Subversion Repositories Kolibri OS

Rev

Rev 6295 | Rev 6936 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
5270 serge 1
/*
2
 * Read-Copy Update mechanism for mutual exclusion
3
 *
4
 * This program is free software; you can redistribute it and/or modify
5
 * it under the terms of the GNU General Public License as published by
6
 * the Free Software Foundation; either version 2 of the License, or
7
 * (at your option) any later version.
8
 *
9
 * This program is distributed in the hope that it will be useful,
10
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
 * GNU General Public License for more details.
13
 *
14
 * You should have received a copy of the GNU General Public License
15
 * along with this program; if not, you can access it online at
16
 * http://www.gnu.org/licenses/gpl-2.0.html.
17
 *
18
 * Copyright IBM Corporation, 2001
19
 *
20
 * Author: Dipankar Sarma 
21
 *
22
 * Based on the original work by Paul McKenney 
23
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24
 * Papers:
25
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27
 *
28
 * For detailed explanation of Read-Copy Update mechanism see -
29
 *		http://lse.sourceforge.net/locking/rcupdate.html
30
 *
31
 */
32
 
33
#ifndef __LINUX_RCUPDATE_H
34
#define __LINUX_RCUPDATE_H
35
 
36
#include 
37
#include 
38
#include 
39
#include 
40
//#include 
41
#include 
42
#include 
43
#include 
44
//#include 
45
#include 
46
#include 
6082 serge 47
#include 
48
 
5270 serge 49
#include 
50
 
51
extern int rcu_expedited; /* for sysctl */
52
 
6082 serge 53
#ifdef CONFIG_TINY_RCU
54
/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
55
static inline bool rcu_gp_is_expedited(void)  /* Internal RCU use. */
56
{
57
	return false;
58
}
59
 
60
static inline void rcu_expedite_gp(void)
61
{
62
}
63
 
64
static inline void rcu_unexpedite_gp(void)
65
{
66
}
67
#else /* #ifdef CONFIG_TINY_RCU */
68
bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
69
void rcu_expedite_gp(void);
70
void rcu_unexpedite_gp(void);
71
#endif /* #else #ifdef CONFIG_TINY_RCU */
72
 
5270 serge 73
enum rcutorture_type {
74
	RCU_FLAVOR,
75
	RCU_BH_FLAVOR,
76
	RCU_SCHED_FLAVOR,
77
	RCU_TASKS_FLAVOR,
78
	SRCU_FLAVOR,
79
	INVALID_RCU_FLAVOR
80
};
81
 
82
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
83
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
84
			    unsigned long *gpnum, unsigned long *completed);
85
void rcutorture_record_test_transition(void);
86
void rcutorture_record_progress(unsigned long vernum);
87
void do_trace_rcu_torture_read(const char *rcutorturename,
88
			       struct rcu_head *rhp,
89
			       unsigned long secs,
90
			       unsigned long c_old,
91
			       unsigned long c);
92
#else
93
static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
94
					  int *flags,
95
					  unsigned long *gpnum,
96
					  unsigned long *completed)
97
{
98
	*flags = 0;
99
	*gpnum = 0;
100
	*completed = 0;
101
}
102
static inline void rcutorture_record_test_transition(void)
103
{
104
}
105
static inline void rcutorture_record_progress(unsigned long vernum)
106
{
107
}
108
#ifdef CONFIG_RCU_TRACE
109
void do_trace_rcu_torture_read(const char *rcutorturename,
110
			       struct rcu_head *rhp,
111
			       unsigned long secs,
112
			       unsigned long c_old,
113
			       unsigned long c);
114
#else
115
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
116
	do { } while (0)
117
#endif
118
#endif
119
 
120
#define UINT_CMP_GE(a, b)	(UINT_MAX / 2 >= (a) - (b))
121
#define UINT_CMP_LT(a, b)	(UINT_MAX / 2 < (a) - (b))
122
#define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
123
#define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
124
#define ulong2long(a)		(*(long *)(&(a)))
125
 
