Subversion Repositories Kolibri OS

Rev

Rev 5270 | Rev 6936 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
4065 Serge 1
#ifndef _LINUX_RCULIST_H
2
#define _LINUX_RCULIST_H
3
 
4
#ifdef __KERNEL__
5
 
6
/*
7
 * RCU-protected list version
8
 */
9
#include 
5270 serge 10
#include 
4065 Serge 11
 
12
/*
13
 * Why is there no list_empty_rcu()?  Because list_empty() serves this
14
 * purpose.  The list_empty() function fetches the RCU-protected pointer
15
 * and compares it to the address of the list head, but neither dereferences
16
 * this pointer itself nor provides this pointer to the caller.  Therefore,
17
 * it is not necessary to use rcu_dereference(), so that list_empty() can
18
 * be used anywhere you would want to use a list_empty_rcu().
19
 */
20
 
21
/*
5270 serge 22
 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
23
 * @list: list to be initialized
24
 *
25
 * You should instead use INIT_LIST_HEAD() for normal initialization and
26
 * cleanup tasks, when readers have no access to the list being initialized.
27
 * However, if the list being initialized is visible to readers, you
28
 * need to keep the compiler from being too mischievous.
29
 */
30
static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
31
{
6082 serge 32
	WRITE_ONCE(list->next, list);
33
	WRITE_ONCE(list->prev, list);
5270 serge 34
}
35
 
36
/*
4065 Serge 37
 * return the ->next pointer of a list_head in an rcu safe
38
 * way, we must not access it directly
39
 */
40
#define list_next_rcu(list)	(*((struct list_head __rcu **)(&(list)->next)))
41
 
42
/*
43
 * Insert a new entry between two known consecutive entries.
44
 *
45
 * This is only for internal list manipulation where we know
46
 * the prev/next entries already!
47
 */
48
#ifndef CONFIG_DEBUG_LIST
49
static inline void __list_add_rcu(struct list_head *new,
50
		struct list_head *prev, struct list_head *next)
51
{
52
	new->next = next;
53
	new->prev = prev;
54
	rcu_assign_pointer(list_next_rcu(prev), new);
55
	next->prev = new;
56
}
57
#else
5056 serge 58
void __list_add_rcu(struct list_head *new,
6082 serge 59
		    struct list_head *prev, struct list_head *next);
4065 Serge 60
#endif
61
 
62
/**
63
 * list_add_rcu - add a new entry to rcu-protected list
64
 * @new: new entry to be added
65
 * @head: list head to add it after
66
 *
67
 * Insert a new entry after the specified head.
68
 * This is good for implementing stacks.
69
 *
70
 * The caller must take whatever precautions are necessary
71
 * (such as holding appropriate locks) to avoid racing
72
 * with another list-mutation primitive, such as list_add_rcu()
73
 * or list_del_rcu(), running on this same list.
74
 * However, it is perfectly legal to run concurrently with
75
 * the _rcu list-traversal primitives, such as
76
 * list_for_each_entry_rcu().
77
 */
78
static inline void list_add_rcu(struct list_head *new, struct list_head *head)
79
{
80
	__list_add_rcu(new, head, head->next);
81
}
82
 
83
/**
84
 * list_add_tail_rcu - add a new entry to rcu-protected list
85
 * @new: new entry to be added
86
 * @head: list head to add it before
87
 *
88
 * Insert a new entry before the specified head.
89
 * This is useful for implementing queues.
90
 *
91
 * The caller must take whatever precautions are necessary
92
 * (such as holding appropriate locks) to avoid racing
93
 * with another list-mutation primitive, such as list_add_tail_rcu()
94
 * or list_del_rcu(), running on this same list.
95
 * However, it is perfectly legal to run concurrently with
96
 * the _rcu list-traversal primitives, such as
97
 * list_for_each_entry_rcu().
98
 */
99
static inline void list_add_tail_rcu(struct list_head *new,
100
					struct list_head *head)
101
{
102
	__list_add_rcu(new, head->prev, head);
103
}
104
 
