Subversion Repositories Kolibri OS

Rev

Rev 6082 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2967 Serge 1
#ifndef _LINUX_JIFFIES_H
2
#define _LINUX_JIFFIES_H
3
 
4103 Serge 4
#include 
2967 Serge 5
#include 
6
#include 
4103 Serge 7
#include 
2967 Serge 8
//#include 
9
//#include          /* for HZ */
10
 
11
 
12
#define HZ              100
13
#define CLOCK_TICK_RATE 1193182ul
14
 
15
/*
16
 * The following defines establish the engineering parameters of the PLL
17
 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
18
 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
19
 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
20
 * nearest power of two in order to avoid hardware multiply operations.
21
 */
22
#if HZ >= 12 && HZ < 24
23
# define SHIFT_HZ	4
24
#elif HZ >= 24 && HZ < 48
25
# define SHIFT_HZ	5
26
#elif HZ >= 48 && HZ < 96
27
# define SHIFT_HZ	6
28
#elif HZ >= 96 && HZ < 192
29
# define SHIFT_HZ	7
30
#elif HZ >= 192 && HZ < 384
31
# define SHIFT_HZ	8
32
#elif HZ >= 384 && HZ < 768
33
# define SHIFT_HZ	9
34
#elif HZ >= 768 && HZ < 1536
35
# define SHIFT_HZ	10
36
#elif HZ >= 1536 && HZ < 3072
37
# define SHIFT_HZ	11
38
#elif HZ >= 3072 && HZ < 6144
39
# define SHIFT_HZ	12
40
#elif HZ >= 6144 && HZ < 12288
41
# define SHIFT_HZ	13
42
#else
43
# error Invalid value of HZ.
44
#endif
45
 
46
/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
47
 * improve accuracy by shifting LSH bits, hence calculating:
48
 *     (NOM << LSH) / DEN
49
 * This however means trouble for large NOM, because (NOM << LSH) may no
50
 * longer fit in 32 bits. The following way of calculating this gives us
51
 * some slack, under the following conditions:
52
 *   - (NOM / DEN) fits in (32 - LSH) bits.
53
 *   - (NOM % DEN) fits in (32 - LSH) bits.
54
 */
55
#define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
56
                             + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
57
 
4103 Serge 58
/* LATCH is used in the interval timer and ftape setup. */
59
#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)	/* For divider */
2967 Serge 60
 
4103 Serge 61
extern int register_refined_jiffies(long clock_tick_rate);
2967 Serge 62
 
4103 Serge 63
/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
64
#define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
65
 
2967 Serge 66
/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
67
#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
68
 
4103 Serge 69
/* some arch's have a small-data section that can be accessed register-relative
70
 * but that can only take up to, say, 4-byte variables. jiffies being part of
71
 * an 8-byte variable may not be correctly accessed unless we force the issue
72
 */
73
#define __jiffy_data  __attribute__((section(".data")))
2967 Serge 74
 
4103 Serge 75
/*
76
 * The 64-bit value is not atomic - you MUST NOT read it
77
 * without sampling the sequence number in jiffies_lock.
78
 * get_jiffies_64() will do this for you as appropriate.
5056 serge 79
 */
5270 serge 80
extern u64 __jiffy_data jiffies_64;
81
extern unsigned long volatile __jiffy_data jiffies;
5056 serge 82
 
83
#if (BITS_PER_LONG < 64)
84
u64 get_jiffies_64(void);
85
#else
2967 Serge 86
static inline u64 get_jiffies_64(void)
87
{
5056 serge 88
	return (u64)jiffies;
2967 Serge 89
}
5056 serge 90
#endif
2967 Serge 91
 
92
/*
6082 serge 93
 *	These inlines deal with timer wrapping correctly. You are
2967 Serge 94
 *	strongly encouraged to use them
95
 *	1. Because people otherwise forget
96
 *	2. Because if the timer wrap changes in future you won't have to
97
 *	   alter your driver code.
98
 *
99
 * time_after(a,b) returns true if the time a is after time b.
100
 *
101
 * Do this with "<0" and ">=0" to only test the sign of the result. A
102
 * good compiler would generate better code (and a really good compiler
103
 * wouldn't care). Gcc is currently neither.
104
 */
105
#define time_after(a,b)		\
106
	(typecheck(unsigned long, a) && \
107
	 typecheck(unsigned long, b) && \
4103 Serge 108
	 ((long)((b) - (a)) < 0))
2967 Serge 109
#define time_before(a,b)	time_after(b,a)
110
 
