Subversion Repositories Kolibri OS

Rev

Rev 5270 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
4103 Serge 1
/*
2
  Red Black Trees
3
  (C) 1999  Andrea Arcangeli 
4
  (C) 2002  David Woodhouse 
5
  (C) 2012  Michel Lespinasse 
6
 
7
  This program is free software; you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation; either version 2 of the License, or
10
  (at your option) any later version.
11
 
12
  This program is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program; if not, write to the Free Software
19
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20
 
21
  linux/lib/rbtree.c
22
*/
23
 
24
#include 
25
#include 
26
 
27
/*
28
 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
29
 *
30
 *  1) A node is either red or black
31
 *  2) The root is black
32
 *  3) All leaves (NULL) are black
33
 *  4) Both children of every red node are black
34
 *  5) Every simple path from root to leaves contains the same number
35
 *     of black nodes.
36
 *
37
 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38
 *  consecutive red nodes in a path and every red node is therefore followed by
39
 *  a black. So if B is the number of black nodes on every simple path (as per
40
 *  5), then the longest possible path due to 4 is 2B.
41
 *
42
 *  We shall indicate color with case, where black nodes are uppercase and red
43
 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
44
 *  parentheses and have some accompanying text comment.
45
 */
46
 
6934 serge 47
/*
48
 * Notes on lockless lookups:
49
 *
50
 * All stores to the tree structure (rb_left and rb_right) must be done using
51
 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
52
 * tree structure as seen in program order.
53
 *
54
 * These two requirements will allow lockless iteration of the tree -- not
55
 * correct iteration mind you, tree rotations are not atomic so a lookup might
56
 * miss entire subtrees.
57
 *
58
 * But they do guarantee that any such traversal will only see valid elements
59
 * and that it will indeed complete -- does not get stuck in a loop.
60
 *
61
 * It also guarantees that if the lookup returns an element it is the 'correct'
62
 * one. But not returning an element does _NOT_ mean it's not present.
63
 *
64
 * NOTE:
65
 *
66
 * Stores to __rb_parent_color are not important for simple lookups so those
67
 * are left undone as of now. Nor did I check for loops involving parent
68
 * pointers.
69
 */
70
 
4103 Serge 71
static inline void rb_set_black(struct rb_node *rb)
72
{
73
	rb->__rb_parent_color |= RB_BLACK;
74
}
75
 
76
static inline struct rb_node *rb_red_parent(struct rb_node *red)
77
{
78
	return (struct rb_node *)red->__rb_parent_color;
79
}
80
 
81
/*
82
 * Helper function for rotations:
83
 * - old's parent and color get assigned to new
84
 * - old gets assigned new as a parent and 'color' as a color.
85
 */
86
static inline void
87
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
88
			struct rb_root *root, int color)
89
{
90
	struct rb_node *parent = rb_parent(old);
91
	new->__rb_parent_color = old->__rb_parent_color;
92
	rb_set_parent_color(old, new, color);
93
	__rb_change_child(old, new, parent, root);
94
}
95
 
96
static __always_inline void
97
__rb_insert(struct rb_node *node, struct rb_root *root,
98
	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
99
{
100
	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
101
 
102
	while (true) {
103
		/*
104
		 * Loop invariant: node is red
105
		 *
106
		 * If there is a black parent, we are done.
107
		 * Otherwise, take some corrective action as we don't
108
		 * want a red root or two consecutive red nodes.
109
		 */
110
		if (!parent) {
111
			rb_set_parent_color(node, NULL, RB_BLACK);
112
			break;
113
		} else if (rb_is_black(parent))
114
			break;
115
 
116
		gparent = rb_red_parent(parent);
117
 
118
		tmp = gparent->rb_right;
119
		if (parent != tmp) {	/* parent == gparent->rb_left */
120
			if (tmp && rb_is_red(tmp)) {
121
				/*
122
				 * Case 1 - color flips
123
				 *
124
				 *       G            g
125
				 *      / \          / \
126
				 *     p   u  -->   P   U
127
				 *    /            /
5270 serge 128
				 *   n            n
4103 Serge 129
				 *
130
				 * However, since g's parent might be red, and
131
				 * 4) does not allow this, we need to recurse
132
				 * at g.
133
				 */
134
				rb_set_parent_color(tmp, gparent, RB_BLACK);
135
				rb_set_parent_color(parent, gparent, RB_BLACK);
136
				node = gparent;
137
				parent = rb_parent(node);
138
				rb_set_parent_color(node, parent, RB_RED);
139
				continue;
140
			}
141
 