105
/**
106
 * list_del_rcu - deletes entry from list without re-initialization
107
 * @entry: the element to delete from the list.
108
 *
109
 * Note: list_empty() on entry does not return true after this,
110
 * the entry is in an undefined state. It is useful for RCU based
111
 * lockfree traversal.
112
 *
113
 * In particular, it means that we can not poison the forward
114
 * pointers that may still be used for walking the list.
115
 *
116
 * The caller must take whatever precautions are necessary
117
 * (such as holding appropriate locks) to avoid racing
118
 * with another list-mutation primitive, such as list_del_rcu()
119
 * or list_add_rcu(), running on this same list.
120
 * However, it is perfectly legal to run concurrently with
121
 * the _rcu list-traversal primitives, such as
122
 * list_for_each_entry_rcu().
123
 *
124
 * Note that the caller is not permitted to immediately free
125
 * the newly deleted entry.  Instead, either synchronize_rcu()
126
 * or call_rcu() must be used to defer freeing until an RCU
127
 * grace period has elapsed.
128
 */
129
static inline void list_del_rcu(struct list_head *entry)
130
{
131
	__list_del_entry(entry);
132
	entry->prev = LIST_POISON2;
133
}
134
 
135
/**
136
 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
137
 * @n: the element to delete from the hash list.
138
 *
139
 * Note: list_unhashed() on the node return true after this. It is
140
 * useful for RCU based read lockfree traversal if the writer side
141
 * must know if the list entry is still hashed or already unhashed.
142
 *
143
 * In particular, it means that we can not poison the forward pointers
144
 * that may still be used for walking the hash list and we can only
145
 * zero the pprev pointer so list_unhashed() will return true after
146
 * this.
147
 *
148
 * The caller must take whatever precautions are necessary (such as
149
 * holding appropriate locks) to avoid racing with another
150
 * list-mutation primitive, such as hlist_add_head_rcu() or
151
 * hlist_del_rcu(), running on this same list.  However, it is
152
 * perfectly legal to run concurrently with the _rcu list-traversal
153
 * primitives, such as hlist_for_each_entry_rcu().
154
 */
155
static inline void hlist_del_init_rcu(struct hlist_node *n)
156
{
157
	if (!hlist_unhashed(n)) {
158
		__hlist_del(n);
159
		n->pprev = NULL;
160
	}
161
}
162
 
163
/**
164
 * list_replace_rcu - replace old entry by new one
165
 * @old : the element to be replaced
166
 * @new : the new element to insert
167
 *
168
 * The @old entry will be replaced with the @new entry atomically.
169
 * Note: @old should not be empty.
170
 */
171
static inline void list_replace_rcu(struct list_head *old,
172
				struct list_head *new)
173
{
174
	new->next = old->next;
175
	new->prev = old->prev;
176
	rcu_assign_pointer(list_next_rcu(new->prev), new);
177
	new->next->prev = new;
178
	old->prev = LIST_POISON2;
179
}
180
 
181
/**
182
 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
183
 * @list:	the RCU-protected list to splice
184
 * @head:	the place in the list to splice the first list into
185
 * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
186
 *
187
 * @head can be RCU-read traversed concurrently with this function.
188
 *
189
 * Note that this function blocks.
190
 *
191
 * Important note: the caller must take whatever action is necessary to
192
 *	prevent any other updates to @head.  In principle, it is possible
193
 *	to modify the list as soon as sync() begins execution.
194
 *	If this sort of thing becomes necessary, an alternative version
195
 *	based on call_rcu() could be created.  But only if -really-
196
 *	needed -- there is no shortage of RCU API members.
197
 */
198
static inline void list_splice_init_rcu(struct list_head *list,
199
					struct list_head *head,
200
					void (*sync)(void))
201
{
202
	struct list_head *first = list->next;
203
	struct list_head *last = list->prev;
204
	struct list_head *at = head->next;
205
 
206
	if (list_empty(list))
207
		return;
208
 
5056 serge 209
	/*
210
	 * "first" and "last" tracking list, so initialize it.  RCU readers
211
	 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
212
	 * instead of INIT_LIST_HEAD().
213
	 */
4065 Serge 214
 
5270 serge 215
	INIT_LIST_HEAD_RCU(list);
4065 Serge 216
 
217
	/*
218
	 * At this point, the list body still points to the source list.
219
	 * Wait for any readers to finish using the list before splicing
220
	 * the list body into the new list.  Any new readers will see
221
	 * an empty list.
222
	 */
223
 