126
/* Exported common interfaces */
127
 
128
#ifdef CONFIG_PREEMPT_RCU
129
 
130
/**
131
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
132
 * @head: structure to be used for queueing the RCU updates.
133
 * @func: actual callback function to be invoked after the grace period
134
 *
135
 * The callback function will be invoked some time after a full grace
136
 * period elapses, in other words after all pre-existing RCU read-side
137
 * critical sections have completed.  However, the callback function
138
 * might well execute concurrently with RCU read-side critical sections
139
 * that started after call_rcu() was invoked.  RCU read-side critical
140
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
141
 * and may be nested.
142
 *
143
 * Note that all CPUs must agree that the grace period extended beyond
144
 * all pre-existing RCU read-side critical section.  On systems with more
145
 * than one CPU, this means that when "func()" is invoked, each CPU is
146
 * guaranteed to have executed a full memory barrier since the end of its
147
 * last RCU read-side critical section whose beginning preceded the call
148
 * to call_rcu().  It also means that each CPU executing an RCU read-side
149
 * critical section that continues beyond the start of "func()" must have
150
 * executed a memory barrier after the call_rcu() but before the beginning
151
 * of that RCU read-side critical section.  Note that these guarantees
152
 * include CPUs that are offline, idle, or executing in user mode, as
153
 * well as CPUs that are executing in the kernel.
154
 *
155
 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
156
 * resulting RCU callback function "func()", then both CPU A and CPU B are
157
 * guaranteed to execute a full memory barrier during the time interval
158
 * between the call to call_rcu() and the invocation of "func()" -- even
159
 * if CPU A and CPU B are the same CPU (but again only if the system has
160
 * more than one CPU).
161
 */
162
void call_rcu(struct rcu_head *head,
6082 serge 163
	      rcu_callback_t func);
5270 serge 164
 
165
#else /* #ifdef CONFIG_PREEMPT_RCU */
166
 
167
/* In classic RCU, call_rcu() is just call_rcu_sched(). */
168
#define	call_rcu	call_rcu_sched
169
 
170
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
171
 
172
/**
173
 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
174
 * @head: structure to be used for queueing the RCU updates.
175
 * @func: actual callback function to be invoked after the grace period
176
 *
177
 * The callback function will be invoked some time after a full grace
178
 * period elapses, in other words after all currently executing RCU
179
 * read-side critical sections have completed. call_rcu_bh() assumes
180
 * that the read-side critical sections end on completion of a softirq
181
 * handler. This means that read-side critical sections in process
182
 * context must not be interrupted by softirqs. This interface is to be
183
 * used when most of the read-side critical sections are in softirq context.
184
 * RCU read-side critical sections are delimited by :
185
 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
186
 *  OR
187
 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
188
 *  These may be nested.
189
 *
190
 * See the description of call_rcu() for more detailed information on
191
 * memory ordering guarantees.
192
 */
193
void call_rcu_bh(struct rcu_head *head,
6082 serge 194
		 rcu_callback_t func);
5270 serge 195
 
196
/**
197
 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
198
 * @head: structure to be used for queueing the RCU updates.
199
 * @func: actual callback function to be invoked after the grace period
200
 *
201
 * The callback function will be invoked some time after a full grace
202
 * period elapses, in other words after all currently executing RCU
203
 * read-side critical sections have completed. call_rcu_sched() assumes
204
 * that the read-side critical sections end on enabling of preemption
205
 * or on voluntary preemption.
206
 * RCU read-side critical sections are delimited by :
207
 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
208
 *  OR
209
 *  anything that disables preemption.
210
 *  These may be nested.
211
 *
212
 * See the description of call_rcu() for more detailed information on
213
 * memory ordering guarantees.
214
 */
215
void call_rcu_sched(struct rcu_head *head,
6082 serge 216
		    rcu_callback_t func);
5270 serge 217
 
218
void synchronize_sched(void);
219
 
6588 serge 220
#define wait_rcu_gp(...)
5270 serge 221
/**
222
 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
223
 * @head: structure to be used for queueing the RCU updates.
224
 * @func: actual callback function to be invoked after the grace period
225
 *
226
 * The callback function will be invoked some time after a full grace
227
 * period elapses, in other words after all currently executing RCU
228
 * read-side critical sections have completed. call_rcu_tasks() assumes
229
 * that the read-side critical sections end at a voluntary context
230
 * switch (not a preemption!), entry into idle, or transition to usermode
231
 * execution.  As such, there are no read-side primitives analogous to
232
 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
233
 * to determine that all tasks have passed through a safe state, not so
234
 * much for data-strcuture synchronization.
235
 *
236
 * See the description of call_rcu() for more detailed information on
237
 * memory ordering guarantees.
238
 */
6082 serge 239
void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
5270 serge 240
void synchronize_rcu_tasks(void);
241
void rcu_barrier_tasks(void);
242
 
243
#ifdef CONFIG_PREEMPT_RCU
244
 
245
void __rcu_read_lock(void);
246
void __rcu_read_unlock(void);
247
void rcu_read_unlock_special(struct task_struct *t);
248
void synchronize_rcu(void);
249
 
250
/*
251
 * Defined as a macro as it is a very low level header included from
252
 * areas that don't even know about current.  This gives the rcu_read_lock()
253
 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
254
 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
255
 */
256
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
257
 
258
#else /* #ifdef CONFIG_PREEMPT_RCU */
259
 
260
static inline void __rcu_read_lock(void)
261
{
6082 serge 262
	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
263
		preempt_disable();
5270 serge 264
}
265
 
266
static inline void __rcu_read_unlock(void)
267
{
6082 serge 268
	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
269
		preempt_enable();
5270 serge 270
}
271
 
272
static inline void synchronize_rcu(void)
273
{
274
	synchronize_sched();
275
}
276
 