142
			tmp = parent->rb_right;
143
			if (node == tmp) {
144
				/*
145
				 * Case 2 - left rotate at parent
146
				 *
147
				 *      G             G
148
				 *     / \           / \
149
				 *    p   U  -->    n   U
150
				 *     \           /
151
				 *      n         p
152
				 *
153
				 * This still leaves us in violation of 4), the
154
				 * continuation into Case 3 will fix that.
155
				 */
6934 serge 156
				tmp = node->rb_left;
157
				WRITE_ONCE(parent->rb_right, tmp);
158
				WRITE_ONCE(node->rb_left, parent);
4103 Serge 159
				if (tmp)
160
					rb_set_parent_color(tmp, parent,
161
							    RB_BLACK);
162
				rb_set_parent_color(parent, node, RB_RED);
163
				augment_rotate(parent, node);
164
				parent = node;
165
				tmp = node->rb_right;
166
			}
167
 
168
			/*
169
			 * Case 3 - right rotate at gparent
170
			 *
171
			 *        G           P
172
			 *       / \         / \
173
			 *      p   U  -->  n   g
174
			 *     /                 \
175
			 *    n                   U
176
			 */
6934 serge 177
			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
178
			WRITE_ONCE(parent->rb_right, gparent);
4103 Serge 179
			if (tmp)
180
				rb_set_parent_color(tmp, gparent, RB_BLACK);
181
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
182
			augment_rotate(gparent, parent);
183
			break;
184
		} else {
185
			tmp = gparent->rb_left;
186
			if (tmp && rb_is_red(tmp)) {
187
				/* Case 1 - color flips */
188
				rb_set_parent_color(tmp, gparent, RB_BLACK);
189
				rb_set_parent_color(parent, gparent, RB_BLACK);
190
				node = gparent;
191
				parent = rb_parent(node);
192
				rb_set_parent_color(node, parent, RB_RED);
193
				continue;
194
			}
195
 
196
			tmp = parent->rb_left;
197
			if (node == tmp) {
198
				/* Case 2 - right rotate at parent */
6934 serge 199
				tmp = node->rb_right;
200
				WRITE_ONCE(parent->rb_left, tmp);
201
				WRITE_ONCE(node->rb_right, parent);
4103 Serge 202
				if (tmp)
203
					rb_set_parent_color(tmp, parent,
204
							    RB_BLACK);
205
				rb_set_parent_color(parent, node, RB_RED);
206
				augment_rotate(parent, node);
207
				parent = node;
208
				tmp = node->rb_left;
209
			}
210
 
211
			/* Case 3 - left rotate at gparent */
6934 serge 212
			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
213
			WRITE_ONCE(parent->rb_left, gparent);
4103 Serge 214
			if (tmp)
215
				rb_set_parent_color(tmp, gparent, RB_BLACK);
216
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
217
			augment_rotate(gparent, parent);
218
			break;
219
		}
220
	}
221
}
222
 
223
/*
224
 * Inline version for rb_erase() use - we want to be able to inline
225
 * and eliminate the dummy_rotate callback there
226
 */
227
static __always_inline void
228
____rb_erase_color(struct rb_node *parent, struct rb_root *root,
229
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
230
{
231
	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
232
 
