);
5270 serge 184
	smp_rmb();
185
	return ret & ~1;
186
}
187
 
188
/**
189
 * __read_seqcount_retry - end a seq-read critical section (without barrier)
190
 * @s: pointer to seqcount_t
191
 * @start: count, from read_seqcount_begin
192
 * Returns: 1 if retry is required, else 0
193
 *
194
 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
195
 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
196
 * provided before actually loading any of the variables that are to be
197
 * protected in this critical section.
198
 *
199
 * Use carefully, only in critical code, and comment how the barrier is
200
 * provided.
201
 */
202
static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
203
{
204
	return unlikely(s->sequence != start);
205
}
206
 
207
/**
208
 * read_seqcount_retry - end a seq-read critical section
209
 * @s: pointer to seqcount_t
210
 * @start: count, from read_seqcount_begin
211
 * Returns: 1 if retry is required, else 0
212
 *
213
 * read_seqcount_retry closes a read critical section of the given seqcount.
214
 * If the critical section was invalid, it must be ignored (and typically
215
 * retried).
216
 */
217
static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
218
{
219
	smp_rmb();
220
	return __read_seqcount_retry(s, start);
221
}
222
 
223
 
224
 
225
static inline void raw_write_seqcount_begin(seqcount_t *s)
226
{
227
	s->sequence++;
228
	smp_wmb();
229
}
230
 
231
static inline void raw_write_seqcount_end(seqcount_t *s)
232
{
233
	smp_wmb();
234
	s->sequence++;
235
}
236
 
6936 serge 237
/**
238
 * raw_write_seqcount_barrier - do a seq write barrier
239
 * @s: pointer to seqcount_t
240
 *
241
 * This can be used to provide an ordering guarantee instead of the
242
 * usual consistency guarantee. It is one wmb cheaper, because we can
243
 * collapse the two back-to-back wmb()s.
244
 *
245
 *      seqcount_t seq;
246
 *      bool X = true, Y = false;
247
 *
248
 *      void read(void)
249
 *      {
250
 *              bool x, y;
251
 *
252
 *              do {
253
 *                      int s = read_seqcount_begin(&seq);
254
 *
255
 *                      x = X; y = Y;
256
 *
257
 *              } while (read_seqcount_retry(&seq, s));
258
 *
259
 *              BUG_ON(!x && !y);
260
 *      }
261
 *
262
 *      void write(void)
263
 *      {
264
 *              Y = true;
265
 *
266
 *              raw_write_seqcount_barrier(seq);
267
 *
268
 *              X = false;
269
 *      }
270
 */
271
static inline void raw_write_seqcount_barrier(seqcount_t *s)
272
{
273
	s->sequence++;
274
	smp_wmb();
275
	s->sequence++;
276
}
277
 
278
static inline int raw_read_seqcount_latch(seqcount_t *s)
279
{
280
	return lockless_dereference(s->sequence);
281
}
282
 