277
static inline int rcu_preempt_depth(void)
278
{
279
	return 0;
280
}
281
 
282
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
283
 
284
/* Internal to kernel */
285
void rcu_init(void);
6082 serge 286
void rcu_end_inkernel_boot(void);
5270 serge 287
void rcu_sched_qs(void);
288
void rcu_bh_qs(void);
289
void rcu_check_callbacks(int user);
290
struct notifier_block;
6082 serge 291
int rcu_cpu_notify(struct notifier_block *self,
292
		   unsigned long action, void *hcpu);
5270 serge 293
 
294
#ifdef CONFIG_RCU_STALL_COMMON
295
void rcu_sysrq_start(void);
296
void rcu_sysrq_end(void);
297
#else /* #ifdef CONFIG_RCU_STALL_COMMON */
298
static inline void rcu_sysrq_start(void)
299
{
300
}
301
static inline void rcu_sysrq_end(void)
302
{
303
}
304
#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
305
 
6082 serge 306
#ifdef CONFIG_NO_HZ_FULL
5270 serge 307
void rcu_user_enter(void);
308
void rcu_user_exit(void);
309
#else
310
static inline void rcu_user_enter(void) { }
311
static inline void rcu_user_exit(void) { }
312
static inline void rcu_user_hooks_switch(struct task_struct *prev,
313
					 struct task_struct *next) { }
6082 serge 314
#endif /* CONFIG_NO_HZ_FULL */
5270 serge 315
 
316
#ifdef CONFIG_RCU_NOCB_CPU
317
void rcu_init_nohz(void);
318
#else /* #ifdef CONFIG_RCU_NOCB_CPU */
319
static inline void rcu_init_nohz(void)
320
{
321
}
322
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
323
 
324
/**
325
 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
326
 * @a: Code that RCU needs to pay attention to.
327
 *
328
 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
329
 * in the inner idle loop, that is, between the rcu_idle_enter() and
330
 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
331
 * critical sections.  However, things like powertop need tracepoints
332
 * in the inner idle loop.
333
 *
334
 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
335
 * will tell RCU that it needs to pay attending, invoke its argument
336
 * (in this example, a call to the do_something_with_RCU() function),
337
 * and then tell RCU to go back to ignoring this CPU.  It is permissible
338
 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
339
 * quite limited.  If deeper nesting is required, it will be necessary
340
 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
341
 */
342
#define RCU_NONIDLE(a) \
343
	do { \
344
		rcu_irq_enter(); \
345
		do { a; } while (0); \
346
		rcu_irq_exit(); \
347
	} while (0)
348
 
349
/*
350
 * Note a voluntary context switch for RCU-tasks benefit.  This is a
351
 * macro rather than an inline function to avoid #include hell.
352
 */
353
#ifdef CONFIG_TASKS_RCU
354
#define TASKS_RCU(x) x
355
extern struct srcu_struct tasks_rcu_exit_srcu;
356
#define rcu_note_voluntary_context_switch(t) \
357
	do { \
6082 serge 358
		rcu_all_qs(); \
359
		if (READ_ONCE((t)->rcu_tasks_holdout)) \
360
			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
5270 serge 361
	} while (0)
362
#else /* #ifdef CONFIG_TASKS_RCU */
363
#define TASKS_RCU(x) do { } while (0)
6082 serge 364
#define rcu_note_voluntary_context_switch(t)	rcu_all_qs()
5270 serge 365
#endif /* #else #ifdef CONFIG_TASKS_RCU */
366
 
367
/**
368
 * cond_resched_rcu_qs - Report potential quiescent states to RCU
369
 *
370
 * This macro resembles cond_resched(), except that it is defined to
371
 * report potential quiescent states to RCU-tasks even if the cond_resched()
372
 * machinery were to be shut off, as some advocate for PREEMPT kernels.
373
 */
374
#define cond_resched_rcu_qs() \
375
do { \
376
	if (!cond_resched()) \
377
		rcu_note_voluntary_context_switch(current); \
378
} while (0)
379
 
380
#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
381
bool __rcu_is_watching(void);
382
#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
383
 
384
/*
385
 * Infrastructure to implement the synchronize_() primitives in
386
 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
387
 */
388
 
389
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
390
#include 
391
#elif defined(CONFIG_TINY_RCU)
392
#include 
393
#else
394
#error "Unknown RCU implementation specified to kernel configuration"
395
#endif
396
 
397
/*
398
 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
399
 * initialization and destruction of rcu_head on the stack. rcu_head structures
400
 * allocated dynamically in the heap or defined statically don't need any
401
 * initialization.
402
 */
403
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
404
void init_rcu_head(struct rcu_head *head);
405
void destroy_rcu_head(struct rcu_head *head);
406
void init_rcu_head_on_stack(struct rcu_head *head);
407
void destroy_rcu_head_on_stack(struct rcu_head *head);
408
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
409
static inline void init_rcu_head(struct rcu_head *head)
410
{
411
}
412
 
