Subversion Repositories Kolibri OS

Rev

Rev 6082 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
5270 serge 1
/*
2
 * Read-Copy Update mechanism for mutual exclusion
3
 *
4
 * This program is free software; you can redistribute it and/or modify
5
 * it under the terms of the GNU General Public License as published by
6
 * the Free Software Foundation; either version 2 of the License, or
7
 * (at your option) any later version.
8
 *
9
 * This program is distributed in the hope that it will be useful,
10
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
 * GNU General Public License for more details.
13
 *
14
 * You should have received a copy of the GNU General Public License
15
 * along with this program; if not, you can access it online at
16
 * http://www.gnu.org/licenses/gpl-2.0.html.
17
 *
18
 * Copyright IBM Corporation, 2001
19
 *
20
 * Author: Dipankar Sarma 
21
 *
22
 * Based on the original work by Paul McKenney 
23
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24
 * Papers:
25
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27
 *
28
 * For detailed explanation of Read-Copy Update mechanism see -
29
 *		http://lse.sourceforge.net/locking/rcupdate.html
30
 *
31
 */
32
 
33
#ifndef __LINUX_RCUPDATE_H
34
#define __LINUX_RCUPDATE_H
35
 
36
#include 
37
#include 
38
#include 
39
#include 
40
//#include 
41
#include 
42
#include 
43
#include 
44
//#include 
45
#include 
46
#include 
47
#include 
48
 
49
extern int rcu_expedited; /* for sysctl */
50
 
51
enum rcutorture_type {
52
	RCU_FLAVOR,
53
	RCU_BH_FLAVOR,
54
	RCU_SCHED_FLAVOR,
55
	RCU_TASKS_FLAVOR,
56
	SRCU_FLAVOR,
57
	INVALID_RCU_FLAVOR
58
};
59
 
60
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
61
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
62
			    unsigned long *gpnum, unsigned long *completed);
63
void rcutorture_record_test_transition(void);
64
void rcutorture_record_progress(unsigned long vernum);
65
void do_trace_rcu_torture_read(const char *rcutorturename,
66
			       struct rcu_head *rhp,
67
			       unsigned long secs,
68
			       unsigned long c_old,
69
			       unsigned long c);
70
#else
71
static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
72
					  int *flags,
73
					  unsigned long *gpnum,
74
					  unsigned long *completed)
75
{
76
	*flags = 0;
77
	*gpnum = 0;
78
	*completed = 0;
79
}
80
static inline void rcutorture_record_test_transition(void)
81
{
82
}
83
static inline void rcutorture_record_progress(unsigned long vernum)
84
{
85
}
86
#ifdef CONFIG_RCU_TRACE
87
void do_trace_rcu_torture_read(const char *rcutorturename,
88
			       struct rcu_head *rhp,
89
			       unsigned long secs,
90
			       unsigned long c_old,
91
			       unsigned long c);
92
#else
93
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
94
	do { } while (0)
95
#endif
96
#endif
97
 
98
#define UINT_CMP_GE(a, b)	(UINT_MAX / 2 >= (a) - (b))
99
#define UINT_CMP_LT(a, b)	(UINT_MAX / 2 < (a) - (b))
100
#define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
101
#define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
102
#define ulong2long(a)		(*(long *)(&(a)))
103
 
104
/* Exported common interfaces */
105
 
106
#ifdef CONFIG_PREEMPT_RCU
107
 
108
/**
109
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
110
 * @head: structure to be used for queueing the RCU updates.
111
 * @func: actual callback function to be invoked after the grace period
112
 *
113
 * The callback function will be invoked some time after a full grace
114
 * period elapses, in other words after all pre-existing RCU read-side
115
 * critical sections have completed.  However, the callback function
116
 * might well execute concurrently with RCU read-side critical sections
117
 * that started after call_rcu() was invoked.  RCU read-side critical
118
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
119
 * and may be nested.
120
 *
121
 * Note that all CPUs must agree that the grace period extended beyond
122
 * all pre-existing RCU read-side critical section.  On systems with more
123
 * than one CPU, this means that when "func()" is invoked, each CPU is
124
 * guaranteed to have executed a full memory barrier since the end of its
125
 * last RCU read-side critical section whose beginning preceded the call
126
 * to call_rcu().  It also means that each CPU executing an RCU read-side
127
 * critical section that continues beyond the start of "func()" must have
128
 * executed a memory barrier after the call_rcu() but before the beginning
129
 * of that RCU read-side critical section.  Note that these guarantees
130
 * include CPUs that are offline, idle, or executing in user mode, as
131
 * well as CPUs that are executing in the kernel.
132
 *
133
 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
134
 * resulting RCU callback function "func()", then both CPU A and CPU B are
135
 * guaranteed to execute a full memory barrier during the time interval
136
 * between the call to call_rcu() and the invocation of "func()" -- even
137
 * if CPU A and CPU B are the same CPU (but again only if the system has
138
 * more than one CPU).
139
 */
140
void call_rcu(struct rcu_head *head,
141
	      void (*func)(struct rcu_head *head));
142
 
143
#else /* #ifdef CONFIG_PREEMPT_RCU */
144
 
145
/* In classic RCU, call_rcu() is just call_rcu_sched(). */
146
#define	call_rcu	call_rcu_sched
147
 
