Subversion Repositories Kolibri OS

Rev

Rev 5270 | Rev 6295 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
5270 serge 1
/*
2
 * Read-Copy Update mechanism for mutual exclusion
3
 *
4
 * This program is free software; you can redistribute it and/or modify
5
 * it under the terms of the GNU General Public License as published by
6
 * the Free Software Foundation; either version 2 of the License, or
7
 * (at your option) any later version.
8
 *
9
 * This program is distributed in the hope that it will be useful,
10
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
 * GNU General Public License for more details.
13
 *
14
 * You should have received a copy of the GNU General Public License
15
 * along with this program; if not, you can access it online at
16
 * http://www.gnu.org/licenses/gpl-2.0.html.
17
 *
18
 * Copyright IBM Corporation, 2001
19
 *
20
 * Author: Dipankar Sarma 
21
 *
22
 * Based on the original work by Paul McKenney 
23
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24
 * Papers:
25
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27
 *
28
 * For detailed explanation of Read-Copy Update mechanism see -
29
 *		http://lse.sourceforge.net/locking/rcupdate.html
30
 *
31
 */
32
 
33
#ifndef __LINUX_RCUPDATE_H
34
#define __LINUX_RCUPDATE_H
35
 
36
#include 
37
#include 
38
#include 
39
#include 
40
//#include 
41
#include 
42
#include 
43
#include 
44
//#include 
45
#include 
46
#include 
6082 serge 47
#include 
48
 
5270 serge 49
#include 
50
 
51
extern int rcu_expedited; /* for sysctl */
52
 
6082 serge 53
#ifdef CONFIG_TINY_RCU
54
/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
55
static inline bool rcu_gp_is_expedited(void)  /* Internal RCU use. */
56
{
57
	return false;
58
}
59
 
60
static inline void rcu_expedite_gp(void)
61
{
62
}
63
 
64
static inline void rcu_unexpedite_gp(void)
65
{
66
}
67
#else /* #ifdef CONFIG_TINY_RCU */
68
bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
69
void rcu_expedite_gp(void);
70
void rcu_unexpedite_gp(void);
71
#endif /* #else #ifdef CONFIG_TINY_RCU */
72
 
5270 serge 73
enum rcutorture_type {
74
	RCU_FLAVOR,
75
	RCU_BH_FLAVOR,
76
	RCU_SCHED_FLAVOR,
77
	RCU_TASKS_FLAVOR,
78
	SRCU_FLAVOR,
79
	INVALID_RCU_FLAVOR
80
};
81
 
82
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
83
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
84
			    unsigned long *gpnum, unsigned long *completed);
85
void rcutorture_record_test_transition(void);
86
void rcutorture_record_progress(unsigned long vernum);
87
void do_trace_rcu_torture_read(const char *rcutorturename,
88
			       struct rcu_head *rhp,
89
			       unsigned long secs,
90
			       unsigned long c_old,
91
			       unsigned long c);
92
#else
93
static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
94
					  int *flags,
95
					  unsigned long *gpnum,
96
					  unsigned long *completed)
97
{
98
	*flags = 0;
99
	*gpnum = 0;
100
	*completed = 0;
101
}
102
static inline void rcutorture_record_test_transition(void)
103
{
104
}
105
static inline void rcutorture_record_progress(unsigned long vernum)
106
{
107
}
108
#ifdef CONFIG_RCU_TRACE
109
void do_trace_rcu_torture_read(const char *rcutorturename,
110
			       struct rcu_head *rhp,
111
			       unsigned long secs,
112
			       unsigned long c_old,
113
			       unsigned long c);
114
#else
115
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
116
	do { } while (0)
117
#endif
118
#endif
119
 
120
#define UINT_CMP_GE(a, b)	(UINT_MAX / 2 >= (a) - (b))
121
#define UINT_CMP_LT(a, b)	(UINT_MAX / 2 < (a) - (b))
122
#define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
123
#define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
124
#define ulong2long(a)		(*(long *)(&(a)))
125
 
126
/* Exported common interfaces */
127
 
128
#ifdef CONFIG_PREEMPT_RCU
129
 
130
/**
131
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
132
 * @head: structure to be used for queueing the RCU updates.
133
 * @func: actual callback function to be invoked after the grace period
134
 *
135
 * The callback function will be invoked some time after a full grace
136
 * period elapses, in other words after all pre-existing RCU read-side
137
 * critical sections have completed.  However, the callback function
138
 * might well execute concurrently with RCU read-side critical sections
139
 * that started after call_rcu() was invoked.  RCU read-side critical
140
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
141
 * and may be nested.
142
 *
143
 * Note that all CPUs must agree that the grace period extended beyond
144
 * all pre-existing RCU read-side critical section.  On systems with more
145
 * than one CPU, this means that when "func()" is invoked, each CPU is
146
 * guaranteed to have executed a full memory barrier since the end of its
147
 * last RCU read-side critical section whose beginning preceded the call
148
 * to call_rcu().  It also means that each CPU executing an RCU read-side
149
 * critical section that continues beyond the start of "func()" must have
150
 * executed a memory barrier after the call_rcu() but before the beginning
151
 * of that RCU read-side critical section.  Note that these guarantees
152
 * include CPUs that are offline, idle, or executing in user mode, as
153
 * well as CPUs that are executing in the kernel.
154
 *
155
 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
156
 * resulting RCU callback function "func()", then both CPU A and CPU B are
157
 * guaranteed to execute a full memory barrier during the time interval
158
 * between the call to call_rcu() and the invocation of "func()" -- even
159
 * if CPU A and CPU B are the same CPU (but again only if the system has
160
 * more than one CPU).
161
 */
162
void call_rcu(struct rcu_head *head,
6082 serge 163
	      rcu_callback_t func);
5270 serge 164
 
