Subversion Repositories Kolibri OS

Rev

Rev 5270 | Rev 6934 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
5270 serge 1
#ifndef __LINUX_SEQLOCK_H
2
#define __LINUX_SEQLOCK_H
3
/*
4
 * Reader/writer consistent mechanism without starving writers. This type of
5
 * lock for data where the reader wants a consistent set of information
6
 * and is willing to retry if the information changes. There are two types
7
 * of readers:
8
 * 1. Sequence readers which never block a writer but they may have to retry
9
 *    if a writer is in progress by detecting change in sequence number.
10
 *    Writers do not wait for a sequence reader.
11
 * 2. Locking readers which will wait if a writer or another locking reader
12
 *    is in progress. A locking reader in progress will also block a writer
13
 *    from going forward. Unlike the regular rwlock, the read lock here is
14
 *    exclusive so that only one locking reader can get it.
15
 *
16
 * This is not as cache friendly as brlock. Also, this may not work well
17
 * for data that contains pointers, because any writer could
18
 * invalidate a pointer that a reader was following.
19
 *
20
 * Expected non-blocking reader usage:
21
 * 	do {
22
 *	    seq = read_seqbegin(&foo);
23
 * 	...
24
 *      } while (read_seqretry(&foo, seq));
25
 *
26
 *
27
 * On non-SMP the spin locks disappear but the writer still needs
28
 * to increment the sequence variables because an interrupt routine could
29
 * change the state of the data.
30
 *
6082 serge 31
 * Based on x86_64 vsyscall gettimeofday
5270 serge 32
 * by Keith Owens and Andrea Arcangeli
33
 */
34
 
35
#include 
36
//#include 
37
#include 
6082 serge 38
#include 
5270 serge 39
#include 
40
 
41
/*
42
 * Version using sequence counter only.
43
 * This can be used when code has its own mutex protecting the
44
 * updating starting before the write_seqcountbeqin() and ending
45
 * after the write_seqcount_end().
46
 */
47
typedef struct seqcount {
48
	unsigned sequence;
49
#ifdef CONFIG_DEBUG_LOCK_ALLOC
50
	struct lockdep_map dep_map;
51
#endif
52
} seqcount_t;
53
 
54
static inline void __seqcount_init(seqcount_t *s, const char *name,
55
					  struct lock_class_key *key)
56
{
57
	/*
58
	 * Make sure we are not reinitializing a held lock:
59
	 */
60
	lockdep_init_map(&s->dep_map, name, key, 0);
61
	s->sequence = 0;
62
}
63
 
64
#ifdef CONFIG_DEBUG_LOCK_ALLOC
65
# define SEQCOUNT_DEP_MAP_INIT(lockname) \
66
		.dep_map = { .name = #lockname } \
67
 
68
# define seqcount_init(s)				\
69
	do {						\
70
		static struct lock_class_key __key;	\
71
		__seqcount_init((s), #s, &__key);	\
72
	} while (0)
73
 
74
static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
75
{
76
	seqcount_t *l = (seqcount_t *)s;
77
	unsigned long flags;
78
 
79
	local_irq_save(flags);
80
	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
81
	seqcount_release(&l->dep_map, 1, _RET_IP_);
82
	local_irq_restore(flags);
83
}
84
 
85
#else
86
# define SEQCOUNT_DEP_MAP_INIT(lockname)
87
# define seqcount_init(s) __seqcount_init(s, NULL, NULL)
88
# define seqcount_lockdep_reader_access(x)
89
#endif
90
 
91
#define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
92
 
93
 
94
/**
95
 * __read_seqcount_begin - begin a seq-read critical section (without barrier)
96
 * @s: pointer to seqcount_t
97
 * Returns: count to be passed to read_seqcount_retry
98
 *
99
 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
100
 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
101
 * provided before actually loading any of the variables that are to be
102
 * protected in this critical section.
103
 *
104
 * Use carefully, only in critical code, and comment how the barrier is
105
 * provided.
106
 */
107
static inline unsigned __read_seqcount_begin(const seqcount_t *s)
108
{
109
	unsigned ret;
110
 
111
repeat:
6082 serge 112
	ret = READ_ONCE(s->sequence);
5270 serge 113
	if (unlikely(ret & 1)) {
114
		cpu_relax();
115
		goto repeat;
116
	}
117
	return ret;
118
}
119
 
120
/**
121
 * raw_read_seqcount - Read the raw seqcount
122
 * @s: pointer to seqcount_t
123
 * Returns: count to be passed to read_seqcount_retry
124
 *
125
 * raw_read_seqcount opens a read critical section of the given
126
 * seqcount without any lockdep checking and without checking or
127
 * masking the LSB. Calling code is responsible for handling that.
128
 */
129
static inline unsigned raw_read_seqcount(const seqcount_t *s)
130
{
6082 serge 131
	unsigned ret = READ_ONCE(s->sequence);
5270 serge 132
	smp_rmb();
133
	return ret;
134
}
135
 