148
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
149
 
150
/**
151
 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
152
 * @head: structure to be used for queueing the RCU updates.
153
 * @func: actual callback function to be invoked after the grace period
154
 *
155
 * The callback function will be invoked some time after a full grace
156
 * period elapses, in other words after all currently executing RCU
157
 * read-side critical sections have completed. call_rcu_bh() assumes
158
 * that the read-side critical sections end on completion of a softirq
159
 * handler. This means that read-side critical sections in process
160
 * context must not be interrupted by softirqs. This interface is to be
161
 * used when most of the read-side critical sections are in softirq context.
162
 * RCU read-side critical sections are delimited by :
163
 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
164
 *  OR
165
 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
166
 *  These may be nested.
167
 *
168
 * See the description of call_rcu() for more detailed information on
169
 * memory ordering guarantees.
170
 */
171
void call_rcu_bh(struct rcu_head *head,
172
		 void (*func)(struct rcu_head *head));
173
 
174
/**
175
 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
176
 * @head: structure to be used for queueing the RCU updates.
177
 * @func: actual callback function to be invoked after the grace period
178
 *
179
 * The callback function will be invoked some time after a full grace
180
 * period elapses, in other words after all currently executing RCU
181
 * read-side critical sections have completed. call_rcu_sched() assumes
182
 * that the read-side critical sections end on enabling of preemption
183
 * or on voluntary preemption.
184
 * RCU read-side critical sections are delimited by :
185
 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
186
 *  OR
187
 *  anything that disables preemption.
188
 *  These may be nested.
189
 *
190
 * See the description of call_rcu() for more detailed information on
191
 * memory ordering guarantees.
192
 */
193
void call_rcu_sched(struct rcu_head *head,
194
		    void (*func)(struct rcu_head *rcu));
195
 
196
void synchronize_sched(void);
197
 
198
/**
199
 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
200
 * @head: structure to be used for queueing the RCU updates.
201
 * @func: actual callback function to be invoked after the grace period
202
 *
203
 * The callback function will be invoked some time after a full grace
204
 * period elapses, in other words after all currently executing RCU
205
 * read-side critical sections have completed. call_rcu_tasks() assumes
206
 * that the read-side critical sections end at a voluntary context
207
 * switch (not a preemption!), entry into idle, or transition to usermode
208
 * execution.  As such, there are no read-side primitives analogous to
209
 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
210
 * to determine that all tasks have passed through a safe state, not so
211
 * much for data-strcuture synchronization.
212
 *
213
 * See the description of call_rcu() for more detailed information on
214
 * memory ordering guarantees.
215
 */
216
void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
217
void synchronize_rcu_tasks(void);
218
void rcu_barrier_tasks(void);
219
 
220
#ifdef CONFIG_PREEMPT_RCU
221
 
222
void __rcu_read_lock(void);
223
void __rcu_read_unlock(void);
224
void rcu_read_unlock_special(struct task_struct *t);
225
void synchronize_rcu(void);
226
 
227
/*
228
 * Defined as a macro as it is a very low level header included from
229
 * areas that don't even know about current.  This gives the rcu_read_lock()
230
 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
231
 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
232
 */
233
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
234
 
235
#else /* #ifdef CONFIG_PREEMPT_RCU */
236
 
237
static inline void __rcu_read_lock(void)
238
{
239
	preempt_disable();
240
}
241
 
242
static inline void __rcu_read_unlock(void)
243
{
244
	preempt_enable();
245
}
246
 
247
static inline void synchronize_rcu(void)
248
{
249
	synchronize_sched();
250
}
251
 
252
static inline int rcu_preempt_depth(void)
253
{
254
	return 0;
255
}
256
 
257
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
258
 
259
/* Internal to kernel */
260
void rcu_init(void);
261
void rcu_sched_qs(void);
262
void rcu_bh_qs(void);
263
void rcu_check_callbacks(int user);
264
struct notifier_block;
265
void rcu_idle_enter(void);
266
void rcu_idle_exit(void);
267
void rcu_irq_enter(void);
268
void rcu_irq_exit(void);
269
 
270
#ifdef CONFIG_RCU_STALL_COMMON
271
void rcu_sysrq_start(void);
272
void rcu_sysrq_end(void);
273
#else /* #ifdef CONFIG_RCU_STALL_COMMON */
274
static inline void rcu_sysrq_start(void)
275
{
276
}
277
static inline void rcu_sysrq_end(void)
278
{
279
}
280
#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
281
 
282
#ifdef CONFIG_RCU_USER_QS
283
void rcu_user_enter(void);
284
void rcu_user_exit(void);
285
#else
286
static inline void rcu_user_enter(void) { }
287
static inline void rcu_user_exit(void) { }
288
static inline void rcu_user_hooks_switch(struct task_struct *prev,
289
					 struct task_struct *next) { }
290
#endif /* CONFIG_RCU_USER_QS */
291
 
292
#ifdef CONFIG_RCU_NOCB_CPU
293
void rcu_init_nohz(void);
294
#else /* #ifdef CONFIG_RCU_NOCB_CPU */
295
static inline void rcu_init_nohz(void)
296
{
297
}
298
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
299
 