224
	sync();
225
 
226
	/*
227
	 * Readers are finished with the source list, so perform splice.
228
	 * The order is important if the new list is global and accessible
229
	 * to concurrent RCU readers.  Note that RCU readers are not
230
	 * permitted to traverse the prev pointers without excluding
231
	 * this function.
232
	 */
233
 
234
	last->next = at;
235
	rcu_assign_pointer(list_next_rcu(head), first);
236
	first->prev = head;
237
	at->prev = last;
238
}
239
 
240
/**
241
 * list_entry_rcu - get the struct for this entry
242
 * @ptr:        the &struct list_head pointer.
243
 * @type:       the type of the struct this is embedded in.
5270 serge 244
 * @member:     the name of the list_head within the struct.
4065 Serge 245
 *
246
 * This primitive may safely run concurrently with the _rcu list-mutation
247
 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
248
 */
249
#define list_entry_rcu(ptr, type, member) \
6082 serge 250
	container_of(lockless_dereference(ptr), type, member)
4065 Serge 251
 
252
/**
253
 * Where are list_empty_rcu() and list_first_entry_rcu()?
254
 *
255
 * Implementing those functions following their counterparts list_empty() and
256
 * list_first_entry() is not advisable because they lead to subtle race
257
 * conditions as the following snippet shows:
258
 *
259
 * if (!list_empty_rcu(mylist)) {
260
 *	struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
261
 *	do_something(bar);
262
 * }
263
 *
264
 * The list may not be empty when list_empty_rcu checks it, but it may be when
265
 * list_first_entry_rcu rereads the ->next pointer.
266
 *
267
 * Rereading the ->next pointer is not a problem for list_empty() and
268
 * list_first_entry() because they would be protected by a lock that blocks
269
 * writers.
270
 *
271
 * See list_first_or_null_rcu for an alternative.
272
 */
273
 
274
/**
275
 * list_first_or_null_rcu - get the first element from a list
276
 * @ptr:        the list head to take the element from.
277
 * @type:       the type of the struct this is embedded in.
5270 serge 278
 * @member:     the name of the list_head within the struct.
4065 Serge 279
 *
280
 * Note that if the list is empty, it returns NULL.
281
 *
282
 * This primitive may safely run concurrently with the _rcu list-mutation
283
 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
284
 */
285
#define list_first_or_null_rcu(ptr, type, member) \
5056 serge 286
({ \
287
	struct list_head *__ptr = (ptr); \
6082 serge 288
	struct list_head *__next = READ_ONCE(__ptr->next); \
5056 serge 289
	likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
290
})
4065 Serge 291
 
292
/**
293
 * list_for_each_entry_rcu	-	iterate over rcu list of given type
294
 * @pos:	the type * to use as a loop cursor.
295
 * @head:	the head for your list.
5270 serge 296
 * @member:	the name of the list_head within the struct.
4065 Serge 297
 *
298
 * This list-traversal primitive may safely run concurrently with
299
 * the _rcu list-mutation primitives such as list_add_rcu()
300
 * as long as the traversal is guarded by rcu_read_lock().
301
 */
302
#define list_for_each_entry_rcu(pos, head, member) \
303
	for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
304
		&pos->member != (head); \
305
		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
306
 
307
/**
308
 * list_for_each_entry_continue_rcu - continue iteration over list of given type
309
 * @pos:	the type * to use as a loop cursor.
310
 * @head:	the head for your list.
5270 serge 311
 * @member:	the name of the list_head within the struct.
4065 Serge 312
 *
313
 * Continue to iterate over list of given type, continuing after
314
 * the current position.
315
 */
316
#define list_for_each_entry_continue_rcu(pos, head, member) 		\
317
	for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
318
	     &pos->member != (head);	\
319
	     pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
320
 
321
/**
322
 * hlist_del_rcu - deletes entry from hash list without re-initialization
323
 * @n: the element to delete from the hash list.
324
 *
325
 * Note: list_unhashed() on entry does not return true after this,
326
 * the entry is in an undefined state. It is useful for RCU based
327
 * lockfree traversal.
328
 *
329
 * In particular, it means that we can not poison the forward
330
 * pointers that may still be used for walking the hash list.
331
 *
332
 * The caller must take whatever precautions are necessary
333
 * (such as holding appropriate locks) to avoid racing
334
 * with another list-mutation primitive, such as hlist_add_head_rcu()
335
 * or hlist_del_rcu(), running on this same list.
336
 * However, it is perfectly legal to run concurrently with
337
 * the _rcu list-traversal primitives, such as
338
 * hlist_for_each_entry().
339
 */
340
static inline void hlist_del_rcu(struct hlist_node *n)
341
{
342
	__hlist_del(n);
343
	n->pprev = LIST_POISON2;
344
}
345
 