165
#else /* #ifdef CONFIG_PREEMPT_RCU */
166
 
167
/* In classic RCU, call_rcu() is just call_rcu_sched(). */
168
#define	call_rcu	call_rcu_sched
169
 
170
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
171
 
172
/**
173
 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
174
 * @head: structure to be used for queueing the RCU updates.
175
 * @func: actual callback function to be invoked after the grace period
176
 *
177
 * The callback function will be invoked some time after a full grace
178
 * period elapses, in other words after all currently executing RCU
179
 * read-side critical sections have completed. call_rcu_bh() assumes
180
 * that the read-side critical sections end on completion of a softirq
181
 * handler. This means that read-side critical sections in process
182
 * context must not be interrupted by softirqs. This interface is to be
183
 * used when most of the read-side critical sections are in softirq context.
184
 * RCU read-side critical sections are delimited by :
185
 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
186
 *  OR
187
 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
188
 *  These may be nested.
189
 *
190
 * See the description of call_rcu() for more detailed information on
191
 * memory ordering guarantees.
192
 */
193
void call_rcu_bh(struct rcu_head *head,
6082 serge 194
		 rcu_callback_t func);
5270 serge 195
 
196
/**
197
 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
198
 * @head: structure to be used for queueing the RCU updates.
199
 * @func: actual callback function to be invoked after the grace period
200
 *
201
 * The callback function will be invoked some time after a full grace
202
 * period elapses, in other words after all currently executing RCU
203
 * read-side critical sections have completed. call_rcu_sched() assumes
204
 * that the read-side critical sections end on enabling of preemption
205
 * or on voluntary preemption.
206
 * RCU read-side critical sections are delimited by :
207
 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
208
 *  OR
209
 *  anything that disables preemption.
210
 *  These may be nested.
211
 *
212
 * See the description of call_rcu() for more detailed information on
213
 * memory ordering guarantees.
214
 */
215
void call_rcu_sched(struct rcu_head *head,
6082 serge 216
		    rcu_callback_t func);
5270 serge 217
 
218
void synchronize_sched(void);
219
 
220
/**
221
 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
222
 * @head: structure to be used for queueing the RCU updates.
223
 * @func: actual callback function to be invoked after the grace period
224
 *
225
 * The callback function will be invoked some time after a full grace
226
 * period elapses, in other words after all currently executing RCU
227
 * read-side critical sections have completed. call_rcu_tasks() assumes
228
 * that the read-side critical sections end at a voluntary context
229
 * switch (not a preemption!), entry into idle, or transition to usermode
230
 * execution.  As such, there are no read-side primitives analogous to
231
 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
232
 * to determine that all tasks have passed through a safe state, not so
233
 * much for data-strcuture synchronization.
234
 *
235
 * See the description of call_rcu() for more detailed information on
236
 * memory ordering guarantees.
237
 */
6082 serge 238
void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
5270 serge 239
void synchronize_rcu_tasks(void);
240
void rcu_barrier_tasks(void);
241
 
242
#ifdef CONFIG_PREEMPT_RCU
243
 
244
void __rcu_read_lock(void);
245
void __rcu_read_unlock(void);
246
void rcu_read_unlock_special(struct task_struct *t);
247
void synchronize_rcu(void);
248
 
249
/*
250
 * Defined as a macro as it is a very low level header included from
251
 * areas that don't even know about current.  This gives the rcu_read_lock()
252
 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
253
 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
254
 */
255
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
256
 
257
#else /* #ifdef CONFIG_PREEMPT_RCU */
258
 
259
static inline void __rcu_read_lock(void)
260
{
6082 serge 261
	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
262
		preempt_disable();
5270 serge 263
}
264
 
265
static inline void __rcu_read_unlock(void)
266
{
6082 serge 267
	if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
268
		preempt_enable();
5270 serge 269
}
270
 
271
static inline void synchronize_rcu(void)
272
{
273
	synchronize_sched();
274
}
275
 
276
static inline int rcu_preempt_depth(void)
277
{
278
	return 0;
279
}
280
 
281
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
282
 
283
/* Internal to kernel */
284
void rcu_init(void);
6082 serge 285
void rcu_end_inkernel_boot(void);
5270 serge 286
void rcu_sched_qs(void);
287
void rcu_bh_qs(void);
288
void rcu_check_callbacks(int user);
289
struct notifier_block;
6082 serge 290
int rcu_cpu_notify(struct notifier_block *self,
291
		   unsigned long action, void *hcpu);
5270 serge 292
 