300
/**
301
 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
302
 * @a: Code that RCU needs to pay attention to.
303
 *
304
 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
305
 * in the inner idle loop, that is, between the rcu_idle_enter() and
306
 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
307
 * critical sections.  However, things like powertop need tracepoints
308
 * in the inner idle loop.
309
 *
310
 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
311
 * will tell RCU that it needs to pay attending, invoke its argument
312
 * (in this example, a call to the do_something_with_RCU() function),
313
 * and then tell RCU to go back to ignoring this CPU.  It is permissible
314
 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
315
 * quite limited.  If deeper nesting is required, it will be necessary
316
 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
317
 */
318
#define RCU_NONIDLE(a) \
319
	do { \
320
		rcu_irq_enter(); \
321
		do { a; } while (0); \
322
		rcu_irq_exit(); \
323
	} while (0)
324
 
325
/*
326
 * Note a voluntary context switch for RCU-tasks benefit.  This is a
327
 * macro rather than an inline function to avoid #include hell.
328
 */
329
#ifdef CONFIG_TASKS_RCU
330
#define TASKS_RCU(x) x
331
extern struct srcu_struct tasks_rcu_exit_srcu;
332
#define rcu_note_voluntary_context_switch(t) \
333
	do { \
334
		if (ACCESS_ONCE((t)->rcu_tasks_holdout)) \
335
			ACCESS_ONCE((t)->rcu_tasks_holdout) = false; \
336
	} while (0)
337
#else /* #ifdef CONFIG_TASKS_RCU */
338
#define TASKS_RCU(x) do { } while (0)
339
#define rcu_note_voluntary_context_switch(t)	do { } while (0)
340
#endif /* #else #ifdef CONFIG_TASKS_RCU */
341
 
342
/**
343
 * cond_resched_rcu_qs - Report potential quiescent states to RCU
344
 *
345
 * This macro resembles cond_resched(), except that it is defined to
346
 * report potential quiescent states to RCU-tasks even if the cond_resched()
347
 * machinery were to be shut off, as some advocate for PREEMPT kernels.
348
 */
349
#define cond_resched_rcu_qs() \
350
do { \
351
	if (!cond_resched()) \
352
		rcu_note_voluntary_context_switch(current); \
353
} while (0)
354
 
355
#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
356
bool __rcu_is_watching(void);
357
#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
358
 
359
/*
360
 * Infrastructure to implement the synchronize_() primitives in
361
 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
362
 */
363
 
364
typedef void call_rcu_func_t(struct rcu_head *head,
365
			     void (*func)(struct rcu_head *head));
366
void wait_rcu_gp(call_rcu_func_t crf);
367
 
368
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
369
#include 
370
#elif defined(CONFIG_TINY_RCU)
371
#include 
372
#else
373
#error "Unknown RCU implementation specified to kernel configuration"
374
#endif
375
 
376
/*
377
 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
378
 * initialization and destruction of rcu_head on the stack. rcu_head structures
379
 * allocated dynamically in the heap or defined statically don't need any
380
 * initialization.
381
 */
382
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
383
void init_rcu_head(struct rcu_head *head);
384
void destroy_rcu_head(struct rcu_head *head);
385
void init_rcu_head_on_stack(struct rcu_head *head);
386
void destroy_rcu_head_on_stack(struct rcu_head *head);
387
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
388
static inline void init_rcu_head(struct rcu_head *head)
389
{
390
}
391
 
392
static inline void destroy_rcu_head(struct rcu_head *head)
393
{
394
}
395
 
396
static inline void init_rcu_head_on_stack(struct rcu_head *head)
397
{
398
}
399
 
400
static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
401
{
402
}
403
#endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
404
 
405
#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
406
bool rcu_lockdep_current_cpu_online(void);
407
#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
408
static inline bool rcu_lockdep_current_cpu_online(void)
409
{
410
	return true;
411
}
412
#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
413
 
414
#ifdef CONFIG_DEBUG_LOCK_ALLOC
415
 
416
static inline void rcu_lock_acquire(struct lockdep_map *map)
417
{
418
	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
419
}
420
 
421
static inline void rcu_lock_release(struct lockdep_map *map)
422
{
423
	lock_release(map, 1, _THIS_IP_);
424
}
425
 
426
extern struct lockdep_map rcu_lock_map;
427
extern struct lockdep_map rcu_bh_lock_map;
428
extern struct lockdep_map rcu_sched_lock_map;
429
extern struct lockdep_map rcu_callback_map;
430
int debug_lockdep_rcu_enabled(void);
431
 
432
int rcu_read_lock_held(void);
433
int rcu_read_lock_bh_held(void);
434
 
435
/**
436
 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
437
 *
438
 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
439
 * RCU-sched read-side critical section.  In absence of
440
 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
441
 * critical section unless it can prove otherwise.  Note that disabling
442
 * of preemption (including disabling irqs) counts as an RCU-sched
443
 * read-side critical section.  This is useful for debug checks in functions
444
 * that required that they be called within an RCU-sched read-side
445
 * critical section.
446
 *
447
 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
448
 * and while lockdep is disabled.
449
 *
450
 * Note that if the CPU is in the idle loop from an RCU point of
451
 * view (ie: that we are in the section between rcu_idle_enter() and
452
 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
453
 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
454
 * that are in such a section, considering these as in extended quiescent
455
 * state, so such a CPU is effectively never in an RCU read-side critical
456
 * section regardless of what RCU primitives it invokes.  This state of
457
 * affairs is required --- we need to keep an RCU-free window in idle
458
 * where the CPU may possibly enter into low power mode. This way we can
459
 * notice an extended quiescent state to other CPUs that started a grace
460
 * period. Otherwise we would delay any grace period as long as we run in
461
 * the idle task.
462
 *
463
 * Similarly, we avoid claiming an SRCU read lock held if the current
464
 * CPU is offline.
465
 */
466
#ifdef CONFIG_PREEMPT_COUNT
467
static inline int rcu_read_lock_sched_held(void)
468
{
469
	int lockdep_opinion = 0;
470
 