136
/**
137
 * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
138
 * @s: pointer to seqcount_t
139
 * Returns: count to be passed to read_seqcount_retry
140
 *
141
 * raw_read_seqcount_begin opens a read critical section of the given
142
 * seqcount, but without any lockdep checking. Validity of the critical
143
 * section is tested by checking read_seqcount_retry function.
144
 */
145
static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
146
{
147
	unsigned ret = __read_seqcount_begin(s);
148
	smp_rmb();
149
	return ret;
150
}
151
 
152
/**
153
 * read_seqcount_begin - begin a seq-read critical section
154
 * @s: pointer to seqcount_t
155
 * Returns: count to be passed to read_seqcount_retry
156
 *
157
 * read_seqcount_begin opens a read critical section of the given seqcount.
158
 * Validity of the critical section is tested by checking read_seqcount_retry
159
 * function.
160
 */
161
static inline unsigned read_seqcount_begin(const seqcount_t *s)
162
{
163
	seqcount_lockdep_reader_access(s);
164
	return raw_read_seqcount_begin(s);
165
}
166
 
167
/**
168
 * raw_seqcount_begin - begin a seq-read critical section
169
 * @s: pointer to seqcount_t
170
 * Returns: count to be passed to read_seqcount_retry
171
 *
172
 * raw_seqcount_begin opens a read critical section of the given seqcount.
173
 * Validity of the critical section is tested by checking read_seqcount_retry
174
 * function.
175
 *
176
 * Unlike read_seqcount_begin(), this function will not wait for the count
177
 * to stabilize. If a writer is active when we begin, we will fail the
178
 * read_seqcount_retry() instead of stabilizing at the beginning of the
179
 * critical section.
180
 */
181
static inline unsigned raw_seqcount_begin(const seqcount_t *s)
182
{
6082 serge 183
	unsigned ret = READ_ONCE(s->sequence);
5270 serge 184
	smp_rmb();
185
	return ret & ~1;
186
}
187
 
188
/**
189
 * __read_seqcount_retry - end a seq-read critical section (without barrier)
190
 * @s: pointer to seqcount_t
191
 * @start: count, from read_seqcount_begin
192
 * Returns: 1 if retry is required, else 0
193
 *
194
 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
195
 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
196
 * provided before actually loading any of the variables that are to be
197
 * protected in this critical section.
198
 *
199
 * Use carefully, only in critical code, and comment how the barrier is
200
 * provided.
201
 */
202
static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
203
{
204
	return unlikely(s->sequence != start);
205
}
206
 
207
/**
208
 * read_seqcount_retry - end a seq-read critical section
209
 * @s: pointer to seqcount_t
210
 * @start: count, from read_seqcount_begin
211
 * Returns: 1 if retry is required, else 0
212
 *
213
 * read_seqcount_retry closes a read critical section of the given seqcount.
214
 * If the critical section was invalid, it must be ignored (and typically
215
 * retried).
216
 */
217
static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
218
{
219
	smp_rmb();
220
	return __read_seqcount_retry(s, start);
221
}
222
 
223
 
224
 
225
static inline void raw_write_seqcount_begin(seqcount_t *s)
226
{
227
	s->sequence++;
228
	smp_wmb();
229
}
230
 
231
static inline void raw_write_seqcount_end(seqcount_t *s)
232
{
233
	smp_wmb();
234
	s->sequence++;
235
}
236
 