111
#define time_after_eq(a,b)	\
112
	(typecheck(unsigned long, a) && \
113
	 typecheck(unsigned long, b) && \
4103 Serge 114
	 ((long)((a) - (b)) >= 0))
2967 Serge 115
#define time_before_eq(a,b)	time_after_eq(b,a)
116
 
117
/*
118
 * Calculate whether a is in the range of [b, c].
119
 */
120
#define time_in_range(a,b,c) \
121
	(time_after_eq(a,b) && \
122
	 time_before_eq(a,c))
123
 
124
/*
125
 * Calculate whether a is in the range of [b, c).
126
 */
127
#define time_in_range_open(a,b,c) \
128
	(time_after_eq(a,b) && \
129
	 time_before(a,c))
130
 
131
/* Same as above, but does so with platform independent 64bit types.
132
 * These must be used when utilizing jiffies_64 (i.e. return value of
133
 * get_jiffies_64() */
134
#define time_after64(a,b)	\
135
	(typecheck(__u64, a) &&	\
136
	 typecheck(__u64, b) && \
4103 Serge 137
	 ((__s64)((b) - (a)) < 0))
2967 Serge 138
#define time_before64(a,b)	time_after64(b,a)
139
 
140
#define time_after_eq64(a,b)	\
141
	(typecheck(__u64, a) && \
142
	 typecheck(__u64, b) && \
4103 Serge 143
	 ((__s64)((a) - (b)) >= 0))
2967 Serge 144
#define time_before_eq64(a,b)	time_after_eq64(b,a)
145
 
4065 Serge 146
#define time_in_range64(a, b, c) \
147
	(time_after_eq64(a, b) && \
148
	 time_before_eq64(a, c))
149
 
2967 Serge 150
/*
151
 * These four macros compare jiffies and 'a' for convenience.
152
 */
153
 
154
/* time_is_before_jiffies(a) return true if a is before jiffies */
155
#define time_is_before_jiffies(a) time_after(jiffies, a)
156
 
157
/* time_is_after_jiffies(a) return true if a is after jiffies */
158
#define time_is_after_jiffies(a) time_before(jiffies, a)
159
 
160
/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
161
#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
162
 
163
/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
164
#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
165
 
166
/*
167
 * Have the 32 bit jiffies value wrap 5 minutes after boot
168
 * so jiffies wrap bugs show up earlier.
169
 */
170
#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
171
 
172
/*
173
 * Change timeval to jiffies, trying to avoid the
174
 * most obvious overflows..
175
 *
176
 * And some not so obvious.
177
 *
178
 * Note that we don't want to return LONG_MAX, because
179
 * for various timeout reasons we often end up having
180
 * to wait "jiffies+1" in order to guarantee that we wait
181
 * at _least_ "jiffies" - so "jiffies+1" had better still
182
 * be positive.
183
 */
184
#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
185
 
186
extern unsigned long preset_lpj;
187
 
188
/*
189
 * We want to do realistic conversions of time so we need to use the same
190
 * values the update wall clock code uses as the jiffies size.  This value
191
 * is: TICK_NSEC (which is defined in timex.h).  This
192
 * is a constant and is in nanoseconds.  We will use scaled math
193
 * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
194
 * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
195
 * constants and so are computed at compile time.  SHIFT_HZ (computed in
196
 * timex.h) adjusts the scaling for different HZ values.
197
 
198
 * Scaled math???  What is that?
199
 *
200
 * Scaled math is a way to do integer math on values that would,
201
 * otherwise, either overflow, underflow, or cause undesired div
202
 * instructions to appear in the execution path.  In short, we "scale"
203
 * up the operands so they take more bits (more precision, less
204
 * underflow), do the desired operation and then "scale" the result back
205
 * by the same amount.  If we do the scaling by shifting we avoid the
206
 * costly mpy and the dastardly div instructions.
207
 