471
	if (!debug_lockdep_rcu_enabled())
472
		return 1;
473
	if (!rcu_is_watching())
474
		return 0;
475
	if (!rcu_lockdep_current_cpu_online())
476
		return 0;
477
	if (debug_locks)
478
		lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
479
	return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
480
}
481
#else /* #ifdef CONFIG_PREEMPT_COUNT */
482
static inline int rcu_read_lock_sched_held(void)
483
{
484
	return 1;
485
}
486
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
487
 
488
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
489
 
490
# define rcu_lock_acquire(a)		do { } while (0)
491
# define rcu_lock_release(a)		do { } while (0)
492
 
493
static inline int rcu_read_lock_held(void)
494
{
495
	return 1;
496
}
497
 
498
static inline int rcu_read_lock_bh_held(void)
499
{
500
	return 1;
501
}
502
 
503
#ifdef CONFIG_PREEMPT_COUNT
504
static inline int rcu_read_lock_sched_held(void)
505
{
506
	return preempt_count() != 0 || irqs_disabled();
507
}
508
#else /* #ifdef CONFIG_PREEMPT_COUNT */
509
static inline int rcu_read_lock_sched_held(void)
510
{
511
	return 1;
512
}
513
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
514
 
515
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
516
 
517
#ifdef CONFIG_PROVE_RCU
518
 
519
/**
520
 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
521
 * @c: condition to check
522
 * @s: informative message
523
 */
524
#define rcu_lockdep_assert(c, s)					\
525
	do {								\
526
		static bool __section(.data.unlikely) __warned;		\
527
		if (debug_lockdep_rcu_enabled() && !__warned && !(c)) {	\
528
			__warned = true;				\
529
			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
530
		}							\
531
	} while (0)
532
 
533
#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
534
static inline void rcu_preempt_sleep_check(void)
535
{
536
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
537
			   "Illegal context switch in RCU read-side critical section");
538
}
539
#else /* #ifdef CONFIG_PROVE_RCU */
540
static inline void rcu_preempt_sleep_check(void)
541
{
542
}
543
#endif /* #else #ifdef CONFIG_PROVE_RCU */
544
 
545
#define rcu_sleep_check()						\
546
	do {								\
547
		rcu_preempt_sleep_check();				\
548
		rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),	\
549
				   "Illegal context switch in RCU-bh read-side critical section"); \
550
		rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),	\
551
				   "Illegal context switch in RCU-sched read-side critical section"); \
552
	} while (0)
553
 
554
#else /* #ifdef CONFIG_PROVE_RCU */
555
 
556
#define rcu_lockdep_assert(c, s) do { } while (0)
557
#define rcu_sleep_check() do { } while (0)
558
 
559
#endif /* #else #ifdef CONFIG_PROVE_RCU */
560
 
561
/*
562
 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
563
 * and rcu_assign_pointer().  Some of these could be folded into their
564
 * callers, but they are left separate in order to ease introduction of
565
 * multiple flavors of pointers to match the multiple flavors of RCU
566
 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
567
 * the future.
568
 */
569
 
570
#ifdef __CHECKER__
571
#define rcu_dereference_sparse(p, space) \
572
	((void)(((typeof(*p) space *)p) == p))
573
#else /* #ifdef __CHECKER__ */
574
#define rcu_dereference_sparse(p, space)
575
#endif /* #else #ifdef __CHECKER__ */
576
 
577
#define __rcu_access_pointer(p, space) \
578
({ \
579
	typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
580
	rcu_dereference_sparse(p, space); \
581
	((typeof(*p) __force __kernel *)(_________p1)); \
582
})
583
#define __rcu_dereference_check(p, c, space) \
584
({ \
585
	typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
586
	rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
587
	rcu_dereference_sparse(p, space); \
588
	smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
589
	((typeof(*p) __force __kernel *)(_________p1)); \
590
})
591
#define __rcu_dereference_protected(p, c, space) \
592
({ \
593
	rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
594
	rcu_dereference_sparse(p, space); \
595
	((typeof(*p) __force __kernel *)(p)); \
596
})
597
 
598
#define __rcu_access_index(p, space) \
599
({ \
600
	typeof(p) _________p1 = ACCESS_ONCE(p); \
601
	rcu_dereference_sparse(p, space); \
602
	(_________p1); \
603
})
604
#define __rcu_dereference_index_check(p, c) \
605
({ \
606
	typeof(p) _________p1 = ACCESS_ONCE(p); \
607
	rcu_lockdep_assert(c, \
608
			   "suspicious rcu_dereference_index_check() usage"); \
609
	smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
610
	(_________p1); \
611
})
612
 
