Subversion Repositories Kolibri OS

Rev

Rev 6936 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
4065 Serge 1
#ifndef _LINUX_RCULIST_H
2
#define _LINUX_RCULIST_H
3
 
4
#ifdef __KERNEL__
5
 
6
/*
7
 * RCU-protected list version
8
 */
9
#include 
5270 serge 10
#include 
4065 Serge 11
 
12
/*
13
 * Why is there no list_empty_rcu()?  Because list_empty() serves this
14
 * purpose.  The list_empty() function fetches the RCU-protected pointer
15
 * and compares it to the address of the list head, but neither dereferences
16
 * this pointer itself nor provides this pointer to the caller.  Therefore,
17
 * it is not necessary to use rcu_dereference(), so that list_empty() can
18
 * be used anywhere you would want to use a list_empty_rcu().
19
 */
20
 
21
/*
5270 serge 22
 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
23
 * @list: list to be initialized
24
 *
25
 * You should instead use INIT_LIST_HEAD() for normal initialization and
26
 * cleanup tasks, when readers have no access to the list being initialized.
27
 * However, if the list being initialized is visible to readers, you
28
 * need to keep the compiler from being too mischievous.
29
 */
30
static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
31
{
6082 serge 32
	WRITE_ONCE(list->next, list);
33
	WRITE_ONCE(list->prev, list);
5270 serge 34
}
35
 
36
/*
4065 Serge 37
 * return the ->next pointer of a list_head in an rcu safe
38
 * way, we must not access it directly
39
 */
40
#define list_next_rcu(list)	(*((struct list_head __rcu **)(&(list)->next)))
41
 
42
/*
43
 * Insert a new entry between two known consecutive entries.
44
 *
45
 * This is only for internal list manipulation where we know
46
 * the prev/next entries already!
47
 */
48
#ifndef CONFIG_DEBUG_LIST
49
static inline void __list_add_rcu(struct list_head *new,
50
		struct list_head *prev, struct list_head *next)
51
{
52
	new->next = next;
53
	new->prev = prev;
54
	rcu_assign_pointer(list_next_rcu(prev), new);
55
	next->prev = new;
56
}
57
#else
5056 serge 58
void __list_add_rcu(struct list_head *new,
6082 serge 59
		    struct list_head *prev, struct list_head *next);
4065 Serge 60
#endif
61
 
62
/**
63
 * list_add_rcu - add a new entry to rcu-protected list
64
 * @new: new entry to be added
65
 * @head: list head to add it after
66
 *
67
 * Insert a new entry after the specified head.
68
 * This is good for implementing stacks.
69
 *
70
 * The caller must take whatever precautions are necessary
71
 * (such as holding appropriate locks) to avoid racing
72
 * with another list-mutation primitive, such as list_add_rcu()
73
 * or list_del_rcu(), running on this same list.
74
 * However, it is perfectly legal to run concurrently with
75
 * the _rcu list-traversal primitives, such as
76
 * list_for_each_entry_rcu().
77
 */
78
static inline void list_add_rcu(struct list_head *new, struct list_head *head)
79
{
80
	__list_add_rcu(new, head, head->next);
81
}
82
 
83
/**
84
 * list_add_tail_rcu - add a new entry to rcu-protected list
85
 * @new: new entry to be added
86
 * @head: list head to add it before
87
 *
88
 * Insert a new entry before the specified head.
89
 * This is useful for implementing queues.
90
 *
91
 * The caller must take whatever precautions are necessary
92
 * (such as holding appropriate locks) to avoid racing
93
 * with another list-mutation primitive, such as list_add_tail_rcu()
94
 * or list_del_rcu(), running on this same list.
95
 * However, it is perfectly legal to run concurrently with
96
 * the _rcu list-traversal primitives, such as
97
 * list_for_each_entry_rcu().
98
 */
99
static inline void list_add_tail_rcu(struct list_head *new,
100
					struct list_head *head)
101
{
102
	__list_add_rcu(new, head->prev, head);
103
}
104
 
