Subversion Repositories Kolibri OS

Rev

Rev 6934 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
5270 serge 1
#ifndef _ASM_X86_BITOPS_H
2
#define _ASM_X86_BITOPS_H
3
 
4
/*
5
 * Copyright 1992, Linus Torvalds.
6
 *
7
 * Note: inlines with more than a single statement should be marked
8
 * __always_inline to avoid problems with older gcc's inlining heuristics.
9
 */
10
 
11
#ifndef _LINUX_BITOPS_H
12
#error only  can be included directly
13
#endif
14
 
15
#include 
16
#include 
17
#include 
18
#include 
19
 
20
#if BITS_PER_LONG == 32
21
# define _BITOPS_LONG_SHIFT 5
22
#elif BITS_PER_LONG == 64
23
# define _BITOPS_LONG_SHIFT 6
24
#else
25
# error "Unexpected BITS_PER_LONG"
26
#endif
27
 
28
#define BIT_64(n)			(U64_C(1) << (n))
29
 
30
/*
31
 * These have to be done with inline assembly: that way the bit-setting
32
 * is guaranteed to be atomic. All bit operations return 0 if the bit
33
 * was cleared before the operation and != 0 if it was not.
34
 *
35
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
36
 */
37
 
38
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
39
/* Technically wrong, but this avoids compilation errors on some gcc
40
   versions. */
41
#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
42
#else
43
#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
44
#endif
45
 
46
#define ADDR				BITOP_ADDR(addr)
47
 
48
/*
49
 * We do the locked ops that don't return the old value as
50
 * a mask operation on a byte.
51
 */
52
#define IS_IMMEDIATE(nr)		(__builtin_constant_p(nr))
53
#define CONST_MASK_ADDR(nr, addr)	BITOP_ADDR((void *)(addr) + ((nr)>>3))
54
#define CONST_MASK(nr)			(1 << ((nr) & 7))
55
 
56
/**
57
 * set_bit - Atomically set a bit in memory
58
 * @nr: the bit to set
59
 * @addr: the address to start counting from
60
 *
61
 * This function is atomic and may not be reordered.  See __set_bit()
62
 * if you do not require the atomic guarantees.
63
 *
64
 * Note: there are no guarantees that this function will not be reordered
65
 * on non x86 architectures, so if you are writing portable code,
66
 * make sure not to rely on its reordering guarantees.
67
 *
68
 * Note that @nr may be almost arbitrarily large; this function is not
69
 * restricted to acting on a single-word quantity.
70
 */
71
static __always_inline void
72
set_bit(long nr, volatile unsigned long *addr)
73
{
74
	if (IS_IMMEDIATE(nr)) {
75
		asm volatile(LOCK_PREFIX "orb %1,%0"
76
			: CONST_MASK_ADDR(nr, addr)
77
			: "iq" ((u8)CONST_MASK(nr))
78
			: "memory");
79
	} else {
80
		asm volatile(LOCK_PREFIX "bts %1,%0"
81
			: BITOP_ADDR(addr) : "Ir" (nr) : "memory");
82
	}
83
}
84
 
85
/**
86
 * __set_bit - Set a bit in memory
87
 * @nr: the bit to set
88
 * @addr: the address to start counting from
89
 *
90
 * Unlike set_bit(), this function is non-atomic and may be reordered.
91
 * If it's called on the same region of memory simultaneously, the effect
92
 * may be that only one operation succeeds.
93
 */
7143 serge 94
static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
5270 serge 95
{
96
	asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
97
}
98
 
99
/**
100
 * clear_bit - Clears a bit in memory
101
 * @nr: Bit to clear
102
 * @addr: Address to start counting from
103
 *
104
 * clear_bit() is atomic and may not be reordered.  However, it does
105
 * not contain a memory barrier, so if it is used for locking purposes,
106
 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
107
 * in order to ensure changes are visible on other processors.
108
 */
109
static __always_inline void
110
clear_bit(long nr, volatile unsigned long *addr)
111
{
112
	if (IS_IMMEDIATE(nr)) {
113
		asm volatile(LOCK_PREFIX "andb %1,%0"
114
			: CONST_MASK_ADDR(nr, addr)
115
			: "iq" ((u8)~CONST_MASK(nr)));
116
	} else {
117
		asm volatile(LOCK_PREFIX "btr %1,%0"
118
			: BITOP_ADDR(addr)
119
			: "Ir" (nr));
120
	}
121
}
122
 