346
/**
347
 * hlist_replace_rcu - replace old entry by new one
348
 * @old : the element to be replaced
349
 * @new : the new element to insert
350
 *
351
 * The @old entry will be replaced with the @new entry atomically.
352
 */
353
static inline void hlist_replace_rcu(struct hlist_node *old,
354
					struct hlist_node *new)
355
{
356
	struct hlist_node *next = old->next;
357
 
358
	new->next = next;
359
	new->pprev = old->pprev;
360
	rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
361
	if (next)
362
		new->next->pprev = &new->next;
363
	old->pprev = LIST_POISON2;
364
}
365
 
366
/*
367
 * return the first or the next element in an RCU protected hlist
368
 */
369
#define hlist_first_rcu(head)	(*((struct hlist_node __rcu **)(&(head)->first)))
370
#define hlist_next_rcu(node)	(*((struct hlist_node __rcu **)(&(node)->next)))
371
#define hlist_pprev_rcu(node)	(*((struct hlist_node __rcu **)((node)->pprev)))
372
 
373
/**
374
 * hlist_add_head_rcu
375
 * @n: the element to add to the hash list.
376
 * @h: the list to add to.
377
 *
378
 * Description:
379
 * Adds the specified element to the specified hlist,
380
 * while permitting racing traversals.
381
 *
382
 * The caller must take whatever precautions are necessary
383
 * (such as holding appropriate locks) to avoid racing
384
 * with another list-mutation primitive, such as hlist_add_head_rcu()
385
 * or hlist_del_rcu(), running on this same list.
386
 * However, it is perfectly legal to run concurrently with
387
 * the _rcu list-traversal primitives, such as
388
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
389
 * problems on Alpha CPUs.  Regardless of the type of CPU, the
390
 * list-traversal primitive must be guarded by rcu_read_lock().
391
 */
392
static inline void hlist_add_head_rcu(struct hlist_node *n,
393
					struct hlist_head *h)
394
{
395
	struct hlist_node *first = h->first;
396
 
397
	n->next = first;
398
	n->pprev = &h->first;
399
	rcu_assign_pointer(hlist_first_rcu(h), n);
400
	if (first)
401
		first->pprev = &n->next;
402
}
403
 
404
/**
405
 * hlist_add_before_rcu
406
 * @n: the new element to add to the hash list.
407
 * @next: the existing element to add the new element before.
408
 *
409
 * Description:
410
 * Adds the specified element to the specified hlist
411
 * before the specified node while permitting racing traversals.
412
 *
413
 * The caller must take whatever precautions are necessary
414
 * (such as holding appropriate locks) to avoid racing
415
 * with another list-mutation primitive, such as hlist_add_head_rcu()
416
 * or hlist_del_rcu(), running on this same list.
417
 * However, it is perfectly legal to run concurrently with
418
 * the _rcu list-traversal primitives, such as
419
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
420
 * problems on Alpha CPUs.
421
 */
422
static inline void hlist_add_before_rcu(struct hlist_node *n,
423
					struct hlist_node *next)
424
{
425
	n->pprev = next->pprev;
426
	n->next = next;
427
	rcu_assign_pointer(hlist_pprev_rcu(n), n);
428
	next->pprev = &n->next;
429
}
430
 