105
/**
106
 * list_del_rcu - deletes entry from list without re-initialization
107
 * @entry: the element to delete from the list.
108
 *
109
 * Note: list_empty() on entry does not return true after this,
110
 * the entry is in an undefined state. It is useful for RCU based
111
 * lockfree traversal.
112
 *
113
 * In particular, it means that we can not poison the forward
114
 * pointers that may still be used for walking the list.
115
 *
116
 * The caller must take whatever precautions are necessary
117
 * (such as holding appropriate locks) to avoid racing
118
 * with another list-mutation primitive, such as list_del_rcu()
119
 * or list_add_rcu(), running on this same list.
120
 * However, it is perfectly legal to run concurrently with
121
 * the _rcu list-traversal primitives, such as
122
 * list_for_each_entry_rcu().
123
 *
124
 * Note that the caller is not permitted to immediately free
125
 * the newly deleted entry.  Instead, either synchronize_rcu()
126
 * or call_rcu() must be used to defer freeing until an RCU
127
 * grace period has elapsed.
128
 */
129
static inline void list_del_rcu(struct list_head *entry)
130
{
131
	__list_del_entry(entry);
132
	entry->prev = LIST_POISON2;
133
}
134
 
135
/**
136
 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
137
 * @n: the element to delete from the hash list.
138
 *
139
 * Note: list_unhashed() on the node return true after this. It is
140
 * useful for RCU based read lockfree traversal if the writer side
141
 * must know if the list entry is still hashed or already unhashed.
142
 *
143
 * In particular, it means that we can not poison the forward pointers
144
 * that may still be used for walking the hash list and we can only
145
 * zero the pprev pointer so list_unhashed() will return true after
146
 * this.
147
 *
148
 * The caller must take whatever precautions are necessary (such as
149
 * holding appropriate locks) to avoid racing with another
150
 * list-mutation primitive, such as hlist_add_head_rcu() or
151
 * hlist_del_rcu(), running on this same list.  However, it is
152
 * perfectly legal to run concurrently with the _rcu list-traversal
153
 * primitives, such as hlist_for_each_entry_rcu().
154
 */
155
static inline void hlist_del_init_rcu(struct hlist_node *n)
156
{
157
	if (!hlist_unhashed(n)) {
158
		__hlist_del(n);
159
		n->pprev = NULL;
160
	}
161
}
162
 
163
/**
164
 * list_replace_rcu - replace old entry by new one
165
 * @old : the element to be replaced
166
 * @new : the new element to insert
167
 *
168
 * The @old entry will be replaced with the @new entry atomically.
169
 * Note: @old should not be empty.
170
 */
171
static inline void list_replace_rcu(struct list_head *old,
172
				struct list_head *new)
173
{
174
	new->next = old->next;
175
	new->prev = old->prev;
176
	rcu_assign_pointer(list_next_rcu(new->prev), new);
177
	new->next->prev = new;
178
	old->prev = LIST_POISON2;
179
}
180
 
181
/**
6936 serge 182
 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
4065 Serge 183
 * @list:	the RCU-protected list to splice
6936 serge 184
 * @prev:	points to the last element of the existing list
185
 * @next:	points to the first element of the existing list
4065 Serge 186
 * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
187
 *
6936 serge 188
 * The list pointed to by @prev and @next can be RCU-read traversed
189
 * concurrently with this function.
4065 Serge 190
 *
191
 * Note that this function blocks.
192
 *
6936 serge 193
 * Important note: the caller must take whatever action is necessary to prevent
194
 * any other updates to the existing list.  In principle, it is possible to
195
 * modify the list as soon as sync() begins execution. If this sort of thing
196
 * becomes necessary, an alternative version based on call_rcu() could be
197
 * created.  But only if -really- needed -- there is no shortage of RCU API
198
 * members.
4065 Serge 199
 */
6936 serge 200
static inline void __list_splice_init_rcu(struct list_head *list,
201
					  struct list_head *prev,
202
					  struct list_head *next,
7143 serge 203
					  void (*sync)(void))
4065 Serge 204
{
205
	struct list_head *first = list->next;
206
	struct list_head *last = list->prev;
207
 
5056 serge 208
	/*
209
	 * "first" and "last" tracking list, so initialize it.  RCU readers
210
	 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
211
	 * instead of INIT_LIST_HEAD().
212
	 */
4065 Serge 213
 