237
/*
238
 * raw_write_seqcount_latch - redirect readers to even/odd copy
239
 * @s: pointer to seqcount_t
6082 serge 240
 *
241
 * The latch technique is a multiversion concurrency control method that allows
242
 * queries during non-atomic modifications. If you can guarantee queries never
243
 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
244
 * -- you most likely do not need this.
245
 *
246
 * Where the traditional RCU/lockless data structures rely on atomic
247
 * modifications to ensure queries observe either the old or the new state the
248
 * latch allows the same for non-atomic updates. The trade-off is doubling the
249
 * cost of storage; we have to maintain two copies of the entire data
250
 * structure.
251
 *
252
 * Very simply put: we first modify one copy and then the other. This ensures
253
 * there is always one copy in a stable state, ready to give us an answer.
254
 *
255
 * The basic form is a data structure like:
256
 *
257
 * struct latch_struct {
258
 *	seqcount_t		seq;
259
 *	struct data_struct	data[2];
260
 * };
261
 *
262
 * Where a modification, which is assumed to be externally serialized, does the
263
 * following:
264
 *
265
 * void latch_modify(struct latch_struct *latch, ...)
266
 * {
267
 *	smp_wmb();	<- Ensure that the last data[1] update is visible
268
 *	latch->seq++;
269
 *	smp_wmb();	<- Ensure that the seqcount update is visible
270
 *
271
 *	modify(latch->data[0], ...);
272
 *
273
 *	smp_wmb();	<- Ensure that the data[0] update is visible
274
 *	latch->seq++;
275
 *	smp_wmb();	<- Ensure that the seqcount update is visible
276
 *
277
 *	modify(latch->data[1], ...);
278
 * }
279
 *
280
 * The query will have a form like:
281
 *
282
 * struct entry *latch_query(struct latch_struct *latch, ...)
283
 * {
284
 *	struct entry *entry;
285
 *	unsigned seq, idx;
286
 *
287
 *	do {
288
 *		seq = lockless_dereference(latch->seq);
289
 *
290
 *		idx = seq & 0x01;
291
 *		entry = data_query(latch->data[idx], ...);
292
 *
293
 *		smp_rmb();
294
 *	} while (seq != latch->seq);
295
 *
296
 *	return entry;
297
 * }
298
 *
299
 * So during the modification, queries are first redirected to data[1]. Then we
300
 * modify data[0]. When that is complete, we redirect queries back to data[0]
301
 * and we can modify data[1].
302
 *
303
 * NOTE: The non-requirement for atomic modifications does _NOT_ include
304
 *       the publishing of new entries in the case where data is a dynamic
305
 *       data structure.
306
 *
307
 *       An iteration might start in data[0] and get suspended long enough
308
 *       to miss an entire modification sequence, once it resumes it might
309
 *       observe the new entry.
310
 *
311
 * NOTE: When data is a dynamic data structure; one should use regular RCU
312
 *       patterns to manage the lifetimes of the objects within.
5270 serge 313
 */
314
static inline void raw_write_seqcount_latch(seqcount_t *s)
315
{
316
       smp_wmb();      /* prior stores before incrementing "sequence" */
317
       s->sequence++;
318
       smp_wmb();      /* increment "sequence" before following stores */
319
}
320
 
321
/*
322
 * Sequence counter only version assumes that callers are using their
323
 * own mutexing.
324
 */
325
static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
326
{
327
	raw_write_seqcount_begin(s);
328
	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
329
}
330
 
331
static inline void write_seqcount_begin(seqcount_t *s)
332
{
333
	write_seqcount_begin_nested(s, 0);
334
}
335
 
336
static inline void write_seqcount_end(seqcount_t *s)
337
{
338
	seqcount_release(&s->dep_map, 1, _RET_IP_);
339
	raw_write_seqcount_end(s);
340
}
341
 
342
/**
6082 serge 343
 * write_seqcount_invalidate - invalidate in-progress read-side seq operations
5270 serge 344
 * @s: pointer to seqcount_t
345
 *
6082 serge 346
 * After write_seqcount_invalidate, no read-side seq operations will complete
5270 serge 347
 * successfully and see data older than this.
348
 */
6082 serge 349
static inline void write_seqcount_invalidate(seqcount_t *s)
5270 serge 350
{
351
	smp_wmb();
352
	s->sequence+=2;
353
}
354
 
355
typedef struct {
356
	struct seqcount seqcount;
357
	spinlock_t lock;
358
} seqlock_t;
359
 
360
/*
361
 * These macros triggered gcc-3.x compile-time problems.  We think these are
362
 * OK now.  Be cautious.
363
 */
364
#define __SEQLOCK_UNLOCKED(lockname)			\
365
	{						\
366
		.seqcount = SEQCNT_ZERO(lockname),	\
367
		.lock =	__SPIN_LOCK_UNLOCKED(lockname)	\
368
	}
369
 
370
#define seqlock_init(x)					\
371
	do {						\
372
		seqcount_init(&(x)->seqcount);		\
373
		spin_lock_init(&(x)->lock);		\
374
	} while (0)
375
 
376
#define DEFINE_SEQLOCK(x) \
377
		seqlock_t x = __SEQLOCK_UNLOCKED(x)
378
 
379
/*
380
 * Read side functions for starting and finalizing a read side section.
381
 */
382
static inline unsigned read_seqbegin(const seqlock_t *sl)
383
{
384
	return read_seqcount_begin(&sl->seqcount);
385
}
386
 
387
static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
388
{
389
	return read_seqcount_retry(&sl->seqcount, start);
390
}
391
 
392
/*
393
 * Lock out other writers and update the count.
394
 * Acts like a normal spin_lock/unlock.
395
 * Don't need preempt_disable() because that is in the spin_lock already.
396
 */
397
static inline void write_seqlock(seqlock_t *sl)
398
{
399
	spin_lock(&sl->lock);
400
	write_seqcount_begin(&sl->seqcount);
401
}
402
 