283
/**
5270 serge 284
 * raw_write_seqcount_latch - redirect readers to even/odd copy
285
 * @s: pointer to seqcount_t
6082 serge 286
 *
287
 * The latch technique is a multiversion concurrency control method that allows
288
 * queries during non-atomic modifications. If you can guarantee queries never
289
 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
290
 * -- you most likely do not need this.
291
 *
292
 * Where the traditional RCU/lockless data structures rely on atomic
293
 * modifications to ensure queries observe either the old or the new state the
294
 * latch allows the same for non-atomic updates. The trade-off is doubling the
295
 * cost of storage; we have to maintain two copies of the entire data
296
 * structure.
297
 *
298
 * Very simply put: we first modify one copy and then the other. This ensures
299
 * there is always one copy in a stable state, ready to give us an answer.
300
 *
301
 * The basic form is a data structure like:
302
 *
303
 * struct latch_struct {
304
 *	seqcount_t		seq;
305
 *	struct data_struct	data[2];
306
 * };
307
 *
308
 * Where a modification, which is assumed to be externally serialized, does the
309
 * following:
310
 *
311
 * void latch_modify(struct latch_struct *latch, ...)
312
 * {
313
 *	smp_wmb();	<- Ensure that the last data[1] update is visible
314
 *	latch->seq++;
315
 *	smp_wmb();	<- Ensure that the seqcount update is visible
316
 *
317
 *	modify(latch->data[0], ...);
318
 *
319
 *	smp_wmb();	<- Ensure that the data[0] update is visible
320
 *	latch->seq++;
321
 *	smp_wmb();	<- Ensure that the seqcount update is visible
322
 *
323
 *	modify(latch->data[1], ...);
324
 * }
325
 *
326
 * The query will have a form like:
327
 *
328
 * struct entry *latch_query(struct latch_struct *latch, ...)
329
 * {
330
 *	struct entry *entry;
331
 *	unsigned seq, idx;
332
 *
333
 *	do {
334
 *		seq = lockless_dereference(latch->seq);
335
 *
336
 *		idx = seq & 0x01;
337
 *		entry = data_query(latch->data[idx], ...);
338
 *
339
 *		smp_rmb();
340
 *	} while (seq != latch->seq);
341
 *
342
 *	return entry;
343
 * }
344
 *
345
 * So during the modification, queries are first redirected to data[1]. Then we
346
 * modify data[0]. When that is complete, we redirect queries back to data[0]
347
 * and we can modify data[1].
348
 *
349
 * NOTE: The non-requirement for atomic modifications does _NOT_ include
350
 *       the publishing of new entries in the case where data is a dynamic
351
 *       data structure.
352
 *
353
 *       An iteration might start in data[0] and get suspended long enough
354
 *       to miss an entire modification sequence, once it resumes it might
355
 *       observe the new entry.
356
 *
357
 * NOTE: When data is a dynamic data structure; one should use regular RCU
358
 *       patterns to manage the lifetimes of the objects within.
5270 serge 359
 */
360
static inline void raw_write_seqcount_latch(seqcount_t *s)
361
{
362
       smp_wmb();      /* prior stores before incrementing "sequence" */
363
       s->sequence++;
364
       smp_wmb();      /* increment "sequence" before following stores */
365
}
366
 
367
/*
368
 * Sequence counter only version assumes that callers are using their
369
 * own mutexing.
370
 */
371
static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
372
{
373
	raw_write_seqcount_begin(s);
374
	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
375
}
376
 
377
static inline void write_seqcount_begin(seqcount_t *s)
378
{
379
	write_seqcount_begin_nested(s, 0);
380
}
381
 
382
static inline void write_seqcount_end(seqcount_t *s)
383
{
384
	seqcount_release(&s->dep_map, 1, _RET_IP_);
385
	raw_write_seqcount_end(s);
386
}
387
 
388
/**
6082 serge 389
 * write_seqcount_invalidate - invalidate in-progress read-side seq operations
5270 serge 390
 * @s: pointer to seqcount_t
391
 *
6082 serge 392
 * After write_seqcount_invalidate, no read-side seq operations will complete
5270 serge 393
 * successfully and see data older than this.
394
 */
6082 serge 395
static inline void write_seqcount_invalidate(seqcount_t *s)
5270 serge 396
{
397
	smp_wmb();
398
	s->sequence+=2;
399
}
400
 
401
typedef struct {
402
	struct seqcount seqcount;
403
	spinlock_t lock;
404
} seqlock_t;
405
 
406
/*
407
 * These macros triggered gcc-3.x compile-time problems.  We think these are
408
 * OK now.  Be cautious.
409
 */
410
#define __SEQLOCK_UNLOCKED(lockname)			\
411
	{						\
412
		.seqcount = SEQCNT_ZERO(lockname),	\
413
		.lock =	__SPIN_LOCK_UNLOCKED(lockname)	\
414
	}
415
 
416
#define seqlock_init(x)					\
417
	do {						\
418
		seqcount_init(&(x)->seqcount);		\
419
		spin_lock_init(&(x)->lock);		\
420
	} while (0)
421
 
422
#define DEFINE_SEQLOCK(x) \
423
		seqlock_t x = __SEQLOCK_UNLOCKED(x)
424
 
425
/*
426
 * Read side functions for starting and finalizing a read side section.
427
 */
428
static inline unsigned read_seqbegin(const seqlock_t *sl)
429
{
430
	return read_seqcount_begin(&sl->seqcount);
431
}
432
 
433
static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
434
{
435
	return read_seqcount_retry(&sl->seqcount, start);
436
}
437
 
438
/*
439
 * Lock out other writers and update the count.
440
 * Acts like a normal spin_lock/unlock.
441
 * Don't need preempt_disable() because that is in the spin_lock already.
442
 */
443
static inline void write_seqlock(seqlock_t *sl)
444
{
445
	spin_lock(&sl->lock);
446
	write_seqcount_begin(&sl->seqcount);
447
}
448
 
449
static inline void write_sequnlock(seqlock_t *sl)
450
{
451
	write_seqcount_end(&sl->seqcount);
452
	spin_unlock(&sl->lock);
453
}
454
 