293
#ifdef CONFIG_RCU_STALL_COMMON
294
void rcu_sysrq_start(void);
295
void rcu_sysrq_end(void);
296
#else /* #ifdef CONFIG_RCU_STALL_COMMON */
297
static inline void rcu_sysrq_start(void)
298
{
299
}
300
static inline void rcu_sysrq_end(void)
301
{
302
}
303
#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
304
 
6082 serge 305
#ifdef CONFIG_NO_HZ_FULL
5270 serge 306
void rcu_user_enter(void);
307
void rcu_user_exit(void);
308
#else
309
static inline void rcu_user_enter(void) { }
310
static inline void rcu_user_exit(void) { }
311
static inline void rcu_user_hooks_switch(struct task_struct *prev,
312
					 struct task_struct *next) { }
6082 serge 313
#endif /* CONFIG_NO_HZ_FULL */
5270 serge 314
 
315
#ifdef CONFIG_RCU_NOCB_CPU
316
void rcu_init_nohz(void);
317
#else /* #ifdef CONFIG_RCU_NOCB_CPU */
318
static inline void rcu_init_nohz(void)
319
{
320
}
321
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
322
 
323
/**
324
 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
325
 * @a: Code that RCU needs to pay attention to.
326
 *
327
 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
328
 * in the inner idle loop, that is, between the rcu_idle_enter() and
329
 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
330
 * critical sections.  However, things like powertop need tracepoints
331
 * in the inner idle loop.
332
 *
333
 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
334
 * will tell RCU that it needs to pay attending, invoke its argument
335
 * (in this example, a call to the do_something_with_RCU() function),
336
 * and then tell RCU to go back to ignoring this CPU.  It is permissible
337
 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
338
 * quite limited.  If deeper nesting is required, it will be necessary
339
 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
340
 */
341
#define RCU_NONIDLE(a) \
342
	do { \
343
		rcu_irq_enter(); \
344
		do { a; } while (0); \
345
		rcu_irq_exit(); \
346
	} while (0)
347
 
348
/*
349
 * Note a voluntary context switch for RCU-tasks benefit.  This is a
350
 * macro rather than an inline function to avoid #include hell.
351
 */
352
#ifdef CONFIG_TASKS_RCU
353
#define TASKS_RCU(x) x
354
extern struct srcu_struct tasks_rcu_exit_srcu;
355
#define rcu_note_voluntary_context_switch(t) \
356
	do { \
6082 serge 357
		rcu_all_qs(); \
358
		if (READ_ONCE((t)->rcu_tasks_holdout)) \
359
			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
5270 serge 360
	} while (0)
361
#else /* #ifdef CONFIG_TASKS_RCU */
362
#define TASKS_RCU(x) do { } while (0)
6082 serge 363
#define rcu_note_voluntary_context_switch(t)	rcu_all_qs()
5270 serge 364
#endif /* #else #ifdef CONFIG_TASKS_RCU */
365
 
366
/**
367
 * cond_resched_rcu_qs - Report potential quiescent states to RCU
368
 *
369
 * This macro resembles cond_resched(), except that it is defined to
370
 * report potential quiescent states to RCU-tasks even if the cond_resched()
371
 * machinery were to be shut off, as some advocate for PREEMPT kernels.
372
 */
373
#define cond_resched_rcu_qs() \
374
do { \
375
	if (!cond_resched()) \
376
		rcu_note_voluntary_context_switch(current); \
377
} while (0)
378
 
379
#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
380
bool __rcu_is_watching(void);
381
#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
382
 
383
/*
384
 * Infrastructure to implement the synchronize_() primitives in
385
 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
386
 */
387
 
388
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
389
#include 
390
#elif defined(CONFIG_TINY_RCU)
391
#include 
392
#else
393
#error "Unknown RCU implementation specified to kernel configuration"
394
#endif
395
 
396
/*
397
 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
398
 * initialization and destruction of rcu_head on the stack. rcu_head structures
399
 * allocated dynamically in the heap or defined statically don't need any
400
 * initialization.
401
 */
402
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
403
void init_rcu_head(struct rcu_head *head);
404
void destroy_rcu_head(struct rcu_head *head);
405
void init_rcu_head_on_stack(struct rcu_head *head);
406
void destroy_rcu_head_on_stack(struct rcu_head *head);
407
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
408
static inline void init_rcu_head(struct rcu_head *head)
409
{
410
}
411
 
412
static inline void destroy_rcu_head(struct rcu_head *head)
413
{
414
}
415
 
416
static inline void init_rcu_head_on_stack(struct rcu_head *head)
417
{
418
}
419
 
420
static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
421
{
422
}
423
#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
424
 
425
#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
426
bool rcu_lockdep_current_cpu_online(void);
427
#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
428
static inline bool rcu_lockdep_current_cpu_online(void)
429
{
430
	return true;
431
}
432
#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
433
 
434
#ifdef CONFIG_DEBUG_LOCK_ALLOC
435
 
436
static inline void rcu_lock_acquire(struct lockdep_map *map)
437
{
438
	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
439
}
440
 