413
static inline void destroy_rcu_head(struct rcu_head *head)
414
{
415
}
416
 
417
static inline void init_rcu_head_on_stack(struct rcu_head *head)
418
{
419
}
420
 
421
static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
422
{
423
}
424
#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
425
 
426
#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
427
bool rcu_lockdep_current_cpu_online(void);
428
#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
429
static inline bool rcu_lockdep_current_cpu_online(void)
430
{
431
	return true;
432
}
433
#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
434
 
435
#ifdef CONFIG_DEBUG_LOCK_ALLOC
436
 
437
static inline void rcu_lock_acquire(struct lockdep_map *map)
438
{
439
	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
440
}
441
 
442
static inline void rcu_lock_release(struct lockdep_map *map)
443
{
444
	lock_release(map, 1, _THIS_IP_);
445
}
446
 
447
extern struct lockdep_map rcu_lock_map;
448
extern struct lockdep_map rcu_bh_lock_map;
449
extern struct lockdep_map rcu_sched_lock_map;
450
extern struct lockdep_map rcu_callback_map;
451
int debug_lockdep_rcu_enabled(void);
452
 
453
int rcu_read_lock_held(void);
454
int rcu_read_lock_bh_held(void);
455
 
456
/**
457
 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
458
 *
459
 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
460
 * RCU-sched read-side critical section.  In absence of
461
 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
6295 serge 462
 * critical section unless it can prove otherwise.
5270 serge 463
 */
464
#ifdef CONFIG_PREEMPT_COUNT
6295 serge 465
int rcu_read_lock_sched_held(void);
5270 serge 466
#else /* #ifdef CONFIG_PREEMPT_COUNT */
467
static inline int rcu_read_lock_sched_held(void)
468
{
469
	return 1;
470
}
471
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
472
 
473
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
474
 
475
# define rcu_lock_acquire(a)		do { } while (0)
476
# define rcu_lock_release(a)		do { } while (0)
477
 
478
static inline int rcu_read_lock_held(void)
479
{
480
	return 1;
481
}
482
 
483
static inline int rcu_read_lock_bh_held(void)
484
{
485
	return 1;
486
}
487
 
488
#ifdef CONFIG_PREEMPT_COUNT
489
static inline int rcu_read_lock_sched_held(void)
490
{
491
	return preempt_count() != 0 || irqs_disabled();
492
}
493
#else /* #ifdef CONFIG_PREEMPT_COUNT */
494
static inline int rcu_read_lock_sched_held(void)
495
{
496
	return 1;
497
}
498
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
499
 
500
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
501
 
502
#ifdef CONFIG_PROVE_RCU
503
 
504
/**
6295 serge 505
 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
5270 serge 506
 * @c: condition to check
507
 * @s: informative message
508
 */
6295 serge 509
#define RCU_LOCKDEP_WARN(c, s)						\
5270 serge 510
	do {								\
511
		static bool __section(.data.unlikely) __warned;		\
6295 serge 512
		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
5270 serge 513
			__warned = true;				\
514
			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
515
		}							\
516
	} while (0)
517
 
518
#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
519
static inline void rcu_preempt_sleep_check(void)
520
{
6295 serge 521
	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
5270 serge 522
			   "Illegal context switch in RCU read-side critical section");
523
}
524
#else /* #ifdef CONFIG_PROVE_RCU */
525
static inline void rcu_preempt_sleep_check(void)
526
{
527
}
528
#endif /* #else #ifdef CONFIG_PROVE_RCU */
529
 
530
#define rcu_sleep_check()						\
531
	do {								\
532
		rcu_preempt_sleep_check();				\
6295 serge 533
		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
5270 serge 534
				   "Illegal context switch in RCU-bh read-side critical section"); \
6295 serge 535
		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
5270 serge 536
				   "Illegal context switch in RCU-sched read-side critical section"); \
537
	} while (0)
538
 
539
#else /* #ifdef CONFIG_PROVE_RCU */
540
 
6295 serge 541
#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
5270 serge 542
#define rcu_sleep_check() do { } while (0)
543
 
544
#endif /* #else #ifdef CONFIG_PROVE_RCU */
545
 
546
/*
547
 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
548
 * and rcu_assign_pointer().  Some of these could be folded into their
549
 * callers, but they are left separate in order to ease introduction of
550
 * multiple flavors of pointers to match the multiple flavors of RCU
551
 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
552
 * the future.
553
 */
554
 
555
#ifdef __CHECKER__
556
#define rcu_dereference_sparse(p, space) \
557
	((void)(((typeof(*p) space *)p) == p))
558
#else /* #ifdef __CHECKER__ */
559
#define rcu_dereference_sparse(p, space)
560
#endif /* #else #ifdef __CHECKER__ */
561
 