233
	while (true) {
234
		/*
235
		 * Loop invariants:
236
		 * - node is black (or NULL on first iteration)
237
		 * - node is not the root (parent is not NULL)
238
		 * - All leaf paths going through parent and node have a
239
		 *   black node count that is 1 lower than other leaf paths.
240
		 */
241
		sibling = parent->rb_right;
242
		if (node != sibling) {	/* node == parent->rb_left */
243
			if (rb_is_red(sibling)) {
244
				/*
245
				 * Case 1 - left rotate at parent
246
				 *
247
				 *     P               S
248
				 *    / \             / \
249
				 *   N   s    -->    p   Sr
250
				 *      / \         / \
251
				 *     Sl  Sr      N   Sl
252
				 */
6934 serge 253
				tmp1 = sibling->rb_left;
254
				WRITE_ONCE(parent->rb_right, tmp1);
255
				WRITE_ONCE(sibling->rb_left, parent);
4103 Serge 256
				rb_set_parent_color(tmp1, parent, RB_BLACK);
257
				__rb_rotate_set_parents(parent, sibling, root,
258
							RB_RED);
259
				augment_rotate(parent, sibling);
260
				sibling = tmp1;
261
			}
262
			tmp1 = sibling->rb_right;
263
			if (!tmp1 || rb_is_black(tmp1)) {
264
				tmp2 = sibling->rb_left;
265
				if (!tmp2 || rb_is_black(tmp2)) {
266
					/*
267
					 * Case 2 - sibling color flip
268
					 * (p could be either color here)
269
					 *
270
					 *    (p)           (p)
271
					 *    / \           / \
272
					 *   N   S    -->  N   s
273
					 *      / \           / \
274
					 *     Sl  Sr        Sl  Sr
275
					 *
276
					 * This leaves us violating 5) which
277
					 * can be fixed by flipping p to black
278
					 * if it was red, or by recursing at p.
279
					 * p is red when coming from Case 1.
280
					 */
281
					rb_set_parent_color(sibling, parent,
282
							    RB_RED);
283
					if (rb_is_red(parent))
284
						rb_set_black(parent);
285
					else {
286
						node = parent;
287
						parent = rb_parent(node);
288
						if (parent)
289
							continue;
290
					}
291
					break;
292
				}
293
				/*
294
				 * Case 3 - right rotate at sibling
295
				 * (p could be either color here)
296
				 *
297
				 *   (p)           (p)
298
				 *   / \           / \
299
				 *  N   S    -->  N   Sl
300
				 *     / \             \
301
				 *    sl  Sr            s
302
				 *                       \
303
				 *                        Sr
304
				 */
6934 serge 305
				tmp1 = tmp2->rb_right;
306
				WRITE_ONCE(sibling->rb_left, tmp1);
307
				WRITE_ONCE(tmp2->rb_right, sibling);
308
				WRITE_ONCE(parent->rb_right, tmp2);
4103 Serge 309
				if (tmp1)
310
					rb_set_parent_color(tmp1, sibling,
311
							    RB_BLACK);
312
				augment_rotate(sibling, tmp2);
313
				tmp1 = sibling;
314
				sibling = tmp2;
315
			}
316
			/*
317
			 * Case 4 - left rotate at parent + color flips
318
			 * (p and sl could be either color here.
319
			 *  After rotation, p becomes black, s acquires
320
			 *  p's color, and sl keeps its color)
321
			 *
322
			 *      (p)             (s)
323
			 *      / \             / \
324
			 *     N   S     -->   P   Sr
325
			 *        / \         / \
326
			 *      (sl) sr      N  (sl)
327
			 */
6934 serge 328
			tmp2 = sibling->rb_left;
329
			WRITE_ONCE(parent->rb_right, tmp2);
330
			WRITE_ONCE(sibling->rb_left, parent);
4103 Serge 331
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
332
			if (tmp2)
333
				rb_set_parent(tmp2, parent);
334
			__rb_rotate_set_parents(parent, sibling, root,
335
						RB_BLACK);
336
			augment_rotate(parent, sibling);
337
			break;
338
		} else {
339
			sibling = parent->rb_left;
340
			if (rb_is_red(sibling)) {
341
				/* Case 1 - right rotate at parent */
6934 serge 342
				tmp1 = sibling->rb_right;
343
				WRITE_ONCE(parent->rb_left, tmp1);
344
				WRITE_ONCE(sibling->rb_right, parent);
4103 Serge 345
				rb_set_parent_color(tmp1, parent, RB_BLACK);
346
				__rb_rotate_set_parents(parent, sibling, root,
347
							RB_RED);
348
				augment_rotate(parent, sibling);
349
				sibling = tmp1;
350
			}
351
			tmp1 = sibling->rb_left;
352
			if (!tmp1 || rb_is_black(tmp1)) {
353
				tmp2 = sibling->rb_right;
354
				if (!tmp2 || rb_is_black(tmp2)) {
355
					/* Case 2 - sibling color flip */
356
					rb_set_parent_color(sibling, parent,
357
							    RB_RED);
358
					if (rb_is_red(parent))
359
						rb_set_black(parent);
360
					else {
361
						node = parent;
362
						parent = rb_parent(node);
363
						if (parent)
364
							continue;
365
					}
366
					break;
367
				}
368
				/* Case 3 - right rotate at sibling */
6934 serge 369
				tmp1 = tmp2->rb_left;
370
				WRITE_ONCE(sibling->rb_right, tmp1);
371
				WRITE_ONCE(tmp2->rb_left, sibling);
372
				WRITE_ONCE(parent->rb_left, tmp2);
4103 Serge 373
				if (tmp1)
374
					rb_set_parent_color(tmp1, sibling,
375
							    RB_BLACK);
376
				augment_rotate(sibling, tmp2);
377
				tmp1 = sibling;
378
				sibling = tmp2;
379
			}
380
			/* Case 4 - left rotate at parent + color flips */
6934 serge 381
			tmp2 = sibling->rb_right;
382
			WRITE_ONCE(parent->rb_left, tmp2);
383
			WRITE_ONCE(sibling->rb_right, parent);
4103 Serge 384
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
385
			if (tmp2)
386
				rb_set_parent(tmp2, parent);
387
			__rb_rotate_set_parents(parent, sibling, root,
388
						RB_BLACK);
389
			augment_rotate(parent, sibling);
390
			break;
391
		}
392
	}
393
}
394
 