5270 serge 214
	INIT_LIST_HEAD_RCU(list);
4065 Serge 215
 
216
	/*
217
	 * At this point, the list body still points to the source list.
218
	 * Wait for any readers to finish using the list before splicing
219
	 * the list body into the new list.  Any new readers will see
220
	 * an empty list.
221
	 */
222
 
223
	sync();
224
 
225
	/*
226
	 * Readers are finished with the source list, so perform splice.
227
	 * The order is important if the new list is global and accessible
228
	 * to concurrent RCU readers.  Note that RCU readers are not
229
	 * permitted to traverse the prev pointers without excluding
230
	 * this function.
231
	 */
232
 
6936 serge 233
	last->next = next;
234
	rcu_assign_pointer(list_next_rcu(prev), first);
235
	first->prev = prev;
236
	next->prev = last;
4065 Serge 237
}
238
 
239
/**
6936 serge 240
 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
241
 *                        designed for stacks.
242
 * @list:	the RCU-protected list to splice
243
 * @head:	the place in the existing list to splice the first list into
244
 * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
245
 */
246
static inline void list_splice_init_rcu(struct list_head *list,
247
					struct list_head *head,
248
					void (*sync)(void))
249
{
250
	if (!list_empty(list))
251
		__list_splice_init_rcu(list, head, head->next, sync);
252
}
253
 
254
/**
255
 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
256
 *                             list, designed for queues.
257
 * @list:	the RCU-protected list to splice
258
 * @head:	the place in the existing list to splice the first list into
259
 * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
260
 */
261
static inline void list_splice_tail_init_rcu(struct list_head *list,
262
					     struct list_head *head,
263
					     void (*sync)(void))
264
{
265
	if (!list_empty(list))
266
		__list_splice_init_rcu(list, head->prev, head, sync);
267
}
268
 
269
/**
4065 Serge 270
 * list_entry_rcu - get the struct for this entry
271
 * @ptr:        the &struct list_head pointer.
272
 * @type:       the type of the struct this is embedded in.
5270 serge 273
 * @member:     the name of the list_head within the struct.
4065 Serge 274
 *
275
 * This primitive may safely run concurrently with the _rcu list-mutation
276
 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
277
 */
278
#define list_entry_rcu(ptr, type, member) \
6082 serge 279
	container_of(lockless_dereference(ptr), type, member)
4065 Serge 280
 
281
/**
282
 * Where are list_empty_rcu() and list_first_entry_rcu()?
283
 *
284
 * Implementing those functions following their counterparts list_empty() and
285
 * list_first_entry() is not advisable because they lead to subtle race
286
 * conditions as the following snippet shows:
287
 *
288
 * if (!list_empty_rcu(mylist)) {
289
 *	struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
290
 *	do_something(bar);
291
 * }
292
 *
293
 * The list may not be empty when list_empty_rcu checks it, but it may be when
294
 * list_first_entry_rcu rereads the ->next pointer.
295
 *
296
 * Rereading the ->next pointer is not a problem for list_empty() and
297
 * list_first_entry() because they would be protected by a lock that blocks
298
 * writers.
299
 *
300
 * See list_first_or_null_rcu for an alternative.
301
 */
302
 
303
/**
304
 * list_first_or_null_rcu - get the first element from a list
305
 * @ptr:        the list head to take the element from.
306
 * @type:       the type of the struct this is embedded in.
5270 serge 307
 * @member:     the name of the list_head within the struct.
4065 Serge 308
 *
309
 * Note that if the list is empty, it returns NULL.
310
 *
311
 * This primitive may safely run concurrently with the _rcu list-mutation
312
 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
313
 */
314
#define list_first_or_null_rcu(ptr, type, member) \
5056 serge 315
({ \
316
	struct list_head *__ptr = (ptr); \
6082 serge 317
	struct list_head *__next = READ_ONCE(__ptr->next); \
5056 serge 318
	likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
319
})
4065 Serge 320
 