562
#define __rcu_access_pointer(p, space) \
563
({ \
6082 serge 564
	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
5270 serge 565
	rcu_dereference_sparse(p, space); \
566
	((typeof(*p) __force __kernel *)(_________p1)); \
567
})
568
#define __rcu_dereference_check(p, c, space) \
569
({ \
6082 serge 570
	/* Dependency order vs. p above. */ \
571
	typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
6295 serge 572
	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
5270 serge 573
	rcu_dereference_sparse(p, space); \
6082 serge 574
	((typeof(*p) __force __kernel *)(________p1)); \
5270 serge 575
})
576
#define __rcu_dereference_protected(p, c, space) \
577
({ \
6295 serge 578
	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
5270 serge 579
	rcu_dereference_sparse(p, space); \
580
	((typeof(*p) __force __kernel *)(p)); \
581
})
582
 
583
/**
584
 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
585
 * @v: The value to statically initialize with.
586
 */
587
#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
588
 
589
/**
590
 * rcu_assign_pointer() - assign to RCU-protected pointer
591
 * @p: pointer to assign to
592
 * @v: value to assign (publish)
593
 *
594
 * Assigns the specified value to the specified RCU-protected
595
 * pointer, ensuring that any concurrent RCU readers will see
596
 * any prior initialization.
597
 *
598
 * Inserts memory barriers on architectures that require them
599
 * (which is most of them), and also prevents the compiler from
600
 * reordering the code that initializes the structure after the pointer
601
 * assignment.  More importantly, this call documents which pointers
602
 * will be dereferenced by RCU read-side code.
603
 *
604
 * In some special cases, you may use RCU_INIT_POINTER() instead
605
 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
606
 * to the fact that it does not constrain either the CPU or the compiler.
607
 * That said, using RCU_INIT_POINTER() when you should have used
608
 * rcu_assign_pointer() is a very bad thing that results in
609
 * impossible-to-diagnose memory corruption.  So please be careful.
610
 * See the RCU_INIT_POINTER() comment header for details.
611
 *
612
 * Note that rcu_assign_pointer() evaluates each of its arguments only
613
 * once, appearances notwithstanding.  One of the "extra" evaluations
614
 * is in typeof() and the other visible only to sparse (__CHECKER__),
615
 * neither of which actually execute the argument.  As with most cpp
616
 * macros, this execute-arguments-only-once property is important, so
617
 * please be careful when making changes to rcu_assign_pointer() and the
618
 * other macros that it invokes.
619
 */
620
#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
621
 
622
/**
623
 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
624
 * @p: The pointer to read
625
 *
626
 * Return the value of the specified RCU-protected pointer, but omit the
6082 serge 627
 * smp_read_barrier_depends() and keep the READ_ONCE().  This is useful
5270 serge 628
 * when the value of this pointer is accessed, but the pointer is not
629
 * dereferenced, for example, when testing an RCU-protected pointer against
630
 * NULL.  Although rcu_access_pointer() may also be used in cases where
631
 * update-side locks prevent the value of the pointer from changing, you
632
 * should instead use rcu_dereference_protected() for this use case.
633
 *
634
 * It is also permissible to use rcu_access_pointer() when read-side
635
 * access to the pointer was removed at least one grace period ago, as
636
 * is the case in the context of the RCU callback that is freeing up
637
 * the data, or after a synchronize_rcu() returns.  This can be useful
638
 * when tearing down multi-linked structures after a grace period
639
 * has elapsed.
640
 */
641
#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
642
 
643
/**
644
 * rcu_dereference_check() - rcu_dereference with debug checking
645
 * @p: The pointer to read, prior to dereferencing
646
 * @c: The conditions under which the dereference will take place
647
 *
648
 * Do an rcu_dereference(), but check that the conditions under which the
649
 * dereference will take place are correct.  Typically the conditions
650
 * indicate the various locking conditions that should be held at that
651
 * point.  The check should return true if the conditions are satisfied.
652
 * An implicit check for being in an RCU read-side critical section
653
 * (rcu_read_lock()) is included.
654
 *
655
 * For example:
656
 *
657
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
658
 *
659
 * could be used to indicate to lockdep that foo->bar may only be dereferenced
660
 * if either rcu_read_lock() is held, or that the lock required to replace
661
 * the bar struct at foo->bar is held.
662
 *
663
 * Note that the list of conditions may also include indications of when a lock
664
 * need not be held, for example during initialisation or destruction of the
665
 * target struct:
666
 *
667
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
668
 *					      atomic_read(&foo->usage) == 0);
669
 *
670
 * Inserts memory barriers on architectures that require them
671
 * (currently only the Alpha), prevents the compiler from refetching
672
 * (and from merging fetches), and, more importantly, documents exactly
673
 * which pointers are protected by RCU and checks that the pointer is
674
 * annotated as __rcu.
675
 */
676
#define rcu_dereference_check(p, c) \
6082 serge 677
	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
5270 serge 678
 
679
/**
680
 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
681
 * @p: The pointer to read, prior to dereferencing
682
 * @c: The conditions under which the dereference will take place
683
 *
684
 * This is the RCU-bh counterpart to rcu_dereference_check().
685
 */
686
#define rcu_dereference_bh_check(p, c) \
6082 serge 687
	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
5270 serge 688
 