441
static inline void rcu_lock_release(struct lockdep_map *map)
442
{
443
	lock_release(map, 1, _THIS_IP_);
444
}
445
 
446
extern struct lockdep_map rcu_lock_map;
447
extern struct lockdep_map rcu_bh_lock_map;
448
extern struct lockdep_map rcu_sched_lock_map;
449
extern struct lockdep_map rcu_callback_map;
450
int debug_lockdep_rcu_enabled(void);
451
 
452
int rcu_read_lock_held(void);
453
int rcu_read_lock_bh_held(void);
454
 
455
/**
456
 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
457
 *
458
 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
459
 * RCU-sched read-side critical section.  In absence of
460
 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
461
 * critical section unless it can prove otherwise.  Note that disabling
462
 * of preemption (including disabling irqs) counts as an RCU-sched
463
 * read-side critical section.  This is useful for debug checks in functions
464
 * that required that they be called within an RCU-sched read-side
465
 * critical section.
466
 *
467
 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
468
 * and while lockdep is disabled.
469
 *
470
 * Note that if the CPU is in the idle loop from an RCU point of
471
 * view (ie: that we are in the section between rcu_idle_enter() and
472
 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
473
 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
474
 * that are in such a section, considering these as in extended quiescent
475
 * state, so such a CPU is effectively never in an RCU read-side critical
476
 * section regardless of what RCU primitives it invokes.  This state of
477
 * affairs is required --- we need to keep an RCU-free window in idle
478
 * where the CPU may possibly enter into low power mode. This way we can
479
 * notice an extended quiescent state to other CPUs that started a grace
480
 * period. Otherwise we would delay any grace period as long as we run in
481
 * the idle task.
482
 *
483
 * Similarly, we avoid claiming an SRCU read lock held if the current
484
 * CPU is offline.
485
 */
486
#ifdef CONFIG_PREEMPT_COUNT
487
static inline int rcu_read_lock_sched_held(void)
488
{
489
	int lockdep_opinion = 0;
490
 
491
	if (!debug_lockdep_rcu_enabled())
492
		return 1;
493
	if (!rcu_is_watching())
494
		return 0;
495
	if (!rcu_lockdep_current_cpu_online())
496
		return 0;
497
	if (debug_locks)
498
		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
499
	return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
500
}
501
#else /* #ifdef CONFIG_PREEMPT_COUNT */
502
static inline int rcu_read_lock_sched_held(void)
503
{
504
	return 1;
505
}
506
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
507
 
508
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
509
 
510
# define rcu_lock_acquire(a)		do { } while (0)
511
# define rcu_lock_release(a)		do { } while (0)
512
 
513
static inline int rcu_read_lock_held(void)
514
{
515
	return 1;
516
}
517
 
518
static inline int rcu_read_lock_bh_held(void)
519
{
520
	return 1;
521
}
522
 
523
#ifdef CONFIG_PREEMPT_COUNT
524
static inline int rcu_read_lock_sched_held(void)
525
{
526
	return preempt_count() != 0 || irqs_disabled();
527
}
528
#else /* #ifdef CONFIG_PREEMPT_COUNT */
529
static inline int rcu_read_lock_sched_held(void)
530
{
531
	return 1;
532
}
533
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
534
 
535
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
536
 
537
#ifdef CONFIG_PROVE_RCU
538
 
539
/**
540
 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
541
 * @c: condition to check
542
 * @s: informative message
543
 */
544
#define rcu_lockdep_assert(c, s)					\
545
	do {								\
546
		static bool __section(.data.unlikely) __warned;		\
547
		if (debug_lockdep_rcu_enabled() && !__warned && !(c)) {	\
548
			__warned = true;				\
549
			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
550
		}							\
551
	} while (0)
552
 
553
#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
554
static inline void rcu_preempt_sleep_check(void)
555
{
556
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
557
			   "Illegal context switch in RCU read-side critical section");
558
}
559
#else /* #ifdef CONFIG_PROVE_RCU */
560
static inline void rcu_preempt_sleep_check(void)
561
{
562
}
563
#endif /* #else #ifdef CONFIG_PROVE_RCU */
564
 
565
#define rcu_sleep_check()						\
566
	do {								\
567
		rcu_preempt_sleep_check();				\
568
		rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),	\
569
				   "Illegal context switch in RCU-bh read-side critical section"); \
570
		rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),	\
571
				   "Illegal context switch in RCU-sched read-side critical section"); \
572
	} while (0)
573
 
574
#else /* #ifdef CONFIG_PROVE_RCU */
575
 
576
#define rcu_lockdep_assert(c, s) do { } while (0)
577
#define rcu_sleep_check() do { } while (0)
578
 
579
#endif /* #else #ifdef CONFIG_PROVE_RCU */
580
 
581
/*
582
 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
583
 * and rcu_assign_pointer().  Some of these could be folded into their
584
 * callers, but they are left separate in order to ease introduction of
585
 * multiple flavors of pointers to match the multiple flavors of RCU
586
 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
587
 * the future.
588
 */
589
 