431
/**
5056 serge 432
 * hlist_add_behind_rcu
433
 * @n: the new element to add to the hash list.
4065 Serge 434
 * @prev: the existing element to add the new element after.
435
 *
436
 * Description:
437
 * Adds the specified element to the specified hlist
438
 * after the specified node while permitting racing traversals.
439
 *
440
 * The caller must take whatever precautions are necessary
441
 * (such as holding appropriate locks) to avoid racing
442
 * with another list-mutation primitive, such as hlist_add_head_rcu()
443
 * or hlist_del_rcu(), running on this same list.
444
 * However, it is perfectly legal to run concurrently with
445
 * the _rcu list-traversal primitives, such as
446
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
447
 * problems on Alpha CPUs.
448
 */
5056 serge 449
static inline void hlist_add_behind_rcu(struct hlist_node *n,
450
					struct hlist_node *prev)
4065 Serge 451
{
452
	n->next = prev->next;
453
	n->pprev = &prev->next;
454
	rcu_assign_pointer(hlist_next_rcu(prev), n);
455
	if (n->next)
456
		n->next->pprev = &n->next;
457
}
458
 
459
#define __hlist_for_each_rcu(pos, head)				\
460
	for (pos = rcu_dereference(hlist_first_rcu(head));	\
461
	     pos;						\
462
	     pos = rcu_dereference(hlist_next_rcu(pos)))
463
 
464
/**
465
 * hlist_for_each_entry_rcu - iterate over rcu list of given type
466
 * @pos:	the type * to use as a loop cursor.
467
 * @head:	the head for your list.
468
 * @member:	the name of the hlist_node within the struct.
469
 *
470
 * This list-traversal primitive may safely run concurrently with
471
 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
472
 * as long as the traversal is guarded by rcu_read_lock().
473
 */
474
#define hlist_for_each_entry_rcu(pos, head, member)			\
475
	for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
476
			typeof(*(pos)), member);			\
477
		pos;							\
478
		pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
479
			&(pos)->member)), typeof(*(pos)), member))
480
 
481
/**
482
 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
483
 * @pos:	the type * to use as a loop cursor.
484
 * @head:	the head for your list.
485
 * @member:	the name of the hlist_node within the struct.
486
 *
487
 * This list-traversal primitive may safely run concurrently with
488
 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
489
 * as long as the traversal is guarded by rcu_read_lock().
490
 *
491
 * This is the same as hlist_for_each_entry_rcu() except that it does
492
 * not do any RCU debugging or tracing.
493
 */
494
#define hlist_for_each_entry_rcu_notrace(pos, head, member)			\
495
	for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
496
			typeof(*(pos)), member);			\
497
		pos;							\
498
		pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
499
			&(pos)->member)), typeof(*(pos)), member))
500
 
501
/**
502
 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
503
 * @pos:	the type * to use as a loop cursor.
504
 * @head:	the head for your list.
505
 * @member:	the name of the hlist_node within the struct.
506
 *
507
 * This list-traversal primitive may safely run concurrently with
508
 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
509
 * as long as the traversal is guarded by rcu_read_lock().
510
 */
511
#define hlist_for_each_entry_rcu_bh(pos, head, member)			\
512
	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
513
			typeof(*(pos)), member);			\
514
		pos;							\
515
		pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
516
			&(pos)->member)), typeof(*(pos)), member))
517
 
518
/**
519
 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
520
 * @pos:	the type * to use as a loop cursor.
521
 * @member:	the name of the hlist_node within the struct.
522
 */
523
#define hlist_for_each_entry_continue_rcu(pos, member)			\
6082 serge 524
	for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
525
			&(pos)->member)), typeof(*(pos)), member);	\
4065 Serge 526
	     pos;							\
6082 serge 527
	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
528
			&(pos)->member)), typeof(*(pos)), member))
4065 Serge 529
 
530
/**
531
 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
532
 * @pos:	the type * to use as a loop cursor.
533
 * @member:	the name of the hlist_node within the struct.
534
 */
535
#define hlist_for_each_entry_continue_rcu_bh(pos, member)		\
6082 serge 536
	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
537
			&(pos)->member)), typeof(*(pos)), member);	\
4065 Serge 538
	     pos;							\
6082 serge 539
	     pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(	\
540
			&(pos)->member)), typeof(*(pos)), member))
4065 Serge 541
 
5270 serge 542
/**
543
 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
544
 * @pos:	the type * to use as a loop cursor.
545
 * @member:	the name of the hlist_node within the struct.
546
 */
547
#define hlist_for_each_entry_from_rcu(pos, member)			\
548
	for (; pos;							\
6082 serge 549
	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
550
			&(pos)->member)), typeof(*(pos)), member))
4065 Serge 551
 
552
#endif	/* __KERNEL__ */
553
#endif