689
/**
690
 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
691
 * @p: The pointer to read, prior to dereferencing
692
 * @c: The conditions under which the dereference will take place
693
 *
694
 * This is the RCU-sched counterpart to rcu_dereference_check().
695
 */
696
#define rcu_dereference_sched_check(p, c) \
6082 serge 697
	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
5270 serge 698
				__rcu)
699
 
700
#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
701
 
702
/*
703
 * The tracing infrastructure traces RCU (we want that), but unfortunately
704
 * some of the RCU checks causes tracing to lock up the system.
705
 *
706
 * The tracing version of rcu_dereference_raw() must not call
707
 * rcu_read_lock_held().
708
 */
709
#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
710
 
711
/**
712
 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
713
 * @p: The pointer to read, prior to dereferencing
714
 * @c: The conditions under which the dereference will take place
715
 *
716
 * Return the value of the specified RCU-protected pointer, but omit
6082 serge 717
 * both the smp_read_barrier_depends() and the READ_ONCE().  This
5270 serge 718
 * is useful in cases where update-side locks prevent the value of the
719
 * pointer from changing.  Please note that this primitive does -not-
720
 * prevent the compiler from repeating this reference or combining it
721
 * with other references, so it should not be used without protection
722
 * of appropriate locks.
723
 *
724
 * This function is only for update-side use.  Using this function
725
 * when protected only by rcu_read_lock() will result in infrequent
726
 * but very ugly failures.
727
 */
728
#define rcu_dereference_protected(p, c) \
729
	__rcu_dereference_protected((p), (c), __rcu)
730
 
731
 
732
/**
733
 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
734
 * @p: The pointer to read, prior to dereferencing
735
 *
736
 * This is a simple wrapper around rcu_dereference_check().
737
 */
738
#define rcu_dereference(p) rcu_dereference_check(p, 0)
739
 
740
/**
741
 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
742
 * @p: The pointer to read, prior to dereferencing
743
 *
744
 * Makes rcu_dereference_check() do the dirty work.
745
 */
746
#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
747
 
748
/**
749
 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
750
 * @p: The pointer to read, prior to dereferencing
751
 *
752
 * Makes rcu_dereference_check() do the dirty work.
753
 */
754
#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
755
 
756
/**
757
 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
758
 *
759
 * When synchronize_rcu() is invoked on one CPU while other CPUs
760
 * are within RCU read-side critical sections, then the
761
 * synchronize_rcu() is guaranteed to block until after all the other
762
 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
763
 * on one CPU while other CPUs are within RCU read-side critical
764
 * sections, invocation of the corresponding RCU callback is deferred
765
 * until after the all the other CPUs exit their critical sections.
766
 *
767
 * Note, however, that RCU callbacks are permitted to run concurrently
768
 * with new RCU read-side critical sections.  One way that this can happen
769
 * is via the following sequence of events: (1) CPU 0 enters an RCU
770
 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
771
 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
772
 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
773
 * callback is invoked.  This is legal, because the RCU read-side critical
774
 * section that was running concurrently with the call_rcu() (and which
775
 * therefore might be referencing something that the corresponding RCU
776
 * callback would free up) has completed before the corresponding
777
 * RCU callback is invoked.
778
 *
779
 * RCU read-side critical sections may be nested.  Any deferred actions
780
 * will be deferred until the outermost RCU read-side critical section
781
 * completes.
782
 *
783
 * You can avoid reading and understanding the next paragraph by
784
 * following this rule: don't put anything in an rcu_read_lock() RCU
785
 * read-side critical section that would block in a !PREEMPT kernel.
786
 * But if you want the full story, read on!
787
 *
788
 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
789
 * it is illegal to block while in an RCU read-side critical section.
790
 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
791
 * kernel builds, RCU read-side critical sections may be preempted,
792
 * but explicit blocking is illegal.  Finally, in preemptible RCU
793
 * implementations in real-time (with -rt patchset) kernel builds, RCU
794
 * read-side critical sections may be preempted and they may also block, but
795
 * only when acquiring spinlocks that are subject to priority inheritance.
796
 */
797
static inline void rcu_read_lock(void)
798
{
799
	__rcu_read_lock();
800
	__acquire(RCU);
801
	rcu_lock_acquire(&rcu_lock_map);
6295 serge 802
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
5270 serge 803
			   "rcu_read_lock() used illegally while idle");
804
}
805
 
806
/*
807
 * So where is rcu_write_lock()?  It does not exist, as there is no
808
 * way for writers to lock out RCU readers.  This is a feature, not
809
 * a bug -- this property is what provides RCU's performance benefits.
810
 * Of course, writers must coordinate with each other.  The normal
811
 * spinlock primitives work well for this, but any other technique may be
812
 * used as well.  RCU does not care how the writers keep out of each
813
 * others' way, as long as they do so.
814
 */
815
 