590
#ifdef __CHECKER__
591
#define rcu_dereference_sparse(p, space) \
592
	((void)(((typeof(*p) space *)p) == p))
593
#else /* #ifdef __CHECKER__ */
594
#define rcu_dereference_sparse(p, space)
595
#endif /* #else #ifdef __CHECKER__ */
596
 
597
#define __rcu_access_pointer(p, space) \
598
({ \
6082 serge 599
	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
5270 serge 600
	rcu_dereference_sparse(p, space); \
601
	((typeof(*p) __force __kernel *)(_________p1)); \
602
})
603
#define __rcu_dereference_check(p, c, space) \
604
({ \
6082 serge 605
	/* Dependency order vs. p above. */ \
606
	typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
5270 serge 607
	rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
608
	rcu_dereference_sparse(p, space); \
6082 serge 609
	((typeof(*p) __force __kernel *)(________p1)); \
5270 serge 610
})
611
#define __rcu_dereference_protected(p, c, space) \
612
({ \
613
	rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
614
	rcu_dereference_sparse(p, space); \
615
	((typeof(*p) __force __kernel *)(p)); \
616
})
617
 
618
/**
619
 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
620
 * @v: The value to statically initialize with.
621
 */
622
#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
623
 
624
/**
625
 * rcu_assign_pointer() - assign to RCU-protected pointer
626
 * @p: pointer to assign to
627
 * @v: value to assign (publish)
628
 *
629
 * Assigns the specified value to the specified RCU-protected
630
 * pointer, ensuring that any concurrent RCU readers will see
631
 * any prior initialization.
632
 *
633
 * Inserts memory barriers on architectures that require them
634
 * (which is most of them), and also prevents the compiler from
635
 * reordering the code that initializes the structure after the pointer
636
 * assignment.  More importantly, this call documents which pointers
637
 * will be dereferenced by RCU read-side code.
638
 *
639
 * In some special cases, you may use RCU_INIT_POINTER() instead
640
 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
641
 * to the fact that it does not constrain either the CPU or the compiler.
642
 * That said, using RCU_INIT_POINTER() when you should have used
643
 * rcu_assign_pointer() is a very bad thing that results in
644
 * impossible-to-diagnose memory corruption.  So please be careful.
645
 * See the RCU_INIT_POINTER() comment header for details.
646
 *
647
 * Note that rcu_assign_pointer() evaluates each of its arguments only
648
 * once, appearances notwithstanding.  One of the "extra" evaluations
649
 * is in typeof() and the other visible only to sparse (__CHECKER__),
650
 * neither of which actually execute the argument.  As with most cpp
651
 * macros, this execute-arguments-only-once property is important, so
652
 * please be careful when making changes to rcu_assign_pointer() and the
653
 * other macros that it invokes.
654
 */
655
#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
656
 
657
/**
658
 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
659
 * @p: The pointer to read
660
 *
661
 * Return the value of the specified RCU-protected pointer, but omit the
6082 serge 662
 * smp_read_barrier_depends() and keep the READ_ONCE().  This is useful
5270 serge 663
 * when the value of this pointer is accessed, but the pointer is not
664
 * dereferenced, for example, when testing an RCU-protected pointer against
665
 * NULL.  Although rcu_access_pointer() may also be used in cases where
666
 * update-side locks prevent the value of the pointer from changing, you
667
 * should instead use rcu_dereference_protected() for this use case.
668
 *
669
 * It is also permissible to use rcu_access_pointer() when read-side
670
 * access to the pointer was removed at least one grace period ago, as
671
 * is the case in the context of the RCU callback that is freeing up
672
 * the data, or after a synchronize_rcu() returns.  This can be useful
673
 * when tearing down multi-linked structures after a grace period
674
 * has elapsed.
675
 */
676
#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
677
 
678
/**
679
 * rcu_dereference_check() - rcu_dereference with debug checking
680
 * @p: The pointer to read, prior to dereferencing
681
 * @c: The conditions under which the dereference will take place
682
 *
683
 * Do an rcu_dereference(), but check that the conditions under which the
684
 * dereference will take place are correct.  Typically the conditions
685
 * indicate the various locking conditions that should be held at that
686
 * point.  The check should return true if the conditions are satisfied.
687
 * An implicit check for being in an RCU read-side critical section
688
 * (rcu_read_lock()) is included.
689
 *
690
 * For example:
691
 *
692
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
693
 *
694
 * could be used to indicate to lockdep that foo->bar may only be dereferenced
695
 * if either rcu_read_lock() is held, or that the lock required to replace
696
 * the bar struct at foo->bar is held.
697
 *
698
 * Note that the list of conditions may also include indications of when a lock
699
 * need not be held, for example during initialisation or destruction of the
700
 * target struct:
701
 *
702
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
703
 *					      atomic_read(&foo->usage) == 0);
704
 *
705
 * Inserts memory barriers on architectures that require them
706
 * (currently only the Alpha), prevents the compiler from refetching
707
 * (and from merging fetches), and, more importantly, documents exactly
708
 * which pointers are protected by RCU and checks that the pointer is
709
 * annotated as __rcu.
710
 */
711
#define rcu_dereference_check(p, c) \
6082 serge 712
	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
5270 serge 713
 