208
 * Suppose, for example, we want to convert from seconds to jiffies
209
 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
210
 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
211
 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
212
 * might calculate at compile time, however, the result will only have
213
 * about 3-4 bits of precision (less for smaller values of HZ).
214
 *
215
 * So, we scale as follows:
216
 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
217
 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
218
 * Then we make SCALE a power of two so:
219
 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
220
 * Now we define:
221
 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
222
 * jiff = (sec * SEC_CONV) >> SCALE;
223
 *
224
 * Often the math we use will expand beyond 32-bits so we tell C how to
225
 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
226
 * which should take the result back to 32-bits.  We want this expansion
227
 * to capture as much precision as possible.  At the same time we don't
228
 * want to overflow so we pick the SCALE to avoid this.  In this file,
229
 * that means using a different scale for each range of HZ values (as
230
 * defined in timex.h).
231
 *
232
 * For those who want to know, gcc will give a 64-bit result from a "*"
233
 * operator if the result is a long long AND at least one of the
234
 * operands is cast to long long (usually just prior to the "*" so as
235
 * not to confuse it into thinking it really has a 64-bit operand,
236
 * which, buy the way, it can do, but it takes more code and at least 2
237
 * mpys).
238
 
239
 * We also need to be aware that one second in nanoseconds is only a
240
 * couple of bits away from overflowing a 32-bit word, so we MUST use
241
 * 64-bits to get the full range time in nanoseconds.
242
 
243
 */
244
 
245
/*
246
 * Here are the scales we will use.  One for seconds, nanoseconds and
247
 * microseconds.
248
 *
249
 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
250
 * check if the sign bit is set.  If not, we bump the shift count by 1.
251
 * (Gets an extra bit of precision where we can use it.)
252
 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
253
 * Haven't tested others.
254
 
255
 * Limits of cpp (for #if expressions) only long (no long long), but
256
 * then we only need the most signicant bit.
257
 */
258
 
259
#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
260
#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
261
#undef SEC_JIFFIE_SC
262
#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
263
#endif
264
#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
265
#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
266
                                TICK_NSEC -1) / (u64)TICK_NSEC))
267
 
268
#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
269
                                        TICK_NSEC -1) / (u64)TICK_NSEC))
270
/*
271
 * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
272
 * into seconds.  The 64-bit case will overflow if we are not careful,
273
 * so use the messy SH_DIV macro to do it.  Still all constants.
274
 */
275
#if BITS_PER_LONG < 64
276
# define MAX_SEC_IN_JIFFIES \
277
	(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
278
#else	/* take care of overflow on 64 bits machines */
279
# define MAX_SEC_IN_JIFFIES \
280
	(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
281
 
282
#endif
283
 
284
/*
285
 * Convert various time units to each other:
286
 */
287
extern unsigned int jiffies_to_msecs(const unsigned long j);
288
extern unsigned int jiffies_to_usecs(const unsigned long j);
5056 serge 289
 
290
static inline u64 jiffies_to_nsecs(const unsigned long j)
291
{
292
	return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
293
}
294
 
6082 serge 295
extern unsigned long __msecs_to_jiffies(const unsigned int m);
296
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
297
/*
298
 * HZ is equal to or smaller than 1000, and 1000 is a nice round
299
 * multiple of HZ, divide with the factor between them, but round
300
 * upwards:
301
 */
302
static inline unsigned long _msecs_to_jiffies(const unsigned int m)
303
{
304
	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
305
}
306
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
307
/*
308
 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
309
 * simply multiply with the factor between them.
310
 *
311
 * But first make sure the multiplication result cannot overflow:
312
 */
313
static inline unsigned long _msecs_to_jiffies(const unsigned int m)
314
{
315
	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
316
		return MAX_JIFFY_OFFSET;
317
	return m * (HZ / MSEC_PER_SEC);
318
}
319
#else
320
/*
321
 * Generic case - multiply, round and divide. But first check that if
322
 * we are doing a net multiplication, that we wouldn't overflow:
323
 */
324
static inline unsigned long _msecs_to_jiffies(const unsigned int m)
325
{
326
	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
327
		return MAX_JIFFY_OFFSET;
328
 