816
/**
817
 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
818
 *
819
 * In most situations, rcu_read_unlock() is immune from deadlock.
820
 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
821
 * is responsible for deboosting, which it does via rt_mutex_unlock().
822
 * Unfortunately, this function acquires the scheduler's runqueue and
823
 * priority-inheritance spinlocks.  This means that deadlock could result
824
 * if the caller of rcu_read_unlock() already holds one of these locks or
825
 * any lock that is ever acquired while holding them; or any lock which
826
 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
827
 * does not disable irqs while taking ->wait_lock.
828
 *
829
 * That said, RCU readers are never priority boosted unless they were
830
 * preempted.  Therefore, one way to avoid deadlock is to make sure
831
 * that preemption never happens within any RCU read-side critical
832
 * section whose outermost rcu_read_unlock() is called with one of
833
 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
834
 * a number of ways, for example, by invoking preempt_disable() before
835
 * critical section's outermost rcu_read_lock().
836
 *
837
 * Given that the set of locks acquired by rt_mutex_unlock() might change
838
 * at any time, a somewhat more future-proofed approach is to make sure
839
 * that that preemption never happens within any RCU read-side critical
840
 * section whose outermost rcu_read_unlock() is called with irqs disabled.
841
 * This approach relies on the fact that rt_mutex_unlock() currently only
842
 * acquires irq-disabled locks.
843
 *
844
 * The second of these two approaches is best in most situations,
845
 * however, the first approach can also be useful, at least to those
846
 * developers willing to keep abreast of the set of locks acquired by
847
 * rt_mutex_unlock().
848
 *
849
 * See rcu_read_lock() for more information.
850
 */
851
static inline void rcu_read_unlock(void)
852
{
6295 serge 853
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
5270 serge 854
			   "rcu_read_unlock() used illegally while idle");
855
	__release(RCU);
856
	__rcu_read_unlock();
6082 serge 857
	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
5270 serge 858
}
859
 
860
/**
861
 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
862
 *
863
 * This is equivalent of rcu_read_lock(), but to be used when updates
864
 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
865
 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
866
 * softirq handler to be a quiescent state, a process in RCU read-side
867
 * critical section must be protected by disabling softirqs. Read-side
868
 * critical sections in interrupt context can use just rcu_read_lock(),
869
 * though this should at least be commented to avoid confusing people
870
 * reading the code.
871
 *
872
 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
873
 * must occur in the same context, for example, it is illegal to invoke
874
 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
875
 * was invoked from some other task.
876
 */
877
static inline void rcu_read_lock_bh(void)
878
{
879
	local_bh_disable();
880
	__acquire(RCU_BH);
881
	rcu_lock_acquire(&rcu_bh_lock_map);
6295 serge 882
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
5270 serge 883
			   "rcu_read_lock_bh() used illegally while idle");
884
}
885
 
886
/*
887
 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
888
 *
889
 * See rcu_read_lock_bh() for more information.
890
 */
891
static inline void rcu_read_unlock_bh(void)
892
{
6295 serge 893
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
5270 serge 894
			   "rcu_read_unlock_bh() used illegally while idle");
895
	rcu_lock_release(&rcu_bh_lock_map);
896
	__release(RCU_BH);
897
	local_bh_enable();
898
}
899
 
900
/**
901
 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
902
 *
903
 * This is equivalent of rcu_read_lock(), but to be used when updates
904
 * are being done using call_rcu_sched() or synchronize_rcu_sched().
905
 * Read-side critical sections can also be introduced by anything that
906
 * disables preemption, including local_irq_disable() and friends.
907
 *
908
 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
909
 * must occur in the same context, for example, it is illegal to invoke
910
 * rcu_read_unlock_sched() from process context if the matching
911
 * rcu_read_lock_sched() was invoked from an NMI handler.
912
 */
913
static inline void rcu_read_lock_sched(void)
914
{
915
	preempt_disable();
916
	__acquire(RCU_SCHED);
917
	rcu_lock_acquire(&rcu_sched_lock_map);
6295 serge 918
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
5270 serge 919
			   "rcu_read_lock_sched() used illegally while idle");
920
}
921
 
922
/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
923
static inline notrace void rcu_read_lock_sched_notrace(void)
924
{
925
	preempt_disable_notrace();
926
	__acquire(RCU_SCHED);
927
}
928
 
929
/*
930
 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
931
 *
932
 * See rcu_read_lock_sched for more information.
933
 */
934
static inline void rcu_read_unlock_sched(void)
935
{
6295 serge 936
	RCU_LOCKDEP_WARN(!rcu_is_watching(),
5270 serge 937
			   "rcu_read_unlock_sched() used illegally while idle");
938
	rcu_lock_release(&rcu_sched_lock_map);
939
	__release(RCU_SCHED);
940
	preempt_enable();
941
}
942
 
943
/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
944
static inline notrace void rcu_read_unlock_sched_notrace(void)
945
{
946
	__release(RCU_SCHED);
947
	preempt_enable_notrace();
948
}
949
 