321
/**
7143 serge 322
 * list_next_or_null_rcu - get the first element from a list
323
 * @head:	the head for the list.
324
 * @ptr:        the list head to take the next element from.
325
 * @type:       the type of the struct this is embedded in.
326
 * @member:     the name of the list_head within the struct.
327
 *
328
 * Note that if the ptr is at the end of the list, NULL is returned.
329
 *
330
 * This primitive may safely run concurrently with the _rcu list-mutation
331
 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
332
 */
333
#define list_next_or_null_rcu(head, ptr, type, member) \
334
({ \
335
	struct list_head *__head = (head); \
336
	struct list_head *__ptr = (ptr); \
337
	struct list_head *__next = READ_ONCE(__ptr->next); \
338
	likely(__next != __head) ? list_entry_rcu(__next, type, \
339
						  member) : NULL; \
340
})
341
 
342
/**
4065 Serge 343
 * list_for_each_entry_rcu	-	iterate over rcu list of given type
344
 * @pos:	the type * to use as a loop cursor.
345
 * @head:	the head for your list.
5270 serge 346
 * @member:	the name of the list_head within the struct.
4065 Serge 347
 *
348
 * This list-traversal primitive may safely run concurrently with
349
 * the _rcu list-mutation primitives such as list_add_rcu()
350
 * as long as the traversal is guarded by rcu_read_lock().
351
 */
352
#define list_for_each_entry_rcu(pos, head, member) \
353
	for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
354
		&pos->member != (head); \
355
		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
356
 
357
/**
6936 serge 358
 * list_entry_lockless - get the struct for this entry
359
 * @ptr:        the &struct list_head pointer.
360
 * @type:       the type of the struct this is embedded in.
361
 * @member:     the name of the list_head within the struct.
362
 *
363
 * This primitive may safely run concurrently with the _rcu list-mutation
364
 * primitives such as list_add_rcu(), but requires some implicit RCU
365
 * read-side guarding.  One example is running within a special
366
 * exception-time environment where preemption is disabled and where
367
 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
368
 * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
369
 * example is when items are added to the list, but never deleted.
370
 */
371
#define list_entry_lockless(ptr, type, member) \
372
	container_of((typeof(ptr))lockless_dereference(ptr), type, member)
373
 
374
/**
375
 * list_for_each_entry_lockless - iterate over rcu list of given type
376
 * @pos:	the type * to use as a loop cursor.
377
 * @head:	the head for your list.
378
 * @member:	the name of the list_struct within the struct.
379
 *
380
 * This primitive may safely run concurrently with the _rcu list-mutation
381
 * primitives such as list_add_rcu(), but requires some implicit RCU
382
 * read-side guarding.  One example is running within a special
383
 * exception-time environment where preemption is disabled and where
384
 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
385
 * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
386
 * example is when items are added to the list, but never deleted.
387
 */
388
#define list_for_each_entry_lockless(pos, head, member) \
389
	for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
390
	     &pos->member != (head); \
391
	     pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
392
 
393
/**
4065 Serge 394
 * list_for_each_entry_continue_rcu - continue iteration over list of given type
395
 * @pos:	the type * to use as a loop cursor.
396
 * @head:	the head for your list.
5270 serge 397
 * @member:	the name of the list_head within the struct.
4065 Serge 398
 *
399
 * Continue to iterate over list of given type, continuing after
400
 * the current position.
401
 */
402
#define list_for_each_entry_continue_rcu(pos, head, member) 		\
403
	for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
404
	     &pos->member != (head);	\
405
	     pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
406
 
407
/**
408
 * hlist_del_rcu - deletes entry from hash list without re-initialization
409
 * @n: the element to delete from the hash list.
410
 *
411
 * Note: list_unhashed() on entry does not return true after this,
412
 * the entry is in an undefined state. It is useful for RCU based
413
 * lockfree traversal.
414
 *
415
 * In particular, it means that we can not poison the forward
416
 * pointers that may still be used for walking the hash list.
417
 *
418
 * The caller must take whatever precautions are necessary
419
 * (such as holding appropriate locks) to avoid racing
420
 * with another list-mutation primitive, such as hlist_add_head_rcu()
421
 * or hlist_del_rcu(), running on this same list.
422
 * However, it is perfectly legal to run concurrently with
423
 * the _rcu list-traversal primitives, such as
424
 * hlist_for_each_entry().
425
 */
426
static inline void hlist_del_rcu(struct hlist_node *n)
427
{
428
	__hlist_del(n);
429
	n->pprev = LIST_POISON2;
430
}
431
 