455
static inline void write_seqlock_bh(seqlock_t *sl)
456
{
457
	spin_lock_bh(&sl->lock);
458
	write_seqcount_begin(&sl->seqcount);
459
}
460
 
461
static inline void write_sequnlock_bh(seqlock_t *sl)
462
{
463
	write_seqcount_end(&sl->seqcount);
464
	spin_unlock_bh(&sl->lock);
465
}
466
 
467
static inline void write_seqlock_irq(seqlock_t *sl)
468
{
469
	spin_lock_irq(&sl->lock);
470
	write_seqcount_begin(&sl->seqcount);
471
}
472
 
473
static inline void write_sequnlock_irq(seqlock_t *sl)
474
{
475
	write_seqcount_end(&sl->seqcount);
476
	spin_unlock_irq(&sl->lock);
477
}
478
 
479
static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
480
{
481
	unsigned long flags;
482
 
483
	spin_lock_irqsave(&sl->lock, flags);
484
	write_seqcount_begin(&sl->seqcount);
485
	return flags;
486
}
487
 
488
#define write_seqlock_irqsave(lock, flags)				\
489
	do { flags = __write_seqlock_irqsave(lock); } while (0)
490
 
491
static inline void
492
write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
493
{
494
	write_seqcount_end(&sl->seqcount);
495
	spin_unlock_irqrestore(&sl->lock, flags);
496
}
497
 
498
/*
499
 * A locking reader exclusively locks out other writers and locking readers,
500
 * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
501
 * Don't need preempt_disable() because that is in the spin_lock already.
502
 */
503
static inline void read_seqlock_excl(seqlock_t *sl)
504
{
505
	spin_lock(&sl->lock);
506
}
507
 
508
static inline void read_sequnlock_excl(seqlock_t *sl)
509
{
510
	spin_unlock(&sl->lock);
511
}
512
 
513
/**
514
 * read_seqbegin_or_lock - begin a sequence number check or locking block
515
 * @lock: sequence lock
516
 * @seq : sequence number to be checked
517
 *
518
 * First try it once optimistically without taking the lock. If that fails,
519
 * take the lock. The sequence number is also used as a marker for deciding
520
 * whether to be a reader (even) or writer (odd).
521
 * N.B. seq must be initialized to an even number to begin with.
522
 */
523
static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
524
{
525
	if (!(*seq & 1))	/* Even */
526
		*seq = read_seqbegin(lock);
527
	else			/* Odd */
528
		read_seqlock_excl(lock);
529
}
530
 
531
static inline int need_seqretry(seqlock_t *lock, int seq)
532
{
533
	return !(seq & 1) && read_seqretry(lock, seq);
534
}
535
 
536
static inline void done_seqretry(seqlock_t *lock, int seq)
537
{
538
	if (seq & 1)
539
		read_sequnlock_excl(lock);
540
}
541
 
542
static inline void read_seqlock_excl_bh(seqlock_t *sl)
543
{
544
	spin_lock_bh(&sl->lock);
545
}
546
 
547
static inline void read_sequnlock_excl_bh(seqlock_t *sl)
548
{
549
	spin_unlock_bh(&sl->lock);
550
}
551
 
552
static inline void read_seqlock_excl_irq(seqlock_t *sl)
553
{
554
	spin_lock_irq(&sl->lock);
555
}
556
 
557
static inline void read_sequnlock_excl_irq(seqlock_t *sl)
558
{
559
	spin_unlock_irq(&sl->lock);
560
}
561
 
562
static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
563
{
564
	unsigned long flags;
565
 
566
	spin_lock_irqsave(&sl->lock, flags);
567
	return flags;
568
}
569
 
570
#define read_seqlock_excl_irqsave(lock, flags)				\
571
	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
572
 
573
static inline void
574
read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
575
{
576
	spin_unlock_irqrestore(&sl->lock, flags);
577
}
578
 
579
static inline unsigned long
580
read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
581
{
582
	unsigned long flags = 0;
583
 
584
	if (!(*seq & 1))	/* Even */
585
		*seq = read_seqbegin(lock);
586
	else			/* Odd */
587
		read_seqlock_excl_irqsave(lock, flags);
588
 
589
	return flags;
590
}
591
 
592
static inline void
593
done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
594
{
595
	if (seq & 1)
596
		read_sequnlock_excl_irqrestore(lock, flags);
597
}
598
#endif /* __LINUX_SEQLOCK_H */