123
/*
124
 * clear_bit_unlock - Clears a bit in memory
125
 * @nr: Bit to clear
126
 * @addr: Address to start counting from
127
 *
128
 * clear_bit() is atomic and implies release semantics before the memory
129
 * operation. It can be used for an unlock.
130
 */
7143 serge 131
static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
5270 serge 132
{
133
	barrier();
134
	clear_bit(nr, addr);
135
}
136
 
7143 serge 137
static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
5270 serge 138
{
139
	asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
140
}
141
 
142
/*
143
 * __clear_bit_unlock - Clears a bit in memory
144
 * @nr: Bit to clear
145
 * @addr: Address to start counting from
146
 *
147
 * __clear_bit() is non-atomic and implies release semantics before the memory
148
 * operation. It can be used for an unlock if no other CPUs can concurrently
149
 * modify other bits in the word.
150
 *
151
 * No memory barrier is required here, because x86 cannot reorder stores past
152
 * older loads. Same principle as spin_unlock.
153
 */
7143 serge 154
static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
5270 serge 155
{
156
	barrier();
157
	__clear_bit(nr, addr);
158
}
159
 
160
/**
161
 * __change_bit - Toggle a bit in memory
162
 * @nr: the bit to change
163
 * @addr: the address to start counting from
164
 *
165
 * Unlike change_bit(), this function is non-atomic and may be reordered.
166
 * If it's called on the same region of memory simultaneously, the effect
167
 * may be that only one operation succeeds.
168
 */
7143 serge 169
static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
5270 serge 170
{
171
	asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
172
}
173
 
174
/**
175
 * change_bit - Toggle a bit in memory
176
 * @nr: Bit to change
177
 * @addr: Address to start counting from
178
 *
179
 * change_bit() is atomic and may not be reordered.
180
 * Note that @nr may be almost arbitrarily large; this function is not
181
 * restricted to acting on a single-word quantity.
182
 */
7143 serge 183
static __always_inline void change_bit(long nr, volatile unsigned long *addr)
5270 serge 184
{
185
	if (IS_IMMEDIATE(nr)) {
186
		asm volatile(LOCK_PREFIX "xorb %1,%0"
187
			: CONST_MASK_ADDR(nr, addr)
188
			: "iq" ((u8)CONST_MASK(nr)));
189
	} else {
190
		asm volatile(LOCK_PREFIX "btc %1,%0"
191
			: BITOP_ADDR(addr)
192
			: "Ir" (nr));
193
	}
194
}
195
 
196
/**
197
 * test_and_set_bit - Set a bit and return its old value
198
 * @nr: Bit to set
199
 * @addr: Address to count from
200
 *
201
 * This operation is atomic and cannot be reordered.
202
 * It also implies a memory barrier.
203
 */
7143 serge 204
static __always_inline int test_and_set_bit(long nr, volatile unsigned long *addr)
5270 serge 205
{
206
	GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, "Ir", nr, "%0", "c");
207
}
208
 
209
/**
210
 * test_and_set_bit_lock - Set a bit and return its old value for lock
211
 * @nr: Bit to set
212
 * @addr: Address to count from
213
 *
214
 * This is the same as test_and_set_bit on x86.
215
 */
216
static __always_inline int
217
test_and_set_bit_lock(long nr, volatile unsigned long *addr)
218
{
219
	return test_and_set_bit(nr, addr);
220
}
221
 
222
/**
223
 * __test_and_set_bit - Set a bit and return its old value
224
 * @nr: Bit to set
225
 * @addr: Address to count from
226
 *
227
 * This operation is non-atomic and can be reordered.
228
 * If two examples of this operation race, one can appear to succeed
229
 * but actually fail.  You must protect multiple accesses with a lock.
230
 */
7143 serge 231
static __always_inline int __test_and_set_bit(long nr, volatile unsigned long *addr)
5270 serge 232
{
233
	int oldbit;
234
 
235
	asm("bts %2,%1\n\t"
236
	    "sbb %0,%0"
237
	    : "=r" (oldbit), ADDR
238
	    : "Ir" (nr));
239
	return oldbit;
240
}
241
 
242
/**
243
 * test_and_clear_bit - Clear a bit and return its old value
244
 * @nr: Bit to clear
245
 * @addr: Address to count from
246
 *
247
 * This operation is atomic and cannot be reordered.
248
 * It also implies a memory barrier.
249
 */
7143 serge 250
static __always_inline int test_and_clear_bit(long nr, volatile unsigned long *addr)
5270 serge 251
{
252
	GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, "Ir", nr, "%0", "c");
253
}
254
 