714
/**
715
 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
716
 * @p: The pointer to read, prior to dereferencing
717
 * @c: The conditions under which the dereference will take place
718
 *
719
 * This is the RCU-bh counterpart to rcu_dereference_check().
720
 */
721
#define rcu_dereference_bh_check(p, c) \
6082 serge 722
	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
5270 serge 723
 
724
/**
725
 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
726
 * @p: The pointer to read, prior to dereferencing
727
 * @c: The conditions under which the dereference will take place
728
 *
729
 * This is the RCU-sched counterpart to rcu_dereference_check().
730
 */
731
#define rcu_dereference_sched_check(p, c) \
6082 serge 732
	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
5270 serge 733
				__rcu)
734
 
735
#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
736
 
737
/*
738
 * The tracing infrastructure traces RCU (we want that), but unfortunately
739
 * some of the RCU checks causes tracing to lock up the system.
740
 *
741
 * The tracing version of rcu_dereference_raw() must not call
742
 * rcu_read_lock_held().
743
 */
744
#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
745
 
746
/**
747
 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
748
 * @p: The pointer to read, prior to dereferencing
749
 * @c: The conditions under which the dereference will take place
750
 *
751
 * Return the value of the specified RCU-protected pointer, but omit
6082 serge 752
 * both the smp_read_barrier_depends() and the READ_ONCE().  This
5270 serge 753
 * is useful in cases where update-side locks prevent the value of the
754
 * pointer from changing.  Please note that this primitive does -not-
755
 * prevent the compiler from repeating this reference or combining it
756
 * with other references, so it should not be used without protection
757
 * of appropriate locks.
758
 *
759
 * This function is only for update-side use.  Using this function
760
 * when protected only by rcu_read_lock() will result in infrequent
761
 * but very ugly failures.
762
 */
763
#define rcu_dereference_protected(p, c) \
764
	__rcu_dereference_protected((p), (c), __rcu)
765
 
766
 
767
/**
768
 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
769
 * @p: The pointer to read, prior to dereferencing
770
 *
771
 * This is a simple wrapper around rcu_dereference_check().
772
 */
773
#define rcu_dereference(p) rcu_dereference_check(p, 0)
774
 
775
/**
776
 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
777
 * @p: The pointer to read, prior to dereferencing
778
 *
779
 * Makes rcu_dereference_check() do the dirty work.
780
 */
781
#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
782
 
783
/**
784
 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
785
 * @p: The pointer to read, prior to dereferencing
786
 *
787
 * Makes rcu_dereference_check() do the dirty work.
788
 */
789
#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
790
 
791
/**
792
 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
793
 *
794
 * When synchronize_rcu() is invoked on one CPU while other CPUs
795
 * are within RCU read-side critical sections, then the
796
 * synchronize_rcu() is guaranteed to block until after all the other
797
 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
798
 * on one CPU while other CPUs are within RCU read-side critical
799
 * sections, invocation of the corresponding RCU callback is deferred
800
 * until after the all the other CPUs exit their critical sections.
801
 *
802
 * Note, however, that RCU callbacks are permitted to run concurrently
803
 * with new RCU read-side critical sections.  One way that this can happen
804
 * is via the following sequence of events: (1) CPU 0 enters an RCU
805
 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
806
 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
807
 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
808
 * callback is invoked.  This is legal, because the RCU read-side critical
809
 * section that was running concurrently with the call_rcu() (and which
810
 * therefore might be referencing something that the corresponding RCU
811
 * callback would free up) has completed before the corresponding
812
 * RCU callback is invoked.
813
 *
814
 * RCU read-side critical sections may be nested.  Any deferred actions
815
 * will be deferred until the outermost RCU read-side critical section
816
 * completes.
817
 *
818
 * You can avoid reading and understanding the next paragraph by
819
 * following this rule: don't put anything in an rcu_read_lock() RCU
820
 * read-side critical section that would block in a !PREEMPT kernel.
821
 * But if you want the full story, read on!
822
 *
823
 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
824
 * it is illegal to block while in an RCU read-side critical section.
825
 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
826
 * kernel builds, RCU read-side critical sections may be preempted,
827
 * but explicit blocking is illegal.  Finally, in preemptible RCU
828
 * implementations in real-time (with -rt patchset) kernel builds, RCU
829
 * read-side critical sections may be preempted and they may also block, but
830
 * only when acquiring spinlocks that are subject to priority inheritance.
831
 */
832
static inline void rcu_read_lock(void)
833
{
834
	__rcu_read_lock();
835
	__acquire(RCU);
836
	rcu_lock_acquire(&rcu_lock_map);
837
	rcu_lockdep_assert(rcu_is_watching(),
838
			   "rcu_read_lock() used illegally while idle");
839
}
840
 
841
/*
842
 * So where is rcu_write_lock()?  It does not exist, as there is no
843
 * way for writers to lock out RCU readers.  This is a feature, not
844
 * a bug -- this property is what provides RCU's performance benefits.
845
 * Of course, writers must coordinate with each other.  The normal
846
 * spinlock primitives work well for this, but any other technique may be
847
 * used as well.  RCU does not care how the writers keep out of each
848
 * others' way, as long as they do so.
849
 */
850
 