613
/**
614
 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
615
 * @v: The value to statically initialize with.
616
 */
617
#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
618
 
619
/**
620
 * lockless_dereference() - safely load a pointer for later dereference
621
 * @p: The pointer to load
622
 *
623
 * Similar to rcu_dereference(), but for situations where the pointed-to
624
 * object's lifetime is managed by something other than RCU.  That
625
 * "something other" might be reference counting or simple immortality.
626
 */
627
#define lockless_dereference(p) \
628
({ \
629
	typeof(p) _________p1 = ACCESS_ONCE(p); \
630
	smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
631
	(_________p1); \
632
})
633
 
634
/**
635
 * rcu_assign_pointer() - assign to RCU-protected pointer
636
 * @p: pointer to assign to
637
 * @v: value to assign (publish)
638
 *
639
 * Assigns the specified value to the specified RCU-protected
640
 * pointer, ensuring that any concurrent RCU readers will see
641
 * any prior initialization.
642
 *
643
 * Inserts memory barriers on architectures that require them
644
 * (which is most of them), and also prevents the compiler from
645
 * reordering the code that initializes the structure after the pointer
646
 * assignment.  More importantly, this call documents which pointers
647
 * will be dereferenced by RCU read-side code.
648
 *
649
 * In some special cases, you may use RCU_INIT_POINTER() instead
650
 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
651
 * to the fact that it does not constrain either the CPU or the compiler.
652
 * That said, using RCU_INIT_POINTER() when you should have used
653
 * rcu_assign_pointer() is a very bad thing that results in
654
 * impossible-to-diagnose memory corruption.  So please be careful.
655
 * See the RCU_INIT_POINTER() comment header for details.
656
 *
657
 * Note that rcu_assign_pointer() evaluates each of its arguments only
658
 * once, appearances notwithstanding.  One of the "extra" evaluations
659
 * is in typeof() and the other visible only to sparse (__CHECKER__),
660
 * neither of which actually execute the argument.  As with most cpp
661
 * macros, this execute-arguments-only-once property is important, so
662
 * please be careful when making changes to rcu_assign_pointer() and the
663
 * other macros that it invokes.
664
 */
665
#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
666
 
667
/**
668
 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
669
 * @p: The pointer to read
670
 *
671
 * Return the value of the specified RCU-protected pointer, but omit the
672
 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
673
 * when the value of this pointer is accessed, but the pointer is not
674
 * dereferenced, for example, when testing an RCU-protected pointer against
675
 * NULL.  Although rcu_access_pointer() may also be used in cases where
676
 * update-side locks prevent the value of the pointer from changing, you
677
 * should instead use rcu_dereference_protected() for this use case.
678
 *
679
 * It is also permissible to use rcu_access_pointer() when read-side
680
 * access to the pointer was removed at least one grace period ago, as
681
 * is the case in the context of the RCU callback that is freeing up
682
 * the data, or after a synchronize_rcu() returns.  This can be useful
683
 * when tearing down multi-linked structures after a grace period
684
 * has elapsed.
685
 */
686
#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
687
 
688
/**
689
 * rcu_dereference_check() - rcu_dereference with debug checking
690
 * @p: The pointer to read, prior to dereferencing
691
 * @c: The conditions under which the dereference will take place
692
 *
693
 * Do an rcu_dereference(), but check that the conditions under which the
694
 * dereference will take place are correct.  Typically the conditions
695
 * indicate the various locking conditions that should be held at that
696
 * point.  The check should return true if the conditions are satisfied.
697
 * An implicit check for being in an RCU read-side critical section
698
 * (rcu_read_lock()) is included.
699
 *
700
 * For example:
701
 *
702
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
703
 *
704
 * could be used to indicate to lockdep that foo->bar may only be dereferenced
705
 * if either rcu_read_lock() is held, or that the lock required to replace
706
 * the bar struct at foo->bar is held.
707
 *
708
 * Note that the list of conditions may also include indications of when a lock
709
 * need not be held, for example during initialisation or destruction of the
710
 * target struct:
711
 *
712
 *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
713
 *					      atomic_read(&foo->usage) == 0);
714
 *
715
 * Inserts memory barriers on architectures that require them
716
 * (currently only the Alpha), prevents the compiler from refetching
717
 * (and from merging fetches), and, more importantly, documents exactly
718
 * which pointers are protected by RCU and checks that the pointer is
719
 * annotated as __rcu.
720
 */
721
#define rcu_dereference_check(p, c) \
722
	__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
723
 
724
/**
725
 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
726
 * @p: The pointer to read, prior to dereferencing
727
 * @c: The conditions under which the dereference will take place
728
 *
729
 * This is the RCU-bh counterpart to rcu_dereference_check().
730
 */
731
#define rcu_dereference_bh_check(p, c) \
732
	__rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
733
 
734
/**
735
 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
736
 * @p: The pointer to read, prior to dereferencing
737
 * @c: The conditions under which the dereference will take place
738
 *
739
 * This is the RCU-sched counterpart to rcu_dereference_check().
740
 */
741
#define rcu_dereference_sched_check(p, c) \
742
	__rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
743
				__rcu)
744
 