329
	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
330
}
331
#endif
332
/**
333
 * msecs_to_jiffies: - convert milliseconds to jiffies
334
 * @m:	time in milliseconds
335
 *
336
 * conversion is done as follows:
337
 *
338
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
339
 *
340
 * - 'too large' values [that would result in larger than
341
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
342
 *
343
 * - all other values are converted to jiffies by either multiplying
344
 *   the input value by a factor or dividing it with a factor and
345
 *   handling any 32-bit overflows.
346
 *   for the details see __msecs_to_jiffies()
347
 *
348
 * msecs_to_jiffies() checks for the passed in value being a constant
349
 * via __builtin_constant_p() allowing gcc to eliminate most of the
350
 * code, __msecs_to_jiffies() is called if the value passed does not
351
 * allow constant folding and the actual conversion must be done at
352
 * runtime.
353
 * the HZ range specific helpers _msecs_to_jiffies() are called both
354
 * directly here and from __msecs_to_jiffies() in the case where
355
 * constant folding is not possible.
356
 */
6934 serge 357
static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
6082 serge 358
{
359
	if (__builtin_constant_p(m)) {
360
		if ((int)m < 0)
361
			return MAX_JIFFY_OFFSET;
362
		return _msecs_to_jiffies(m);
363
	} else {
364
		return __msecs_to_jiffies(m);
365
	}
366
}
367
 
368
extern unsigned long __usecs_to_jiffies(const unsigned int u);
369
#if !(USEC_PER_SEC % HZ)
370
static inline unsigned long _usecs_to_jiffies(const unsigned int u)
371
{
372
	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
373
}
374
#else
375
static inline unsigned long _usecs_to_jiffies(const unsigned int u)
376
{
377
	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
378
		>> USEC_TO_HZ_SHR32;
379
}
380
#endif
381
 
382
/**
383
 * usecs_to_jiffies: - convert microseconds to jiffies
384
 * @u:	time in microseconds
385
 *
386
 * conversion is done as follows:
387
 *
388
 * - 'too large' values [that would result in larger than
389
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
390
 *
391
 * - all other values are converted to jiffies by either multiplying
392
 *   the input value by a factor or dividing it with a factor and
393
 *   handling any 32-bit overflows as for msecs_to_jiffies.
394
 *
395
 * usecs_to_jiffies() checks for the passed in value being a constant
396
 * via __builtin_constant_p() allowing gcc to eliminate most of the
397
 * code, __usecs_to_jiffies() is called if the value passed does not
398
 * allow constant folding and the actual conversion must be done at
399
 * runtime.
400
 * the HZ range specific helpers _usecs_to_jiffies() are called both
401
 * directly here and from __msecs_to_jiffies() in the case where
402
 * constant folding is not possible.
403
 */
404
static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
405
{
406
	if (__builtin_constant_p(u)) {
407
		if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
408
			return MAX_JIFFY_OFFSET;
409
		return _usecs_to_jiffies(u);
410
	} else {
411
		return __usecs_to_jiffies(u);
412
	}
413
}
414
 
415
extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
416
extern void jiffies_to_timespec64(const unsigned long jiffies,
417
				  struct timespec64 *value);
418
static inline unsigned long timespec_to_jiffies(const struct timespec *value)
419
{
420
	struct timespec64 ts = timespec_to_timespec64(*value);
421
 
422
	return timespec64_to_jiffies(&ts);
423
}
424
 
425
static inline void jiffies_to_timespec(const unsigned long jiffies,
426
				       struct timespec *value)
427
{
428
	struct timespec64 ts;
429
 
430
	jiffies_to_timespec64(jiffies, &ts);
431
	*value = timespec64_to_timespec(ts);
432
}
433
 
2967 Serge 434
extern unsigned long timeval_to_jiffies(const struct timeval *value);
435
extern void jiffies_to_timeval(const unsigned long jiffies,
436
			       struct timeval *value);
3031 serge 437
 
2967 Serge 438
extern clock_t jiffies_to_clock_t(unsigned long x);
3031 serge 439
static inline clock_t jiffies_delta_to_clock_t(long delta)
440
{
441
	return jiffies_to_clock_t(max(0L, delta));
442
}
443
 
2967 Serge 444
extern unsigned long clock_t_to_jiffies(unsigned long x);
445
extern u64 jiffies_64_to_clock_t(u64 x);
446
extern u64 nsec_to_clock_t(u64 x);
447
extern u64 nsecs_to_jiffies64(u64 n);
448
extern unsigned long nsecs_to_jiffies(u64 n);
449
 
450
#define TIMESTAMP_SIZE	30
451
 
452
#endif