432
/**
433
 * hlist_replace_rcu - replace old entry by new one
434
 * @old : the element to be replaced
435
 * @new : the new element to insert
436
 *
437
 * The @old entry will be replaced with the @new entry atomically.
438
 */
439
static inline void hlist_replace_rcu(struct hlist_node *old,
440
					struct hlist_node *new)
441
{
442
	struct hlist_node *next = old->next;
443
 
444
	new->next = next;
445
	new->pprev = old->pprev;
446
	rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
447
	if (next)
448
		new->next->pprev = &new->next;
449
	old->pprev = LIST_POISON2;
450
}
451
 
452
/*
453
 * return the first or the next element in an RCU protected hlist
454
 */
455
#define hlist_first_rcu(head)	(*((struct hlist_node __rcu **)(&(head)->first)))
456
#define hlist_next_rcu(node)	(*((struct hlist_node __rcu **)(&(node)->next)))
457
#define hlist_pprev_rcu(node)	(*((struct hlist_node __rcu **)((node)->pprev)))
458
 
459
/**
460
 * hlist_add_head_rcu
461
 * @n: the element to add to the hash list.
462
 * @h: the list to add to.
463
 *
464
 * Description:
465
 * Adds the specified element to the specified hlist,
466
 * while permitting racing traversals.
467
 *
468
 * The caller must take whatever precautions are necessary
469
 * (such as holding appropriate locks) to avoid racing
470
 * with another list-mutation primitive, such as hlist_add_head_rcu()
471
 * or hlist_del_rcu(), running on this same list.
472
 * However, it is perfectly legal to run concurrently with
473
 * the _rcu list-traversal primitives, such as
474
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
475
 * problems on Alpha CPUs.  Regardless of the type of CPU, the
476
 * list-traversal primitive must be guarded by rcu_read_lock().
477
 */
478
static inline void hlist_add_head_rcu(struct hlist_node *n,
479
					struct hlist_head *h)
480
{
481
	struct hlist_node *first = h->first;
482
 
483
	n->next = first;
484
	n->pprev = &h->first;
485
	rcu_assign_pointer(hlist_first_rcu(h), n);
486
	if (first)
487
		first->pprev = &n->next;
488
}
489
 
490
/**
491
 * hlist_add_before_rcu
492
 * @n: the new element to add to the hash list.
493
 * @next: the existing element to add the new element before.
494
 *
495
 * Description:
496
 * Adds the specified element to the specified hlist
497
 * before the specified node while permitting racing traversals.
498
 *
499
 * The caller must take whatever precautions are necessary
500
 * (such as holding appropriate locks) to avoid racing
501
 * with another list-mutation primitive, such as hlist_add_head_rcu()
502
 * or hlist_del_rcu(), running on this same list.
503
 * However, it is perfectly legal to run concurrently with
504
 * the _rcu list-traversal primitives, such as
505
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
506
 * problems on Alpha CPUs.
507
 */
508
static inline void hlist_add_before_rcu(struct hlist_node *n,
509
					struct hlist_node *next)
510
{
511
	n->pprev = next->pprev;
512
	n->next = next;
513
	rcu_assign_pointer(hlist_pprev_rcu(n), n);
514
	next->pprev = &n->next;
515
}
516
 
517
/**
5056 serge 518
 * hlist_add_behind_rcu
519
 * @n: the new element to add to the hash list.
4065 Serge 520
 * @prev: the existing element to add the new element after.
521
 *
522
 * Description:
523
 * Adds the specified element to the specified hlist
524
 * after the specified node while permitting racing traversals.
525
 *
526
 * The caller must take whatever precautions are necessary
527
 * (such as holding appropriate locks) to avoid racing
528
 * with another list-mutation primitive, such as hlist_add_head_rcu()
529
 * or hlist_del_rcu(), running on this same list.
530
 * However, it is perfectly legal to run concurrently with
531
 * the _rcu list-traversal primitives, such as
532
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
533
 * problems on Alpha CPUs.
534
 */
5056 serge 535
static inline void hlist_add_behind_rcu(struct hlist_node *n,
536
					struct hlist_node *prev)
4065 Serge 537
{
538
	n->next = prev->next;
539
	n->pprev = &prev->next;
540
	rcu_assign_pointer(hlist_next_rcu(prev), n);
541
	if (n->next)
542
		n->next->pprev = &n->next;
543
}
544
 