395
/* Non-inline version for rb_erase_augmented() use */
396
void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
397
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
398
{
399
	____rb_erase_color(parent, root, augment_rotate);
400
}
401
EXPORT_SYMBOL(__rb_erase_color);
402
 
403
/*
404
 * Non-augmented rbtree manipulation functions.
405
 *
406
 * We use dummy augmented callbacks here, and have the compiler optimize them
407
 * out of the rb_insert_color() and rb_erase() function definitions.
408
 */
409
 
410
static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
411
static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
412
static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
413
 
414
static const struct rb_augment_callbacks dummy_callbacks = {
415
	dummy_propagate, dummy_copy, dummy_rotate
416
};
417
 
418
void rb_insert_color(struct rb_node *node, struct rb_root *root)
419
{
420
	__rb_insert(node, root, dummy_rotate);
421
}
422
EXPORT_SYMBOL(rb_insert_color);
423
 
424
void rb_erase(struct rb_node *node, struct rb_root *root)
425
{
426
	struct rb_node *rebalance;
427
	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
428
	if (rebalance)
429
		____rb_erase_color(rebalance, root, dummy_rotate);
430
}
431
EXPORT_SYMBOL(rb_erase);
432
 
433
/*
434
 * Augmented rbtree manipulation functions.
435
 *
436
 * This instantiates the same __always_inline functions as in the non-augmented
437
 * case, but this time with user-defined callbacks.
438
 */
439
 
440
void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
441
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
442
{
443
	__rb_insert(node, root, augment_rotate);
444
}
445
EXPORT_SYMBOL(__rb_insert_augmented);
446
 
447
/*
448
 * This function returns the first node (in sort order) of the tree.
449
 */
450
struct rb_node *rb_first(const struct rb_root *root)
451
{
452
	struct rb_node	*n;
453
 
454
	n = root->rb_node;
455
	if (!n)
456
		return NULL;
457
	while (n->rb_left)
458
		n = n->rb_left;
459
	return n;
460
}
461
EXPORT_SYMBOL(rb_first);
462
 
463
struct rb_node *rb_last(const struct rb_root *root)
464
{
465
	struct rb_node	*n;
466
 