950
/**
951
 * RCU_INIT_POINTER() - initialize an RCU protected pointer
952
 *
953
 * Initialize an RCU-protected pointer in special cases where readers
954
 * do not need ordering constraints on the CPU or the compiler.  These
955
 * special cases are:
956
 *
957
 * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
958
 * 2.	The caller has taken whatever steps are required to prevent
959
 *	RCU readers from concurrently accessing this pointer -or-
960
 * 3.	The referenced data structure has already been exposed to
961
 *	readers either at compile time or via rcu_assign_pointer() -and-
962
 *	a.	You have not made -any- reader-visible changes to
963
 *		this structure since then -or-
964
 *	b.	It is OK for readers accessing this structure from its
965
 *		new location to see the old state of the structure.  (For
966
 *		example, the changes were to statistical counters or to
967
 *		other state where exact synchronization is not required.)
968
 *
969
 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
970
 * result in impossible-to-diagnose memory corruption.  As in the structures
971
 * will look OK in crash dumps, but any concurrent RCU readers might
972
 * see pre-initialized values of the referenced data structure.  So
973
 * please be very careful how you use RCU_INIT_POINTER()!!!
974
 *
975
 * If you are creating an RCU-protected linked structure that is accessed
976
 * by a single external-to-structure RCU-protected pointer, then you may
977
 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
978
 * pointers, but you must use rcu_assign_pointer() to initialize the
979
 * external-to-structure pointer -after- you have completely initialized
980
 * the reader-accessible portions of the linked structure.
981
 *
982
 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
983
 * ordering guarantees for either the CPU or the compiler.
984
 */
985
#define RCU_INIT_POINTER(p, v) \
986
	do { \
987
		rcu_dereference_sparse(p, __rcu); \
988
		p = RCU_INITIALIZER(v); \
989
	} while (0)
990
 
991
/**
992
 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
993
 *
994
 * GCC-style initialization for an RCU-protected pointer in a structure field.
995
 */
996
#define RCU_POINTER_INITIALIZER(p, v) \
997
		.p = RCU_INITIALIZER(v)
998
 
999
/*
1000
 * Does the specified offset indicate that the corresponding rcu_head
1001
 * structure can be handled by kfree_rcu()?
1002
 */
1003
#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1004
 
1005
/*
1006
 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1007
 */
1008
#define __kfree_rcu(head, offset) \
1009
	do { \
1010
		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1011
		kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1012
	} while (0)
1013
 
1014
/**
1015
 * kfree_rcu() - kfree an object after a grace period.
1016
 * @ptr:	pointer to kfree
1017
 * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
1018
 *
1019
 * Many rcu callbacks functions just call kfree() on the base structure.
1020
 * These functions are trivial, but their size adds up, and furthermore
1021
 * when they are used in a kernel module, that module must invoke the
1022
 * high-latency rcu_barrier() function at module-unload time.
1023
 *
1024
 * The kfree_rcu() function handles this issue.  Rather than encoding a
1025
 * function address in the embedded rcu_head structure, kfree_rcu() instead
1026
 * encodes the offset of the rcu_head structure within the base structure.
1027
 * Because the functions are not allowed in the low-order 4096 bytes of
1028
 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1029
 * If the offset is larger than 4095 bytes, a compile-time error will
1030
 * be generated in __kfree_rcu().  If this error is triggered, you can
1031
 * either fall back to use of call_rcu() or rearrange the structure to
1032
 * position the rcu_head structure into the first 4096 bytes.
1033
 *
1034
 * Note that the allowable offset might decrease in the future, for example,
1035
 * to allow something like kmem_cache_free_rcu().
1036
 *
1037
 * The BUILD_BUG_ON check must not involve any function calls, hence the
1038
 * checks are done in macros here.
1039
 */
1040
#define kfree_rcu(ptr, rcu_head)					\
1041
	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1042
 
6082 serge 1043
#ifdef CONFIG_TINY_RCU
1044
static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
5270 serge 1045
{
6082 serge 1046
	*nextevt = KTIME_MAX;
5270 serge 1047
	return 0;
1048
}
6082 serge 1049
#endif /* #ifdef CONFIG_TINY_RCU */
5270 serge 1050
 
1051
#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1052
static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1053
#elif defined(CONFIG_RCU_NOCB_CPU)
1054
bool rcu_is_nocb_cpu(int cpu);
1055
#else
1056
static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1057
#endif
1058
 
1059
 
1060
/* Only for use by adaptive-ticks code. */
1061
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1062
bool rcu_sys_is_idle(void);
1063
void rcu_sysidle_force_exit(void);
1064
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1065
 
1066
static inline bool rcu_sys_is_idle(void)
1067
{
1068
	return false;
1069
}
1070
 
1071
static inline void rcu_sysidle_force_exit(void)
1072
{
1073
}
1074
 
1075
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1076
 
1077
 
1078
#endif /* __LINUX_RCUPDATE_H */