403
static inline void write_sequnlock(seqlock_t *sl)
404
{
405
	write_seqcount_end(&sl->seqcount);
406
	spin_unlock(&sl->lock);
407
}
408
 
409
static inline void write_seqlock_bh(seqlock_t *sl)
410
{
411
	spin_lock_bh(&sl->lock);
412
	write_seqcount_begin(&sl->seqcount);
413
}
414
 
415
static inline void write_sequnlock_bh(seqlock_t *sl)
416
{
417
	write_seqcount_end(&sl->seqcount);
418
	spin_unlock_bh(&sl->lock);
419
}
420
 
421
static inline void write_seqlock_irq(seqlock_t *sl)
422
{
423
	spin_lock_irq(&sl->lock);
424
	write_seqcount_begin(&sl->seqcount);
425
}
426
 
427
static inline void write_sequnlock_irq(seqlock_t *sl)
428
{
429
	write_seqcount_end(&sl->seqcount);
430
	spin_unlock_irq(&sl->lock);
431
}
432
 
433
static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
434
{
435
	unsigned long flags;
436
 
437
	spin_lock_irqsave(&sl->lock, flags);
438
	write_seqcount_begin(&sl->seqcount);
439
	return flags;
440
}
441
 
442
#define write_seqlock_irqsave(lock, flags)				\
443
	do { flags = __write_seqlock_irqsave(lock); } while (0)
444
 
445
static inline void
446
write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
447
{
448
	write_seqcount_end(&sl->seqcount);
449
	spin_unlock_irqrestore(&sl->lock, flags);
450
}
451
 
452
/*
453
 * A locking reader exclusively locks out other writers and locking readers,
454
 * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
455
 * Don't need preempt_disable() because that is in the spin_lock already.
456
 */
457
static inline void read_seqlock_excl(seqlock_t *sl)
458
{
459
	spin_lock(&sl->lock);
460
}
461
 
462
static inline void read_sequnlock_excl(seqlock_t *sl)
463
{
464
	spin_unlock(&sl->lock);
465
}
466
 
467
/**
468
 * read_seqbegin_or_lock - begin a sequence number check or locking block
469
 * @lock: sequence lock
470
 * @seq : sequence number to be checked
471
 *
472
 * First try it once optimistically without taking the lock. If that fails,
473
 * take the lock. The sequence number is also used as a marker for deciding
474
 * whether to be a reader (even) or writer (odd).
475
 * N.B. seq must be initialized to an even number to begin with.
476
 */
477
static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
478
{
479
	if (!(*seq & 1))	/* Even */
480
		*seq = read_seqbegin(lock);
481
	else			/* Odd */
482
		read_seqlock_excl(lock);
483
}
484
 
485
static inline int need_seqretry(seqlock_t *lock, int seq)
486
{
487
	return !(seq & 1) && read_seqretry(lock, seq);
488
}
489
 
490
static inline void done_seqretry(seqlock_t *lock, int seq)
491
{
492
	if (seq & 1)
493
		read_sequnlock_excl(lock);
494
}
495
 
496
static inline void read_seqlock_excl_bh(seqlock_t *sl)
497
{
498
	spin_lock_bh(&sl->lock);
499
}
500
 
501
static inline void read_sequnlock_excl_bh(seqlock_t *sl)
502
{
503
	spin_unlock_bh(&sl->lock);
504
}
505
 
506
static inline void read_seqlock_excl_irq(seqlock_t *sl)
507
{
508
	spin_lock_irq(&sl->lock);
509
}
510
 
511
static inline void read_sequnlock_excl_irq(seqlock_t *sl)
512
{
513
	spin_unlock_irq(&sl->lock);
514
}
515
 
516
static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
517
{
518
	unsigned long flags;
519
 
520
	spin_lock_irqsave(&sl->lock, flags);
521
	return flags;
522
}
523
 
524
#define read_seqlock_excl_irqsave(lock, flags)				\
525
	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
526
 
527
static inline void
528
read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
529
{
530
	spin_unlock_irqrestore(&sl->lock, flags);
531
}
532
 
533
static inline unsigned long
534
read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
535
{
536
	unsigned long flags = 0;
537
 
538
	if (!(*seq & 1))	/* Even */
539
		*seq = read_seqbegin(lock);
540
	else			/* Odd */
541
		read_seqlock_excl_irqsave(lock, flags);
542
 
543
	return flags;
544
}
545
 
546
static inline void
547
done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
548
{
549
	if (seq & 1)
550
		read_sequnlock_excl_irqrestore(lock, flags);
551
}
552
#endif /* __LINUX_SEQLOCK_H */