255
/**
256
 * __test_and_clear_bit - Clear a bit and return its old value
257
 * @nr: Bit to clear
258
 * @addr: Address to count from
259
 *
260
 * This operation is non-atomic and can be reordered.
261
 * If two examples of this operation race, one can appear to succeed
262
 * but actually fail.  You must protect multiple accesses with a lock.
263
 *
264
 * Note: the operation is performed atomically with respect to
265
 * the local CPU, but not other CPUs. Portable code should not
266
 * rely on this behaviour.
267
 * KVM relies on this behaviour on x86 for modifying memory that is also
268
 * accessed from a hypervisor on the same CPU if running in a VM: don't change
269
 * this without also updating arch/x86/kernel/kvm.c
270
 */
7143 serge 271
static __always_inline int __test_and_clear_bit(long nr, volatile unsigned long *addr)
5270 serge 272
{
273
	int oldbit;
274
 
275
	asm volatile("btr %2,%1\n\t"
276
		     "sbb %0,%0"
277
		     : "=r" (oldbit), ADDR
278
		     : "Ir" (nr));
279
	return oldbit;
280
}
281
 
282
/* WARNING: non atomic and it can be reordered! */
7143 serge 283
static __always_inline int __test_and_change_bit(long nr, volatile unsigned long *addr)
5270 serge 284
{
285
	int oldbit;
286
 
287
	asm volatile("btc %2,%1\n\t"
288
		     "sbb %0,%0"
289
		     : "=r" (oldbit), ADDR
290
		     : "Ir" (nr) : "memory");
291
 
292
	return oldbit;
293
}
294
 
295
/**
296
 * test_and_change_bit - Change a bit and return its old value
297
 * @nr: Bit to change
298
 * @addr: Address to count from
299
 *
300
 * This operation is atomic and cannot be reordered.
301
 * It also implies a memory barrier.
302
 */
7143 serge 303
static __always_inline int test_and_change_bit(long nr, volatile unsigned long *addr)
5270 serge 304
{
305
	GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, "Ir", nr, "%0", "c");
306
}
307
 
308
static __always_inline int constant_test_bit(long nr, const volatile unsigned long *addr)
309
{
310
	return ((1UL << (nr & (BITS_PER_LONG-1))) &
311
		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
312
}
313
 
7143 serge 314
static __always_inline int variable_test_bit(long nr, volatile const unsigned long *addr)
5270 serge 315
{
316
	int oldbit;
317
 
318
	asm volatile("bt %2,%1\n\t"
319
		     "sbb %0,%0"
320
		     : "=r" (oldbit)
321
		     : "m" (*(unsigned long *)addr), "Ir" (nr));
322
 
323
	return oldbit;
324
}
325
 
326
#if 0 /* Fool kernel-doc since it doesn't do macros yet */
327
/**
328
 * test_bit - Determine whether a bit is set
329
 * @nr: bit number to test
330
 * @addr: Address to start counting from
331
 */
332
static int test_bit(int nr, const volatile unsigned long *addr);
333
#endif
334
 
335
#define test_bit(nr, addr)			\
336
	(__builtin_constant_p((nr))		\
337
	 ? constant_test_bit((nr), (addr))	\
338
	 : variable_test_bit((nr), (addr)))
339
 
340
/**
341
 * __ffs - find first set bit in word
342
 * @word: The word to search
343
 *
344
 * Undefined if no bit exists, so code should check against 0 first.
345
 */
7143 serge 346
static __always_inline unsigned long __ffs(unsigned long word)
5270 serge 347
{
348
	asm("rep; bsf %1,%0"
349
		: "=r" (word)
350
		: "rm" (word));
351
	return word;
352
}
353
 
354
/**
355
 * ffz - find first zero bit in word
356
 * @word: The word to search
357
 *
358
 * Undefined if no zero exists, so code should check against ~0UL first.
359
 */
7143 serge 360
static __always_inline unsigned long ffz(unsigned long word)
5270 serge 361
{
362
	asm("rep; bsf %1,%0"
363
		: "=r" (word)
364
		: "r" (~word));
365
	return word;
366
}
367
 
368
/*
369
 * __fls: find last set bit in word
370
 * @word: The word to search
371
 *
372
 * Undefined if no set bit exists, so code should check against 0 first.
373
 */
7143 serge 374
static __always_inline unsigned long __fls(unsigned long word)
5270 serge 375
{
376
	asm("bsr %1,%0"
377
	    : "=r" (word)
378
	    : "rm" (word));
379
	return word;
380
}
381
 