745
#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
746
 
747
/*
748
 * The tracing infrastructure traces RCU (we want that), but unfortunately
749
 * some of the RCU checks causes tracing to lock up the system.
750
 *
751
 * The tracing version of rcu_dereference_raw() must not call
752
 * rcu_read_lock_held().
753
 */
754
#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
755
 
756
/**
757
 * rcu_access_index() - fetch RCU index with no dereferencing
758
 * @p: The index to read
759
 *
760
 * Return the value of the specified RCU-protected index, but omit the
761
 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
762
 * when the value of this index is accessed, but the index is not
763
 * dereferenced, for example, when testing an RCU-protected index against
764
 * -1.  Although rcu_access_index() may also be used in cases where
765
 * update-side locks prevent the value of the index from changing, you
766
 * should instead use rcu_dereference_index_protected() for this use case.
767
 */
768
#define rcu_access_index(p) __rcu_access_index((p), __rcu)
769
 
770
/**
771
 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
772
 * @p: The pointer to read, prior to dereferencing
773
 * @c: The conditions under which the dereference will take place
774
 *
775
 * Similar to rcu_dereference_check(), but omits the sparse checking.
776
 * This allows rcu_dereference_index_check() to be used on integers,
777
 * which can then be used as array indices.  Attempting to use
778
 * rcu_dereference_check() on an integer will give compiler warnings
779
 * because the sparse address-space mechanism relies on dereferencing
780
 * the RCU-protected pointer.  Dereferencing integers is not something
781
 * that even gcc will put up with.
782
 *
783
 * Note that this function does not implicitly check for RCU read-side
784
 * critical sections.  If this function gains lots of uses, it might
785
 * make sense to provide versions for each flavor of RCU, but it does
786
 * not make sense as of early 2010.
787
 */
788
#define rcu_dereference_index_check(p, c) \
789
	__rcu_dereference_index_check((p), (c))
790
 
791
/**
792
 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
793
 * @p: The pointer to read, prior to dereferencing
794
 * @c: The conditions under which the dereference will take place
795
 *
796
 * Return the value of the specified RCU-protected pointer, but omit
797
 * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
798
 * is useful in cases where update-side locks prevent the value of the
799
 * pointer from changing.  Please note that this primitive does -not-
800
 * prevent the compiler from repeating this reference or combining it
801
 * with other references, so it should not be used without protection
802
 * of appropriate locks.
803
 *
804
 * This function is only for update-side use.  Using this function
805
 * when protected only by rcu_read_lock() will result in infrequent
806
 * but very ugly failures.
807
 */
808
#define rcu_dereference_protected(p, c) \
809
	__rcu_dereference_protected((p), (c), __rcu)
810
 
811
 
812
/**
813
 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
814
 * @p: The pointer to read, prior to dereferencing
815
 *
816
 * This is a simple wrapper around rcu_dereference_check().
817
 */
818
#define rcu_dereference(p) rcu_dereference_check(p, 0)
819
 
820
/**
821
 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
822
 * @p: The pointer to read, prior to dereferencing
823
 *
824
 * Makes rcu_dereference_check() do the dirty work.
825
 */
826
#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
827
 
828
/**
829
 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
830
 * @p: The pointer to read, prior to dereferencing
831
 *
832
 * Makes rcu_dereference_check() do the dirty work.
833
 */
834
#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
835
 
836
/**
837
 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
838
 *
839
 * When synchronize_rcu() is invoked on one CPU while other CPUs
840
 * are within RCU read-side critical sections, then the
841
 * synchronize_rcu() is guaranteed to block until after all the other
842
 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
843
 * on one CPU while other CPUs are within RCU read-side critical
844
 * sections, invocation of the corresponding RCU callback is deferred
845
 * until after the all the other CPUs exit their critical sections.
846
 *
847
 * Note, however, that RCU callbacks are permitted to run concurrently
848
 * with new RCU read-side critical sections.  One way that this can happen
849
 * is via the following sequence of events: (1) CPU 0 enters an RCU
850
 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
851
 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
852
 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
853
 * callback is invoked.  This is legal, because the RCU read-side critical
854
 * section that was running concurrently with the call_rcu() (and which
855
 * therefore might be referencing something that the corresponding RCU
856
 * callback would free up) has completed before the corresponding
857
 * RCU callback is invoked.
858
 *
859
 * RCU read-side critical sections may be nested.  Any deferred actions
860
 * will be deferred until the outermost RCU read-side critical section
861
 * completes.
862
 *
863
 * You can avoid reading and understanding the next paragraph by
864
 * following this rule: don't put anything in an rcu_read_lock() RCU
865
 * read-side critical section that would block in a !PREEMPT kernel.
866
 * But if you want the full story, read on!
867
 *
868
 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
869
 * it is illegal to block while in an RCU read-side critical section.
870
 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
871
 * kernel builds, RCU read-side critical sections may be preempted,
872
 * but explicit blocking is illegal.  Finally, in preemptible RCU
873
 * implementations in real-time (with -rt patchset) kernel builds, RCU
874
 * read-side critical sections may be preempted and they may also block, but
875
 * only when acquiring spinlocks that are subject to priority inheritance.
876
 */
877
static inline void rcu_read_lock(void)
878
{
879
	__rcu_read_lock();
880
	__acquire(RCU);
881
	rcu_lock_acquire(&rcu_lock_map);
882
	rcu_lockdep_assert(rcu_is_watching(),
883
			   "rcu_read_lock() used illegally while idle");
884
}
885
 