545
#define __hlist_for_each_rcu(pos, head)				\
546
	for (pos = rcu_dereference(hlist_first_rcu(head));	\
547
	     pos;						\
548
	     pos = rcu_dereference(hlist_next_rcu(pos)))
549
 
550
/**
551
 * hlist_for_each_entry_rcu - iterate over rcu list of given type
552
 * @pos:	the type * to use as a loop cursor.
553
 * @head:	the head for your list.
554
 * @member:	the name of the hlist_node within the struct.
555
 *
556
 * This list-traversal primitive may safely run concurrently with
557
 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
558
 * as long as the traversal is guarded by rcu_read_lock().
559
 */
560
#define hlist_for_each_entry_rcu(pos, head, member)			\
561
	for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
562
			typeof(*(pos)), member);			\
563
		pos;							\
564
		pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
565
			&(pos)->member)), typeof(*(pos)), member))
566
 
567
/**
568
 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
569
 * @pos:	the type * to use as a loop cursor.
570
 * @head:	the head for your list.
571
 * @member:	the name of the hlist_node within the struct.
572
 *
573
 * This list-traversal primitive may safely run concurrently with
574
 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
575
 * as long as the traversal is guarded by rcu_read_lock().
576
 *
577
 * This is the same as hlist_for_each_entry_rcu() except that it does
578
 * not do any RCU debugging or tracing.
579
 */
580
#define hlist_for_each_entry_rcu_notrace(pos, head, member)			\
581
	for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
582
			typeof(*(pos)), member);			\
583
		pos;							\
584
		pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
585
			&(pos)->member)), typeof(*(pos)), member))
586
 
587
/**
588
 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
589
 * @pos:	the type * to use as a loop cursor.
590
 * @head:	the head for your list.
591
 * @member:	the name of the hlist_node within the struct.
592
 *
593
 * This list-traversal primitive may safely run concurrently with
594
 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
595
 * as long as the traversal is guarded by rcu_read_lock().
596
 */
597
#define hlist_for_each_entry_rcu_bh(pos, head, member)			\
598
	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
599
			typeof(*(pos)), member);			\
600
		pos;							\
601
		pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
602
			&(pos)->member)), typeof(*(pos)), member))
603
 
604
/**
605
 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
606
 * @pos:	the type * to use as a loop cursor.
607
 * @member:	the name of the hlist_node within the struct.
608
 */
609
#define hlist_for_each_entry_continue_rcu(pos, member)			\
6082 serge 610
	for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
611
			&(pos)->member)), typeof(*(pos)), member);	\
4065 Serge 612
	     pos;							\
6082 serge 613
	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
614
			&(pos)->member)), typeof(*(pos)), member))
4065 Serge 615
 
616
/**
617
 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
618
 * @pos:	the type * to use as a loop cursor.
619
 * @member:	the name of the hlist_node within the struct.
620
 */
621
#define hlist_for_each_entry_continue_rcu_bh(pos, member)		\
6082 serge 622
	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
623
			&(pos)->member)), typeof(*(pos)), member);	\
4065 Serge 624
	     pos;							\
6082 serge 625
	     pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(	\
626
			&(pos)->member)), typeof(*(pos)), member))
4065 Serge 627
 
5270 serge 628
/**
629
 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
630
 * @pos:	the type * to use as a loop cursor.
631
 * @member:	the name of the hlist_node within the struct.
632
 */
633
#define hlist_for_each_entry_from_rcu(pos, member)			\
634
	for (; pos;							\
6082 serge 635
	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
636
			&(pos)->member)), typeof(*(pos)), member))
4065 Serge 637
 
638
#endif	/* __KERNEL__ */
639
#endif