467
	n = root->rb_node;
468
	if (!n)
469
		return NULL;
470
	while (n->rb_right)
471
		n = n->rb_right;
472
	return n;
473
}
474
EXPORT_SYMBOL(rb_last);
475
 
476
struct rb_node *rb_next(const struct rb_node *node)
477
{
478
	struct rb_node *parent;
479
 
480
	if (RB_EMPTY_NODE(node))
481
		return NULL;
482
 
483
	/*
484
	 * If we have a right-hand child, go down and then left as far
485
	 * as we can.
486
	 */
487
	if (node->rb_right) {
488
		node = node->rb_right;
489
		while (node->rb_left)
490
			node=node->rb_left;
491
		return (struct rb_node *)node;
492
	}
493
 
494
	/*
495
	 * No right-hand children. Everything down and left is smaller than us,
496
	 * so any 'next' node must be in the general direction of our parent.
497
	 * Go up the tree; any time the ancestor is a right-hand child of its
498
	 * parent, keep going up. First time it's a left-hand child of its
499
	 * parent, said parent is our 'next' node.
500
	 */
501
	while ((parent = rb_parent(node)) && node == parent->rb_right)
502
		node = parent;
503
 
504
	return parent;
505
}
506
EXPORT_SYMBOL(rb_next);
507
 
508
struct rb_node *rb_prev(const struct rb_node *node)
509
{
510
	struct rb_node *parent;
511
 
512
	if (RB_EMPTY_NODE(node))
513
		return NULL;
514
 
515
	/*
516
	 * If we have a left-hand child, go down and then right as far
517
	 * as we can.
518
	 */
519
	if (node->rb_left) {
520
		node = node->rb_left;
521
		while (node->rb_right)
522
			node=node->rb_right;
523
		return (struct rb_node *)node;
524
	}
525
 
526
	/*
527
	 * No left-hand children. Go up till we find an ancestor which
528
	 * is a right-hand child of its parent.
529
	 */
530
	while ((parent = rb_parent(node)) && node == parent->rb_left)
531
		node = parent;
532
 
533
	return parent;
534
}
535
EXPORT_SYMBOL(rb_prev);
536
 
537
void rb_replace_node(struct rb_node *victim, struct rb_node *new,
538
		     struct rb_root *root)
539
{
540
	struct rb_node *parent = rb_parent(victim);
541
 
542
	/* Set the surrounding nodes to point to the replacement */
543
	__rb_change_child(victim, new, parent, root);
544
	if (victim->rb_left)
545
		rb_set_parent(victim->rb_left, new);
546
	if (victim->rb_right)
547
		rb_set_parent(victim->rb_right, new);
548
 
549
	/* Copy the pointers/colour from the victim to the replacement */
550
	*new = *victim;
551
}
552
EXPORT_SYMBOL(rb_replace_node);
553
 
554
static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
555
{
556
	for (;;) {
557
		if (node->rb_left)
558
			node = node->rb_left;
559
		else if (node->rb_right)
560
			node = node->rb_right;
561
		else
562
			return (struct rb_node *)node;
563
	}
564
}
565
 
566
struct rb_node *rb_next_postorder(const struct rb_node *node)
567
{
568
	const struct rb_node *parent;
569
	if (!node)
570
		return NULL;
571
	parent = rb_parent(node);
572
 
573
	/* If we're sitting on node, we've already seen our children */
574
	if (parent && node == parent->rb_left && parent->rb_right) {
575
		/* If we are the parent's left node, go to the parent's right
576
		 * node then all the way down to the left */
577
		return rb_left_deepest_node(parent->rb_right);
578
	} else
579
		/* Otherwise we are the parent's right node, and the parent
580
		 * should be next */
581
		return (struct rb_node *)parent;
582
}
583
EXPORT_SYMBOL(rb_next_postorder);
584
 
585
struct rb_node *rb_first_postorder(const struct rb_root *root)
586
{
587
	if (!root->rb_node)
588
		return NULL;
589
 
590
	return rb_left_deepest_node(root->rb_node);
591
}
592
EXPORT_SYMBOL(rb_first_postorder);