886
/*
887
 * So where is rcu_write_lock()?  It does not exist, as there is no
888
 * way for writers to lock out RCU readers.  This is a feature, not
889
 * a bug -- this property is what provides RCU's performance benefits.
890
 * Of course, writers must coordinate with each other.  The normal
891
 * spinlock primitives work well for this, but any other technique may be
892
 * used as well.  RCU does not care how the writers keep out of each
893
 * others' way, as long as they do so.
894
 */
895
 
896
/**
897
 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
898
 *
899
 * In most situations, rcu_read_unlock() is immune from deadlock.
900
 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
901
 * is responsible for deboosting, which it does via rt_mutex_unlock().
902
 * Unfortunately, this function acquires the scheduler's runqueue and
903
 * priority-inheritance spinlocks.  This means that deadlock could result
904
 * if the caller of rcu_read_unlock() already holds one of these locks or
905
 * any lock that is ever acquired while holding them; or any lock which
906
 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
907
 * does not disable irqs while taking ->wait_lock.
908
 *
909
 * That said, RCU readers are never priority boosted unless they were
910
 * preempted.  Therefore, one way to avoid deadlock is to make sure
911
 * that preemption never happens within any RCU read-side critical
912
 * section whose outermost rcu_read_unlock() is called with one of
913
 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
914
 * a number of ways, for example, by invoking preempt_disable() before
915
 * critical section's outermost rcu_read_lock().
916
 *
917
 * Given that the set of locks acquired by rt_mutex_unlock() might change
918
 * at any time, a somewhat more future-proofed approach is to make sure
919
 * that that preemption never happens within any RCU read-side critical
920
 * section whose outermost rcu_read_unlock() is called with irqs disabled.
921
 * This approach relies on the fact that rt_mutex_unlock() currently only
922
 * acquires irq-disabled locks.
923
 *
924
 * The second of these two approaches is best in most situations,
925
 * however, the first approach can also be useful, at least to those
926
 * developers willing to keep abreast of the set of locks acquired by
927
 * rt_mutex_unlock().
928
 *
929
 * See rcu_read_lock() for more information.
930
 */
931
static inline void rcu_read_unlock(void)
932
{
933
	rcu_lockdep_assert(rcu_is_watching(),
934
			   "rcu_read_unlock() used illegally while idle");
935
	rcu_lock_release(&rcu_lock_map);
936
	__release(RCU);
937
	__rcu_read_unlock();
938
}
939
 
940
/**
941
 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
942
 *
943
 * This is equivalent of rcu_read_lock(), but to be used when updates
944
 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
945
 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
946
 * softirq handler to be a quiescent state, a process in RCU read-side
947
 * critical section must be protected by disabling softirqs. Read-side
948
 * critical sections in interrupt context can use just rcu_read_lock(),
949
 * though this should at least be commented to avoid confusing people
950
 * reading the code.
951
 *
952
 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
953
 * must occur in the same context, for example, it is illegal to invoke
954
 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
955
 * was invoked from some other task.
956
 */
957
static inline void rcu_read_lock_bh(void)
958
{
959
	local_bh_disable();
960
	__acquire(RCU_BH);
961
	rcu_lock_acquire(&rcu_bh_lock_map);
962
	rcu_lockdep_assert(rcu_is_watching(),
963
			   "rcu_read_lock_bh() used illegally while idle");
964
}
965
 
966
/*
967
 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
968
 *
969
 * See rcu_read_lock_bh() for more information.
970
 */
971
static inline void rcu_read_unlock_bh(void)
972
{
973
	rcu_lockdep_assert(rcu_is_watching(),
974
			   "rcu_read_unlock_bh() used illegally while idle");
975
	rcu_lock_release(&rcu_bh_lock_map);
976
	__release(RCU_BH);
977
	local_bh_enable();
978
}
979
 
980
/**
981
 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
982
 *
983
 * This is equivalent of rcu_read_lock(), but to be used when updates
984
 * are being done using call_rcu_sched() or synchronize_rcu_sched().
985
 * Read-side critical sections can also be introduced by anything that
986
 * disables preemption, including local_irq_disable() and friends.
987
 *
988
 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
989
 * must occur in the same context, for example, it is illegal to invoke
990
 * rcu_read_unlock_sched() from process context if the matching
991
 * rcu_read_lock_sched() was invoked from an NMI handler.
992
 */
993
static inline void rcu_read_lock_sched(void)
994
{
995
	preempt_disable();
996
	__acquire(RCU_SCHED);
997
	rcu_lock_acquire(&rcu_sched_lock_map);
998
	rcu_lockdep_assert(rcu_is_watching(),
999
			   "rcu_read_lock_sched() used illegally while idle");
1000
}
1001
 
1002
/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1003
static inline notrace void rcu_read_lock_sched_notrace(void)
1004
{
1005
	preempt_disable_notrace();
1006
	__acquire(RCU_SCHED);
1007
}
1008
 
1009
/*
1010
 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
1011
 *
1012
 * See rcu_read_lock_sched for more information.
1013
 */
1014
static inline void rcu_read_unlock_sched(void)
1015
{
1016
	rcu_lockdep_assert(rcu_is_watching(),
1017
			   "rcu_read_unlock_sched() used illegally while idle");
1018
	rcu_lock_release(&rcu_sched_lock_map);
1019
	__release(RCU_SCHED);
1020
	preempt_enable();
1021
}
1022
 