851
/**
852
 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
853
 *
854
 * In most situations, rcu_read_unlock() is immune from deadlock.
855
 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
856
 * is responsible for deboosting, which it does via rt_mutex_unlock().
857
 * Unfortunately, this function acquires the scheduler's runqueue and
858
 * priority-inheritance spinlocks.  This means that deadlock could result
859
 * if the caller of rcu_read_unlock() already holds one of these locks or
860
 * any lock that is ever acquired while holding them; or any lock which
861
 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
862
 * does not disable irqs while taking ->wait_lock.
863
 *
864
 * That said, RCU readers are never priority boosted unless they were
865
 * preempted.  Therefore, one way to avoid deadlock is to make sure
866
 * that preemption never happens within any RCU read-side critical
867
 * section whose outermost rcu_read_unlock() is called with one of
868
 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
869
 * a number of ways, for example, by invoking preempt_disable() before
870
 * critical section's outermost rcu_read_lock().
871
 *
872
 * Given that the set of locks acquired by rt_mutex_unlock() might change
873
 * at any time, a somewhat more future-proofed approach is to make sure
874
 * that that preemption never happens within any RCU read-side critical
875
 * section whose outermost rcu_read_unlock() is called with irqs disabled.
876
 * This approach relies on the fact that rt_mutex_unlock() currently only
877
 * acquires irq-disabled locks.
878
 *
879
 * The second of these two approaches is best in most situations,
880
 * however, the first approach can also be useful, at least to those
881
 * developers willing to keep abreast of the set of locks acquired by
882
 * rt_mutex_unlock().
883
 *
884
 * See rcu_read_lock() for more information.
885
 */
886
static inline void rcu_read_unlock(void)
887
{
888
	rcu_lockdep_assert(rcu_is_watching(),
889
			   "rcu_read_unlock() used illegally while idle");
890
	__release(RCU);
891
	__rcu_read_unlock();
6082 serge 892
	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
5270 serge 893
}
894
 
895
/**
896
 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
897
 *
898
 * This is equivalent of rcu_read_lock(), but to be used when updates
899
 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
900
 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
901
 * softirq handler to be a quiescent state, a process in RCU read-side
902
 * critical section must be protected by disabling softirqs. Read-side
903
 * critical sections in interrupt context can use just rcu_read_lock(),
904
 * though this should at least be commented to avoid confusing people
905
 * reading the code.
906
 *
907
 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
908
 * must occur in the same context, for example, it is illegal to invoke
909
 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
910
 * was invoked from some other task.
911
 */
912
static inline void rcu_read_lock_bh(void)
913
{
914
	local_bh_disable();
915
	__acquire(RCU_BH);
916
	rcu_lock_acquire(&rcu_bh_lock_map);
917
	rcu_lockdep_assert(rcu_is_watching(),
918
			   "rcu_read_lock_bh() used illegally while idle");
919
}
920
 
921
/*
922
 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
923
 *
924
 * See rcu_read_lock_bh() for more information.
925
 */
926
static inline void rcu_read_unlock_bh(void)
927
{
928
	rcu_lockdep_assert(rcu_is_watching(),
929
			   "rcu_read_unlock_bh() used illegally while idle");
930
	rcu_lock_release(&rcu_bh_lock_map);
931
	__release(RCU_BH);
932
	local_bh_enable();
933
}
934
 
935
/**
936
 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
937
 *
938
 * This is equivalent of rcu_read_lock(), but to be used when updates
939
 * are being done using call_rcu_sched() or synchronize_rcu_sched().
940
 * Read-side critical sections can also be introduced by anything that
941
 * disables preemption, including local_irq_disable() and friends.
942
 *
943
 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
944
 * must occur in the same context, for example, it is illegal to invoke
945
 * rcu_read_unlock_sched() from process context if the matching
946
 * rcu_read_lock_sched() was invoked from an NMI handler.
947
 */
948
static inline void rcu_read_lock_sched(void)
949
{
950
	preempt_disable();
951
	__acquire(RCU_SCHED);
952
	rcu_lock_acquire(&rcu_sched_lock_map);
953
	rcu_lockdep_assert(rcu_is_watching(),
954
			   "rcu_read_lock_sched() used illegally while idle");
955
}
956
 
957
/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
958
static inline notrace void rcu_read_lock_sched_notrace(void)
959
{
960
	preempt_disable_notrace();
961
	__acquire(RCU_SCHED);
962
}
963
 
964
/*
965
 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
966
 *
967
 * See rcu_read_lock_sched for more information.
968
 */
969
static inline void rcu_read_unlock_sched(void)
970
{
971
	rcu_lockdep_assert(rcu_is_watching(),
972
			   "rcu_read_unlock_sched() used illegally while idle");
973
	rcu_lock_release(&rcu_sched_lock_map);
974
	__release(RCU_SCHED);
975
	preempt_enable();
976
}
977
 