382
#undef ADDR
383
 
384
#ifdef __KERNEL__
385
/**
386
 * ffs - find first set bit in word
387
 * @x: the word to search
388
 *
389
 * This is defined the same way as the libc and compiler builtin ffs
390
 * routines, therefore differs in spirit from the other bitops.
391
 *
392
 * ffs(value) returns 0 if value is 0 or the position of the first
393
 * set bit if value is nonzero. The first (least significant) bit
394
 * is at position 1.
395
 */
7143 serge 396
static __always_inline int ffs(int x)
5270 serge 397
{
398
	int r;
399
 
400
#ifdef CONFIG_X86_64
401
	/*
402
	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
403
	 * dest reg is undefined if x==0, but their CPU architect says its
404
	 * value is written to set it to the same as before, except that the
405
	 * top 32 bits will be cleared.
406
	 *
407
	 * We cannot do this on 32 bits because at the very least some
408
	 * 486 CPUs did not behave this way.
409
	 */
410
	asm("bsfl %1,%0"
411
	    : "=r" (r)
412
	    : "rm" (x), "0" (-1));
413
#elif defined(CONFIG_X86_CMOV)
414
	asm("bsfl %1,%0\n\t"
415
	    "cmovzl %2,%0"
416
	    : "=&r" (r) : "rm" (x), "r" (-1));
417
#else
418
	asm("bsfl %1,%0\n\t"
419
	    "jnz 1f\n\t"
420
	    "movl $-1,%0\n"
421
	    "1:" : "=r" (r) : "rm" (x));
422
#endif
423
	return r + 1;
424
}
425
 
426
/**
427
 * fls - find last set bit in word
428
 * @x: the word to search
429
 *
430
 * This is defined in a similar way as the libc and compiler builtin
431
 * ffs, but returns the position of the most significant set bit.
432
 *
433
 * fls(value) returns 0 if value is 0 or the position of the last
434
 * set bit if value is nonzero. The last (most significant) bit is
435
 * at position 32.
436
 */
7143 serge 437
static __always_inline int fls(int x)
5270 serge 438
{
439
	int r;
440
 
441
#ifdef CONFIG_X86_64
442
	/*
443
	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
444
	 * dest reg is undefined if x==0, but their CPU architect says its
445
	 * value is written to set it to the same as before, except that the
446
	 * top 32 bits will be cleared.
447
	 *
448
	 * We cannot do this on 32 bits because at the very least some
449
	 * 486 CPUs did not behave this way.
450
	 */
451
	asm("bsrl %1,%0"
452
	    : "=r" (r)
453
	    : "rm" (x), "0" (-1));
454
#elif defined(CONFIG_X86_CMOV)
455
	asm("bsrl %1,%0\n\t"
456
	    "cmovzl %2,%0"
457
	    : "=&r" (r) : "rm" (x), "rm" (-1));
458
#else
459
	asm("bsrl %1,%0\n\t"
460
	    "jnz 1f\n\t"
461
	    "movl $-1,%0\n"
462
	    "1:" : "=r" (r) : "rm" (x));
463
#endif
464
	return r + 1;
465
}
466
 
467
/**
468
 * fls64 - find last set bit in a 64-bit word
469
 * @x: the word to search
470
 *
471
 * This is defined in a similar way as the libc and compiler builtin
472
 * ffsll, but returns the position of the most significant set bit.
473
 *
474
 * fls64(value) returns 0 if value is 0 or the position of the last
475
 * set bit if value is nonzero. The last (most significant) bit is
476
 * at position 64.
477
 */
478
#ifdef CONFIG_X86_64
479
static __always_inline int fls64(__u64 x)
480
{
481
	int bitpos = -1;
482
	/*
483
	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
484
	 * dest reg is undefined if x==0, but their CPU architect says its
485
	 * value is written to set it to the same as before.
486
	 */
487
	asm("bsrq %1,%q0"
488
	    : "+r" (bitpos)
489
	    : "rm" (x));
490
	return bitpos + 1;
491
}
492
#else
493
#include 
494
#endif
495
 
496
#include 
497
 
498
#include 
499
 
500
#include 
501
 
502
#include 
503
 
504
#include 
505
 
506
#include 
507
 
508
#endif /* __KERNEL__ */
509
#endif /* _ASM_X86_BITOPS_H */