1023
/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1024
static inline notrace void rcu_read_unlock_sched_notrace(void)
1025
{
1026
	__release(RCU_SCHED);
1027
	preempt_enable_notrace();
1028
}
1029
 
1030
/**
1031
 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1032
 *
1033
 * Initialize an RCU-protected pointer in special cases where readers
1034
 * do not need ordering constraints on the CPU or the compiler.  These
1035
 * special cases are:
1036
 *
1037
 * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1038
 * 2.	The caller has taken whatever steps are required to prevent
1039
 *	RCU readers from concurrently accessing this pointer -or-
1040
 * 3.	The referenced data structure has already been exposed to
1041
 *	readers either at compile time or via rcu_assign_pointer() -and-
1042
 *	a.	You have not made -any- reader-visible changes to
1043
 *		this structure since then -or-
1044
 *	b.	It is OK for readers accessing this structure from its
1045
 *		new location to see the old state of the structure.  (For
1046
 *		example, the changes were to statistical counters or to
1047
 *		other state where exact synchronization is not required.)
1048
 *
1049
 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1050
 * result in impossible-to-diagnose memory corruption.  As in the structures
1051
 * will look OK in crash dumps, but any concurrent RCU readers might
1052
 * see pre-initialized values of the referenced data structure.  So
1053
 * please be very careful how you use RCU_INIT_POINTER()!!!
1054
 *
1055
 * If you are creating an RCU-protected linked structure that is accessed
1056
 * by a single external-to-structure RCU-protected pointer, then you may
1057
 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1058
 * pointers, but you must use rcu_assign_pointer() to initialize the
1059
 * external-to-structure pointer -after- you have completely initialized
1060
 * the reader-accessible portions of the linked structure.
1061
 *
1062
 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1063
 * ordering guarantees for either the CPU or the compiler.
1064
 */
1065
#define RCU_INIT_POINTER(p, v) \
1066
	do { \
1067
		rcu_dereference_sparse(p, __rcu); \
1068
		p = RCU_INITIALIZER(v); \
1069
	} while (0)
1070
 
1071
/**
1072
 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1073
 *
1074
 * GCC-style initialization for an RCU-protected pointer in a structure field.
1075
 */
1076
#define RCU_POINTER_INITIALIZER(p, v) \
1077
		.p = RCU_INITIALIZER(v)
1078
 
1079
/*
1080
 * Does the specified offset indicate that the corresponding rcu_head
1081
 * structure can be handled by kfree_rcu()?
1082
 */
1083
#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1084
 
1085
/*
1086
 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1087
 */
1088
#define __kfree_rcu(head, offset) \
1089
	do { \
1090
		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1091
		kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1092
	} while (0)
1093
 
1094
/**
1095
 * kfree_rcu() - kfree an object after a grace period.
1096
 * @ptr:	pointer to kfree
1097
 * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
1098
 *
1099
 * Many rcu callbacks functions just call kfree() on the base structure.
1100
 * These functions are trivial, but their size adds up, and furthermore
1101
 * when they are used in a kernel module, that module must invoke the
1102
 * high-latency rcu_barrier() function at module-unload time.
1103
 *
1104
 * The kfree_rcu() function handles this issue.  Rather than encoding a
1105
 * function address in the embedded rcu_head structure, kfree_rcu() instead
1106
 * encodes the offset of the rcu_head structure within the base structure.
1107
 * Because the functions are not allowed in the low-order 4096 bytes of
1108
 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1109
 * If the offset is larger than 4095 bytes, a compile-time error will
1110
 * be generated in __kfree_rcu().  If this error is triggered, you can
1111
 * either fall back to use of call_rcu() or rearrange the structure to
1112
 * position the rcu_head structure into the first 4096 bytes.
1113
 *
1114
 * Note that the allowable offset might decrease in the future, for example,
1115
 * to allow something like kmem_cache_free_rcu().
1116
 *
1117
 * The BUILD_BUG_ON check must not involve any function calls, hence the
1118
 * checks are done in macros here.
1119
 */
1120
#define kfree_rcu(ptr, rcu_head)					\
1121
	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1122
 
1123
#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
1124
static inline int rcu_needs_cpu(unsigned long *delta_jiffies)
1125
{
1126
	*delta_jiffies = ULONG_MAX;
1127
	return 0;
1128
}
1129
#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
1130
 
1131
#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1132
static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1133
#elif defined(CONFIG_RCU_NOCB_CPU)
1134
bool rcu_is_nocb_cpu(int cpu);
1135
#else
1136
static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1137
#endif
1138
 
1139
 
1140
/* Only for use by adaptive-ticks code. */
1141
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1142
bool rcu_sys_is_idle(void);
1143
void rcu_sysidle_force_exit(void);
1144
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1145
 
1146
static inline bool rcu_sys_is_idle(void)
1147
{
1148
	return false;
1149
}
1150
 
1151
static inline void rcu_sysidle_force_exit(void)
1152
{
1153
}
1154
 
1155
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1156
 
1157
 
1158
#endif /* __LINUX_RCUPDATE_H */