978
/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
979
static inline notrace void rcu_read_unlock_sched_notrace(void)
980
{
981
	__release(RCU_SCHED);
982
	preempt_enable_notrace();
983
}
984
 
985
/**
986
 * RCU_INIT_POINTER() - initialize an RCU protected pointer
987
 *
988
 * Initialize an RCU-protected pointer in special cases where readers
989
 * do not need ordering constraints on the CPU or the compiler.  These
990
 * special cases are:
991
 *
992
 * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
993
 * 2.	The caller has taken whatever steps are required to prevent
994
 *	RCU readers from concurrently accessing this pointer -or-
995
 * 3.	The referenced data structure has already been exposed to
996
 *	readers either at compile time or via rcu_assign_pointer() -and-
997
 *	a.	You have not made -any- reader-visible changes to
998
 *		this structure since then -or-
999
 *	b.	It is OK for readers accessing this structure from its
1000
 *		new location to see the old state of the structure.  (For
1001
 *		example, the changes were to statistical counters or to
1002
 *		other state where exact synchronization is not required.)
1003
 *
1004
 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1005
 * result in impossible-to-diagnose memory corruption.  As in the structures
1006
 * will look OK in crash dumps, but any concurrent RCU readers might
1007
 * see pre-initialized values of the referenced data structure.  So
1008
 * please be very careful how you use RCU_INIT_POINTER()!!!
1009
 *
1010
 * If you are creating an RCU-protected linked structure that is accessed
1011
 * by a single external-to-structure RCU-protected pointer, then you may
1012
 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1013
 * pointers, but you must use rcu_assign_pointer() to initialize the
1014
 * external-to-structure pointer -after- you have completely initialized
1015
 * the reader-accessible portions of the linked structure.
1016
 *
1017
 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1018
 * ordering guarantees for either the CPU or the compiler.
1019
 */
1020
#define RCU_INIT_POINTER(p, v) \
1021
	do { \
1022
		rcu_dereference_sparse(p, __rcu); \
1023
		p = RCU_INITIALIZER(v); \
1024
	} while (0)
1025
 
1026
/**
1027
 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1028
 *
1029
 * GCC-style initialization for an RCU-protected pointer in a structure field.
1030
 */
1031
#define RCU_POINTER_INITIALIZER(p, v) \
1032
		.p = RCU_INITIALIZER(v)
1033
 
1034
/*
1035
 * Does the specified offset indicate that the corresponding rcu_head
1036
 * structure can be handled by kfree_rcu()?
1037
 */
1038
#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1039
 
1040
/*
1041
 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1042
 */
1043
#define __kfree_rcu(head, offset) \
1044
	do { \
1045
		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1046
		kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1047
	} while (0)
1048
 
1049
/**
1050
 * kfree_rcu() - kfree an object after a grace period.
1051
 * @ptr:	pointer to kfree
1052
 * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
1053
 *
1054
 * Many rcu callbacks functions just call kfree() on the base structure.
1055
 * These functions are trivial, but their size adds up, and furthermore
1056
 * when they are used in a kernel module, that module must invoke the
1057
 * high-latency rcu_barrier() function at module-unload time.
1058
 *
1059
 * The kfree_rcu() function handles this issue.  Rather than encoding a
1060
 * function address in the embedded rcu_head structure, kfree_rcu() instead
1061
 * encodes the offset of the rcu_head structure within the base structure.
1062
 * Because the functions are not allowed in the low-order 4096 bytes of
1063
 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1064
 * If the offset is larger than 4095 bytes, a compile-time error will
1065
 * be generated in __kfree_rcu().  If this error is triggered, you can
1066
 * either fall back to use of call_rcu() or rearrange the structure to
1067
 * position the rcu_head structure into the first 4096 bytes.
1068
 *
1069
 * Note that the allowable offset might decrease in the future, for example,
1070
 * to allow something like kmem_cache_free_rcu().
1071
 *
1072
 * The BUILD_BUG_ON check must not involve any function calls, hence the
1073
 * checks are done in macros here.
1074
 */
1075
#define kfree_rcu(ptr, rcu_head)					\
1076
	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1077
 
6082 serge 1078
#ifdef CONFIG_TINY_RCU
1079
static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
5270 serge 1080
{
6082 serge 1081
	*nextevt = KTIME_MAX;
5270 serge 1082
	return 0;
1083
}
6082 serge 1084
#endif /* #ifdef CONFIG_TINY_RCU */
5270 serge 1085
 
1086
#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1087
static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1088
#elif defined(CONFIG_RCU_NOCB_CPU)
1089
bool rcu_is_nocb_cpu(int cpu);
1090
#else
1091
static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1092
#endif
1093
 
1094
 
1095
/* Only for use by adaptive-ticks code. */
1096
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1097
bool rcu_sys_is_idle(void);
1098
void rcu_sysidle_force_exit(void);
1099
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1100
 
1101
static inline bool rcu_sys_is_idle(void)
1102
{
1103
	return false;
1104
}
1105
 
1106
static inline void rcu_sysidle_force_exit(void)
1107
{
1108
}
1109
 
1110
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1111
 
1112
 
1113
#endif /* __LINUX_RCUPDATE_H */